Show simple item record

Integral equations and applications to population models
dc.contributor.advisorBárta, Tomáš
dc.creatorKárníková, Kateřina
dc.date.accessioned2019-07-11T10:11:22Z
dc.date.available2019-07-11T10:11:22Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/107918
dc.description.abstractPředmětem první části bakalářské práce je seznámit čtenáře se základní teorií integrálních a integrodiferenciálních rovnic, vztahem mezi nimi. Obsahuje také věty týkající se především jádra a resolventy, pojmů, které s tímto druhem rovnic úzce souvisí. Důležitým početním aparátem je zde Laplaceova transformace a konvoluce. Dále se zabývá jednoduchými populačními modely a modely vycházejícími z integrodiferenciálních rovnic a následně se snaží aplikovat získané poznatky při řešení konkrétního zadaného modelu.cs_CZ
dc.description.abstractThe goal of this bachelor thesis is to inform the readers about an integral and integrodifferential equations theory and the relation between them. It formulates also theorems about a kernel and a resolvent, the terms closely related to these types of equations. The Laplace transform and a convolution are a calculating device which plays the important role. The next main topic is population models and models based on the integrodifferential equations and subsequently we try to use gained knowledge to solve the concrete given model.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectintegral equationen_US
dc.subjectconvolutionen_US
dc.subjectLaplace transformen_US
dc.subjectPaley-Wiener theoremen_US
dc.subjectpopulation modelsen_US
dc.subjectintegrální rovnicecs_CZ
dc.subjectkonvolucecs_CZ
dc.subjectLaplaceova transformacecs_CZ
dc.subjectPaley-Wienerova větacs_CZ
dc.subjectpopulační modelycs_CZ
dc.titleIntegrální rovnice a aplikace na populační modelycs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-20
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId122741
dc.title.translatedIntegral equations and applications to population modelsen_US
dc.contributor.refereeKaplický, Petr
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.csPředmětem první části bakalářské práce je seznámit čtenáře se základní teorií integrálních a integrodiferenciálních rovnic, vztahem mezi nimi. Obsahuje také věty týkající se především jádra a resolventy, pojmů, které s tímto druhem rovnic úzce souvisí. Důležitým početním aparátem je zde Laplaceova transformace a konvoluce. Dále se zabývá jednoduchými populačními modely a modely vycházejícími z integrodiferenciálních rovnic a následně se snaží aplikovat získané poznatky při řešení konkrétního zadaného modelu.cs_CZ
uk.abstract.enThe goal of this bachelor thesis is to inform the readers about an integral and integrodifferential equations theory and the relation between them. It formulates also theorems about a kernel and a resolvent, the terms closely related to these types of equations. The Laplace transform and a convolution are a calculating device which plays the important role. The next main topic is population models and models based on the integrodifferential equations and subsequently we try to use gained knowledge to solve the concrete given model.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.code3


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV