Zobrazit minimální záznam

Efektivní simulace šíření světla v opticky aktivních médiích pro barevný 3D tisk
dc.contributor.advisorRittig, Tobias
dc.creatorBrečka, Bohuš
dc.date.accessioned2021-07-20T09:01:03Z
dc.date.available2021-07-20T09:01:03Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11956/127773
dc.description.abstractMonte Carlo simulácia transportu svetla je použitá v pipeline pre farebnú 3D tlač, ktorá má informáciu o šírení svetla (Elek et al. [2017], Sumin et al. [2019]), na riadenie iteratívneho optimalizačného cyklu. Jej účelom je nájsť rozloženie materiálov, ktoré vedie k najväčšej zhode so vzhľadom povrchu cieľa. Keďže simulácia transportu svetla zaberá asi 90% času, predstavuje značnú prekážku pre praktické využitie tejto technológie. Husté uloženie volumetrických textúr taktiež vyžaduje veľa pamäte. Explicitná simulácia každej interakcie svetla je obzvlášť náročná v kombinácii s vlastnosťami 3D výtlačkov kvôli heterogenite, vysokej hustote a vysokému albedu médií. V tejto práci skúmame existujúce techniky pre volumetrický rendering (Křivánek et al. [2014], Herholz et al. [2019]) a nakoniec zostrojíme estimátor prispôsobený pre naše podmienky, čím výrazne zvýšime výkon. Navyše skúmame rôzne riešenia pre ukladanie volumetrických údajov a úspešne znižujeme pamäťovú stopu. Všetky algoritmy sú k dispozícii vo forme pluginov pre Mitsuba renderer.cs_CZ
dc.description.abstractA Monte Carlo light transport simulation is used in scattering-aware color 3D printing pipeline (Elek et al. [2017], Sumin et al. [2019]) to drive an iterative optimization loop. Its purpose is to find a material arrangement that yields the closest match in terms of surface appearance towards a target. As the light transport prediction takes up about 90% of the time it poses a significant bottleneck towards a practical application of this technology. The dense volumetric textures also require a lot of memory. Explicitly simulating every light interaction is particularly challenging in the setting of 3D printouts due to the heterogeneity, high density and high albedo of the media. In this thesis, we explore existing volumetric rendering techniques (Křivánek et al. [2014], Herholz et al. [2019]) and finally engineer a customized estimator for our setting, improving the performance considerably. Additionally, we investigate various storage solutions for the volumetric data and successfully reduce the memory footprint. All the algorithms are available in the form of Mitsuba renderer plugins.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectvolumetrický path tracing|efektivní rendering|photon mappingcs_CZ
dc.subjectvolume path tracing|efficient rendering|photon mappingen_US
dc.titleEfficient light transport simulation of participating media in color 3D printing.en_US
dc.typediplomová prácecs_CZ
dcterms.created2021
dcterms.dateAccepted2021-06-29
dc.description.departmentDepartment of Software and Computer Science Educationen_US
dc.description.departmentKatedra softwaru a výuky informatikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId235503
dc.title.translatedEfektivní simulace šíření světla v opticky aktivních médiích pro barevný 3D tiskcs_CZ
dc.contributor.refereeNindel, Thomas Klaus
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputer Graphics and Game Developmenten_US
thesis.degree.disciplinePočítačová grafika a vývoj počítačových hercs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwaru a výuky informatikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software and Computer Science Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPočítačová grafika a vývoj počítačových hercs_CZ
uk.degree-discipline.enComputer Graphics and Game Developmenten_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csMonte Carlo simulácia transportu svetla je použitá v pipeline pre farebnú 3D tlač, ktorá má informáciu o šírení svetla (Elek et al. [2017], Sumin et al. [2019]), na riadenie iteratívneho optimalizačného cyklu. Jej účelom je nájsť rozloženie materiálov, ktoré vedie k najväčšej zhode so vzhľadom povrchu cieľa. Keďže simulácia transportu svetla zaberá asi 90% času, predstavuje značnú prekážku pre praktické využitie tejto technológie. Husté uloženie volumetrických textúr taktiež vyžaduje veľa pamäte. Explicitná simulácia každej interakcie svetla je obzvlášť náročná v kombinácii s vlastnosťami 3D výtlačkov kvôli heterogenite, vysokej hustote a vysokému albedu médií. V tejto práci skúmame existujúce techniky pre volumetrický rendering (Křivánek et al. [2014], Herholz et al. [2019]) a nakoniec zostrojíme estimátor prispôsobený pre naše podmienky, čím výrazne zvýšime výkon. Navyše skúmame rôzne riešenia pre ukladanie volumetrických údajov a úspešne znižujeme pamäťovú stopu. Všetky algoritmy sú k dispozícii vo forme pluginov pre Mitsuba renderer.cs_CZ
uk.abstract.enA Monte Carlo light transport simulation is used in scattering-aware color 3D printing pipeline (Elek et al. [2017], Sumin et al. [2019]) to drive an iterative optimization loop. Its purpose is to find a material arrangement that yields the closest match in terms of surface appearance towards a target. As the light transport prediction takes up about 90% of the time it poses a significant bottleneck towards a practical application of this technology. The dense volumetric textures also require a lot of memory. Explicitly simulating every light interaction is particularly challenging in the setting of 3D printouts due to the heterogeneity, high density and high albedo of the media. In this thesis, we explore existing volumetric rendering techniques (Křivánek et al. [2014], Herholz et al. [2019]) and finally engineer a customized estimator for our setting, improving the performance considerably. Additionally, we investigate various storage solutions for the volumetric data and successfully reduce the memory footprint. All the algorithms are available in the form of Mitsuba renderer plugins.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV