Show simple item record

Proces rizika s náhodným příjmem
dc.contributor.advisorKlebanov, Lev
dc.creatorRinglerová, Anna
dc.date.accessioned2017-04-06T11:41:04Z
dc.date.available2017-04-06T11:41:04Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/13298
dc.description.abstractThis diploma thesis deals with risk processes. It describes a classical risk process and mentions the ruin probability. A convolution formula and the Beekman convolution formula for calculating the ruin probability are deduced for the classical risk process. The following part of the thesis provides the investigation of the Cram¶er-Lundberg, the Beekman-Bowers and the De Vylder approximation to the ruin probability. The accuracy of approximations is illustrated in two examples. Afterwards, a risk process with random income is studied and a convolution formula for such a process is derived. In an example, the classical risk process is taken as a specic type of the risk process with random income. For such a process, the ruin probability computed by the convolution formula for classical risk process is compared to the ruin probability computed by the convolution formula for the risk process with random income. It is shown that sometimes the ruin probability is undervalued when computed by the convolution formula for classical risk process.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleRisk Process with Random Incomeen_US
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-09-24
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId42806
dc.title.translatedProces rizika s náhodným příjmemcs_CZ
dc.contributor.refereeMazurová, Lucie
dc.identifier.aleph000939641
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineFinanční a pojistná matematikacs_CZ
thesis.degree.disciplineFinancial and insurance mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční a pojistná matematikacs_CZ
uk.degree-discipline.enFinancial and insurance mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.enThis diploma thesis deals with risk processes. It describes a classical risk process and mentions the ruin probability. A convolution formula and the Beekman convolution formula for calculating the ruin probability are deduced for the classical risk process. The following part of the thesis provides the investigation of the Cram¶er-Lundberg, the Beekman-Bowers and the De Vylder approximation to the ruin probability. The accuracy of approximations is illustrated in two examples. Afterwards, a risk process with random income is studied and a convolution formula for such a process is derived. In an example, the classical risk process is taken as a specic type of the risk process with random income. For such a process, the ruin probability computed by the convolution formula for classical risk process is compared to the ruin probability computed by the convolution formula for the risk process with random income. It is shown that sometimes the ruin probability is undervalued when computed by the convolution formula for classical risk process.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV