Show simple item record

Mohou stroje vysvětlit akciové výnosy?
dc.contributor.advisorBaruník, Jozef
dc.creatorChalupová, Karolína
dc.date.accessioned2021-03-26T12:07:33Z
dc.date.available2021-03-26T12:07:33Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11956/124592
dc.description.abstractMohou stroje vysvětlit akciové výnosy? Abstrakt diplomové práce Karolína Chalupová January 5, 2021 Nedávný výzkum ukazuje, že neuronové sítě dokážou předpovídat akciové výnosy lépe, než kterýkoli jiný model. Metematicky komplikovaná povaha sítí je zároveň jejich výhodou, umožňující odhalovat komplexní vzorce, a jejich prokletím, znesnadňujícím jejich interpretaci, což zamlžuje výhody a nevýhody sítí a komplikuje jejich užití. Tato práce je jedním z prvních pokusů toto prokletí překonat. Za použití nově vyvinutých metod interpretovatelného stro- jového učení objasňuje, jak sítě vytvářejí své vynikající předpovědi výnosů. Poskytuje tak nové odpovědi na starou otázku, které proměnné určují rozdíly v akciových výnosech, a vysvětluje, co stojí za bezkonkurenční schopností neu- ronových sítí identifikovat mezi akciemi na trhu budoucí vítěze a poražené. Tato práce je pravděpodobně první, která zjišťuje, zda neuronové sítě pod- porují ekonomické mechanismy, které během posledních 50 let přinesl výzkum v oblasti oceňování aktiv. Z hlediska aplikace pro finanční praxi práce nabízí transparentnost, kterou přináší dekompozice každé předpovědi na vlivy jed- notlivých vstupních proměnných; zároveň si práce zachovává Sharpe ratio na úrovni současné vědy. Navíc je představena nová metrika, která je zvláště vhodná pro...cs_CZ
dc.description.abstractCan Machines Explain Stock Returns? Thesis Abstract Karolína Chalupová January 5, 2021 Recent research shows that neural networks predict stock returns better than any other model. The networks' mathematically complicated nature is both their advantage, enabling to uncover complex patterns, and their curse, making them less readily interpretable, which obscures their strengths and weaknesses and complicates their usage. This thesis is one of the first attempts at overcoming this curse in the domain of stock returns prediction. Using some of the recently developed machine learning interpretability methods, it explains the networks' superior return forecasts. This gives new answers to the long- standing question of which variables explain differences in stock returns and clarifies the unparalleled ability of networks to identify future winners and losers among the stocks in the market. Building on 50 years of asset pricing research, this thesis is likely the first to uncover whether neural networks support the economic mechanisms proposed by the literature. To a finance practitioner, the thesis offers the transparency of decomposing any prediction into its drivers, while maintaining a state-of-the-art profitability in terms of Sharpe ratio. Additionally, a novel metric is proposed that is particularly suited...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectmachine learningen_US
dc.subjectequity returnsen_US
dc.subjectasset pricingen_US
dc.subjectinterpretable machine learningen_US
dc.subjectstrojové učenícs_CZ
dc.subjectvýnos akciícs_CZ
dc.subjectoceňování aktivcs_CZ
dc.subjectinterpretovatelné strojové učenícs_CZ
dc.titleCan Machines Explain Stock Returns?en_US
dc.typediplomová prácecs_CZ
dcterms.created2021
dcterms.dateAccepted2021-02-03
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.identifier.repId212474
dc.title.translatedMohou stroje vysvětlit akciové výnosy?cs_CZ
dc.contributor.refereeVácha, Lukáš
dc.identifier.aleph002425331
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineEconomics and Financeen_US
thesis.degree.disciplineEkonomie a financecs_CZ
thesis.degree.programEkonomické teoriecs_CZ
thesis.degree.programEconomicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomie a financecs_CZ
uk.degree-discipline.enEconomics and Financeen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csMohou stroje vysvětlit akciové výnosy? Abstrakt diplomové práce Karolína Chalupová January 5, 2021 Nedávný výzkum ukazuje, že neuronové sítě dokážou předpovídat akciové výnosy lépe, než kterýkoli jiný model. Metematicky komplikovaná povaha sítí je zároveň jejich výhodou, umožňující odhalovat komplexní vzorce, a jejich prokletím, znesnadňujícím jejich interpretaci, což zamlžuje výhody a nevýhody sítí a komplikuje jejich užití. Tato práce je jedním z prvních pokusů toto prokletí překonat. Za použití nově vyvinutých metod interpretovatelného stro- jového učení objasňuje, jak sítě vytvářejí své vynikající předpovědi výnosů. Poskytuje tak nové odpovědi na starou otázku, které proměnné určují rozdíly v akciových výnosech, a vysvětluje, co stojí za bezkonkurenční schopností neu- ronových sítí identifikovat mezi akciemi na trhu budoucí vítěze a poražené. Tato práce je pravděpodobně první, která zjišťuje, zda neuronové sítě pod- porují ekonomické mechanismy, které během posledních 50 let přinesl výzkum v oblasti oceňování aktiv. Z hlediska aplikace pro finanční praxi práce nabízí transparentnost, kterou přináší dekompozice každé předpovědi na vlivy jed- notlivých vstupních proměnných; zároveň si práce zachovává Sharpe ratio na úrovni současné vědy. Navíc je představena nová metrika, která je zvláště vhodná pro...cs_CZ
uk.abstract.enCan Machines Explain Stock Returns? Thesis Abstract Karolína Chalupová January 5, 2021 Recent research shows that neural networks predict stock returns better than any other model. The networks' mathematically complicated nature is both their advantage, enabling to uncover complex patterns, and their curse, making them less readily interpretable, which obscures their strengths and weaknesses and complicates their usage. This thesis is one of the first attempts at overcoming this curse in the domain of stock returns prediction. Using some of the recently developed machine learning interpretability methods, it explains the networks' superior return forecasts. This gives new answers to the long- standing question of which variables explain differences in stock returns and clarifies the unparalleled ability of networks to identify future winners and losers among the stocks in the market. Building on 50 years of asset pricing research, this thesis is likely the first to uncover whether neural networks support the economic mechanisms proposed by the literature. To a finance practitioner, the thesis offers the transparency of decomposing any prediction into its drivers, while maintaining a state-of-the-art profitability in terms of Sharpe ratio. Additionally, a novel metric is proposed that is particularly suited...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.codeA
dc.contributor.consultantHronec, Martin
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990024253310106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV