Show simple item record

Vlastnosti zobrazení s konečnou distorzí
dc.contributor.advisorHencl, Stanislav
dc.creatorCampbell, Daniel
dc.date.accessioned2021-05-20T10:42:12Z
dc.date.available2021-05-20T10:42:12Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/104294
dc.description.abstractIn the following thesis we will be mostly concerned with questions related to the regularity of solutions to non-linear elasticity models in the calculus of variations. An important step in this is question is the approximation of Sobolev homeomorphisms by diffeomorphisms. We refine an approximation result of Hencl and Pratelli's which, for a given planar Sobolev (or Sobolev-Orlicz) homeomorphism, constructs a diffeomorphism arbitrarily close to the original map in uniform convergence and in terms of the Sobolev-Orlicz norm. Further we show, in dimension 4 or higher, that such an approximation result cannot hold in Sobolev spaces W1,p where p is too small by constructing a sense-preserving homeomorphism with Jacobian negative on a set of positive measure. The class of mappings referred to as mappings of finite distortion have been proposed as possible models for deformations of bodies in non-linear elasticity. In this context a key property is their continuity. We show, by counter-example, the surprising sharpness of the modulus of continuity with respect to the integrability of the distortion function. Also we prove an optimal regularity result for the inverse of a bi-Lipschitz Sobolev map in Wk,p and composition of Lipschitz maps in Wk,p comparable with the classical inverse mapping theorem. As a...cs_CZ
dc.description.abstractIn the following thesis we will be mostly concerned with questions related to the regularity of solutions to non-linear elasticity models in the calculus of variations. An important step in this is question is the approximation of Sobolev homeomorphisms by diffeomorphisms. We refine an approximation result of Hencl and Pratelli's which, for a given planar Sobolev (or Sobolev-Orlicz) homeomorphism, constructs a diffeomorphism arbitrarily close to the original map in uniform convergence and in terms of the Sobolev-Orlicz norm. Further we show, in dimension 4 or higher, that such an approximation result cannot hold in Sobolev spaces W1,p where p is too small by constructing a sense-preserving homeomorphism with Jacobian negative on a set of positive measure. The class of mappings referred to as mappings of finite distortion have been proposed as possible models for deformations of bodies in non-linear elasticity. In this context a key property is their continuity. We show, by counter-example, the surprising sharpness of the modulus of continuity with respect to the integrability of the distortion function. Also we prove an optimal regularity result for the inverse of a bi-Lipschitz Sobolev map in Wk,p and composition of Lipschitz maps in Wk,p comparable with the classical inverse mapping theorem. As a...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectMapping of finite distortionen_US
dc.subjectopeness and disretenessen_US
dc.subjectZobrazení s konečnou distorzícs_CZ
dc.subjectotevřenost a diskrétnostcs_CZ
dc.titleProperties of mappings of finite distortionen_US
dc.typerigorózní prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-11-22
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId203919
dc.title.translatedVlastnosti zobrazení s konečnou distorzícs_CZ
dc.identifier.aleph002216559
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csIn the following thesis we will be mostly concerned with questions related to the regularity of solutions to non-linear elasticity models in the calculus of variations. An important step in this is question is the approximation of Sobolev homeomorphisms by diffeomorphisms. We refine an approximation result of Hencl and Pratelli's which, for a given planar Sobolev (or Sobolev-Orlicz) homeomorphism, constructs a diffeomorphism arbitrarily close to the original map in uniform convergence and in terms of the Sobolev-Orlicz norm. Further we show, in dimension 4 or higher, that such an approximation result cannot hold in Sobolev spaces W1,p where p is too small by constructing a sense-preserving homeomorphism with Jacobian negative on a set of positive measure. The class of mappings referred to as mappings of finite distortion have been proposed as possible models for deformations of bodies in non-linear elasticity. In this context a key property is their continuity. We show, by counter-example, the surprising sharpness of the modulus of continuity with respect to the integrability of the distortion function. Also we prove an optimal regularity result for the inverse of a bi-Lipschitz Sobolev map in Wk,p and composition of Lipschitz maps in Wk,p comparable with the classical inverse mapping theorem. As a...cs_CZ
uk.abstract.enIn the following thesis we will be mostly concerned with questions related to the regularity of solutions to non-linear elasticity models in the calculus of variations. An important step in this is question is the approximation of Sobolev homeomorphisms by diffeomorphisms. We refine an approximation result of Hencl and Pratelli's which, for a given planar Sobolev (or Sobolev-Orlicz) homeomorphism, constructs a diffeomorphism arbitrarily close to the original map in uniform convergence and in terms of the Sobolev-Orlicz norm. Further we show, in dimension 4 or higher, that such an approximation result cannot hold in Sobolev spaces W1,p where p is too small by constructing a sense-preserving homeomorphism with Jacobian negative on a set of positive measure. The class of mappings referred to as mappings of finite distortion have been proposed as possible models for deformations of bodies in non-linear elasticity. In this context a key property is their continuity. We show, by counter-example, the surprising sharpness of the modulus of continuity with respect to the integrability of the distortion function. Also we prove an optimal regularity result for the inverse of a bi-Lipschitz Sobolev map in Wk,p and composition of Lipschitz maps in Wk,p comparable with the classical inverse mapping theorem. As a...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV