Show simple item record

Parameter estimation of gamma distribution
dc.contributor.advisorKulich, Michal
dc.creatorZahrádková, Petra
dc.date.accessioned2018-11-30T13:39:24Z
dc.date.available2018-11-30T13:39:24Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/100052
dc.description.abstractIt is well-known that maximum likelihood (ML) estimators of the two parame- ters in a Gamma distribution do not have closed forms. The Gamma distribution is a special case of a generalized Gamma distribution. Two of the three likeli- hood equations of the generalized Gamma distribution can be used as estimating equations for the Gamma distribution, based on which simple closed-form estima- tors for the two Gamma parameters are available. Intuitively, performance of the new estimators based on likelihood equations should be close to the ML estima- tors. The study consolidates this conjecture by establishing the asymptotic beha- viours of the new estimators. In addition, the closed-forms enable bias-corrections to these estimators. 1en_US
dc.description.abstractJe známo, že maximálně věrohodné odhady obou parametrů gamma rozdělení nemají explicitní vyjádření. Gamma rozdělení je speciálním případem zobecně- ného gamma rozdělení, které obsahuje tři parametry. Dvě ze tří věrohodnostních rovnic zobecněného gamma rozdělení lze použít jako odhadovací rovnice pro pa- rametry gamma rozdělení, z nichž lze explicitně vyjádřit odhady neznámých pa- rametrů. Intuitivně by se nové odhady vyjádřené z věrohodnostních rovnic měly nacházet velmi blízko maximálně věrohodným odhadům. Práce tuto domněnku upevňuje na základě asymptotického chování nových odhadů. Kromě toho lze explicitní vyjádření upravit tak, aby byly nové odhady nestranné. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectgamma distributionen_US
dc.subjectgeneralized gamma distributionen_US
dc.subjectparameter estimationen_US
dc.subjectmaximum likelihood estimationen_US
dc.subjectgamma rozdělenícs_CZ
dc.subjectzobecněné gamma rozdělenícs_CZ
dc.subjectodhadování parametrůcs_CZ
dc.subjectmetoda maximální věrohodnostics_CZ
dc.titleOdhadování parametrů gama rozdělenícs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-06-27
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId194946
dc.title.translatedParameter estimation of gamma distributionen_US
dc.contributor.refereeHlávka, Zdeněk
dc.identifier.aleph002193431
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csJe známo, že maximálně věrohodné odhady obou parametrů gamma rozdělení nemají explicitní vyjádření. Gamma rozdělení je speciálním případem zobecně- ného gamma rozdělení, které obsahuje tři parametry. Dvě ze tří věrohodnostních rovnic zobecněného gamma rozdělení lze použít jako odhadovací rovnice pro pa- rametry gamma rozdělení, z nichž lze explicitně vyjádřit odhady neznámých pa- rametrů. Intuitivně by se nové odhady vyjádřené z věrohodnostních rovnic měly nacházet velmi blízko maximálně věrohodným odhadům. Práce tuto domněnku upevňuje na základě asymptotického chování nových odhadů. Kromě toho lze explicitní vyjádření upravit tak, aby byly nové odhady nestranné. 1cs_CZ
uk.abstract.enIt is well-known that maximum likelihood (ML) estimators of the two parame- ters in a Gamma distribution do not have closed forms. The Gamma distribution is a special case of a generalized Gamma distribution. Two of the three likeli- hood equations of the generalized Gamma distribution can be used as estimating equations for the Gamma distribution, based on which simple closed-form estima- tors for the two Gamma parameters are available. Intuitively, performance of the new estimators based on likelihood equations should be close to the ML estima- tors. The study consolidates this conjecture by establishing the asymptotic beha- viours of the new estimators. In addition, the closed-forms enable bias-corrections to these estimators. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
dc.identifier.lisID990021934310106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV