Show simple item record

Asijské perpetuity
dc.contributor.advisorVečeř, Jan
dc.creatorSvoboda, Miroslav
dc.date.accessioned2020-07-28T10:06:07Z
dc.date.available2020-07-28T10:06:07Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/119454
dc.description.abstractThis Master thesis studies Asian perpetuities, which is a term standing for European type of options with an average asset as the underlying asset and the execution time of the option in infinity. Assuming Geometric Brownian motion model of price of an asset, the goal of this thesis is to study behavior of the average of the asset price. Three different types of averaging are considered: arithmetic, geometric and harmonic average. The average values of the log-normals maintain the known distribution only for the geometric average. As it is shown in the thesis; however, when the average is examined on infinite time horizon, the arithmetic and harmonic averages maintain the inverse gamma distribution or gamma distribution, respectively. This result enables the computation of the price of Asian perpetuity which is also examined in the thesis. 1en_US
dc.description.abstractTato diplomová práce studuje Asijské perpetuity, opce Evropského typu, jejichž podkladovým aktivem je průměrné aktivum a den vypořádání je v nekonečnu. Předpokládaný model ceny podkladového aktiva je geometrický Brownův pohyb a cíl práce je studovat vlastnosti jeho průměru. Uvažované jsou tři různé průměry: aritmetický, geometrický a harmonický průměr. Průměrná hodnota log-normálních náhodných veličin nabývá známého rozdelení pouze pro geometrický průměr ale, jak je v práci ukázáno, když je průměr na nekonečném časovém intervalu, tak aritmetický průměr nabývá inverzní gama rozdělení a harmonický průměr nabýva gamma gama rozdělení. Tento výsledek umožňuje výpočet ceny Asijské perpetuity což je v práci také rozebíráno. 1cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectAsian optionsen_US
dc.subjectperpetuitiesen_US
dc.subjectGeometric Brownian motionen_US
dc.subjectAsijské opcecs_CZ
dc.subjectperpetuitycs_CZ
dc.subjectGeometrický Brownův pohybcs_CZ
dc.titleAsian Perpetuitiesen_US
dc.typediplomová prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-07-07
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId222886
dc.title.translatedAsijské perpetuitycs_CZ
dc.contributor.refereeČoupek, Petr
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTato diplomová práce studuje Asijské perpetuity, opce Evropského typu, jejichž podkladovým aktivem je průměrné aktivum a den vypořádání je v nekonečnu. Předpokládaný model ceny podkladového aktiva je geometrický Brownův pohyb a cíl práce je studovat vlastnosti jeho průměru. Uvažované jsou tři různé průměry: aritmetický, geometrický a harmonický průměr. Průměrná hodnota log-normálních náhodných veličin nabývá známého rozdelení pouze pro geometrický průměr ale, jak je v práci ukázáno, když je průměr na nekonečném časovém intervalu, tak aritmetický průměr nabývá inverzní gama rozdělení a harmonický průměr nabýva gamma gama rozdělení. Tento výsledek umožňuje výpočet ceny Asijské perpetuity což je v práci také rozebíráno. 1cs_CZ
uk.abstract.enThis Master thesis studies Asian perpetuities, which is a term standing for European type of options with an average asset as the underlying asset and the execution time of the option in infinity. Assuming Geometric Brownian motion model of price of an asset, the goal of this thesis is to study behavior of the average of the asset price. Three different types of averaging are considered: arithmetic, geometric and harmonic average. The average values of the log-normals maintain the known distribution only for the geometric average. As it is shown in the thesis; however, when the average is examined on infinite time horizon, the arithmetic and harmonic averages maintain the inverse gamma distribution or gamma distribution, respectively. This result enables the computation of the price of Asian perpetuity which is also examined in the thesis. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV