Show simple item record

Semisupervizované hluboké učení v označování sekvencí
dc.contributor.advisorŠabata, Tomáš
dc.creatorPáll, Juraj Eduard
dc.date.accessioned2021-03-26T11:18:45Z
dc.date.available2021-03-26T11:18:45Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/110219
dc.description.abstractOznačování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je jeho zá- vislost na velkém množství označených dat. Semi-supervizované učení zmírňuje tento problém používáním levnějších neoznačených dat spolu s daty označenými. V současnosti je použití semi-supervizovaného hlubokého učení v označování sekvencí limitované. Z tohoto důvodu se tato práce zaměřuje na aplikaci semi- supervizovaného hlubokého učení v označování sekvencí. Práce prozkoumává exis- tující přístupy semi-supervizovaného hlubokého učení a navrhuje vlastní přístupy. Navržené přístupy jsou experimentálně vyhodnocené na úlohách rozpoznávání po- jmenovaných entit a tvaroslovného značkování.cs_CZ
dc.description.abstractSequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is its requirement of having a large amount of labeled data. Semi-supervised learning mitigates this problem by using cheaper unlabeled data together with labeled data. Currently, usage of semi-supervised deep learning for sequence labeling is limited. Therefore, the focus of this thesis is on the application of semi-super- vised deep learning in sequence labeling. Existing semi-supervised deep learning approaches are examined, and approaches for sequence labeling are proposed. The proposed approaches were implemented and experimentally evaluated on named-entity recognition and part-of-speech tagging tasks.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectdeep learningen_US
dc.subjectsemi-supervised learningen_US
dc.subjectsequence modelingen_US
dc.subjectsequence labelingen_US
dc.subjectmachine learningen_US
dc.subjectneural networksen_US
dc.subjecthluboké učenícs_CZ
dc.subjectsemi-supervizované učenícs_CZ
dc.subjectmodelovaní sekvencícs_CZ
dc.subjectoznačování sekvencícs_CZ
dc.subjectstrojové učenícs_CZ
dc.subjectneuronové sítěcs_CZ
dc.titleSemi-supervised deep learning in sequence labelingen_US
dc.typediplomová prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-09-16
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId212278
dc.title.translatedSemisupervizované hluboké učení v označování sekvencícs_CZ
dc.contributor.refereeFlusser, Martin
dc.identifier.aleph002294932
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineArtificial Intelligenceen_US
thesis.degree.disciplineUmělá inteligencecs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUmělá inteligencecs_CZ
uk.degree-discipline.enArtificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csOznačování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je jeho zá- vislost na velkém množství označených dat. Semi-supervizované učení zmírňuje tento problém používáním levnějších neoznačených dat spolu s daty označenými. V současnosti je použití semi-supervizovaného hlubokého učení v označování sekvencí limitované. Z tohoto důvodu se tato práce zaměřuje na aplikaci semi- supervizovaného hlubokého učení v označování sekvencí. Práce prozkoumává exis- tující přístupy semi-supervizovaného hlubokého učení a navrhuje vlastní přístupy. Navržené přístupy jsou experimentálně vyhodnocené na úlohách rozpoznávání po- jmenovaných entit a tvaroslovného značkování.cs_CZ
uk.abstract.enSequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is its requirement of having a large amount of labeled data. Semi-supervised learning mitigates this problem by using cheaper unlabeled data together with labeled data. Currently, usage of semi-supervised deep learning for sequence labeling is limited. Therefore, the focus of this thesis is on the application of semi-super- vised deep learning in sequence labeling. Existing semi-supervised deep learning approaches are examined, and approaches for sequence labeling are proposed. The proposed approaches were implemented and experimentally evaluated on named-entity recognition and part-of-speech tagging tasks.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
thesis.grade.code1
dc.contributor.consultantHoleňa, Martin
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990022949320106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV