Show simple item record

Detekce anomálií v datech z obchodování na burze
dc.contributor.advisorKofroň, Jan
dc.creatorFusková, Martina
dc.date.accessioned2020-10-05T09:54:20Z
dc.date.available2020-10-05T09:54:20Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/120934
dc.description.abstractObchodování na burze je velmi komplexní téma, které zahrnuje spoustu náročných problémů. Jedním z těchto problémů je detekce anomálií. Detekce anomálií v reálném čase je velice náročný úkol, a proto tento problém zůstává otevřen. Cílem této práce je zkoumat různé modely a algoritmy, které mohou být použity a pokusit se najít ty nejvhodnější pro tento problém. Vytvoříme modely, které detekují anomálie na základě hustoty dat, i statistické modely a neuronové sítě, které detekují anomálie na základě porovnání predikovaných a skutečných dat. Výsledkem této práce je návrh modelů, které mohou být dále zkoumány a použity pro detekci v reálném čase.cs_CZ
dc.description.abstractStock trading is a very complex topic that involves a lot of challenging problems. One of these problems is anomaly detection in trading flow. Real-time anomaly detection in time series is a very complicated task and thus this issue is still open. The aim of this thesis is to research various models and algorithms that can be used for this task and try to find the most fitting ones. We develop models that detect anomalies based on the density properties of the data as well as statistical models and neural networks that detect anomalies based on the comparison of predicted data and actual data. As a result we propose models that can be further researched and used in real-time environment.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectdetekce anomáliícs_CZ
dc.subjectobchodování na burzecs_CZ
dc.subjectčasové řadycs_CZ
dc.subjectpříznakycs_CZ
dc.subjectanomaly detectionen_US
dc.subjectstock market tradingen_US
dc.subjecttime seriesen_US
dc.subjectfeature engineeringen_US
dc.titleAnomaly detection for stock market trading dataen_US
dc.typebakalářská prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-09-14
dc.description.departmentKatedra distribuovaných a spolehlivých systémůcs_CZ
dc.description.departmentDepartment of Distributed and Dependable Systemsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId219069
dc.title.translatedDetekce anomálií v datech z obchodování na burzecs_CZ
dc.contributor.refereeKliber, Filip
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra distribuovaných a spolehlivých systémůcs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Distributed and Dependable Systemsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.csObchodování na burze je velmi komplexní téma, které zahrnuje spoustu náročných problémů. Jedním z těchto problémů je detekce anomálií. Detekce anomálií v reálném čase je velice náročný úkol, a proto tento problém zůstává otevřen. Cílem této práce je zkoumat různé modely a algoritmy, které mohou být použity a pokusit se najít ty nejvhodnější pro tento problém. Vytvoříme modely, které detekují anomálie na základě hustoty dat, i statistické modely a neuronové sítě, které detekují anomálie na základě porovnání predikovaných a skutečných dat. Výsledkem této práce je návrh modelů, které mohou být dále zkoumány a použity pro detekci v reálném čase.cs_CZ
uk.abstract.enStock trading is a very complex topic that involves a lot of challenging problems. One of these problems is anomaly detection in trading flow. Real-time anomaly detection in time series is a very complicated task and thus this issue is still open. The aim of this thesis is to research various models and algorithms that can be used for this task and try to find the most fitting ones. We develop models that detect anomalies based on the density properties of the data as well as statistical models and neural networks that detect anomalies based on the comparison of predicted data and actual data. As a result we propose models that can be further researched and used in real-time environment.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra distribuovaných a spolehlivých systémůcs_CZ
thesis.grade.code3
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV