Show simple item record

Semilineární stochastické evoluční rovnice
dc.contributor.advisorMaslowski, Bohdan
dc.creatorKršek, Daniel
dc.date.accessioned2021-07-12T10:11:08Z
dc.date.available2021-07-12T10:11:08Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11956/127255
dc.description.abstractStochastické parciální diferenciální rovnice nachází uplatnění v řadě aplikovaných oblastí matematiky, jako například ve fyzice nebo finanční matematice. Velkou část těchto rovnic tvoří lineární rovnice s aditivním šumem. V některých případech ale koefi- cient driftu obsahuje navíc problematický nelineární člen, kvůli němuž nelze standardními metodami nalézt řešení, a to dokonce ani ve tvaru "mild". V těchto situacích můžeme použít vhodnou transformaci pravděpodobnostního prostoru a nalézt řešení v takzvaném slabém smyslu. Tato práce se zabývá semilineárními stochastickými evolučními rovnicemi v separabilním Hilbertově prostoru s řídícím procesem Volterrovského typu. Tyto pro- cesy tvoří velkou skupinu procesů, které lze chápat jako zobecnění Wienerova procesu, a mají značné uplatnění ve stochastickém modelování. Slabá řešení rovnic s těmito pro- cesy byla ale doposud studována pouze pro frakcionální Brownův pohyb. Tato práce představuje zoběcnění Girsanovovy věty pro obecné cylindrické Gaussovské Volterrovské procesy a důkaz existence slabého řešení za jistých podmínek. V práci je navíc dokázáno, že v jistých případech lze zaručit jednoznačnost rovnice v distribuci. Dále se zabýváme rovnicemi, kde je uvažován Liouvilleův frakcionální Brownův pohyb jako řídící proces. Pro tento případ je představen důkaz...cs_CZ
dc.description.abstractStochastic partial differential equations have proven useful in many applied areas of mathematics, such as physics or mathematical finance. A major part of such equations consists of linear equations with additive noise. In certain cases, however, the drift part of the differential equation additionally contains a possibly problematic non-linear term, which makes it unsolvable by the standard methods and even a solution in the mild sense may be out of reach. In such situations, we may still find a solution in the weak sense by employing a suitable transformation of the probability space. This thesis deals with semilinear stochastic evolution equations in a separable Hilbert space, where the driving process is an element of a large class of processes - so called Volterra processes, which can be understood as a generalisation of the Wiener process and may be of use to model a wide range of phenomena. The weak solutions, however, have been studied so far only for equations with the cylindrical fractional Brownian motion as the driving process. In this thesis, we introduce a generalisation of the Girsanov theorem for cylindrical Gaussian Volterra processes and give, in full generality, sufficient conditions for the existence of a weak solution and the uniqueness of the equation in law. Further, we introduce...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectStochastické evoluční rovnice|Stochastické parciální diferenciální rovnice|Volterrovské procesy|Slabá řešení|Girsanovova větacs_CZ
dc.subjectStochastic evolution equations|Stochastic partial differential equations|Volterra processes|Weak solutions|Girsanov theoremen_US
dc.titleSemilinear stochastic evolution equationsen_US
dc.typediplomová prácecs_CZ
dcterms.created2021
dcterms.dateAccepted2021-06-21
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId230850
dc.title.translatedSemilineární stochastické evoluční rovnicecs_CZ
dc.contributor.refereeČoupek, Petr
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csStochastické parciální diferenciální rovnice nachází uplatnění v řadě aplikovaných oblastí matematiky, jako například ve fyzice nebo finanční matematice. Velkou část těchto rovnic tvoří lineární rovnice s aditivním šumem. V některých případech ale koefi- cient driftu obsahuje navíc problematický nelineární člen, kvůli němuž nelze standardními metodami nalézt řešení, a to dokonce ani ve tvaru "mild". V těchto situacích můžeme použít vhodnou transformaci pravděpodobnostního prostoru a nalézt řešení v takzvaném slabém smyslu. Tato práce se zabývá semilineárními stochastickými evolučními rovnicemi v separabilním Hilbertově prostoru s řídícím procesem Volterrovského typu. Tyto pro- cesy tvoří velkou skupinu procesů, které lze chápat jako zobecnění Wienerova procesu, a mají značné uplatnění ve stochastickém modelování. Slabá řešení rovnic s těmito pro- cesy byla ale doposud studována pouze pro frakcionální Brownův pohyb. Tato práce představuje zoběcnění Girsanovovy věty pro obecné cylindrické Gaussovské Volterrovské procesy a důkaz existence slabého řešení za jistých podmínek. V práci je navíc dokázáno, že v jistých případech lze zaručit jednoznačnost rovnice v distribuci. Dále se zabýváme rovnicemi, kde je uvažován Liouvilleův frakcionální Brownův pohyb jako řídící proces. Pro tento případ je představen důkaz...cs_CZ
uk.abstract.enStochastic partial differential equations have proven useful in many applied areas of mathematics, such as physics or mathematical finance. A major part of such equations consists of linear equations with additive noise. In certain cases, however, the drift part of the differential equation additionally contains a possibly problematic non-linear term, which makes it unsolvable by the standard methods and even a solution in the mild sense may be out of reach. In such situations, we may still find a solution in the weak sense by employing a suitable transformation of the probability space. This thesis deals with semilinear stochastic evolution equations in a separable Hilbert space, where the driving process is an element of a large class of processes - so called Volterra processes, which can be understood as a generalisation of the Wiener process and may be of use to model a wide range of phenomena. The weak solutions, however, have been studied so far only for equations with the cylindrical fractional Brownian motion as the driving process. In this thesis, we introduce a generalisation of the Girsanov theorem for cylindrical Gaussian Volterra processes and give, in full generality, sufficient conditions for the existence of a weak solution and the uniqueness of the equation in law. Further, we introduce...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV