Show simple item record

Statistické strojové učení s aplikacemi v hudbě
dc.contributor.advisorVečeř, Jan
dc.creatorJanásková, Eliška
dc.date.accessioned2019-07-03T10:06:00Z
dc.date.available2019-07-03T10:06:00Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/107174
dc.description.abstractCílem této práce je shrnout současný stav strojového učení pro skládání hudby a natrénovat model na písních od Beatles s využitím výzkumného pro- jektu Magenta od Google Brain týmu k tvorbě vlastní hudby. Abychom mohli provést důkladný rozbor vygenerované hudby, omezili jsme se pouze na mono- fonní melodie Natrénujeme celkem tři různé modely na základě tří různých konfigurací (Basic, Lookback a Attention) a porovnáme vygenerované výsledky. I přes to, že se vygenerovaná hudba původním Beatles příliš nepodobá, je docela líbivá. Podle naší analýzy založené na hudebně informativních metrikách se vygenerované melodie liší od těch původních zejména v délce not a v rozdílech výšky po sobě jdoucích tónů. Vygenerované melodie obsahují kratší noty a větší rozdíly mezi jednotlivými výškami. V teoretickém pozadí se věnujeme nejčastěji používaným algoritmům stro- jového učení, zavádíme neuronové sítě a shrnujeme důležité milníky strojového učení pro generování hudby. 1cs_CZ
dc.description.abstractThe aim of this thesis is to review the current state of machine learning in music composition and to train a computer on Beatles' songs using research project Magenta from the Google Brain Team to produce its own music. In order to explore the qualities of the generated music more thoroughly, we restrict our- selves to monophonic melodies only. We train three deep learning models with three different configurations (Basic, Lookback, and Attention) and compare generated results. Even though the generated music is not as interesting as the original Beatles, it is quite likable. According to our analysis based on musically informed metrics, generated melodies differ from the original ones especially in lengths of notes and in pitch differences between consecutive notes. Generated melodies tend to use shorter notes and higher pitch differences. In theoretical background, we cover the most commonly used machine learning algorithms, introduce neural networks and review related work of music generation. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmachine learningen_US
dc.subjecttensor flowen_US
dc.subjectmusic compositionen_US
dc.subjectneural networks with LSTMen_US
dc.subjectevaluation of musicen_US
dc.subjectstrojové učenícs_CZ
dc.subjecttensor flowcs_CZ
dc.subjecthudební skladbacs_CZ
dc.subjectneuronové sítě s LSTMcs_CZ
dc.subjecthodnocení hudbycs_CZ
dc.titleStatistical machine learning with applications in musicen_US
dc.typediplomová prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-12
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId205954
dc.title.translatedStatistické strojové učení s aplikacemi v hudběcs_CZ
dc.contributor.refereeHlávka, Zdeněk
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csNeprospěl/acs_CZ
thesis.grade.enFailen_US
uk.abstract.csCílem této práce je shrnout současný stav strojového učení pro skládání hudby a natrénovat model na písních od Beatles s využitím výzkumného pro- jektu Magenta od Google Brain týmu k tvorbě vlastní hudby. Abychom mohli provést důkladný rozbor vygenerované hudby, omezili jsme se pouze na mono- fonní melodie Natrénujeme celkem tři různé modely na základě tří různých konfigurací (Basic, Lookback a Attention) a porovnáme vygenerované výsledky. I přes to, že se vygenerovaná hudba původním Beatles příliš nepodobá, je docela líbivá. Podle naší analýzy založené na hudebně informativních metrikách se vygenerované melodie liší od těch původních zejména v délce not a v rozdílech výšky po sobě jdoucích tónů. Vygenerované melodie obsahují kratší noty a větší rozdíly mezi jednotlivými výškami. V teoretickém pozadí se věnujeme nejčastěji používaným algoritmům stro- jového učení, zavádíme neuronové sítě a shrnujeme důležité milníky strojového učení pro generování hudby. 1cs_CZ
uk.abstract.enThe aim of this thesis is to review the current state of machine learning in music composition and to train a computer on Beatles' songs using research project Magenta from the Google Brain Team to produce its own music. In order to explore the qualities of the generated music more thoroughly, we restrict our- selves to monophonic melodies only. We train three deep learning models with three different configurations (Basic, Lookback, and Attention) and compare generated results. Even though the generated music is not as interesting as the original Beatles, it is quite likable. According to our analysis based on musically informed metrics, generated melodies differ from the original ones especially in lengths of notes and in pitch differences between consecutive notes. Generated melodies tend to use shorter notes and higher pitch differences. In theoretical background, we cover the most commonly used machine learning algorithms, introduce neural networks and review related work of music generation. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code4


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV