dc.contributor.advisor | Šabata, Tomáš | |
dc.creator | Páll, Juraj Eduard | |
dc.date.accessioned | 2021-03-26T11:18:45Z | |
dc.date.available | 2021-03-26T11:18:45Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/110219 | |
dc.description.abstract | Označování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je jeho zá- vislost na velkém množství označených dat. Semi-supervizované učení zmírňuje tento problém používáním levnějších neoznačených dat spolu s daty označenými. V současnosti je použití semi-supervizovaného hlubokého učení v označování sekvencí limitované. Z tohoto důvodu se tato práce zaměřuje na aplikaci semi- supervizovaného hlubokého učení v označování sekvencí. Práce prozkoumává exis- tující přístupy semi-supervizovaného hlubokého učení a navrhuje vlastní přístupy. Navržené přístupy jsou experimentálně vyhodnocené na úlohách rozpoznávání po- jmenovaných entit a tvaroslovného značkování. | cs_CZ |
dc.description.abstract | Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is its requirement of having a large amount of labeled data. Semi-supervised learning mitigates this problem by using cheaper unlabeled data together with labeled data. Currently, usage of semi-supervised deep learning for sequence labeling is limited. Therefore, the focus of this thesis is on the application of semi-super- vised deep learning in sequence labeling. Existing semi-supervised deep learning approaches are examined, and approaches for sequence labeling are proposed. The proposed approaches were implemented and experimentally evaluated on named-entity recognition and part-of-speech tagging tasks. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | deep learning | en_US |
dc.subject | semi-supervised learning | en_US |
dc.subject | sequence modeling | en_US |
dc.subject | sequence labeling | en_US |
dc.subject | machine learning | en_US |
dc.subject | neural networks | en_US |
dc.subject | hluboké učení | cs_CZ |
dc.subject | semi-supervizované učení | cs_CZ |
dc.subject | modelovaní sekvencí | cs_CZ |
dc.subject | označování sekvencí | cs_CZ |
dc.subject | strojové učení | cs_CZ |
dc.subject | neuronové sítě | cs_CZ |
dc.title | Semi-supervised deep learning in sequence labeling | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2019 | |
dcterms.dateAccepted | 2019-09-16 | |
dc.description.department | Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.description.department | Department of Theoretical Computer Science and Mathematical Logic | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 212278 | |
dc.title.translated | Semisupervizované hluboké učení v označování sekvencí | cs_CZ |
dc.contributor.referee | Flusser, Martin | |
dc.identifier.aleph | 002294932 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Artificial Intelligence | en_US |
thesis.degree.discipline | Umělá inteligence | cs_CZ |
thesis.degree.program | Informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logic | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Umělá inteligence | cs_CZ |
uk.degree-discipline.en | Artificial Intelligence | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Označování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je jeho zá- vislost na velkém množství označených dat. Semi-supervizované učení zmírňuje tento problém používáním levnějších neoznačených dat spolu s daty označenými. V současnosti je použití semi-supervizovaného hlubokého učení v označování sekvencí limitované. Z tohoto důvodu se tato práce zaměřuje na aplikaci semi- supervizovaného hlubokého učení v označování sekvencí. Práce prozkoumává exis- tující přístupy semi-supervizovaného hlubokého učení a navrhuje vlastní přístupy. Navržené přístupy jsou experimentálně vyhodnocené na úlohách rozpoznávání po- jmenovaných entit a tvaroslovného značkování. | cs_CZ |
uk.abstract.en | Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is its requirement of having a large amount of labeled data. Semi-supervised learning mitigates this problem by using cheaper unlabeled data together with labeled data. Currently, usage of semi-supervised deep learning for sequence labeling is limited. Therefore, the focus of this thesis is on the application of semi-super- vised deep learning in sequence labeling. Existing semi-supervised deep learning approaches are examined, and approaches for sequence labeling are proposed. The proposed approaches were implemented and experimentally evaluated on named-entity recognition and part-of-speech tagging tasks. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logiky | cs_CZ |
thesis.grade.code | 1 | |
dc.contributor.consultant | Holeňa, Martin | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |
dc.identifier.lisID | 990022949320106986 | |