Show simple item record

Konturové metody v matematické teorii fázových přechodů
dc.contributor.advisorZahradník, Miloš
dc.creatorNagy, Oliver
dc.date.accessioned2020-02-26T10:51:03Z
dc.date.available2020-02-26T10:51:03Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/116712
dc.description.abstractTitle: Contour methods in the mathematical theory of phase transitions Author: Oliver Nagy Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Miloš Zahradník, CSc., Department of Mathematical Analysis Abstract: This thesis concerns itself with three topics, namely polymer models, Pirogov-Sinai theory and one-dimensional Dyson models. It contains a short introduction into all three topics. The introduction to Pirogov-Sinai theory will serve as a starting point for a future expanded introductory exposition, since such a material is missing in the contemporary literature. Research result of the first chapter is a detailed combinatorial analysis of cluster expansion of hard-core repulsive polymer model based on 'self-avoiding polymer trees', leading to simplification of the structure of summation in the partition function. In the case of Dyson models we suggest an alternative definition of contours for the one-dimensional Dyson model with the exponent of polynomially-decaying interaction p ∈ (1, 2) that is usable for study using Pirogov-Sinai methods. Keywords: Contours, polymers, cluster expansion, Pirogov-Sinai theory, Dyson model;en_US
dc.description.abstractNázev: Konturové metody v matematické teorii fázových přechodů Autor: Oliver Nagy Katedra: Katedra matematické analýzy Vedoucí: doc. RNDr. Miloš Zahradník, CSc., Katedra matematické analýzy Abstrakt: Práce se zaobírá třemi souvisejícími tématy z matematické statistické fyziky. Jsou to polymerové modely, Pirogov-Sinaiova teorie a Dysonovy modely v dimenzi 1. Práce obsahuje stručný úvod do všech třech uvedených partií. Úvod do Pirogov-Sinaiovy teorie bude využít jako výchozí bod pro budoucí obsáhlejší úvodní text. Takovýto text v soudobé literatuře zatím chybí. Výzkumným přínosem první části práce je detailní kombinatorický rozbor klastrových rozvojů polymerových modelů s tvrdým jádrem založený na pojmu "samovyhýbající se polymerový strom", vedoucí k zjednodušení struktury sumace v partiční funkci. V případě Dysonových modelů navrhujeme alternativní definici kontury pro jednorozměrný Dysonův model s exponentem polynomiálně klesající interakce p ∈ (1, 2) použitelnou pro zkoumání metodami Pirogov-Sinaiovy teorie. Klíčová slova: Kontury, polymery, klastrový rozvoj, Pirogov-Sinaiova teorie, Dysonův model;cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectkonturycs_CZ
dc.subjectpolymerycs_CZ
dc.subjectklastrový rozvojcs_CZ
dc.subjectPirogov-Sinaiova teoriecs_CZ
dc.subjectDysonův modelcs_CZ
dc.subjectcontoursen_US
dc.subjectpolymersen_US
dc.subjectcluster expansionen_US
dc.subjectPirogov-Sinai theoryen_US
dc.subjectDyson modelen_US
dc.titleContour methods in the mathematical theory of phase transitionsen_US
dc.typediplomová prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-02-05
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId203065
dc.title.translatedKonturové metody v matematické teorii fázových přechodůcs_CZ
dc.contributor.refereeNetočný, Karel
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTheoretical Physicsen_US
thesis.degree.disciplineTeoretická fyzikacs_CZ
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická fyzikacs_CZ
uk.degree-discipline.enTheoretical Physicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev: Konturové metody v matematické teorii fázových přechodů Autor: Oliver Nagy Katedra: Katedra matematické analýzy Vedoucí: doc. RNDr. Miloš Zahradník, CSc., Katedra matematické analýzy Abstrakt: Práce se zaobírá třemi souvisejícími tématy z matematické statistické fyziky. Jsou to polymerové modely, Pirogov-Sinaiova teorie a Dysonovy modely v dimenzi 1. Práce obsahuje stručný úvod do všech třech uvedených partií. Úvod do Pirogov-Sinaiovy teorie bude využít jako výchozí bod pro budoucí obsáhlejší úvodní text. Takovýto text v soudobé literatuře zatím chybí. Výzkumným přínosem první části práce je detailní kombinatorický rozbor klastrových rozvojů polymerových modelů s tvrdým jádrem založený na pojmu "samovyhýbající se polymerový strom", vedoucí k zjednodušení struktury sumace v partiční funkci. V případě Dysonových modelů navrhujeme alternativní definici kontury pro jednorozměrný Dysonův model s exponentem polynomiálně klesající interakce p ∈ (1, 2) použitelnou pro zkoumání metodami Pirogov-Sinaiovy teorie. Klíčová slova: Kontury, polymery, klastrový rozvoj, Pirogov-Sinaiova teorie, Dysonův model;cs_CZ
uk.abstract.enTitle: Contour methods in the mathematical theory of phase transitions Author: Oliver Nagy Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Miloš Zahradník, CSc., Department of Mathematical Analysis Abstract: This thesis concerns itself with three topics, namely polymer models, Pirogov-Sinai theory and one-dimensional Dyson models. It contains a short introduction into all three topics. The introduction to Pirogov-Sinai theory will serve as a starting point for a future expanded introductory exposition, since such a material is missing in the contemporary literature. Research result of the first chapter is a detailed combinatorial analysis of cluster expansion of hard-core repulsive polymer model based on 'self-avoiding polymer trees', leading to simplification of the structure of summation in the partition function. In the case of Dyson models we suggest an alternative definition of contours for the one-dimensional Dyson model with the exponent of polynomially-decaying interaction p ∈ (1, 2) that is usable for study using Pirogov-Sinai methods. Keywords: Contours, polymers, cluster expansion, Pirogov-Sinai theory, Dyson model;en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV