Show simple item record

Kompaktní I/O-efektivní grafové reprezentace
dc.contributor.advisorGavenčiak, Tomáš
dc.creatorTětek, Jakub
dc.date.accessioned2019-07-18T10:02:34Z
dc.date.available2019-07-18T10:02:34Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/108362
dc.description.abstractCílem této práce je vyvinout rychlou pamět'ově efektivní reprezentaci někte- rých grafů, které se vyskytují v praktických problémech. Uvažujeme separovatelné třídy grafů (např. rovinné grafy nebo grafy s ome- zeným rodem) a ukazujeme, jak grafy z takových tříd reprezentovat způsobem, který (1) dovoluje v průměru I/O-efektivní přístup k vrcholům při procházce a (2) používá málo paměti. Konkrétně ukazujeme kompaktní reprezentaci grafů ze separovatelných tříd s počtem I/O-přístupů při náhodné procházce délky k rovným O(K/(Bw)1−c ) s vysokou pravděpodobností. V druhé části práce se zabýváme rozložením vrcholů stromu v paměti. Uka- zujeme rozložení, které má optimální počet I/O-přístupů v nejhorším případě při procházení z kořene do listu. Dále ukazujeme aditivní (+1)-aproximaci op- timálního kompaktního rozložení vrcholů a dáváme tento výsledek do kontrastu s důkazem NP-těžkosti přesného řešení. Dále v této práci dokazujeme zobecnění věty o rekurzivních separátorech. První zobecnění rozšiřuje větu pro vážené grafy a druhé zobecnění nahrazuje ve znění věty minimální velikost regionu za průměrnou velikost. 1cs_CZ
dc.description.abstractThe objective of this thesis is to develop a fast memory-efficient representa- tion of some graphs that occur in real-world applications. We consider separable graph classes (e.g. planar graphs or graphs of bounded genus) and show how to represent them in a way that (1) makes accessing vertices in a walk cache-efficient on average and (2) is highly memory-efficient. In particular, we show a compact representation of separable graph classes with the I/O cost of a random walk of length k being O(K/(Bw)1−c ) w.h.p. In the second part of the thesis, we consider layout of trees with optimal worst-case I/O cost for root-to-leaf traversal, show an additive (+1)-approximation of I/O optimal compact layout and contrast this with a proof of NP-hardness of exact solution. In this thesis, we also prove generalisations of the recursive separator theo- rem. The first one generalises the theorem for weighted graphs and the second one replaces minimum region size by average region size in the bound. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectteorie grafůcs_CZ
dc.subjectcache-oblivious algoritmycs_CZ
dc.subjectkompaktní reprezentacecs_CZ
dc.subjectseparovatelné grafycs_CZ
dc.subjectgraph theoryen_US
dc.subjectcache-oblivious algorithmsen_US
dc.subjectcompact representationen_US
dc.subjectseparable graphsen_US
dc.titleCompact I/O-Efficient Graph Representationsen_US
dc.typebakalářská prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-27
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId208630
dc.title.translatedKompaktní I/O-efektivní grafové reprezentacecs_CZ
dc.contributor.refereeMareš, Martin
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csCílem této práce je vyvinout rychlou pamět'ově efektivní reprezentaci někte- rých grafů, které se vyskytují v praktických problémech. Uvažujeme separovatelné třídy grafů (např. rovinné grafy nebo grafy s ome- zeným rodem) a ukazujeme, jak grafy z takových tříd reprezentovat způsobem, který (1) dovoluje v průměru I/O-efektivní přístup k vrcholům při procházce a (2) používá málo paměti. Konkrétně ukazujeme kompaktní reprezentaci grafů ze separovatelných tříd s počtem I/O-přístupů při náhodné procházce délky k rovným O(K/(Bw)1−c ) s vysokou pravděpodobností. V druhé části práce se zabýváme rozložením vrcholů stromu v paměti. Uka- zujeme rozložení, které má optimální počet I/O-přístupů v nejhorším případě při procházení z kořene do listu. Dále ukazujeme aditivní (+1)-aproximaci op- timálního kompaktního rozložení vrcholů a dáváme tento výsledek do kontrastu s důkazem NP-těžkosti přesného řešení. Dále v této práci dokazujeme zobecnění věty o rekurzivních separátorech. První zobecnění rozšiřuje větu pro vážené grafy a druhé zobecnění nahrazuje ve znění věty minimální velikost regionu za průměrnou velikost. 1cs_CZ
uk.abstract.enThe objective of this thesis is to develop a fast memory-efficient representa- tion of some graphs that occur in real-world applications. We consider separable graph classes (e.g. planar graphs or graphs of bounded genus) and show how to represent them in a way that (1) makes accessing vertices in a walk cache-efficient on average and (2) is highly memory-efficient. In particular, we show a compact representation of separable graph classes with the I/O cost of a random walk of length k being O(K/(Bw)1−c ) w.h.p. In the second part of the thesis, we consider layout of trees with optimal worst-case I/O cost for root-to-leaf traversal, show an additive (+1)-approximation of I/O optimal compact layout and contrast this with a proof of NP-hardness of exact solution. In this thesis, we also prove generalisations of the recursive separator theo- rem. The first one generalises the theorem for weighted graphs and the second one replaces minimum region size by average region size in the bound. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
thesis.grade.code1


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV