Show simple item record

Ohodnocení příznaků pro rozpoznávání cover verzí písní pomocí technik strojového učení
dc.contributor.advisorMaršík, Ladislav
dc.creatorMartišek, Petr
dc.date.accessioned2019-07-01T10:29:48Z
dc.date.available2019-07-01T10:29:48Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/107046
dc.description.abstractRozpoznávání cover verzí písní je oblast problematiky získávání informací z hudby, která se zabývá úkolem rozpoznat, zda dvě odlišné audio nahrávky obsahují různé verze téže písně. Jelikož cover verze se mohou lišit v tempu, tónině, instrumentaci a dalších vlastnostech, bylo během uplynulých let vytvořeno mnoho důmyslných příznaků vhodných pro tento účel. Pro- vedli jsme důkladnou analýzu 32 příznaků použitých v pracech zabývajících se touto problematikou, přičemž rozlišujeme příznaky přesné a škálovatelné. Přesné příznaky jsou založeny na sekvencích harmonických deskriptorů (ty- picky jsou to tzv. " chroma" vektory) a vedou k lepším výsledkům, avšak za cenu vyšší výpočetní náročnosti. Škálovatelné příznaky mají malou kon- stantní velikost a zachycují pouze obecné rysy dané audio nahrávky, díky čemuž je jejich výpočet rychlý a hodí se tak pro použití s velkými data- sety. Vybrali jsme 7 škálovatelných a 3 přesné příznaky, které jsme použili pro konstrukci našeho dvouúrovňového systému pro rozpoznávání cover verzí, přičemž škálovatelné příznaky jsou použity na první úrovni k prořezání data- setu a přesné na druhé úrovní pro zpřesnění výsledků. Dva...cs_CZ
dc.description.abstractCover song identification is a field of music information retrieval where the task is to determine whether two different audio tracks represent different versions of the same underlying song. Since covers might differ in tempo, key, instrumentation and other characteristics, many clever features have been developed over the years. We perform a rigorous analysis of 32 features used in related works while distinguishing between exact and scalable features. The former are based on a harmonic descriptor time series (typically chroma vectors) and offer better performance at the cost of computation time. The latter have a small constant size and only capture global phenomena in the track, making them fast to compute and suitable for use with large datasets. We then select 7 scalable and 3 exact features to build our own two-level system, with the scalable features used on the first level to prune the dataset and the exact on the second level to refine the results. Two distinct machine learning models are used to combine the scalable resp. exact features. We perform the analysis and the evaluation of our system on the Million Song Dataset. The experiments show the exact features being outperformed by the scalable ones, which lead us to a decision to only use the 7 scalable features in our system. The...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmusic information retrievalen_US
dc.subjectcover song identificationen_US
dc.subjectmachine learningen_US
dc.subjectfeature evaluationen_US
dc.subjectmusic information retrievalcs_CZ
dc.subjectrozpoznávání cover verzí písnícs_CZ
dc.subjectstrojové učenícs_CZ
dc.subjectohodnocení příznakůcs_CZ
dc.titleFeature Evaluation for Scalable Cover Song Identification Using Machine Learningen_US
dc.typediplomová prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-10
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId186377
dc.title.translatedOhodnocení příznaků pro rozpoznávání cover verzí písní pomocí technik strojového učenícs_CZ
dc.contributor.refereeHajič, Jan
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineUmělá inteligencecs_CZ
thesis.degree.disciplineArtificial Intelligenceen_US
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUmělá inteligencecs_CZ
uk.degree-discipline.enArtificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csRozpoznávání cover verzí písní je oblast problematiky získávání informací z hudby, která se zabývá úkolem rozpoznat, zda dvě odlišné audio nahrávky obsahují různé verze téže písně. Jelikož cover verze se mohou lišit v tempu, tónině, instrumentaci a dalších vlastnostech, bylo během uplynulých let vytvořeno mnoho důmyslných příznaků vhodných pro tento účel. Pro- vedli jsme důkladnou analýzu 32 příznaků použitých v pracech zabývajících se touto problematikou, přičemž rozlišujeme příznaky přesné a škálovatelné. Přesné příznaky jsou založeny na sekvencích harmonických deskriptorů (ty- picky jsou to tzv. " chroma" vektory) a vedou k lepším výsledkům, avšak za cenu vyšší výpočetní náročnosti. Škálovatelné příznaky mají malou kon- stantní velikost a zachycují pouze obecné rysy dané audio nahrávky, díky čemuž je jejich výpočet rychlý a hodí se tak pro použití s velkými data- sety. Vybrali jsme 7 škálovatelných a 3 přesné příznaky, které jsme použili pro konstrukci našeho dvouúrovňového systému pro rozpoznávání cover verzí, přičemž škálovatelné příznaky jsou použity na první úrovni k prořezání data- setu a přesné na druhé úrovní pro zpřesnění výsledků. Dva...cs_CZ
uk.abstract.enCover song identification is a field of music information retrieval where the task is to determine whether two different audio tracks represent different versions of the same underlying song. Since covers might differ in tempo, key, instrumentation and other characteristics, many clever features have been developed over the years. We perform a rigorous analysis of 32 features used in related works while distinguishing between exact and scalable features. The former are based on a harmonic descriptor time series (typically chroma vectors) and offer better performance at the cost of computation time. The latter have a small constant size and only capture global phenomena in the track, making them fast to compute and suitable for use with large datasets. We then select 7 scalable and 3 exact features to build our own two-level system, with the scalable features used on the first level to prune the dataset and the exact on the second level to refine the results. Two distinct machine learning models are used to combine the scalable resp. exact features. We perform the analysis and the evaluation of our system on the Million Song Dataset. The experiments show the exact features being outperformed by the scalable ones, which lead us to a decision to only use the 7 scalable features in our system. The...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ
thesis.grade.code1


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV