Show simple item record

Construction of G^1 continuous surfaces.
dc.contributor.advisorŠír, Zbyněk
dc.creatorKostelecká, Adéla
dc.date.accessioned2019-07-12T10:08:34Z
dc.date.available2019-07-12T10:08:34Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/108046
dc.description.abstractV této práci se věnujeme algoritmu, který na sebe nerozeznatelně navazuje Bézierovy plochy. Po provedení algoritmu mají tyto plochy na hranicích společný tečný prostor. Tuto metodu nazvanou Chiyokura Kimura použijeme na čtyřúhel- níkové a trojúhelníkové Bézierovy plochy. Dále se zabýváme navazováním více trojúhelníkových ploch pomocí nahrazení řídících bodů racionálními funkcemi. Vzniknou tak tzv. Gregory plochy. Pro obě metody předvádíme důkaz, že tyto plochy navazují G1 spojitě. Na závěr prezentujeme výsledky algoritmu na nepra- videlném dvacetistěnu a dalších reálných geometrických objektech, jako je Stan- dford Bunny. 1cs_CZ
dc.description.abstractThis thesis introduces an algorithm that connects two Bézier patches indis- tinguishtably. The algorithm modifies patches to have a common tangent plane. We use the Chiyokura Kimura method to a tensor product Bézier surfaces and Bé- zier triangles. We ensure this type of continuity for multiple patches by replacing the control points with rational functions. These are called the Gregory patches. We prove that both of the methods connect two patches with G1 continuity. Fi- nally, we present the results of the algorithm on asymmetric icosahedron and on real geometric objects such as Standford Bunny. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleKonstrukce G^1 spojitých ploch.cs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-21
dc.description.departmentMathematical Institute of Charles Universityen_US
dc.description.departmentMatematický ústav UKcs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId209846
dc.title.translatedConstruction of G^1 continuous surfaces.en_US
dc.contributor.refereeBizzarri, Michal
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Matematický ústav UKcs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Mathematical Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se věnujeme algoritmu, který na sebe nerozeznatelně navazuje Bézierovy plochy. Po provedení algoritmu mají tyto plochy na hranicích společný tečný prostor. Tuto metodu nazvanou Chiyokura Kimura použijeme na čtyřúhel- níkové a trojúhelníkové Bézierovy plochy. Dále se zabýváme navazováním více trojúhelníkových ploch pomocí nahrazení řídících bodů racionálními funkcemi. Vzniknou tak tzv. Gregory plochy. Pro obě metody předvádíme důkaz, že tyto plochy navazují G1 spojitě. Na závěr prezentujeme výsledky algoritmu na nepra- videlném dvacetistěnu a dalších reálných geometrických objektech, jako je Stan- dford Bunny. 1cs_CZ
uk.abstract.enThis thesis introduces an algorithm that connects two Bézier patches indis- tinguishtably. The algorithm modifies patches to have a common tangent plane. We use the Chiyokura Kimura method to a tensor product Bézier surfaces and Bé- zier triangles. We ensure this type of continuity for multiple patches by replacing the control points with rational functions. These are called the Gregory patches. We prove that both of the methods connect two patches with G1 continuity. Fi- nally, we present the results of the algorithm on asymmetric icosahedron and on real geometric objects such as Standford Bunny. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UKcs_CZ
thesis.grade.code1


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV