Show simple item record

Prognózování mezinárodního obchodu s využitím metod strojového učení
dc.contributor.advisorSemerák, Vilém
dc.creatorKovařík, Tomáš
dc.date.accessioned2019-02-19T17:53:53Z
dc.date.available2019-02-19T17:53:53Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/105017
dc.description.abstractIn this thesis I focus on comparison of gravity model estimated with ordinary least squares and Poisson pseudo-maximum likelihood with regression techniques based on machine learning, namely support vector machines, random forests, and arti_cial neural networks. I discuss the advantages and disadvantages of these approaches and compare their forecasting accuracy on exports data. I demonstrate that random forest models and arti_cial neural networks provide superior forecasting accuracy.en_US
dc.description.abstractV této práci se soustředím na porovnání gravitačního modelu odhadnutého pomocí metody nejmenších čtverců a metody Poissonovy maximální věrohodnosti oproti regresním technikám založeným na strojovém učení, konkrétně se jedná o support vector machines, random forests, a umělé neuronové sítě. Provádím diskusi výhod a nevýhod jednotlivých přístupů a srovnávám jejich predikční schopnosti na exportních datech. Demonstruji, že random forest model a umělé neuronové sítě poskytují lepší predikce.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectmachine learningcs_CZ
dc.subjectmezinárodní obchodcs_CZ
dc.subjectprognostikacs_CZ
dc.subjectmachine learningen_US
dc.subjectinternational tradeen_US
dc.subjectforecastingen_US
dc.titleMachine learning-based approaches to forecasting international tradeen_US
dc.typebakalářská prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-01-29
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.facultyFakulta sociálních vědcs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.identifier.repId191197
dc.title.translatedPrognózování mezinárodního obchodu s využitím metod strojového učenícs_CZ
dc.contributor.refereeMacháček, Vít
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineEconomics and Financeen_US
thesis.degree.disciplineEkonomie a financecs_CZ
thesis.degree.programEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomie a financecs_CZ
uk.degree-discipline.enEconomics and Financeen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se soustředím na porovnání gravitačního modelu odhadnutého pomocí metody nejmenších čtverců a metody Poissonovy maximální věrohodnosti oproti regresním technikám založeným na strojovém učení, konkrétně se jedná o support vector machines, random forests, a umělé neuronové sítě. Provádím diskusi výhod a nevýhod jednotlivých přístupů a srovnávám jejich predikční schopnosti na exportních datech. Demonstruji, že random forest model a umělé neuronové sítě poskytují lepší predikce.cs_CZ
uk.abstract.enIn this thesis I focus on comparison of gravity model estimated with ordinary least squares and Poisson pseudo-maximum likelihood with regression techniques based on machine learning, namely support vector machines, random forests, and arti_cial neural networks. I discuss the advantages and disadvantages of these approaches and compare their forecasting accuracy on exports data. I demonstrate that random forest models and arti_cial neural networks provide superior forecasting accuracy.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.codeB


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV