Show simple item record

Solving bordered linear systems
dc.creatorŠtrausová, Jitka
dc.date.accessioned2017-04-06T12:59:20Z
dc.date.available2017-04-06T12:59:20Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/13671
dc.description.abstractThe comparison of two algorithms for solving bordered linear systems is considered. The matrix of this system consists of four blocks (matrices A,B,C,D), the upper left one is a sparse matrix A, which is ill-conditioned and structured. The other blocks (B,C,D) are dense. We say that the matrix A is bordered with the matrices B,C,D. It is desirable to preserve the block structure of the matrix and take advantage of sparsity and structure of the matrix A. The literature suggests touse two different algorithms: The first one is the method BEM for matrices with the borders of width equal to one. The recursive alternative for matrices with wider borders is called BEMW. The second algorithm is an iterative method. Both techniques are based on different variants of the block LU-decomposition.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleŘešení soustav lineárních rovnic s obroubenou maticícs_CZ
dc.typerigorózní prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-09-27
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId44911
dc.title.translatedSolving bordered linear systemsen_US
dc.identifier.aleph000857702
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineVýpočtová matematikacs_CZ
thesis.degree.disciplineComputational mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csVýpočtová matematikacs_CZ
uk.degree-discipline.enComputational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspělcs_CZ
thesis.grade.enPassen_US
uk.abstract.enThe comparison of two algorithms for solving bordered linear systems is considered. The matrix of this system consists of four blocks (matrices A,B,C,D), the upper left one is a sparse matrix A, which is ill-conditioned and structured. The other blocks (B,C,D) are dense. We say that the matrix A is bordered with the matrices B,C,D. It is desirable to preserve the block structure of the matrix and take advantage of sparsity and structure of the matrix A. The literature suggests touse two different algorithms: The first one is the method BEM for matrices with the borders of width equal to one. The recursive alternative for matrices with wider borders is called BEMW. The second algorithm is an iterative method. Both techniques are based on different variants of the block LU-decomposition.en_US
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV