Show simple item record

Generalized Stokes systems - theoretical analysis approach
dc.contributor.advisorMálek, Josef
dc.creatorHoleček, Martin
dc.date.accessioned2017-04-06T11:40:03Z
dc.date.available2017-04-06T11:40:03Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/13293
dc.description.abstractWe consider steady flows of homogenous incompressible fluid described by generalized Stokes system. We study two models, first with shear-rate dependent viskosity and second with pressure and shear-rate dependent viskosity. We investigate internal flows in bounded domains subject to Navier's boundary condition. First, to show the difference, we present proofs of existence and uniqueness of solutions for both systems. Then we investigate, what are the assumptions allowing to take the fluid mechanics limit, as Navier's boundary conditions approximate first no-slip and then (perfect) slip boundary conditions. Finally, we consider for simplicity specially periodic problem and show regularity result (integrability of the second derivatives of the velocity and the first derivatives of the pressure).en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleZobecněné Stokesovy systémy studované z pohledu teoretické analýzycs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-09-25
dc.description.departmentMatematický ústav UKcs_CZ
dc.description.departmentMathematical Institute of Charles Universityen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId43730
dc.title.translatedGeneralized Stokes systems - theoretical analysis approachen_US
dc.contributor.refereePokorný, Milan
dc.identifier.aleph000939409
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineMatematické a počítačové modelování ve fyzice a v technicecs_CZ
thesis.degree.disciplineMathematical and Computer Modelling in Physics and Engineeringen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické a počítačové modelování ve fyzice a v technicecs_CZ
uk.degree-discipline.enMathematical and Computer Modelling in Physics and Engineeringen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.enWe consider steady flows of homogenous incompressible fluid described by generalized Stokes system. We study two models, first with shear-rate dependent viskosity and second with pressure and shear-rate dependent viskosity. We investigate internal flows in bounded domains subject to Navier's boundary condition. First, to show the difference, we present proofs of existence and uniqueness of solutions for both systems. Then we investigate, what are the assumptions allowing to take the fluid mechanics limit, as Navier's boundary conditions approximate first no-slip and then (perfect) slip boundary conditions. Finally, we consider for simplicity specially periodic problem and show regularity result (integrability of the second derivatives of the velocity and the first derivatives of the pressure).en_US
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UKcs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV