Show simple item record

Beahvior of the solutions to the wave equation in compactified hyperboloidal slicing
dc.contributor.advisorLedvinka, Tomáš
dc.creatorIvánek, Richard
dc.date.accessioned2020-09-24T09:52:50Z
dc.date.available2020-09-24T09:52:50Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/120442
dc.description.abstractTato bakalářská práce se zabývá použitím kompaktifikace a hyperboloidálních řezů prostoročasu při numerickém řešení vlnové rovnice primárně v kontextu numerické rela- tivity. Cílem bylo určit jejich obecné výhody a nevýhody, ilustrovat očekávané problémy pomocí diagramů a také zhodnotit výsledky získané v konkrétních modelových situacích. Součástí práce je stručné pojednání o relevantních numerických metodách, hyperboloidál- ních Cauchyovských nadplochách, jejich vlastnostech, zavedení kompaktifikací a kauzál- ních diagramech. V závěru práce byl porovnán vliv kompaktifikace a řezu prostoročasu na přesnost diferenčních a integračních schémat a také vliv diskrétní reprezentace na kvalitu dat. 1cs_CZ
dc.description.abstractIn this bachelor thesis we discuss the effects of compactification and hyperboloidal slicing of spacetime in the numerical solution of wave equation primarily for their appli- cation in numerical relativity. The aim was to find the pros and cons of these concepts, to illustrate expected problems using diagrams and to rate the results obtained in spe- cific model problems. A brief explanation and demonstration of relevant numerical me- thods, hyperbolic Cauchy hypersurfaces, compactification and causal diagrams is a part of the thesis. As a conclusion, the effect of compactification and slicing on the accuracy of differential and integrational schemes was compared as well as the effect of discrete representation on the quality of initial data. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectObecná relativitacs_CZ
dc.subjectNumerická relativitacs_CZ
dc.subjectParciální diferenciální rovnicecs_CZ
dc.subjectGeneral relativityen_US
dc.subjectNumerical relativityen_US
dc.subjectPartial differential equationsen_US
dc.titleChování řešení vlnové rovnice při použití kompaktifikovaných hyperboloidálních nadplochcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-09-03
dc.description.departmentÚstav teoretické fyzikycs_CZ
dc.description.departmentInstitute of Theoretical Physicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId221141
dc.title.translatedBeahvior of the solutions to the wave equation in compactified hyperboloidal slicingen_US
dc.contributor.refereeKofroň, David
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Physicsen_US
thesis.degree.disciplineObecná fyzikacs_CZ
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav teoretické fyzikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Theoretical Physicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná fyzikacs_CZ
uk.degree-discipline.enGeneral Physicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTato bakalářská práce se zabývá použitím kompaktifikace a hyperboloidálních řezů prostoročasu při numerickém řešení vlnové rovnice primárně v kontextu numerické rela- tivity. Cílem bylo určit jejich obecné výhody a nevýhody, ilustrovat očekávané problémy pomocí diagramů a také zhodnotit výsledky získané v konkrétních modelových situacích. Součástí práce je stručné pojednání o relevantních numerických metodách, hyperboloidál- ních Cauchyovských nadplochách, jejich vlastnostech, zavedení kompaktifikací a kauzál- ních diagramech. V závěru práce byl porovnán vliv kompaktifikace a řezu prostoročasu na přesnost diferenčních a integračních schémat a také vliv diskrétní reprezentace na kvalitu dat. 1cs_CZ
uk.abstract.enIn this bachelor thesis we discuss the effects of compactification and hyperboloidal slicing of spacetime in the numerical solution of wave equation primarily for their appli- cation in numerical relativity. The aim was to find the pros and cons of these concepts, to illustrate expected problems using diagrams and to rate the results obtained in spe- cific model problems. A brief explanation and demonstration of relevant numerical me- thods, hyperbolic Cauchy hypersurfaces, compactification and causal diagrams is a part of the thesis. As a conclusion, the effect of compactification and slicing on the accuracy of differential and integrational schemes was compared as well as the effect of discrete representation on the quality of initial data. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav teoretické fyzikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV