Show simple item record

Isoperimetrický problém, Sobolevovy prostory a Heisenbergova grupa
dc.contributor.advisorPick, Luboš
dc.creatorFranců, Martin
dc.date.accessioned2019-01-09T10:51:56Z
dc.date.available2019-01-09T10:51:56Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/104420
dc.description.abstractV této disertační práci studujeme vnoření prostorů funkcí definovaných na Carnotových-Carathéodoryových prostorech. Hlavními výsledky práce jsou pod- mínky pro sobolevovské vnoření vyššího řádu mezi prostory s normou invariantní vůči nerostoucímu přerovnání. Ve speciálním případě, kdy je v pozadí ležící prostor s mírou takzvanou X-PS doménou v Heisenbergově grupě, dostáváme úplnou charakterizaci Sobolevova vnoření. Další sada hlavních výsledků se týká kompaktnosti zmíněných vnoření (v těchto případech získáváme postačující podmínky). Z obecných výsledků vyvozujeme specifická vnoření pro důležité konkrétní případy prostorů funkcí. V závěrečné části práce uvádíme nový al- goritmus pro aproximaci nejmenší konkávní majoranty funkce definované na intervalu s odhadem chyby této aproximace. 1cs_CZ
dc.description.abstractIn this thesis we study embeddings of spaces of functions defined on Carnot- Carathéodory spaces. Main results of this work consist of conditions for Sobolev- type embeddings of higher order between rearrangement-invariant spaces. In a special case when the underlying measure space is the so-called X-PS domain in the Heisenberg group we obtain full characterization of a Sobolev embedding. The next set of main results concerns compactness of the above-mentioned em- beddings. In these cases we obtain sufficient conditions. We apply the general results to important particular examples of function spaces. In the final part of the thesis we present a new algorithm for approximation of the least concave majorant of a function defined on an interval complemented with the estimate of the error of such approximation. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectSobolev-type embeddingen_US
dc.subjectCarnot-Carathéodory spacesen_US
dc.subjectHeisenberg groupen_US
dc.subjectcompact embeddingen_US
dc.subjectleast concave majoranen_US
dc.subjectsobolevovské vnořenícs_CZ
dc.subjectCarnotovy-Carathéodoryovy prostorycs_CZ
dc.subjectHeisenbergova grupacs_CZ
dc.subjectkompaktní vnořenícs_CZ
dc.subjectnejmenší konkávní majorantacs_CZ
dc.titleIsoperimetric problem, Sobolev spaces and the Heisenberg groupen_US
dc.typedizertační prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-09-26
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId122210
dc.title.translatedIsoperimetrický problém, Sobolevovy prostory a Heisenbergova grupacs_CZ
dc.contributor.refereeCianchi, Andrea
dc.contributor.refereeNekvinda, Aleš
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csV této disertační práci studujeme vnoření prostorů funkcí definovaných na Carnotových-Carathéodoryových prostorech. Hlavními výsledky práce jsou pod- mínky pro sobolevovské vnoření vyššího řádu mezi prostory s normou invariantní vůči nerostoucímu přerovnání. Ve speciálním případě, kdy je v pozadí ležící prostor s mírou takzvanou X-PS doménou v Heisenbergově grupě, dostáváme úplnou charakterizaci Sobolevova vnoření. Další sada hlavních výsledků se týká kompaktnosti zmíněných vnoření (v těchto případech získáváme postačující podmínky). Z obecných výsledků vyvozujeme specifická vnoření pro důležité konkrétní případy prostorů funkcí. V závěrečné části práce uvádíme nový al- goritmus pro aproximaci nejmenší konkávní majoranty funkce definované na intervalu s odhadem chyby této aproximace. 1cs_CZ
uk.abstract.enIn this thesis we study embeddings of spaces of functions defined on Carnot- Carathéodory spaces. Main results of this work consist of conditions for Sobolev- type embeddings of higher order between rearrangement-invariant spaces. In a special case when the underlying measure space is the so-called X-PS domain in the Heisenberg group we obtain full characterization of a Sobolev embedding. The next set of main results concerns compactness of the above-mentioned em- beddings. In these cases we obtain sufficient conditions. We apply the general results to important particular examples of function spaces. In the final part of the thesis we present a new algorithm for approximation of the least concave majorant of a function defined on an interval complemented with the estimate of the error of such approximation. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.codeP


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV