dc.contributor.advisor | Hana, Jiří | |
dc.creator | Knížek, Jan | |
dc.date.accessioned | 2020-03-16T10:52:06Z | |
dc.date.available | 2020-03-16T10:52:06Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/117016 | |
dc.description.abstract | The focus of this thesis is short text classification. Short text is the prevailing form of text on e-commerce and review platforms, such as Yelp, Tripadvisor or Heureka. As the popularity of the online communication is increasing, it is becoming infeasible for users to filter information manually. It is therefore becoming more and more important to recog- nise the relevant information in text. Classification of reviews is especially challenging, because they have limited structure, use informal language, contain a high number of errors and rely heavily on context and common knowledge. One of the possible appli- cations of machine learning is to automatically filter data and show users only relevant pieces of information. We work with restaurant reviews from Yelp and aim to predict their usefulness. Most restaurants have relatively many reviews, yet only few are truly useful. Our objective is to compare machine learning methods for predicting usefulness. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | NLP | cs_CZ |
dc.subject | klasifikace textu | cs_CZ |
dc.subject | strojové učení | cs_CZ |
dc.subject | klasifikace recenzí | cs_CZ |
dc.subject | NLP | en_US |
dc.subject | text classification | en_US |
dc.subject | machine learning | en_US |
dc.subject | review classification | en_US |
dc.title | Comparison of approaches to text classification | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2019 | |
dcterms.dateAccepted | 2019-09-05 | |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 208448 | |
dc.title.translated | Porovnání přístupů ke klasifikaci textu | cs_CZ |
dc.contributor.referee | Vidová Hladká, Barbora | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Computer Science | en_US |
thesis.degree.discipline | Obecná informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná informatika | cs_CZ |
uk.degree-discipline.en | General Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | The focus of this thesis is short text classification. Short text is the prevailing form of text on e-commerce and review platforms, such as Yelp, Tripadvisor or Heureka. As the popularity of the online communication is increasing, it is becoming infeasible for users to filter information manually. It is therefore becoming more and more important to recog- nise the relevant information in text. Classification of reviews is especially challenging, because they have limited structure, use informal language, contain a high number of errors and rely heavily on context and common knowledge. One of the possible appli- cations of machine learning is to automatically filter data and show users only relevant pieces of information. We work with restaurant reviews from Yelp and aim to predict their usefulness. Most restaurants have relatively many reviews, yet only few are truly useful. Our objective is to compare machine learning methods for predicting usefulness. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |