dc.contributor.advisor | Dušek, Ondřej | |
dc.creator | Nekvinda, Tomáš | |
dc.date.accessioned | 2020-07-29T09:47:25Z | |
dc.date.available | 2020-07-29T09:47:25Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/119461 | |
dc.description.abstract | This work explores multilingual speech synthesis. We compare three models based on Tacotron that utilize various levels of parameter sharing. Two of them follow recent multilingual text-to-speech systems. The first one makes use of a fully-shared encoder and an adversarial classifier that removes speaker-dependent information from the encoder. The other uses language-specific encoders. We introduce a new approach that combines the best of both previous methods. It enables effective parameter sharing using a meta- learning technique, preserves encoder's flexibility, and actively removes speaker-specific information in the encoder. We compare the three models on two tasks. The first one aims at joint multilingual training on ten languages and reveals their knowledge-sharing abilities. The second concerns code-switching. We show that our model effectively shares information across languages, and according to a subjective evaluation test, it produces more natural and accurate code-switching speech. | en_US |
dc.description.abstract | Tato práce se zabývá vícejazyčnou syntézou řeči. Porovnali jsme tři odlišné modely, které jsou založeny na Tacotronu. Tyto modely se liší především v přístupu ke sdílení infor- mací a parametrů mezi jazyky. Dva z nich navazují na současné systémy pro vícejazyčnou konverzi textu na řeč. První využívá plně sdíleného enkodéru a doménově specifického klasifikátoru, který je modifikovaný za účelem odstranění informací, které závisí na syn- tetizovaném hlase, z enkodéru. Druhý model používá separátní enkodér pro každý jazyk. V této práci navrhujeme nový přístup, který kombinuje nejlepší z obou zmíněných metod. Díky technikám metaučení umožnujě efektivní sdílení parametrů při zachování flexibility. Tyto tři modely porovnáváme na dvou úlohách. Jedna z nich se zaměřuje na sdružené vícejazyčné učení na deseti jazycích a odhaluje možnosti porovnávaných modelů sdílet znalosti mezi jazyky. Druhá se zabývá syntézou vět, které obsahují výrazy z několika různých jazyků. Dokládáme, že náš nový přístup umožˇuje efektivní sdílení informace mezi jazyky a že dle subjektivního hodnocení produkuje přirozenější řeč bez častých přeřeků a chyb ve výslovnosti. | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | text-to-speech | en_US |
dc.subject | speech synthesis | en_US |
dc.subject | multilinguality | en_US |
dc.subject | natural language processing | en_US |
dc.subject | deep learning | en_US |
dc.subject | syntéza řeči | cs_CZ |
dc.subject | vícejazyčnost | cs_CZ |
dc.subject | zpracování přirozeného jazyka | cs_CZ |
dc.subject | hluboké učení | cs_CZ |
dc.title | Multilingual speech synthesis | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2020 | |
dcterms.dateAccepted | 2020-07-08 | |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 222537 | |
dc.title.translated | Vícejazyčná syntéza řeči | cs_CZ |
dc.contributor.referee | Peterek, Nino | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Umělá inteligence | cs_CZ |
thesis.degree.discipline | Artificial Intelligence | en_US |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Umělá inteligence | cs_CZ |
uk.degree-discipline.en | Artificial Intelligence | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Tato práce se zabývá vícejazyčnou syntézou řeči. Porovnali jsme tři odlišné modely, které jsou založeny na Tacotronu. Tyto modely se liší především v přístupu ke sdílení infor- mací a parametrů mezi jazyky. Dva z nich navazují na současné systémy pro vícejazyčnou konverzi textu na řeč. První využívá plně sdíleného enkodéru a doménově specifického klasifikátoru, který je modifikovaný za účelem odstranění informací, které závisí na syn- tetizovaném hlase, z enkodéru. Druhý model používá separátní enkodér pro každý jazyk. V této práci navrhujeme nový přístup, který kombinuje nejlepší z obou zmíněných metod. Díky technikám metaučení umožnujě efektivní sdílení parametrů při zachování flexibility. Tyto tři modely porovnáváme na dvou úlohách. Jedna z nich se zaměřuje na sdružené vícejazyčné učení na deseti jazycích a odhaluje možnosti porovnávaných modelů sdílet znalosti mezi jazyky. Druhá se zabývá syntézou vět, které obsahují výrazy z několika různých jazyků. Dokládáme, že náš nový přístup umožˇuje efektivní sdílení informace mezi jazyky a že dle subjektivního hodnocení produkuje přirozenější řeč bez častých přeřeků a chyb ve výslovnosti. | cs_CZ |
uk.abstract.en | This work explores multilingual speech synthesis. We compare three models based on Tacotron that utilize various levels of parameter sharing. Two of them follow recent multilingual text-to-speech systems. The first one makes use of a fully-shared encoder and an adversarial classifier that removes speaker-dependent information from the encoder. The other uses language-specific encoders. We introduce a new approach that combines the best of both previous methods. It enables effective parameter sharing using a meta- learning technique, preserves encoder's flexibility, and actively removes speaker-specific information in the encoder. We compare the three models on two tasks. The first one aims at joint multilingual training on ten languages and reveals their knowledge-sharing abilities. The second concerns code-switching. We show that our model effectively shares information across languages, and according to a subjective evaluation test, it produces more natural and accurate code-switching speech. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |