Show simple item record

Filtrace stochastických evolučních rovnic
dc.contributor.advisorMaslowski, Bohdan
dc.creatorKubelka, Vít
dc.date.accessioned2021-05-20T13:56:19Z
dc.date.available2021-05-20T13:56:19Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/123244
dc.description.abstractFiltrace stochastických evolučních rovnic Vít Kubelka Disertační práce Abstrakt Práce se zabývá problémem lineární filtrace nekonečně-rozměrných gau- ssovských procesů při konečně-rozměrném pozorování. Jsou zde odvozeny integrální rovnice pro filtr a kovarianci chyby odhadu. Obecné výsledky jsou aplikovány na lineární stochastické parciální diferenciální rovnice řízené Gauss-volterrovskými šumy pozorované v konečně mnoha bodech domény a na zpožděné stochastické parciální diferenciální rovnice řízené bílým šumem. Následně je v práci dokázána spojitá závislost filtru a chyby odhadu na parametrech, které se mohou nacházet v signálu i v pozorování. Tyto výsledky jsou aplikovány na signály dané stochastickou rovnicí vedení tepla řízenou dis- tribuovaným nebo bodovým frakcionálním šumem. Zašuměný signál může být pozorován v daných bodech domény, které také mohou záviset na para- metru. 1cs_CZ
dc.description.abstractFiltering for Stochastic Evolution Equations Vít Kubelka Doctoral thesis Abstract Linear filtering problem for infinite-dimensional Gaussian processes is studied, the observation process being finite-dimensional. Integral equations for the filter and for covariance of the error are derived. General results are applied to linear SPDEs driven by Gauss-Volterra process observed at finitely many points of the domain and to delayed SPDEs driven by white noise. Subsequently, the continuous dependence of the filter and observation error on parameters which may be present both in the signal and the obser- vation process is proved. These results are applied to signals governed by stochastic heat equations driven by distributed or pointwise fractional noise. The observation process may be a noisy observation of the signal at given points in the domain, the position of which may depend on the parameter. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectKalman-Bucy filteren_US
dc.subjectStochastic Evolution Equationsen_US
dc.subjectFilteringen_US
dc.subjectGaussian processesen_US
dc.subjectHilbert spacesen_US
dc.subjectKalmanův-Bucyho filtrcs_CZ
dc.subjectStochastické evoluční rovnicecs_CZ
dc.subjectFiltracecs_CZ
dc.subjectGaussovské procesycs_CZ
dc.subjectHilbertovy prostorycs_CZ
dc.titleFiltering for Stochastic Evolution Equationsen_US
dc.typerigorózní prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-10-20
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId229006
dc.title.translatedFiltrace stochastických evolučních rovniccs_CZ
dc.identifier.aleph002389180
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csFiltrace stochastických evolučních rovnic Vít Kubelka Disertační práce Abstrakt Práce se zabývá problémem lineární filtrace nekonečně-rozměrných gau- ssovských procesů při konečně-rozměrném pozorování. Jsou zde odvozeny integrální rovnice pro filtr a kovarianci chyby odhadu. Obecné výsledky jsou aplikovány na lineární stochastické parciální diferenciální rovnice řízené Gauss-volterrovskými šumy pozorované v konečně mnoha bodech domény a na zpožděné stochastické parciální diferenciální rovnice řízené bílým šumem. Následně je v práci dokázána spojitá závislost filtru a chyby odhadu na parametrech, které se mohou nacházet v signálu i v pozorování. Tyto výsledky jsou aplikovány na signály dané stochastickou rovnicí vedení tepla řízenou dis- tribuovaným nebo bodovým frakcionálním šumem. Zašuměný signál může být pozorován v daných bodech domény, které také mohou záviset na para- metru. 1cs_CZ
uk.abstract.enFiltering for Stochastic Evolution Equations Vít Kubelka Doctoral thesis Abstract Linear filtering problem for infinite-dimensional Gaussian processes is studied, the observation process being finite-dimensional. Integral equations for the filter and for covariance of the error are derived. General results are applied to linear SPDEs driven by Gauss-Volterra process observed at finitely many points of the domain and to delayed SPDEs driven by white noise. Subsequently, the continuous dependence of the filter and observation error on parameters which may be present both in the signal and the obser- vation process is proved. These results are applied to signals governed by stochastic heat equations driven by distributed or pointwise fractional noise. The observation process may be a noisy observation of the signal at given points in the domain, the position of which may depend on the parameter. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990023891800106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV