Show simple item record

Weighted inequalities and properties of operators and embeddings on function spaces
dc.contributor.advisorPick, Luboš
dc.creatorSlavíková, Lenka
dc.date.accessioned2017-05-31T22:29:22Z
dc.date.available2017-05-31T22:29:22Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/1169
dc.description.abstractTato disertační práce je věnována studiu nejrůznějších vlastností Banachových prostorů funkcí se zvláštním zřetelem k aplikacím v teorii Sobolevových prostorů a v harmonické analýze. Práce sestává ze čtyř článků. V prvním z nich zkoumá- me vnoření vyššího řádu prostorů Sobolevova typu vybudovaných nad Bana- chovými prostory funkcí s normou invariantní vůči nerostoucímu přerovnání. Mimo jiné ukážeme, že optimální Sobolevova vnoření vyššího řádu plynou z izoperimetrických nerovností. Ve druhém článku se zabýváme otázkou, kdy je výše zmíněný prostor Sobolevova typu Banachovou algebrou vzhledem k bodové- mu násobení funkcí. Dokážeme, že vnoření Sobolevova prostoru do prostoru esen- ciálně omezených funkcí je odpovědí na tuto otázku v mnoha standardních i ne- standardních případech. Třetí článek je věnován problému platnosti Lebesgueovy věty o derivování v kontextu Banachových prostorů funkcí s normou invariantní vůči nerostoucímu přerovnání. Nalezneme nutnou a postačující podmínku pro platnost této věty vyjádřenou pomocí konkavity jistého funkcionálu závisejícího na dané normě a poskytneme rovněž několik alternativních charakterizací zada- ných pomocí vlastností...cs_CZ
dc.description.abstractThe present thesis is devoted to the study of various properties of Banach func- tion spaces, with a particular emphasis on applications in the theory of Sobolev spaces and in harmonic analysis. The thesis consists of four papers. In the first one we investigate higher-order embeddings of Sobolev-type spaces built upon rearrangement-invariant Banach function spaces. In particular, we show that optimal higher-order Sobolev embeddings follow from isoperimetric inequal- ities. In the second paper we focus on the question when the above-mentioned Sobolev-type space is a Banach algebra with respect to a pointwise multiplica- tion of functions. An embedding of the Sobolev space into the space of essentially bounded functions is proved to be the answer to this question in several standard as well as nonstandard situations. The third paper is devoted to the problem of validity of the Lebesgue differentiation theorem in the context of rearrangement- invariant Banach function spaces. We provide a necessary and sufficient condition for the validity of this theorem given in terms of concavity of certain functional depending on the norm in question and we find also alternative characterizations expressed in terms of properties of a maximal operator related to the norm. The object of the final paper is the boundedness of the...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectBanachův prostor funkcícs_CZ
dc.subjectSobolevův prostorcs_CZ
dc.subjectizoperimetrická nerovnostcs_CZ
dc.subjectBanachova algebracs_CZ
dc.subjectLebesgueova věta o derivovánícs_CZ
dc.subjectmaximální operátorcs_CZ
dc.subjectbump podmínkacs_CZ
dc.subjectBanach function spaceen_US
dc.subjectSobolev spaceen_US
dc.subjectisoperimetric inequalityen_US
dc.subjectBanach algebraen_US
dc.subjectLebesgue differentiation theoremen_US
dc.subjectmaximal operatoren_US
dc.subjectbump conditionen_US
dc.titleWeighted inequalities and properties of operators and embeddings on function spacesen_US
dc.typerigorózní prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-12-21
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId187076
dc.title.translatedWeighted inequalities and properties of operators and embeddings on function spacescs_CZ
dc.identifier.aleph002118278
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspělcs_CZ
thesis.grade.enPassen_US
uk.abstract.csTato disertační práce je věnována studiu nejrůznějších vlastností Banachových prostorů funkcí se zvláštním zřetelem k aplikacím v teorii Sobolevových prostorů a v harmonické analýze. Práce sestává ze čtyř článků. V prvním z nich zkoumá- me vnoření vyššího řádu prostorů Sobolevova typu vybudovaných nad Bana- chovými prostory funkcí s normou invariantní vůči nerostoucímu přerovnání. Mimo jiné ukážeme, že optimální Sobolevova vnoření vyššího řádu plynou z izoperimetrických nerovností. Ve druhém článku se zabýváme otázkou, kdy je výše zmíněný prostor Sobolevova typu Banachovou algebrou vzhledem k bodové- mu násobení funkcí. Dokážeme, že vnoření Sobolevova prostoru do prostoru esen- ciálně omezených funkcí je odpovědí na tuto otázku v mnoha standardních i ne- standardních případech. Třetí článek je věnován problému platnosti Lebesgueovy věty o derivování v kontextu Banachových prostorů funkcí s normou invariantní vůči nerostoucímu přerovnání. Nalezneme nutnou a postačující podmínku pro platnost této věty vyjádřenou pomocí konkavity jistého funkcionálu závisejícího na dané normě a poskytneme rovněž několik alternativních charakterizací zada- ných pomocí vlastností...cs_CZ
uk.abstract.enThe present thesis is devoted to the study of various properties of Banach func- tion spaces, with a particular emphasis on applications in the theory of Sobolev spaces and in harmonic analysis. The thesis consists of four papers. In the first one we investigate higher-order embeddings of Sobolev-type spaces built upon rearrangement-invariant Banach function spaces. In particular, we show that optimal higher-order Sobolev embeddings follow from isoperimetric inequal- ities. In the second paper we focus on the question when the above-mentioned Sobolev-type space is a Banach algebra with respect to a pointwise multiplica- tion of functions. An embedding of the Sobolev space into the space of essentially bounded functions is proved to be the answer to this question in several standard as well as nonstandard situations. The third paper is devoted to the problem of validity of the Lebesgue differentiation theorem in the context of rearrangement- invariant Banach function spaces. We provide a necessary and sufficient condition for the validity of this theorem given in terms of concavity of certain functional depending on the norm in question and we find also alternative characterizations expressed in terms of properties of a maximal operator related to the norm. The object of the final paper is the boundedness of the...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV