Show simple item record

Homogenizace toků nenewtonovských tekutin a silně nelineárních eliptických systémů
dc.contributor.advisorKaplický, Petr
dc.creatorKalousek, Martin
dc.date.accessioned2021-01-11T23:04:45Z
dc.date.available2021-01-11T23:04:45Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/103383
dc.description.abstractThe theory of homogenization allows to find for a given system of partial differential equations governing a model with a very complicated internal struc- ture a system governing a model without this structure, whose solution is in a certain sense an approximation of the solution of the original problem. In this thesis, methods of the theory of homogenization are applied to three sys- tems of partial differential equations. The first one governs a flow of a class of non-Newtonian fluid through a porous medium. The second system is utilized for modeling of a flow of a fluid through an electric field wherein the viscosity depends significantly on the intensity of the electric field. For the third system is considered an elliptic operator having growth and coercivity indicated by a general anisotropic inhomogeneous N-function. 1en_US
dc.description.abstractTeorie homogenizace umožňuje nalézt pro zadaný systém parciálních dife- renciálních rovnic popisující model s komplikovanou vnitřní strukturou systém popisující model bez této struktury, jehož řešení je v jistém smyslu aproximací řešení původního systému. V této práci jsou metody teorie homogenizace ap- likovány na tři systémy parciálních diferenciálních rovnic, z nichž první popisuje proudění jisté třídy nenewtonowských tekutin porézním prostředím. Druhý se používá pro modelování proudění tekutin v elektrickém poli, jejichž viskozita se výrazně mění v závislosti na intenzitě elektrického pole. Ve třetím systému je uvažován eliptický operátor, jehož růst a koercivita jsou určeny obecnou ani- zotropní nehomogenní N-funkcí. 1cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectElektrorheologická tekutinacs_CZ
dc.subjecthomogenizacecs_CZ
dc.subjectnelineární eliptický systémcs_CZ
dc.subjectnenewtonovská tekutinacs_CZ
dc.subjectN-funkcecs_CZ
dc.subjectproudění porézním prostředímcs_CZ
dc.subjectElectrorheological fluiden_US
dc.subjecthomogenizationen_US
dc.subjectflow through porous mediaen_US
dc.subjectN-functionen_US
dc.subjectnonlinear elliptic systemen_US
dc.subjectnon-Newtonian fluidsen_US
dc.titleHomogenization of flows of non-Newtonian fluids and strongly nonlinear elliptic systemsen_US
dc.typerigorózní prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-10-08
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId204786
dc.title.translatedHomogenizace toků nenewtonovských tekutin a silně nelineárních eliptických systémůcs_CZ
dc.identifier.aleph002208128
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csTeorie homogenizace umožňuje nalézt pro zadaný systém parciálních dife- renciálních rovnic popisující model s komplikovanou vnitřní strukturou systém popisující model bez této struktury, jehož řešení je v jistém smyslu aproximací řešení původního systému. V této práci jsou metody teorie homogenizace ap- likovány na tři systémy parciálních diferenciálních rovnic, z nichž první popisuje proudění jisté třídy nenewtonowských tekutin porézním prostředím. Druhý se používá pro modelování proudění tekutin v elektrickém poli, jejichž viskozita se výrazně mění v závislosti na intenzitě elektrického pole. Ve třetím systému je uvažován eliptický operátor, jehož růst a koercivita jsou určeny obecnou ani- zotropní nehomogenní N-funkcí. 1cs_CZ
uk.abstract.enThe theory of homogenization allows to find for a given system of partial differential equations governing a model with a very complicated internal struc- ture a system governing a model without this structure, whose solution is in a certain sense an approximation of the solution of the original problem. In this thesis, methods of the theory of homogenization are applied to three sys- tems of partial differential equations. The first one governs a flow of a class of non-Newtonian fluid through a porous medium. The second system is utilized for modeling of a flow of a fluid through an electric field wherein the viscosity depends significantly on the intensity of the electric field. For the third system is considered an elliptic operator having growth and coercivity indicated by a general anisotropic inhomogeneous N-function. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV