Show simple item record

Building modeling from airborne laser scanning point clouds of low density
dc.contributor.advisorPotůčková, Markéta
dc.creatorHofman, Petr
dc.date.accessioned2021-09-25T09:49:27Z
dc.date.available2021-09-25T09:49:27Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/120030
dc.description.abstractA Laser scanning is a relatively recent remote sensing method which nevertheless quickly gained a prominent position, especially in the area of building detection and 3D modeling. Methods for building detection and 3D modeling initially used model-driven approaches which compare a laser scanning point cloud to a set of predefined building models. A method for determining building roof types using such approaches was presented in the article of Hofman, Potůčková (2012). An important advantage of model-driven approaches is their relative robustness to various data deficiencies such as low point density or low spatial accuracy. However, output of such methods is limited to a predefined set of building models and does not allow for diversity of actual buildings. For this reason, approaches used almost exclusively nowadays are data-driven. These methods search in datasets for a set of primitives (mostly roof planes) that are subsequently used to form the final model. This approach benefits from universality of resulting models but requires generally high data quality, especially in respect to input point cloud densities. The study of Hofman, Potůčková (2017) presented a data-driven method that can reliably detect buildings even in a very sparse point cloud in spite of using data-driven approach. At a density of...en_US
dc.description.abstractA Laserové skenování je relativně mladá metoda dálkového průzkumu Země, která si ale rychle získala významné postavení zejména v oblasti detekce a modelování budov a dalších výškových objektů. Metody pro detekování a 3D modelování budov zpočátku využívaly zejména přístupů "řízených modelem" (model-driven), které porovnávají rozložení mračna laserových bodů se sadou předdefinovaných modelů. Metoda určující typ střešního pláště pomocí takového přístupu byla představena v článku Hofman, Potůčková (2012). Velikou výhodou přístupu řízeného modelem je relativní odolnost vůči nedostatkům dat, zejména nízké hustotě bodového mračna, polohové nepřesnosti bodů atd. Naopak nedostatkem těchto metod je omezení výstupu na přednastavenou sadu modelů, která nemůže obsáhnout rozmanitost reálných budov. Z tohoto důvodu se v současnosti téměř výhradně používá přístupů "řízených daty" (data-driven). Tyto metody hledají v datech pouze sadu primitiv, nejčastěji střešních rovin, ze kterých se výsledný model dodatečně skládá. Zásadním přínosem je mnohem vyšší univerzálnost výsledných modelů. Naopak nevýhodou jsou obecně vyšší nároky na kvalitu dat, zejména hustotu bodového mračna. Ve studii Hofman, Potůčková (2017) byla představena metoda, která ačkoliv využívá přístupu řízeného daty, dokáže spolehlivě detekovat budovy i ve velmi...cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Přírodovědecká fakultacs_CZ
dc.titleModelování budov z dat leteckého laserového skenování se zaměřením na bodová mračna nízké hustotycs_CZ
dc.typerigorózní prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-09-25
dc.description.departmentDepartment of Applied Geoinformatics and Cartographyen_US
dc.description.departmentKatedra aplikované geoinformatiky a kartografiecs_CZ
dc.description.facultyPřírodovědecká fakultacs_CZ
dc.description.facultyFaculty of Scienceen_US
dc.identifier.repId204084
dc.title.translatedBuilding modeling from airborne laser scanning point clouds of low densityen_US
dc.contributor.refereeŠíma, Jiří
dc.identifier.aleph002378259
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineKartografie a geoinformatikacs_CZ
thesis.degree.disciplineCartography and Geoinformaticsen_US
thesis.degree.programGeografiecs_CZ
thesis.degree.programGeographyen_US
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csPřírodovědecká fakulta::Katedra aplikované geoinformatiky a kartografiecs_CZ
uk.taxonomy.organization-enFaculty of Science::Department of Applied Geoinformatics and Cartographyen_US
uk.faculty-name.csPřírodovědecká fakultacs_CZ
uk.faculty-name.enFaculty of Scienceen_US
uk.faculty-abbr.csPřFcs_CZ
uk.degree-discipline.csKartografie a geoinformatikacs_CZ
uk.degree-discipline.enCartography and Geoinformaticsen_US
uk.degree-program.csGeografiecs_CZ
uk.degree-program.enGeographyen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csA Laserové skenování je relativně mladá metoda dálkového průzkumu Země, která si ale rychle získala významné postavení zejména v oblasti detekce a modelování budov a dalších výškových objektů. Metody pro detekování a 3D modelování budov zpočátku využívaly zejména přístupů "řízených modelem" (model-driven), které porovnávají rozložení mračna laserových bodů se sadou předdefinovaných modelů. Metoda určující typ střešního pláště pomocí takového přístupu byla představena v článku Hofman, Potůčková (2012). Velikou výhodou přístupu řízeného modelem je relativní odolnost vůči nedostatkům dat, zejména nízké hustotě bodového mračna, polohové nepřesnosti bodů atd. Naopak nedostatkem těchto metod je omezení výstupu na přednastavenou sadu modelů, která nemůže obsáhnout rozmanitost reálných budov. Z tohoto důvodu se v současnosti téměř výhradně používá přístupů "řízených daty" (data-driven). Tyto metody hledají v datech pouze sadu primitiv, nejčastěji střešních rovin, ze kterých se výsledný model dodatečně skládá. Zásadním přínosem je mnohem vyšší univerzálnost výsledných modelů. Naopak nevýhodou jsou obecně vyšší nároky na kvalitu dat, zejména hustotu bodového mračna. Ve studii Hofman, Potůčková (2017) byla představena metoda, která ačkoliv využívá přístupu řízeného daty, dokáže spolehlivě detekovat budovy i ve velmi...cs_CZ
uk.abstract.enA Laser scanning is a relatively recent remote sensing method which nevertheless quickly gained a prominent position, especially in the area of building detection and 3D modeling. Methods for building detection and 3D modeling initially used model-driven approaches which compare a laser scanning point cloud to a set of predefined building models. A method for determining building roof types using such approaches was presented in the article of Hofman, Potůčková (2012). An important advantage of model-driven approaches is their relative robustness to various data deficiencies such as low point density or low spatial accuracy. However, output of such methods is limited to a predefined set of building models and does not allow for diversity of actual buildings. For this reason, approaches used almost exclusively nowadays are data-driven. These methods search in datasets for a set of primitives (mostly roof planes) that are subsequently used to form the final model. This approach benefits from universality of resulting models but requires generally high data quality, especially in respect to input point cloud densities. The study of Hofman, Potůčková (2017) presented a data-driven method that can reliably detect buildings even in a very sparse point cloud in spite of using data-driven approach. At a density of...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Přírodovědecká fakulta, Katedra aplikované geoinformatiky a kartografiecs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV