Logaritmicky optimální investování
Log-optimal investment
bakalářská práce (NEOBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/108950Identifikátory
SIS: 205728
Kolekce
- Kvalifikační práce [11189]
Autor
Vedoucí práce
Oponent práce
Večeř, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
4. 9. 2019
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Neprospěl/a
Klíčová slova (česky)
Kellyho kritérium, asymptotická optimalitaKlíčová slova (anglicky)
Kelly criterion, asymptotic optimality1. Abstrakt Nechť máme kapitál, který budeme redistribuovat do nějakých investičních příležitostí. Finanční ohodnocení těchto investic bude tvořit posloupnost nezávis- lých, stejně rozdělených náhodných vektorů nabývajících konečně mnoha hodnot. Při každé investici budeme znát a brát v potaz celou historii těchto ohodnocení. Ukazuje se, že pokud naší strategií bude vždy maximalizovat střední hodnotu lo- garitmu hodnoty investice, označme ji Λ∗ , pak je tato strategie v určitém smyslu asymptoticky nejlepší možná. Pokud libovolná strategie Λ se limitně neblíží k Λ∗ a pokud x jde limitně k nekonečnu, potom jednak střední hodnota času, za který si vyděláme alespoň x užitím Λ∗ , je o nekonečno menší, než kdybychom užili Λ, a také si vyděláme nekonečněkrát více při strategii Λ∗ . 1
1. Abstrakt Suppose we have a capital, which we will redistribute into investment op- portunities. The financial valuation of these investments will be a sequence of independent, identically distributed random vectors that acquire finite amount of values. We will have full knowledge of the entire history of these valuations before each investment. It turns out that if our strategy is to always maximizes the mean value of the logarithm of the investment value, denoted by Λ∗ , then this strategy is asymptotically the best one possible. If strategy Λ is not asymptotically close to Λ∗ and if x goes to infinity, then the mean of the time we earn atleast x using Λ∗ is infinitely smaller than the time if we used Λ. We also earn infinitely times more money using the strategy Λ∗ . 1