Show simple item record

Zobecňování výsledků týkajících se problému splnitelnosti podmínek na nekonečné algebry
dc.contributor.advisorBarto, Libor
dc.creatorOlšák, Miroslav
dc.date.accessioned2019-09-16T09:46:09Z
dc.date.available2019-09-16T09:46:09Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/108756
dc.description.abstractNedávný výzkum v oblasti problému splnitelnosti podmínek vedl k užitečným nástrojům v uni- verzální algebře a pro studium výpočetní složitosti. Tento výzkum byl zaměřen zejména na konečné re- lační struktury a tím pádem na konečné algebry. Práce zobecňuje tyto předchozí výsledky na nekonečné algebry. Ukážeme, že ačkoli Maltsevská podmínka t(p, i, s, i) = t(s, p, i, s) obecně necharakterizuje Tay- lorovské algebry (algebry splňující netriviální idempotentní Maltsevskou podmínku) jako v konečném případě, existuje jiná silná Maltsevská podmínka, která je charakterizuje, a t(p, i, s, i) = t(s, p, i, s) charakterizuje jinou širokou třídu algeber. Také najdeme (slabou) Maltsevskou podmínku pro SD(∧) algebry (algebry splňující idempotentní Maltssevskou podmínku, kterou nelze splnit v modulech). Vedle Maltsevskych podmínek zkoumáme smyčková lemmata. Speciálně dokážeme známé konečné smyčkové lemma pomocí dvou různých (nekonečných) přístupů.cs_CZ
dc.description.abstractThe recent research on constraint satisfaction problems (CSPs) on fixed finite templates provided useful tools for computational complexity and universal algebra. However, the research mainly focused on finite relational structures, and consequently, finite algebras. We pursue a generalization of these tools and results into the domain of infinite algebras. In particular, we show that despite the fact that the Maltsev condition s(r, a, r, e) = s(a, r, e, a) does not characterize Taylor algebras (i.e., algebras that satisfy a nontrivial idem- potent Maltsev condition) in general, as it does in the finite case, there is another strong Maltsev condition characterizing Taylor algebras, and s(r, a, r, e) = s(a, r, e, a) characterizes another interesting broad class of algebras. We also provide a (weak) Maltsev condition for SD(∧) algebras (i.e., algebras that satisfy an idem- potent Maltsev condition not satisfiable in a module). Beyond Maltsev conditions, we study loop lemmata and, in particular, reprove a well known finite loop lemma by two different general (infinite) approaches.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectproblém splnitelnosti podmínekcs_CZ
dc.subjectMaltsevské podmínkycs_CZ
dc.subjectsmyčková lemmatacs_CZ
dc.subjectconstraint satisfaction problemen_US
dc.subjectMaltsev conditionsen_US
dc.subjectloop lemmataen_US
dc.titleGeneralizing CSP-related results to infinite algebrasen_US
dc.typedizertační prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-05
dc.description.departmentKatedra algebrycs_CZ
dc.description.departmentDepartment of Algebraen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId85027
dc.title.translatedZobecňování výsledků týkajících se problému splnitelnosti podmínek na nekonečné algebrycs_CZ
dc.contributor.refereeZhuk, Dmitrii
dc.contributor.refereePinsker, Michael
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineAlgebra, teorie čísel a matematická logikacs_CZ
thesis.degree.disciplineAlgebra, Theory of Numbers and Mathematical Logicen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csAlgebra, teorie čísel a matematická logikacs_CZ
uk.degree-discipline.enAlgebra, Theory of Numbers and Mathematical Logicen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csNedávný výzkum v oblasti problému splnitelnosti podmínek vedl k užitečným nástrojům v uni- verzální algebře a pro studium výpočetní složitosti. Tento výzkum byl zaměřen zejména na konečné re- lační struktury a tím pádem na konečné algebry. Práce zobecňuje tyto předchozí výsledky na nekonečné algebry. Ukážeme, že ačkoli Maltsevská podmínka t(p, i, s, i) = t(s, p, i, s) obecně necharakterizuje Tay- lorovské algebry (algebry splňující netriviální idempotentní Maltsevskou podmínku) jako v konečném případě, existuje jiná silná Maltsevská podmínka, která je charakterizuje, a t(p, i, s, i) = t(s, p, i, s) charakterizuje jinou širokou třídu algeber. Také najdeme (slabou) Maltsevskou podmínku pro SD(∧) algebry (algebry splňující idempotentní Maltssevskou podmínku, kterou nelze splnit v modulech). Vedle Maltsevskych podmínek zkoumáme smyčková lemmata. Speciálně dokážeme známé konečné smyčkové lemma pomocí dvou různých (nekonečných) přístupů.cs_CZ
uk.abstract.enThe recent research on constraint satisfaction problems (CSPs) on fixed finite templates provided useful tools for computational complexity and universal algebra. However, the research mainly focused on finite relational structures, and consequently, finite algebras. We pursue a generalization of these tools and results into the domain of infinite algebras. In particular, we show that despite the fact that the Maltsev condition s(r, a, r, e) = s(a, r, e, a) does not characterize Taylor algebras (i.e., algebras that satisfy a nontrivial idem- potent Maltsev condition) in general, as it does in the finite case, there is another strong Maltsev condition characterizing Taylor algebras, and s(r, a, r, e) = s(a, r, e, a) characterizes another interesting broad class of algebras. We also provide a (weak) Maltsev condition for SD(∧) algebras (i.e., algebras that satisfy an idem- potent Maltsev condition not satisfiable in a module). Beyond Maltsev conditions, we study loop lemmata and, in particular, reprove a well known finite loop lemma by two different general (infinite) approaches.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.codeP


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV