Show simple item record

Porovnání přístupů ke klasifikaci textu
dc.contributor.advisorHana, Jiří
dc.creatorKnížek, Jan
dc.date.accessioned2020-03-16T10:52:06Z
dc.date.available2020-03-16T10:52:06Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/117016
dc.description.abstractThe focus of this thesis is short text classification. Short text is the prevailing form of text on e-commerce and review platforms, such as Yelp, Tripadvisor or Heureka. As the popularity of the online communication is increasing, it is becoming infeasible for users to filter information manually. It is therefore becoming more and more important to recog- nise the relevant information in text. Classification of reviews is especially challenging, because they have limited structure, use informal language, contain a high number of errors and rely heavily on context and common knowledge. One of the possible appli- cations of machine learning is to automatically filter data and show users only relevant pieces of information. We work with restaurant reviews from Yelp and aim to predict their usefulness. Most restaurants have relatively many reviews, yet only few are truly useful. Our objective is to compare machine learning methods for predicting usefulness. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectNLPcs_CZ
dc.subjectklasifikace textucs_CZ
dc.subjectstrojové učenícs_CZ
dc.subjectklasifikace recenzícs_CZ
dc.subjectNLPen_US
dc.subjecttext classificationen_US
dc.subjectmachine learningen_US
dc.subjectreview classificationen_US
dc.titleComparison of approaches to text classificationen_US
dc.typebakalářská prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-09-05
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId208448
dc.title.translatedPorovnání přístupů ke klasifikaci textucs_CZ
dc.contributor.refereeVidová Hladká, Barbora
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThe focus of this thesis is short text classification. Short text is the prevailing form of text on e-commerce and review platforms, such as Yelp, Tripadvisor or Heureka. As the popularity of the online communication is increasing, it is becoming infeasible for users to filter information manually. It is therefore becoming more and more important to recog- nise the relevant information in text. Classification of reviews is especially challenging, because they have limited structure, use informal language, contain a high number of errors and rely heavily on context and common knowledge. One of the possible appli- cations of machine learning is to automatically filter data and show users only relevant pieces of information. We work with restaurant reviews from Yelp and aim to predict their usefulness. Most restaurants have relatively many reviews, yet only few are truly useful. Our objective is to compare machine learning methods for predicting usefulness. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV