Show simple item record

Aktivní učení Bayesovských neuronových sítí pro klasifikaci obrazu
dc.contributor.advisorŠabata, Tomáš
dc.creatorBelák, Michal
dc.date.accessioned2021-03-26T13:38:21Z
dc.date.available2021-03-26T13:38:21Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/121002
dc.description.abstractV posledných rokoch dosahujú zložité neurónové siete špičkové výsledky v klasifikácií obrazu. Trénovanie takýchto modelov však vyžaduje veľké množstvo označkovaných dát. Kým neoznačkované obrázky sú často dostupné vo ve ľkom množstve, značkovanie vyžaduje značné ľudské úsilie. Aktívne učenie znižuje nároky na značkovanie vyberan ím najinformatívnejších inštancií na označkovanie. Najpoužívanejšia rodina stratégií pre vyberanie inštancií na znač kovanie v aktívnom učení využíva odhad neistoty predpovedí modelu, ktorý sa trénuje. Moderné neurónové siete vš ak často neposkytujú spoľahlivé odhady neistoty. Bayesovské neurónové siete modelujú neistotu parametrov model u, ktorá sa premieta do neistoty v predpovediach modelu. Presná Bayesovská inferencia je však neriešiteľná pre neur ónové siete, v literatúre však existujú rôzne približné metódy. V našich experimentoch používame tri takéto metódy, ktoré kombinujeme s rôznymi stratégiami pre vyberanie inštancií, využívajúcimi neistotu v ich predpovediach.cs_CZ
dc.description.abstractIn the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often readily available in large quantities, obtaining l abels takes considerable human effort. Active learning reduces the required labelling effort by selecting the most informative instances to label. The most popular active learning query strategy framework, uncertainty sampling, uses uncertainty estimates of the model being trained to select instances for labelling. However, modern classification neural networks often do not provide good uncertainty estimates. Baye sian neural networks model uncertainties over model parameters, which can be used to obtain uncertainties over model predictions. Exact Bayesian inference is intractable for neural networks, however several approximate methods have been proposed. We experiment with three such methods using various uncertainty sampling active learning query strategies.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectneural networksen_US
dc.subjectactive learningen_US
dc.subjectimage classificationen_US
dc.subjectBayesian learningen_US
dc.subjectBayesian neural networksen_US
dc.subjectstrojové učenícs_CZ
dc.subjecthluboké učenícs_CZ
dc.subjectneuronové sítěcs_CZ
dc.subjectaktivní učenícs_CZ
dc.subjectklasifikace obrazucs_CZ
dc.subjectBayesovské učenícs_CZ
dc.subjectBayesovské neuronové sítěcs_CZ
dc.titleActive learning for Bayesian neural networks in image classificationen_US
dc.typediplomová prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-09-14
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId222319
dc.title.translatedAktivní učení Bayesovských neuronových sítí pro klasifikaci obrazucs_CZ
dc.contributor.refereeVomlelová, Marta
dc.identifier.aleph002383098
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineArtificial Intelligenceen_US
thesis.degree.disciplineUmělá inteligencecs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUmělá inteligencecs_CZ
uk.degree-discipline.enArtificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV posledných rokoch dosahujú zložité neurónové siete špičkové výsledky v klasifikácií obrazu. Trénovanie takýchto modelov však vyžaduje veľké množstvo označkovaných dát. Kým neoznačkované obrázky sú často dostupné vo ve ľkom množstve, značkovanie vyžaduje značné ľudské úsilie. Aktívne učenie znižuje nároky na značkovanie vyberan ím najinformatívnejších inštancií na označkovanie. Najpoužívanejšia rodina stratégií pre vyberanie inštancií na znač kovanie v aktívnom učení využíva odhad neistoty predpovedí modelu, ktorý sa trénuje. Moderné neurónové siete vš ak často neposkytujú spoľahlivé odhady neistoty. Bayesovské neurónové siete modelujú neistotu parametrov model u, ktorá sa premieta do neistoty v predpovediach modelu. Presná Bayesovská inferencia je však neriešiteľná pre neur ónové siete, v literatúre však existujú rôzne približné metódy. V našich experimentoch používame tri takéto metódy, ktoré kombinujeme s rôznymi stratégiami pre vyberanie inštancií, využívajúcimi neistotu v ich predpovediach.cs_CZ
uk.abstract.enIn the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often readily available in large quantities, obtaining l abels takes considerable human effort. Active learning reduces the required labelling effort by selecting the most informative instances to label. The most popular active learning query strategy framework, uncertainty sampling, uses uncertainty estimates of the model being trained to select instances for labelling. However, modern classification neural networks often do not provide good uncertainty estimates. Baye sian neural networks model uncertainties over model parameters, which can be used to obtain uncertainties over model predictions. Exact Bayesian inference is intractable for neural networks, however several approximate methods have been proposed. We experiment with three such methods using various uncertainty sampling active learning query strategies.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
thesis.grade.code1
dc.contributor.consultantHoleňa, Martin
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990023830980106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV