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Abstract: The goal of this thesis was to create an extensible library for simulating
electrical circuits for the .NET platform, which could be used in broad contexts
like development of educational programs or applications that use evolutionary
algorithms to evolve electrical circuits. Our library is inspired by the family of
SPICE programs developed at University of California, Berkeley.

Initial version of our library implements the transient analysis of electrical circuits
and supports basic devices like voltage and current sources, resistors, capacitors,
inductors, but also semiconductor diode and BJT transistor devices. Our library
is designed in such a way that both new circuit devices and circuit analyses can
be added in future versions.

Other features of our library include importing circuits or their parts from the
industry standard SPICE netlists and ability to modify circuit parameters during
the simulation. In this thesis, we also investigate using double-double precision
type to improve convergence during the simulation.

We also implement a simple SPICE-like console application to allow our simula-
tion library to be used from command line.
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Název práce: NextGen SPICE – knihovna pro simulaci elektrických obvod̊u pro
.NET
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Katedra: Department of Distributed and Dependable Systems
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Abstrakt: Ćılem této práce bylo vytvořit rozšǐritelnou knihovnu pro simulaci elek-
trických obvod̊u pro platformu .NET, která by byla uplatnitelná v širokém kon-
textu, jako je vývoj výukových programů nebo aplikaćı využ́ıvaj́ıćıch evolučńıch
algoritmů pro evoluci elektrických obvod̊u. Naše knihovna je inspirována rodinou
SPICE programů vyv́ıjených na Kalifornské univerzitě v Berkeley.

Počátečńı verze naš́ı knihovny implementuje transientńı analýzu elektrických ob-
vod̊u a podporuje základńı součástky jako zdroje napět́ı a proudu, rezistory, kon-
denzátory a ćıvky, ale také polovodičové diody a BJT transistory. Naše knihovna
je navržena takovým zp̊usobem, že je možné v budoućıch verźıch knihovny přidat
jak nové součástky, tak nové typy analýz.

Daľśı vlastnosti naš́ı knihovny zahrnuj́ı importováńı obvod̊u nebo jejich část́ı v
pr̊umyslově standardńım SPICE netlist formátu a možnost upravovat parametry
součástek během simulace. V této práci také prověřujeme použit́ı typ̊u s přesnost́ı
double-double pro zlepšeńı konvergence během simulace.

Také jsme implementovali jednoduchou SPICE-like konzolovou aplikaci abychom
umožnili použ́ıváńı naš́ı simulačńı knihovny z př́ıkazové řádky.

Kĺıčová slova: Simulace elektrických obvod̊u SPICE .NET Knihovna
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1. Introduction
The process of designing electrical circuits consists of several stages, starting with
detailed specification from the customer that provides all necessary requirements,
and ending with a working prototype of the final product. Intermediate stages
include prototyping circuits using a construction base commonly referred to as
breadboard, which is is often very slow and for complex integrated circuits even
impossible. The task has been made easier with the invention of electrical circuit
simulation programs, which allow quick circuit prototyping without the need of
soldering iron.

1.1 The Berkeley SPICE
One of the most successful circuit simulators is the SPICE program1 developed at
EECS Department of the University of California, Berkeley. The original SPICE1
program is implemented in FØRTRAN language and was released in 1971. Its
popularity quickly rose and few years later, Berkeley released SPICE2 with many
performance improvements and model enhancements. SPICE programs devel-
oped at Berkeley heavily influenced development of future circuit simulation soft-
ware, and we will describe them in more depth in following sections.

Netlists

Early versions of SPICE did not operate in interactive mode, therefore the input
files contained both data and instructions for processing. These input files con-
ventionally have .cir extension, and the contained circuit description is called
netlist. A simple example of netlist is shown on the figure 1.1 on the left, with a
schematic of corresponding circuit on the right. The meaning of individual lines
of the netlist is explained in the next paragraph.

1: BRIDGE-T CIRCUIT
2: *
3: VBIAS 1 0 12
4: R1 1 2 10
5: R2 2 0 10
6: R3 2 3 5
7: R4 1 3 5
8: *
9: .OP

10: .END

− +
VBIAS

12 V

1

5 Ω R4

3

5 Ω

R32

10 Ω

R2

10 Ω R1

Figure 1.1: Example .cir netlist file, reproduced from The SPICE Book [1] and
corresponding circuit schematic

The netlist in figure 1.1 is divided into three sections, separated by empty
comment on lines 2 and 8. The first section of the netlist contains the name of
circuit, then follows a second section with definitions of five devices: one voltage

1The name SPICE stands for Simulation Program with Integrated Circuit Emphasis.
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source and four resistors. The type of each device is inferred from the first
letter of its name. Each definition contains list of connected nodes and value
of source voltage or resistor’s ohmic resistance, respectively. Node 0 is special,
because it corresponds to the ground and must be present in every circuit (detailed
description of SPICE netlists syntax and rules for validating the circuit will be
presented later in chapter 2). In the last section of the file, there is an .OP
statement, which instructs the simulator to perform an operating point analysis
to find stable values of node voltages of the circuit, and .END statement denoting
the end of netlist. This syntax for describing electrical circuits became an industry
standard during the 1970s, and most modern circuit simulators still recognize it.

When SPICE2 is run with the previously shown netlist file, it first reads all
components, checks syntax and topology rules for the circuit, and then runs the
operating point analysis – computes node voltages and current through the VBIAS
voltage source. After that, it prints a rather verbose report, as shown in figure
1.2. First, description of the input circuit is repeated back to the user (only part
of the description is shown in the figure for brevity, in top half in grey), then
follows a list of node voltages and then currents flowing through voltage sources.

1: ******* 03/19/91 ********* SPICE 2G.6 9/21/84 ********* 06:47:36 *********
2:
3: BRIDGE-T CIRCUIT
4:
5: **** CIRCUIT DESCRIPTION
6:
7: ***************************************************************************
8: *
9: VBIAS 1 0 12

10: ...
11: .END
12:
13: ******* 03/19/91 ********* SPICE 2G.6 9/21/84 ********* 06:47:36 *********
14:
15: BRIDGE-T CIRCUIT
16:
17: **** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C
18:
19: ***************************************************************************
20:
21: NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
22:
23: ( 1) 12.0000 ( 2) 8.0000 ( 3) 10.0000
24:
25: VOLTAGE SOURCE CURRENTS
26: NAME CURRENT
27:
28: VBIAS -8.000E-01
29:
30: TOTAL POWER DISSIPATION 9.60E+00 WATTS

Figure 1.2: Output of SPICE2G.6 for the example netlist file, from The SPICE
Book [1]
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Macromodels

One of the most useful features of SPICE is the ability to define custom sub-
circuits, called macromodels, composed from devices already integrated in the
simulator, or other macromodels. Circuits can be then decomposed to individual
subcircuits, similarly to how a computer program’s source code can be decom-
posed into individual functions. One macromodel can then represent a complex
real-life device, e.g. an amplifier, and can be simply reused throughout the whole
circuit.

This allows device manufacturers to provide a SPICE netlists with macro-
models that accurately model their devices. An example of such manufacturer is
Analog Devices, macromodels for their products can be downloaded from their
webpage, screenshot of which is shown in figure 1.3. The manufacturer’s cus-
tomers can then use these macromodels in their simulators to model behavior of
circuit that uses the manufacturer’s products.

Figure 1.3: Website of Analog Devices, where SPICE macromodels can be down-
loaded.

Today, vast libraries containing hundreds of SPICE netlists with macromodels
exist, and therefore it is a very important feature of any modern circuit simulator
to be able to import macromodels from these netlists.

Manufacturer-supplied macromodels are often very complex and the netlists
are too long to be shown here. Instead, the use of macromodels is demonstrated
on a simple macromodel for AC coupled amplifier. The netlist description is
shown in figure 1.4. Very important part of the definition is the opening .SUBCKT
statement, which denotes start of the subcircuit description, and specifies its
name and terminal nodes which will serve as an interface to the outer circuit.
After that follows description of the devices that constitute the macromodel, and
finally, the subcircuit definition is ended by .ENDS statement. The subcircuit
in the figure is named ACamplifier and terminal nodes are 1, 2 and 3. Other
nodes (excluding 0, which is global ground node) and all devices used between
the .SUBCKT and .ENDS statement are strictly local to the subcircuit and are not
visible to the outside circuit.
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1: * external nodes: in power out
2: .SUBCKT ACamplifier 2 1 3
3: R1 1 4 2K
4: R2 4 0 500
5: C1 2 4 10n
6: Q1 3 4 5 2N2222
7: Rc 1 3 2K
8: Re 5 0 1e3
9: .MODEL 2N2222 NPN

10: + (BF=50 IS=1E-13 VBF=50)
11: .ENDS

1

Rc2 kΩ

Q1 2N3904

5

Re1 mΩ
500 Ω R2

4

2 kΩ R1

10 nF

C1
2

3

Figure 1.4: Simple macromodel example for AC coupled amplifier [2], and cor-
responding circuit schematic, adapted from a 5Spice tutorial by Richard P. An-
dresen

Such a macromodel can then be used by providing nodes for terminal con-
nections. In SPICE netlist, a macromodel is represented by a device with name
staring with an X. The actual macromodel to be used is specified as the last argu-
ment in the device statement. An example of a circuit that uses the ACamplifier
macromodel is shown in figure 1.5. The macromodel definition is inlcuded from
a separate file, similarly to the #include preprocessor directive in C or C++. In
the actual circuit, the macromodel is represented by the XAMP device. Nodes 3, 2
and 1 are mapped onto the nodes 2, 1 and 3 from the macromodel description.

1: SUBCIRCUIT CALL EXAMPLE
2: *
3: .INCLUDE acamplifier.cir
4: *
5: V1 2 0 5
6: R1 2 3 10
7: XAMP 3 2 1 ACamplifier
8: R2 3 0 20
9: *

10: .END

10 ΩR1

−
+ V15 V

2 = 1′

3 = 2′

1 = 3′

20 Ω

R2

XAMP (ACamplifier)

Figure 1.5: Illustrative example of circuit that uses macromodel from figure 1.4
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From SPICE2 to SPICE3

SPICE2 was not the last SPICE program developed by Berkeley. With the in-
creasingly more popular UNIX-based operating systems, it was possible for pro-
grams to be more interactive. Andrei Vladimirescu states in The SPICE Book
[1] that SPICE2 was ‘a FORTRAN batch program and was difficult to modify and
limited in its potential use of C-shell utilities’. These limitations led Berkeley to
start development of SPICE3 in the C programming language during the 1980s.
In addition to more detailed models and improved numerical accuracy, SPICE3
was to support interactive mode, which allowed separating circuit description and
commands for requesting circuit analysis.

Unfortunately, the development was in the end left to a handful of students
due to limited financial resources. The first release of SPICE3 was very buggy
and was not backward compatible with SPICE2. This was a big problem, because
hundreds of commonly used macro-models would have to be rewritten before they
could be used in SPICE3. Even though most incompatibility issues were fixed
in later releases, SPICE3 did not completely replace SPICE2 and both coexist
as two standards for circuit simulations, with the SPICE2 one being subset of
SPICE3 and therefore more portable.

1.2 Present-day Situation
SPICE programs developed at Berkeley strongly influenced the development of
circuit simulators used in industry. Because of the vast existing libraries of SPICE
netlist files for various circuits, most circuit simulators either use the syntax which
is a superset of the one used in SPICE, or provide some other way of importing
circuits from the standard SPICE format.2 There is even a categorization of
circuit simulators based on the backward compatibility with Berkeley SPICE
programs. Ron Kielkowski summarizes this in Inside SPICE [3] as follows:

Of all the analog circuit simulation tools available, the overwhelm-
ing majority of them are SPICE-like or SPICE-compatible. SPICE-
like means a simulator is capable of producing an analysis result sim-
ilar to the SPICE result for a given circuit, although they many not
be able to read a standard SPICE circuit. SPICE-compatible means
a simulator can read a SPICE circuit file and produce the result in
standard SPICE2G.6 form.3

This only reinforces the idea that the backward compatibility with the original
SPICE programs is an important feature of circuit simulators.

Today’s circuit simulating programs commonly include a graphical tool for
editing circuits and plotting the simulation results. Instead of writing netlist files
by hand, circuits are edited using drag-and-drop operations. One such program
is LTspice [4], whose graphical user interface is shown in figure 1.6.

2Example of a simulator which does not support SPICE syntax directly is QUCS simulator,
which provides a tool for transforming the netlist in SPICE format into the QUCS format.

3Result shown in figure 1.2 is an example of such standardized output.
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Figure 1.6: Graphical user interface of LTspice

1.3 Use of Circuit Simulators Outside Industry

Berkeley SPICE programs were designed from the start to be used as an aid for
integrated circuit designers. The same can be said about the SPICE’s successors
that are used today. However, thanks to significant increase in computational
power, it is now possible to use circuit simulators in other contexts too. There is
an ongoing research on use of evolutionary algorithms to evolve circuit parameters
and even circuit topology. For example, in 2016, Rojec et al. successfully evolved
a passive low-pass filter [5]. Also, computers and other interactive equipment are
often used for educational purposes in schools, so a circuit simulator can be used
as part of an educational program intended for high school or university students.

We have in mind creating such applications, and their development would be
greatly simplified if there was a suitable circuit simulation library. We would
essentially like the simulator to allow what we will call a live simulation. For
example, in a potential educational program, we would like to allow user (stu-
dent) to e.g. flip switches or manipulate parameters of individual devices (e.g.
resistances on the resistors), and hence provide an interactive experience. Also,
circuit evolution applications could also make use of the possibility to simply ma-
nipulate circuit parameters. The first step of development of these applications
would be finding and preparing such simulation library.

Since such applications would be used primarily for academic or educational
purposes, it is desired that these programs be easy to develop, maintain, and – in
case of educational applications – support multiple platforms. For these reasons
it is probable that these applications would not be developed in some low level
language like C++, but rather a more higher level language. One such language,
C#, is part of the .NET developer platform, which is widely used in desktop
application development. In recent years, .NET expanded to other platforms as
well and would be therefore our choice in development of said applications.
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As we have written earlier, SPICE programs and their descendants were de-
signed mainly to be an aid for electrical engineers. As a consequence, they can
only perform off-line simulation, where the simulated period needs to be set ex-
plicitly before the simulation starts. During our research we did not find any
simulator which would allow the simulation to be continued where it left off.4
Furthermore, most simulators do not offer binary API for other programs to
use, which means that the communication with the simulator needs to be done
through the SPICE netlist files. One simulator which stands out is ngspice [6],
which exposes a set of functions that allow manipulation of the simulator from an
external program. The ngspice API does not require the input file to be written
on disk, but we are still required to convert a simulated circuit into the netlist
description, which is then passed to ngspice using a char** pointer.5

Existing simulator programs therefore are not suitable for our purpose, we
should search among the existing simulator libraries. At the time of assignment
of this thesis, there was no implementation of a circuit simulation library for
.NET Framework.6 There are libraries for Python, for example PySpice [9] and
PyOPUS [10] – but these two libraries rely on standalone simulators (namely
ngspice [6] and HSPICE [11]) to do the simulation and therefore share the same
limitations. There is also JSpice [12] library for Java, which implements it’s
own simulation engine, but just like other simulators requires the user to specify
simulation duration beforehand.

Possible solution to the problems of using present-date simulator programs
or libraries is rewriting an existing circuit simulator in .NET Framework and
make necessary changes to the interface for our purpose. Berkley SPICE3 is still
considered a reference simulator program, and since it is open source and freely
available on the website of University of California, Berkeley [13], we will examine
the possibility of rewriting it in .NET in the next subsection.

Rewriting SPICE3 for .NET, a Viable Option?

The SPICE3 was written in now non-standard C K&R norm, because the devel-
opment started years before the first ANSI norm was released in 1990. Due to the
nature of the C language, many parts of the simulator are very fragile and hard
to maintain from today’s perspective. Consider snippet in figure 1.7 taken from
the last SPICE3 release (version 3f.5 from 1993). It contains a function which
loads instances of voltage controlled current source devices to the circuit equation
matrix. This function is just one example from the set of functions that must
exist for each device in SPICE3 implementation. Other such functions include
methods for model updating and data printing.

There are many points worth mentioning. In the declaration of the VCCSload
function, the function parameters are specified by name only (line 3). The type
of each parameter is then specified separately (lines 4–5). This is the main

4For simple circuits, this can be achieved by setting the initial conditions of the circuit devices
to be equal to the state of the circuit at the end of previous simulation, and recomputing the
parameters for input sources (like phase offset and pulse delay). However, it is impossible to
get or let alone set state of a device inside a subcircuit (the X device).

5For more details, see section 19.3 (Shared ngspice API) in ngspice user manual [7].
6At the time of writing, there is the SpiceSharp [8] library, whose development started shortly

after that of NextGen SPICE.

11



1: /*ARGSUSED*/
2: int
3: VCCSload(inModel,ckt)
4: GENmodel *inModel;
5: CKTcircuit *ckt;
6: /* actually load the current values into the
7: * sparse matrix previously provided
8: */
9: {

10: register VCCSmodel *model = (VCCSmodel *)inModel;
11: register VCCSinstance *here;
12:
13: /* loop through all the source models */
14: for( ; model != NULL; model = model->VCCSnextModel ) {
15:
16: /* loop through all the instances of the model */
17: for (here = model->VCCSinstances; here != NULL ;
18: here=here->VCCSnextInstance) {
19:
20: *(here->VCCSposContPosptr) += here->VCCScoeff ;
21: *(here->VCCSposContNegptr) -= here->VCCScoeff ;
22: *(here->VCCSnegContPosptr) -= here->VCCScoeff ;
23: *(here->VCCSnegContNegptr) += here->VCCScoeff ;
24: }
25: }
26: return(OK);
27: }

Figure 1.7: Code snippet from spice3f5/src/lib/dev/vccs/vccsload.c

characteristic of the K&R C. In the ANSI C, equivalent declaration would be
VCCSload(GENmodel *inModel, CKTcircuit *ckt).

Next thing to notice is the pointer casting on line 10 – the inModel parameter
is cast to pointer to the concrete type of the device that is being loaded. Prac-
tices like this are very common in C code due to the lack of higher-level language
features like inheritance and polymorphism. Also, because no type checking oc-
curs in C during pointer casting, it can be a source of hard-to-debug errors if the
target object is of different type.

Lines 10 and 11 also include the register keyword, which used to be a hint
for the compiler to store the variable in a CPU register for faster access. This
keyword is now deprecated, because modern compilers can do a better job at
assigning variables to registers than a human programmer.

The last point worth noticing is the usage of pointers when accessing the
equation matrix (lines 20 to 23). C# does allow usage of pointers in so called
unsafe code block, but they affect the performance of garbage collector, and should
be used carefully.

Although it is possible to extend SPICE3 with new circuit devices by following
instructions from Thomas Quarles, author of SPICE3 [14], adding new analysis
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types requires modifying method tables for all existing devices and other crucial
parts of the simulator, and thus is time consuming and error-prone.

SPICE3 code also makes heavy use of #define #ifdef and other preprocessor
directives which make the source code less readable. In combination with long
functions and scarce source code documentation available (for an example, see
file spice3f5/src/lib/ckt/dctran.c), rewriting the simulator is a very hard
task requiring in-depth analysis and understanding of the simulator internals.

Overall, the programming style used in SPICE3 implementation is very dif-
ferent from the style used in modern object oriented programming languages like
C#, and its code is not suitable for simple one-to-one translation from C to C#.

Main thesis goal

Because of reasons listed so far in this chapter, computer programs which would
as part of their functionality perform live simulation of electrical circuits would
have to implement their own simulator engine. As the primary goal of this thesis,
we would like to simplify development of such applications by implementing such
circuit simulator from the ground up in the form of portable .NET library. We
will specify our requirements on the library in the next section.

1.4 Reimplementation of SPICE for .NET
Modern circuit simulators can do many types of circuit analyses and support
many types of circuit devices. Because implementing range of functionality com-
parable to these programs would be out of scope of this thesis, we have selected a
reasonable subset to be implemented, which is described in following subsection
in greater detail. However we would like to be able to implement other features
in the future without affecting user’s code. We would therefore have to design
the library to be appropriately extensible.

Requirements on the Library

We would like the library to be usable in broad contexts. Since .NET is now sup-
ported on many platforms, including Windows, Linux, and even mobile devices
(Android, iOS and Windows Mobile), the library should be targeted to .NET
Standard to make it maximally portable and usable on any .NET platform.

Our primary goal in the library will be supporting live simulation, as we
described earlier. This essentially requires implementing equivalent of transient
analysis of the SPICE simulator. However, the simulator should perform the
individual timesteps on demand and allow making reasonable changes to the
circuit devices like flipping switches, changing resistances, changing values of
voltage and current sources.

The transient analysis requires so called large-signal models of the simulated
devices, which are also used by other types of SPICE-like analyses, like DC Sweep
Analysis. DC Sweep analysis calculates the circuit states for range of values for a
certain circuit parameter (like resistance of a resistor or value of voltage/current
source). Because we already wish to support changing parameters between indi-
vidual timesteps, our library will also support DC Sweep analysis.
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We would like to design our library so that it could potentially support the
same set of devices as the SPICE simulators. However, the implementation of
all SPICE devices is quite complex and would be out of scope of this thesis. We
have therefore decided to implement the basic devices like ideal resistor, voltage
or current sources, capacitor and inductor. Also, to demonstrate that even the
complex semiconductor devices can be implemented, we will implement diode
and BJT transistor devices as well. These two devices are reasonably simple to
implement and at the same time complex enough to demonstrate the capabilities
of the simulator. Because SPICE is considered the reference circuit simulator
implementation, we would implement these devices using the same mathematical
models that are used in the SPICE simulators.

In the future, we would also like to add other types of circuit analyses –
such as AC frequency sweep analysis – and new devices, and even allow users of
our library to implement their own. The library should be therefore extensible
without modifying the core library’s source code.

To provide academic researchers a way to test newly developed models and
computational techniques, the library should be widely configurable, and prefer-
ably open-source, to allow its users to contribute to the library’s development.

Also, since there already exist vast libraries of spice circuits and subcircuits
with macromodels described in the industry-standard SPICE netlist syntax, we
would like to our library to support importing circuits from SPICE netlists. We
will therefore provide SPICE netlist parser as part of our library.

Since we have to recognize great portion of SPICE netlist syntax in order to
parse macromodel descriptions, with little additional work we could implement
the parser to recognize control statements for requesting individual circuit analy-
ses (like the .OP statement we saw in figure 1.1). This would allow us to create a
console application similar to the original SPICE and therefore allow capabilities
of the library to be used in a standalone fashion using the SPICE netlist syntax.
Since .NET Standard cannot be used to develop console applications, we require
that the console application requires the next smallest set of API: .NET Core.
Figure 1.8 shows the expected relationship between the simulator, console appli-
cation and other programs that would use the simulator – parts in blue will be
implemented as part of this thesis.

Console
Application

(.NET Core)

Shared
Library

(.NET Standard)

Other
Programs

.cir files
(Macromodel description)

.cir files
(Circuit description)

This thesis' goal

Figure 1.8: Dependency diagram for NextGen SPICE and other programs
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Nonconvergence Due to Low Precision

Implementing any kind of simulation software means choosing an appropriate
mathematical model for given problem domain and, subsequently, suitable rep-
resentation of the problem in computer memory. Representing real numbers is
integral part of every physics simulation engine.

To achieve fast simulations, developers have to choose between representations
having hardware support on the target platforms, which leaves them with IEEE
32-bit (single) and 64-bit (double) floating-point types.

Most of the common circuit simulators use type double with approximately 15
decimal digits precision. Due to the large dynamic range of the circuit variables,
this leads to significant truncation errors when equation system coefficients differ
in more than 15 orders of magnitude.

Coefficient differences of this magnitude may commonly occur when resistors
with very small resistance values are used. Mike Robbins, one of the authors
of online circuit simulator CircuitLab, provides a simple example of such ill-
conditioned circuit in an article on their website [15]. This circuit along with the
(partial) result plot from LTspice can be found in the upper part of figure 1.9.
Notice the noise at the end of the simulated period emphasized by the red arrow.
The lower part contains result of the same circuit in CircuitLab simulator.7

LTspice

CircuitLab

Figure 1.9: Example ill-conditioned circuit, and example results form LTspice
(top, incomplete), and CircuitLab (bottom), adapted from [15]

The noise in the plot on the figure is caused by the 1µΩ resistor in the circuit.
In the comment section under the article, Robbins writes that such small resistors

7Keen reader might notice differences between the plot of CircuitLabs simulator results
shown in this thesis and the one in the referenced article. These are due to the fact that
CircuitLab uses slightly different model parameters for 1N4148 diode than LTspice. Plot shown
in this thesis was obtained using the model parameters extracted from LTspice model library.
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are not physical, meaning that they do not correspond to physical resistor devices,
but can be produced during automated macromodel construction. Use of this
small resistor led to too-big differences between the equation coefficients, which
in turn led to significant truncation errors and produced noise seen in the plot.
This noise later leads to nonconvergence of the equation solution. Nonconvergence
of the solution is a rather technical issue, and essentially means that the simulator
cannot determine the state of the circuit after the next timestep.8 In this case, the
nonconvergence is caused by low precision of the representation of real numbers.

Such noise can be eliminated by using more precise real number represen-
tation. One such option is using another type defined by IEEE 754 standard,
namely 80-bit or even 128-bit floating point number formats. However, neither
of these is commonly available on today’s hardware, let alone in .NET runtime.
If we would decide to use one of these two formats, every operation on such num-
bers would have to be emulated in software, which would greatly slow down the
simulator.

Another option would be using .NET type decimal which is a 128-bit repre-
sentation of floating point numbers different from the IEEE 128-bit format. Its
format is not directly supported on currently used processors, and therefore all
operations are implemented in software by bit manipulations. Also, this type is
intended mainly for handling currency and has approximate range only −7.9·1028

to 7.9 · 1028, which is too-narrow range for circuit simulation.
Instead, in the article mentioned above, Mike Robbins proposes using double-

double technique. This technique represents a single value as a unevaluated sum
of two double floating point values, each of which having its own significand
and exponent. This principle is illustrated in figure 1.10 where number π is
represented as a sum of two doubles.9

3.141592653589793   238462643383279  
3.141592653589793 · 100 + 2.38462643383279 · 1016

Figure 1.10: Decomposition of π using double-double technique

Contrary to the options mentioned above, operations on double-double for-
mat are implemented using standard operations on double format, which are
supported in today’s hardware. This means that much higher speeds can be
achieved. Hida et al. created a C++ library, that implements both double-double
arithmetic, and it’s slightly more complicated version – quad-double arithmetic.
More details about the algorithms used can be found in their published paper
[17].

Using these enhanced precision types is attractive, because they can solve
some convergence issues during simulation, and we would therefore like to use

8In general, there are many reasons why solution might not converge, several possible
techniques and simulator parameters used to overcome nonconvergence are explained in Ron
Kielkowski’s Inside SPICE [3].

9One thing worth noting is that an implementation of the double-double format needs to
decompose values based on the the binary representation of the real numbers. The QD library
by Hida et al. [16] uses values 3.141592653589793116e+00 and 1.224646799147353207e-16 in
the source code, possibly to compensate errors from truncating periodic binary representation
of the mantissa.
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them in our library. However, use of these precision types could lead to significant
slowdown of the simulation, because multiple primitive operations on doubles are
done for each operation on the double-double and quad-double types. This could
unnecessarily slow down simulations of circuits which do not require the preci-
sion provided by these types. We would therefore like to make these enhanced
precision types optional, and otherwise use the standard double precision type.
Because our implementation will allow using any of the double, double-double
and quad-double types, we would like to compare the simulator performance –
i.e. speed and accuracy – when using each of these types to get the basic idea
when use of these types is appropriate.

1.5 Goals
1. Implement SPICE-like simulation library

(a) Target .NET Standard for maximum portability
(b) Support performing time-domain simulation of the circuit, and allow

changing parameters of circuit devices between individual timesteps.
(c) Support following set of devices

i. Ideal resistor
ii. Ideal voltage source
iii. Ideal current source
iv. Ideal inductor
v. Ideal capacitor
vi. SPICE diode
vii. SPICE BJT transistor

(d) Allow new types of circuit analyses and circuit devices to be added to
the simulator without modifying the library’s source code.

(e) Implement SPICE netlist parser to allow importing circuits and macro-
models from standard SPICE netlist files.

(f) Allow users of the library to choose between double, double-double,
and quad-double precision types and compare the library’s perfor-
mance with respect to speed and accuracy for each listed precision
type.

2. Use the simulation library to implement SPICE-like console application
for .NET Core, which would accept implemented subset of SPICE netlist
syntax.
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2. The SPICE Netlist Syntax
This chapter presents the netlist syntax, which we plan to support in the NextGen
SPICE library for importing circuits and in the standalone console application.
The syntax presented here is a subset of that supported by SPICE3, and can be
further restricted to that of SPICE2.

2.1 General Syntax
The SPICE netlist syntax is case insensitive. The netlist file consists of individual
statements, which are separated by line breaks. If a statement is to span multiple
lines, every subsequent line must be prefixed with a + symbol. Following code
fragments are therefore equivalent.

V1 0 1
+ SIN 0 5V 10KHZ

V1 0 1 SIN 0 5V 10KHZ

Statements themselves are made up of individual data fields, delimited by
blank characters. The meaning of data fields depends on the actual statement
and on the position inside the statement. Generally, a data field specifies ei-
ther a name, or a numeric value, and is then called name field or number field,
respectively.

2.1.1 Number Fields
If the statement expects a data field to represent a numeric value, then the
(number) field should start with a digit. However, if a decimal number is specified,
the leading zeros may be omitted (therefore, .05 is a valid number field having
same value as 0.05). It is also possible to specify the scale by either using suffixes
like E-9 or one of the scaling factors listed in the following table.

Factor Scale
T 1012

G 109

MEG 106

K 103

M 10−3

U 10−6

N 10−9

P 10−12

F 10−15

Any additional characters that follow the number and scale factor are ignored,
so fields 10000, 10E+3V, 10K, 10KV, 10KVOLTS and 10KHz all represent the same
value. This is convenient, because the ignored part may be used to specify units
and thus improve readability of the netlist file.
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2.1.2 Name Fields
On the other hand, if a data field is to represent a name, an arbitrary string of
alphanumeric characters can be used.

2.1.3 Comments
The input file can also contain comments, which are completely ignored by the
parser. Comments begin with an asterisk * symbol, and end by a line break.
Comments can be used to further improve readability of the netlist file.

V1 0 in 5 * a 5V voltage source between the ground and 'in' node

2.2 Data Statements
Data statements are used to describe the actual circuit and can be further divided
into device statements and model statements. Device statements specify individ-
ual circuit devices and their connections to circuit nodes and generally have the
following form:

<device name> <terminal connections> <device arguments>

The concrete SPICE device type is determined by the first letter of the device
name, and from the device type, the number of terminal connections and argu-
ments is derived. Like SPICE3, we will not pose any restrictions on the length
of the device name.1

After the name follows a list of nodes to which the device connects. Nodes
are identified by arbitrary alphanumeric strings.2 The ground node is identified
as 0. After the terminal connections follows a device dependent argument list.

Model statements are used to specify parameters for more complex semicon-
ductor devices, so that multiple devices can have the same parameters without
their extensive repetition throughout the netlist file. Model statement has the
following structure:

.MODEL <model name> <model type> (<model parameter list>)

Each device can accept only model types corresponding to that particular
device type. Each model type has a set of parameters, which are set in the
model parameter list, each having its default value. When defining new model,
only non-default values need to be specified by a list of key value pairs in the
form <name>=<value>. The model name is then supplied as an argument to
semiconductor devices such as a diode.

Following sections describe formats of several SPICE device statements. Val-
ues beginning with N are for node connections, values enclosed in square brackets
are optional. Also, when applicable, the available model types and names of their
parameters are listed.

1in SPICE2, the length was limited to seven characters only
2In SPICE2, nodes are identified by integers, one consequence of this is that 00 and 0 are

equivalent in SPICE2, but not in SPICE3.
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2.2.1 Resistor
N+ N-

R<name> N+ N- <resistance>

A simple ideal resistor device. The order of N+ and N- nodes has no effect
on the circuit behavior.

Examples:

R1 1 2 5OHM
R2 2 3 1K

2.2.2 Capacitor
N+ N-

C<name> N+ N- <capacitance> [IC=<initial voltage>]

An ideal capacitor device, initial voltage can be specified to set specific con-
dition on the beginning of the simulation. If initial condition is not present,
capacitor is modeled as an open circuit in the first DC operating point calcula-
tion.

Examples:

C1 1 2 1F
C2 2 3 1N IC=1M

2.2.3 Inductor
N+ N-

L<name> N+ N- <capacitance> [IC=<initial current>]

An ideal inductor device, initial current can be specified to set specific con-
dition on the beginning of the simulation. If initial condition is not present,
capacitor is modeled as an ideal short circuit in the first DC operating point
calculation.

Examples:

L1 1 2 1F
L2 2 3 1N IC=1M
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2.2.4 Input sources
N+

−+

N- N+ N-

V<name> N+ N- <source function>
I<name> N+ N- <source function>

NextGen SPICE supports complex specification of input source behaviors.
Possible source functions are listed below.

DC Source
[DC] <voltage>

A source that has constant value, the DC identifier can be omitted.
Examples:

V1 1 0 5V
I2 1 2 DC 10KV

Sinusoidal Source
SIN <vo> <va> <freq> [<td> [<th> [<ph>]]]

Parameter Meaning
<vo> Value offset
<va> Value amplitude
<fr> Waveform frequency
<td> Delay time
<th> Damping factor
<phase> Phase offset

A sinusoidal source with amplitude damping. Value of the source function is
given by

f(t) =

⎧⎪⎪⎨⎪⎪⎩
<vo> if t < <td>

<vo> + <va>
· e−(t−<td>)·<th>

· sin (2π · (<fr> · (t − <td>) + <ph>))
if t ≥ <td>

Example:
V1 1 0 SIN 1 5 2KHZ 1MS 0.5K

-4
-3
-2
-1
0
1
2
3
4
5
6

0 0.001 0.002 0.003 0.004 0.005 0.006

V
al
ue

Time

V(V1)
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Exponential Source

EXP <v1> <v2> [<td1> <tau1> [<td2> <tau2>]]

Parameter Meaning
<v1> Initial value
<v2> Pulse value
<td1> Delay before first edge
<tau1> First edge time constant
<td2> Delay before second edge
<tau2> Second edge time constant

A pulsing source with exponential rising and falling edges. Values of the
source are given by:

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

<v1> if t < <td1>

<v1> +
(

<v1> − <v2>
[
1 − e

−(t−<td1>)
<tau1>

])
if <td1> ≥ t > <td2>

<v1>
+

(
<v1> − <v2>

[
1 − e

−(t−<td1>)
<tau1>

])
+

(
<v2> − <v1>

[
1 − e

−(t−<td2>)
<tau2>

]) if t ≥ <td2>

Example:

V1 1 0 EXP 1 5 1MS 0.5M 4MS 0.1M
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Time
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Pulse Source
PULSE <v1> <v2> <td> <tr> <tf> <ton> <period>

Parameter Meaning
<v1> Initial value
<v2> Pulse value
<td> Delay before rising edge of the pulse
<tr> Time of the rising edge of the pulse
<tf> Time of the falling edge of the pulse
<ton> Duration of the pulse
<period> Period of the source
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A source that sends individual pulses.
Example:

V1 1 0 PULSE 1 5 1MS 0.5MS 1.5MS 1MS 5MS
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Piecewise Linear Source

PWL <t1> <v1> [<t2> <v2> [<t3> <v3> [...]]]

An arbitrary piece-wise linear source. The argument list consists of pairs
of timepoints and source values. The intermediate values are determined using
linear interpolation.

Example:

V1 1 0 PWL 0MS 1 1MS 2 3MS -1 3.1MS 0 5MS 1
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AM Source

AM <amp> <dc> <fm> <fc> [<td> [<ph>]]

Parameter Meaning
<amp> Peak amplitude of the unmodulated signal.
<dc> DC offset
<fm> Modulation frequency
<fc> Carrier frequency
<td> Delay before the signal
<ph> Phase offset
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A source with amplitude modulated signal. Value at any given timepoint is
given by

f(t) = <amp>
· (<dc> + sin (2π · <fm> · (t − <td>)) + <ph>)
· sin (2π · <fc> · (t − <td>) + <ph>).

Example:

V1 1 0 AM 5 2 0.5KHZ 4KHZ 2MS
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SFFM Source
SFFM <dc> <amp> <fc> <m> <fm>

Parameter Meaning
<dc> DC offset of the signal
<amp> Amplitude of the carrier.
<fc> Carrier frequency
<m> Modulation index
<fm> Modulation frequency

A source with frequency modulated signal. Value at any given timepoint is
given by

f(t) = <dc>+<amp> ·sin (2π · <fc> · (t − <td>) + m · sin (2π · <fm> · (t − <td>))).

Example:

V1 1 0 SFFM 2 1 1KHZ 3 0.2KHZ
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2.2.5 Controlled Sources
SPICE supports linear dependent sources, both current and voltage controlled. In
case of voltage controlled source, an additional pair of terminals is specified, and
value of the source is linearly dependent on the voltage between those control
terminals. In case of current controlled sources, a name of a voltage source is
supplied and the value of the source depends linearly on the current flowing
through said device.3 The coefficient of linear dependence, called gain is supplied
as the last parameter.

Voltage Controlled Voltage Source

NC+

NC-

N+

−
+

N-

E<name> N+ N- NC+ NC- <gain>

Example:

E1 1 2 3 4 100

Voltage Controlled Current Source

NC+

NC-

N+

N-

G<name> N+ N- NC+ NC- <gain>

Example:

G1 1 2 3 4 100

Current Controlled Voltage Source

−
+vsource

N+

−
+

N-

3The reason that only voltage source can be used is that the current flowing through the
voltage source is directly accessible through a circuit variable in the equation system. Also,
because earlier versions of SPICE could output only currents flowing through voltage sources,
it became a standard practice to use 0V voltage sources as amperemeters.
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H<name> N+ N- <vsource> <gain>

Example:
VMETER 1 2 0
H1 2 3 VMETER

Current Controlled Current Source

−
+vsource

N+

N-

F<name> N+ N- <vsource> <gain>

Example:
VMETER 1 2 0
F1 2 3 VMETER

2.2.6 Diode
N+ N-

D<name> N+ N- <model name>

A semiconductor diode device. Physical parameters of diode are set using
a .MODEL statement with D model type. Following table lists supported model
parameters for the diode model. The parameters in gray are parsed, but do not
affect the simulation in the current implementation.

Parameter name Description Default value
IS Saturation current 1 · 10−14 A
RS Ohmic resistance 0
N Emission coefficient 1
TT Transit-time current 0 s
CJO Zero-bias junction capacitance 0 F
VJ Junction potential 1 V
M Grading coefficient 0.5
EG Activation energy 1.11 eV
XTI Saturation-current temperature exponent 3
KF Flicker noise coefficient 0
AF Flicker noise exponent 1

FC Coefficient for forward-bias
depletion capacitance formula 0.5

BV Reverse breakdown voltage ∞ V
IBV Current at breakdown voltage 1 · 10−3 A
TNOM Parameter measurement temperature 27 °C
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Example:

D1 1 2 1N4148
.MODEL 1N4148 D(IS=2.52N RS=.568 N=1.752 CJO=4P M=.4 TT=20N VJ=20 BV=75)

2.2.7 BJT Transistor

NB

NC

NE

NB

NC

NE

Q<name> NC NB NE <model name>

A semiconductor BJT transistor device. Physical parameters of BJT are set
using a .MODEL statement, as well as the polarity of the transistor. There are two
model types for BJT transistor: NPN and PNP. Both model types accept the same
parameters, which are listed in the following table. The parameters in gray are
parsed, but do not affect the simulation in the current implementation.

Parameter
name Description Default value

IS Transport saturation current 1.0e16 A
BF Ideal maximum forward beta 100
NF Forward current emission coefficient 1.0
VAF Forward Early voltage ∞ V
IKF Corner for forward beta high current roll-off ∞ A
ISE B-E leakage saturation current 0 A
NE B-E leakage emission coefficient 1.5
BR Ideal maximum reverse beta 1
NR Reverse current emission coefficient 1
VAR Reverse Early voltage ∞ V
IKR Corner for reverse beta high current roll-off ∞ A
ISC Leakage saturation current 0 A
NC Leakage emission coefficient 2
RB Zero bias base resistance 0

IRB Current where base resistance
falls halfway to its min value ∞ A

RBM Minimum base resistance at high currents RB
RE Emitter resistance 0
RC Collector resistance 0
CJE B-E zero-bias depletion capacitance 0 F
VJE B-E built-in potential 0.75 V
MJE B-E junction exponential factor 0.33
TF Ideal forward transit time 0 s
XTF Coefficient for bias dependence of TF 0
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VTF Voltage describing VBC dependence of TF ∞ V
ITF High-current parameter for effect on TF 0 A
PTF Excess phase at freq=1.0/(TF*2PI) Hz 0 deg
CJC B-C zero-bias depletion capacitance 0 F
VJC B-C built-in potential 0.75 V
MJC B-C junction exponential factor 0.33

XCJC Fraction of B-C depletion capacitance
connected to internal base node 1

TR Ideal reverse transit time 0 s
CJS Zero-bias collector-substrate capacitance 0 F
VJS Substrate junction built-in potential 0.75 V
MJS Substrate junction exponential factor 0
XTB Forward and reverse beta temperature exponent 0
EG Energy gap for temperature effect on IS 1.11 eV
XTI Temperature exponent for effect on IS 3
KF Flicker-noise coefficient 0
AF Flicker-noise exponent 1

FC Coefficient for forward-bias
depletion capacitance formula 0.5

TNOM Parameter measurement temperature 27 °C

Examples:

Q1 1 2 3 QMOD1
.MODEL QMOD1 PNP(IS=1P)

Q2 4 5 6 QNL
.MODEL QNL NPN(BF=80 RB=100 TF=0.3NS TR=6NS CJE=3PF CJC=2PF VAF=50V)

2.2.8 Subcircuits
Subcircuits are SPICE netlist term for device macromodels mentioned back in
the introduction chapter. Following syntax is used.

.SUBCKT <subcircuit name> <terminal nodes>
<subcircuit description>
.ENDS

Description of the subcircuit has to be enclosed between .SUBCKT and .ENDS
statement. The .SUBCKT statement states the name of the subcircuit and lists
names of terminal nodes, which will be then used to connect the subcircuit to the
outer circuit. There must be at lesat one terminal node and none of them can be
0 (ground node).

The actual description of the subcircuit can contain only data statements –
device statements, .MODEL statements, and other .SUBCKT statements. Also, it is
customary to place a comment line describing the meaning of the terminal nodes
(like in figure 1.4).
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Any names defined inside a subcircuit are strictly local to the subcircuit.
Therefore, models and subcircuits defined inside the subcircuit cannot be used
after the .ENDS statement.

Subcircuit can then be used as an individual device by following syntax:

X<name> <terminal nodes> <subcircuit name>

where <subcircuit name> is the name supplied in the corresponding .SUBCKT
statement, and <terminal nodes> names appropriate number of nodes to which
the subcircuit should connect.

Example:

.SUBCKT ACAMPLIFIER 2 1 3
R1 1 4 2K
R2 4 0 500
C1 2 4 10n
Q1 3 4 5 2N2222
Rc 1 3 2K
Re 5 0 1e3
.MODEL 2N2222 PNP(BF=50 IS=1E-13 VBF=50)
.ENDS

XOPAMP 1 2 3 ACAMPLIFIER

2.2.9 Summary of the Device Statements
Device Syntax
Resistor R<name> N+ N- <resistance>
Capacitor C<name> N+ N- <capacitance> [IC=<voltage>]
Inductor L<name> N+ N- <inductance> [IC=<current>]
Voltage source V<name> N+ N- <source function>
Current source I<name> N+ N- <source function>
Voltage controlled
voltage source E<name> N+ N- NC+ NC- <gain>

Voltage controlled
current source G<name> N+ N- NC+ NC- <gain>

Current controlled
voltage source H<name> N+ N- <voltage source> <gain>

Current controlled
current source F<name> N+ N- <voltage source> <gain>

Diode D<name> N+ N- <model name>
BJT transistor Q<name> NC NB NE <model name>
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2.3 Control Statements
Control statements are used for performing circuit simulations.

2.3.1 .OP Statement
.OP

The .OP statement is used for requesting DC operating point analysis, which
means calculating the values of node voltages and branch currents corresponding
to a stable state of the circuit. This statements does not have any arguments.

2.3.2 .TRAN Statement
.TRAN <timestep> <stop time> [<start time>]

This statement is used for requesting the transient analysis — time-domain
simulation of the circuit — for specified duration with given timestep. For each
timepoint, an operating point is established, and time-dependent behavior of
devices such as capacitor and inductor is modelled using numerical integration
methods. If we are not interested only in data after certain timepoint, we can
use the third optional parameter to instruct the simulator to not print simulation
results until a certain timepoint.

2.4 Output Statements
Output statements can be used to select which data should be printed in the
simulator’s output. If no output statement is provided, NextGen SPICE will
print all available data. Currently, the only supported statement is the .PRINT
statement.

.PRINT <analysis type> <list of requested data>

Analysis type is either OP or TRAN, indicating from which analysis type the
data are requested. Following table summarizes possible data specifiers.

Specifier Description
V(<node>) Voltage of the node <node>
V(<node1>,<node2>) Voltage between nodes <node1> and <node2>
V(<device>) Voltage across the <device> device4

I(<device>) Current flowing through the <device> device4.

4Only devices having exactly two terminals are allowed.
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2.5 Netlist File Structure
The structure of the netlist can be almost arbitrary, the only restrictions are that
the first line, called title line, should contain a brief description of the netlist
contents (and is not interpreted as a statement), and that the last statement is
a .END statement. There are no restrictions on the relative order of statements
in the netlist. For example, semiconductor device models can be used in device
statements even before they are defined by their respective .MODEL statement.
However, even though any order is possible, netlist files are commonly structured
in the following manner:

• Title

• Device statements

• .MODEL statements

• Control statements

• Output statements

• .END statement

2.6 Circuit Topology Constraints
There are some restrictions on how the circuit devices can be connected to nodes.
These restrictions help ensuring that the equation system rising from the simu-
lated circuit always has unique solution. The rules are the following:

• The circuit may not contain cycles consisting of voltage defined devices (e.g.
voltage sources and inductors)

• The circuit may not contain cutsets consisting of current defined devices
(e.g. current sources and capacitors)

• In a circuit, there must exist a path from each node to the ground node

• In a subcircuit, there must exist a path between each pair of terminals that
does not contain the ground node
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3. Implementation Analysis
Just like other modern day circuit simulators, our library is also heavily influenced
by the original Berkeley SPICE. We have decided to reflect this fact on the name
our library and call it NextGen SPICE, and we will use this name in the remainder
of this thesis.

This chapter analyses various possibilities of NextGen SPICE simulator imple-
mentation. The reader should be acquainted with the necessary theory of circuit
simulation. Ron Kielkowski’s Inside SPICE [3] is an excellent source of details
about the workings of SPICE-like simulators. Necessary mathematical theory is
nicely summarized in the documentation of QUCS simulator [18], which we will
cite frequently in the next chapters. Another great source is the Ph.D. theses
of Laurence W. Nagel (Author of SPICE2) [19]. The last two sources are freely
available and we include them in the attached CD for convenience.

3.1 Initial Organisation of the library
One of the goals of this thesis is implementation of configurable and extensible
circuit simulation library. One of the requirements is that new types of circuit
analyses as well as new circuit devices can be added without modification of the
core library’s source code (goal 1d). Before we start with the actual analysis, we
will briefly describe how the original SPICE program operates.

3.1.1 Overview of SPICE Simulator Workflow
The top level view on the SPICE simulator is summarized in the figure 3.1. The
user specifies the circuit to be simulated inside a SPICE netlist file (1). This file
is parsed by SPICE, which constructs an internal representation of the circuit
(2) and validates the circuit topology according to the rules described in section
2.6. If the circuit is correctly formed, SPICE performs the simulations specified
in the netlist file. This consists of mapping the devices into coefficients in an
equation system characterizing the circuit (3). This equation system is then
solved to obtain the result of the analysis, which is then stored in the circuit
representation. The user-specified characteristics of the circuit devices are then
printed to the output (4).

.cir netlist file

(1)

Parsing

validating
(4)

>_

Standard Output

(2)

Internal circuit
representation

(3)

Formulation

Solution
Equation system

Figure 3.1: SPICE operation workflow.
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Because different analyses simulate different characteristics of circuit devices,
most devices contribute to the equation system coefficients differently in each cir-
cuit analysis. To provide a concrete example, the following two paragraphs briefly
describe two distinct kinds of circuit analyses: transient analysis (implementa-
tion of which is part of this thesis), and AC frequency sweep analysis (which we
would like to implement in future versions), and their specific way of simulating
capacitors and inductors.

In transient analysis, the circuit’s behavior is simulated over time. The first
step of this analysis is calculating the initial DC bias of the circuit, which is the
technical term for calculating the node voltages and currents flowing through the
circuit branches. During this step, capacitors are modeled as ideal open circuits
and inductors as ideal short circuit.1 In subsequent timepoint calculations, ca-
pacitor and inductor devices are modeled by equivalent subcircuits consisting of a
voltage or current source and a resistor. Values of voltage, current and resistance
in these equivalent subcircuits are recomputed each timepoint to reflect energy
storing behavior of these devices.

AC frequency sweep analysis simulates how the circuit behaves when a signal
of certain frequency is applied to the it. As opposed to transient analysis, which
iterates over time, AC frequency sweep iterates over frequency of the applied
signal. It also starts by calculating the DC bias of the circuit, but after that,
nonlinear characteristics of circuit devices are not modeled. Instead the behavior
of each device around the established DC operating point is considered to be lin-
ear, which simplifies the analysis. Contrary to the transient analysis which models
energy storing behavior of capacitors and inductors, AC frequency sweep models
their reactance, which depends on the signal frequency and device’s capacitance
and inductance, respectively. Additional difference between transient and AC
frequency sweep analyses is that in AC frequency sweep analysis, the equation
system that characterizes the circuit contains complex numbers as coefficients,
whereas in the transient analysis, only real numbers are needed.2

3.1.2 Separating Circuit Analyses
Suppose we used same workflow as in the figure 3.1 and implemented the transient
analysis via instance methods on the circuit representation. When we would want
to implement AC frequency sweep analysis to the simulator, we would have to
modify the circuit representation and add new methods and data fields, which
contradicts our goal of extensibility (goal 1d). In order to leave the transient
analysis implementation intact, we would have to create a brand new circuit
representation that would implement the operations needed by the AC frequency
sweep analysis.

1Consequence of modeling capacitor as open circuit and inductor as short circuit is that the
simulation starts from a stable (quiescent) state of the circuit, SPICE simulators allow user to
specify custom initial conditions: voltage across the capacitor and current flowing through the
inductor, and thereby starting the simulation from an unstable state.

2Additional details about how capacitors and inductors are modeled can be found in QUCS
technical papers. For trasient analysis, see sections 6.3.1 and 6.3.2 for capacitor and inductor,
respectively; and for AC analysis see sections 9.3 for capacitor and 9.4 for inductor. More
detailed description of individual SPICE circuit analyses can be found in chapter 2 of Inside
SPICE p. 37–41
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Having multiple implementations of the circuit representation may seem to be
excessive code duplication. However, as we have described in the previous para-
graphs, implementation of AC frequency sweep analysis would be quite different
from that of transient analysis: different contributions to circuit equation system,
usage of complex numbers in the equation system, and no need for updating the
inner state of the device. Because the two types of analyses are conceptually
different, implementing them separately could actually improve readability and
maintainability of the code base.

To allow performing different circuit analyses without having to create the
specific circuit representation manually for each analysis, we decided to modify
the workflow shown into the one shown in figure 3.2. We introduced an analysis-
independent circuit description (which we will simply refer to as circuit descrip-
tion), which would be used to automatically create the analysis-specific circuit
representation (which, we will refer to as circut model for brevity) on-demand.
The library functionality can be thus partitioned to analysis-independent and
analysis-dependent parts as illustrated on the figure.

.cir netlist file

Circuit description
{

{

User source
code (C#)

Transient analysis
circuit model

AC frequency sweep
 circuit model

Equation system

Analysis
Implementation

Analysis
Implementation

Equation system

Transient analysis implementation

AC frequency sweep implementationAnalysis-independent

manual
construction

parsing

Figure 3.2: Workflow used in NextGen SPICE library

3.1.3 Devices and Device Models

We have also stated that we would like the possibility of adding new devices in
the future. To achieve that, transient analysis (and each other analysis to be im-
plemented) should specify operations required from each device via an interface.
Adding new device would consist of implementing this interface for each analysis
type. Figure 3.3 illustrates possible device implementation hierarchy. Suppose
that transient analysis requires ITransientDevice interface, and AC frequecy
sweep requires IAcFreqSweepDevice interface. We have already described that
capacitor and inductor devices are handled differently in both of these analyses,
and it would make sense to implement the behavior separately for each analysis.
At the same time, some devices – such as resistor – are handled the same way.
The implementation of resistor device could possibly implement both interfaces
in the same class.
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IAcFreqSweepDevice ITransientDevice

TranCapacitor

TranInductor

Resistor

AcCapacitor

AcInductor

Capacitor implementation

Inductor implementation

Figure 3.3: Implementation of devices for different circuit analyses

Furthermore, we also stated in requirements that it should be possible to eas-
ily change how each device is simulated. As an example, consider BJT transistor
device. During transient analysis, BJT transistor can be modeled by using either
Ebers-Moll model or more detailed Gummel-Poon model. Other analysis types
can potentially use different transistor models. We would like to allow users to se-
lect which device model3 should be used for the BJT device (and other devices as
well). This will allow the library to be used for comparing existing device models
and developing new ones. Concrete example hierarchy of the classes, which can
be used to model BJT transistor in transient and AC frequency sweep analyses,
is illustrated in figure 3.4. Classes TranEbersMollBjt and TranGummelPoonBjt
implement the operations required by transient analysis for the respective tran-
sistor device models. During AC freqency sweep analysis, a completely different
model (Hybrid-pi) is used, which is implemented by the AcHybridPiBjt class.

IAcFreqSweepDevice ITransientDevice

TranEbersMollBjt

TranGummelPoonBjt

AcHybridPiBjt

Bjt transistor implementation

Transient analysisAC frequency sweep analysis

Figure 3.4: Separation of device implementation for each analysis type.

3.1.4 Splitting to Multiple Assemblies
A straightforward way of implementing the library would be putting everything
into one assembly. However, that means that after each modification, the whole

3To avoid possible confusion with .MODEL statements used in netlist files, this thesis uses
term device model exclusively to refer to the set of equations describing the device’s behavior
(such as the mentioned Ebers-Moll model). The entities described by .MODEL statement are
referred to as device model parameters.
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library has to be replaced by the new version. In the preceding section we de-
cided to make the implementation of individual analysis types independent of
each other, with separate set of classes for representing the circuit under analy-
sis. As developers, we would like to be able to develop, update and deploy each
type of circuit analysis independently of the other types. In order to achieve that,
we decided to organize the library into assemblies as illustrated in figure 3.5. The
NextGenSpice.Core is a shared assembly containing analysis-independent parts
of the library, and is referenced by assemblies implementing individual analysis
types. The implementation of the circuit model for transient analysis will be con-
tained in NextGenSpice.LargeSignal assembly. We chose the name LargeSignal
because the resulting model allows transient, DC sweep and DC operating point
analyses, which all rely on the large-signal model of circuit devices.

NextGenSpice.LargeSignal

NextGenSpice.Core

NextGenSpice.AcAnalysis

This thesis' goal

The NextGen SPICE library

Figure 3.5: General organisation of the analysis types in the library.

The NextGenSpice.Core assembly should have no knowledge of the assem-
blies containing the analysis types. To achieve that, we will make use of a princi-
ple called inversion of control (IoC). In simple words, each assembly containing
implementation of a circuit analysis type should inform the NextGenSpice.Core
assembly of its existence and instruct it how it’s circuit model can be created
from the circuit description.

To make this procedure automatic without any action needed from the li-
brary’s user, we decided to use an IoC framework. The functionality we require
from the framework is quite simple and available in most IoC frameworks (import-
ing implementations of certain interface from assemblies in the same directory as
the core library). We decided to use MEF framework [20] by Microsoft, which
is distributed as a NuGet package and is standardly used. Another attractive
feature of MEF is that it allows exporting classes by simply adding an [Export]
attribute.

In this section we described the reasons for the overall design of the NextGen
SPICE library, in the sections that follow, the individual components of the li-
brary are analyzed in greater depth.

3.2 NextGenSpice.Core
The NextGenSpice.Core assembly will be the integral part of NextGen SPICE. It
should contain the analysis-independent parts of the library: the circuit descrip-
tion classes, faculties for composing and validating the circuit, and the central
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mechanism that allows creation of analysis-specific circuit models. These parts
will be discussed in the following subsections.

3.2.1 Representation of the Circuit
In the previous section we made an important decision to introduce separate sets
of classes for circuit representation for each circuit analysis type. We have also
decided to create another separate circuit description from which these analysis-
specific representations should be constructed on-demand. The circuit description
should be encapsulated in a single object of class CircuitDefinition for easy
manipulation. Following subsubsections consider individual aspects of represent-
ing the circuit.

Representing Circuit Nodes

In the SPICE netlist syntax, as described in chapter 2, we allow circuit nodes
to be identified by arbitrary alphanumeric strings, which would make C# type
string a straightforward choice.

However, the main reason for using strings in the netlist syntax was probably
to let users choose convenient names and make the netlists more readable. During
the actual simulation and equation formulation, the circuit nodes need to be
numbered in order to map the devices to corresponding equation matrix entries,
and it would be more natural to use numbers to identify the circuit nodes.

Because we do not expect users of NextGen SPICE library to compose large
circuits in the source-code manually, we decided to use C# type int for identify-
ing individual nodes. This also implies that we need to translate the circuit node
names while parsing SPICE netlists into node indices, and provide this mapping
to the user.

Representing Individual Devices

We need a circuit device representation which allows simple adding of new de-
vices. A natural way of representing cicruit devices in OOP language like C#
is introducing a class per circuit device, which all implement the same interface,
e.g. ICircuitDefinitionDevice. This would lead to a hierarchy parallel to that
of the analysis-specific device implementation classes from section 3.1.3. Having
these multiple parallel hierarchies would simplify implementation of the analysis-
specific circuit model creation, because all it would need is a mapping between
these two hierarchies, as illustrated in figure 3.6.

ICircuitDefinitionDevice ITransientDevice

Resistor

Capacitor

Inductor

TranResistor

TranCapacitor

TranInductor

Figure 3.6: Mapping between circuit definition and analysis implementation
classes
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All data specific for any particular device would be stored in the respective
properties of the device’s class, and new devices can be added by creating another
implementation of the ICircuitDescriptionDevice interface. Since this circuit
device representation meets our requirements, we decided to use it.

Representing subcircuits

An important feature of SPICE netlists which we need to take into consideration
when designing the circuit representation is the subcircuit feature (see section
2.2.8).

Since a subcircuit can be used multiple times throughout the netlist file (i.e.
multiple X statements with the same subcircuit name), we have decided to create
separate classes SubcircuitDefinition for the description of the subcircuit and
SubcircuitDevice for the usage of the subcircuit. The subcircuit definition
would need to store data about the inner devices and nodes, and which nodes
are the connections to the outside circuit. The SubcircuitDefinition instances
would be shared among potentially many SubcircuitDevices, which store data
about the outside nodes to which the subcircuit is connected.

Enforcing Circuit Topology

In section 2.6, we described circuit topology restrictions that we will impose on
the circuit to ensure that the circuit equations during the simulation have a unique
solution. Also, we want to prohibit user from making changes to circuit topology
during the circuit simulation, because it could cause the circuit to be no longer
valid. We would also like to diagnose any circuit topology violations as soon as
possible, preferably immediately after the whole circuit is constructed.

The changes to the circuit topology could be achieved by two ways: adding
or removing a whole device, and changing the nodes to which the device was
connected. Both can be forbidden by making the circuit description read-only.
However, that would mean that all circuits devices would have to be supplied at
once to the CircuitDefinition constructor, and the validation would have to
be performed inside the constructor.

To move the validation code outside the CircuitDefinition class, we will use
a separate class CircuitBuilder to incrementally add new devices, and perform
the validation before creating the actual CircuitDefinition class instance.

3.2.2 Creating Analysis-specific Circuit Representations
Back in section 3.1.2, we decided to introduce multiple parallel hierarchies for
representing the electrical circuit, each one for a particular circuit analysis. In
order for the library to be easy to use, the user should not have to create these
representations separately for each circuit analysis type manually. Instead, the
library should provide a way to create the analysis-specific circuit representations
automatically.

Ideal user interface of the library would allow user to specify the mapping
between the circuit description classes as discussed in section 3.2.1. If the user
then requested the transient analysis circuit representation, the library would
then use this mapping to instantiate classes that implement the transient analysis
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logic for each device from the circuit description, and return the result back to
the user.

This mapping will also be used to specify which device model should be used
during the analysis. To allow simple comparing of different device models (such
as Ebers-Moll or Gummel-Poon BJT transistor models, which would be each
implemented as a separate class, as discussed back in section 3.1.3), we would
like to allow users to potentially specify multiple sets of mappings for a certain
analysis type.

We have therefore decided to encapsulate these mappings in a factory class.
However, the concrete class type of the analysis-specific circuit representation
is not known, because the NextGenSpice.Core assembly does not contain any
analysis-specific functionality. We will therefore use a class hierarchy similar to
the one in figure 3.7. We will use the generic class feature of C# and implement
abstract AnalysisModelFactory<T> class with one generic parameter for the
circuit representation class type. This abstract class will implement methods for
managing the mappings between device description and implementation classes
(symbolized by the SetModel method). The actual instantiation of the analysis-
specific circuit model (LargeSignalCircuitModel on the figure) is delegated to
derived classes, which provide a way to create new methods by implementing the
abstract NewInstance method.

NextGenSpice.Core

NextGenSpice.LargeSignal

protected abstract T NewInstance(IDevice<T>[])

public T Create(ICircuitDefinition)

AnalysisModelFactory<T> {
    var devices = /*...*/
    ...
    return NewInstance(devices);
}

protected override LargeSignalCircuitModel
    NewInstance(IDevice<T>[] devices)

LargeSignalAnalysisModelFactory {
    return new LargeSignalCircuitModel(
        devices, ...);
}

public void SetModel<TDesc, TImpl>(...)

T is LargeSignalCircuitModel

Figure 3.7: Relationship between analysis model factories

In section 3.1.4, we decided to use MEF framework to automatically discover
the available analysis types. This means that each assembly with a circuit anal-
ysis implementation needs to export it’s own class derived from AnalysisModel
Factory<T>. To provide a convenient place to aggregate the exported factories,
we introduced yet another class: AnalysisModelCreator, which serves as a con-
tainer for the analysis circuit model factories. The actual analysis model creation
can be then implemented as a generic method on the AnalysisModelCreator,
which will then find the appropriate factory to be used for the construction of
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the desired circuit model class specified as the type argument.

3.3 SPICE Netlist Parser
An important feature of our library is to allow users import subcircuits from
SPICE netlist files (Goal 1e). Therefore, a SPICE netlist parser needs to be
implmeneted.

Both lexer and parser can be either written manually or be generated by
a tool. In .NET ecosystem, possible choices include tools generators such as
ANTLR [21]. When using these generator tools, the language is described by a
set of regular expressions and formal grammar rules, and the tool then generates
the implementation of the lexer and parser.

Since the SPICE netlist grammar has a simple structure and hand-written
parser would be easy to write, we have come to conclusion that the generator
tools would only add unnecessary complexity to the library’s implementation,
and we will therefore implement the parser manually.

3.4 Double-double and Quad-double
Arithmetic

According to goal 1f of this thesis, the library should allow representing real num-
bers with greater precision using the double-double and quad-double technique.
Implementation of these techniques is very complex and requires deep knowledge
and understanding of the algorithms to be done correctly. Therefore, we will not
implement double-double and quad-double arithmetic ourselves, but we will use
a third party library to provide as that functionality.

During our search for a suitable library, we did not find any implementation
of double-double or quad-double in .NET. However, we discovered a C++ imple-
mentation by Hida et al. called QD [16] which is available under BSD license.
Even though our library will be targeted at .NET Standard, we still can use this
library because .NET Standard version 2.0 requires implementations of .NET to
provide PInvoke, which is a feature that allows making calls to native code.

Because C++ is a compiled language, the implementation of QD needs to
be recompiled for each platform, which would complicate the deployment of the
library. However, the enhanced precision is needed only while solving the circuit
equation, where the truncation errors could cause significant errors in the solution.
Standard double type is sufficient for storing the parameters of the individual
circuit devices. This means that enhanced types are not needed in the simulator’s
interface, but can be a detail of the equation system implementation, which can
be changed without affecting the user’s code.

We have therefore decided to use different internal real number representation
based on compile time compilation symbols. When no symbols are specified, the
library would be compiled without any dependencies on the native code (and
hence use the double type). Library thus compiled can be distributed just like
any .NET Library. On the other hand, users who wish to use enhanced precision
types can still do so by compiling the library with appropriate symbols.
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Using C++ implementation of individual arithmetic operations on the double-
double and quad-double types also means that a call to native code has to be made
for each numeric operation during equation solution. The transition between
managed and unmanaged code for such trivial operations may incur nontrivial
overhead. To gain better insight on how significant this overhead would be in our
implementation, we implemented Gaussian elimination on double type in four
variants.

• Managed – normal implementations in C# code.

• Managed Wrapped – the double type was wrapped in a struct that imple-
ments necessary arithmetic operators by built-in operators on double type.
This implementation reflects more closely how the double-double and quad-
double types would perform when implemented in pure .NET.

• Managed Pinvoke – similar to Managed Wrapped, but the arithmetic oper-
ations are performed in C++ via a PInvoke call. This is how the enhanced
precision types will perform when PInvoke is used for each arithmetic op-
eration.

• Native – Whole algorithm is implemented in C++ and performed on one
PInvoke call.

We used BenchmarkDotNet [22] for measuring the run times for equation
systems. The table in figure 3.8 summarizes the results on equation systems with
N variables for N = 20 and 200 variables. All times are in microseconds.4

Method N Mean (µs) Error (µs) StdDev (µs) Scaled
Managed 20 7.900 0.0147 0.0114 1.00

Managed Wrapped 20 27.233 0.1208 0.1070 3.45
Managed Pinvoke 20 91.116 0.3146 0.2789 11.53

Native 20 3.446 0.0167 0.0156 0.44
Managed 200 6,242.546 25.2918 22.4205 1.00

Managed Wrapped 200 22,026.703 97.9251 91.5992 3.53
Managed Pinvoke 200 83,690.755 550.2520 487.7840 13.41

Native 200 2,413.073 5.9563 5.5715 0.39

Figure 3.8: Benchmark results for Gaussian elimination implementation.

These results show that the overhead of PInvoke would be certainly noticeable
if it were used for each arithmetic operations and could slow down the simulation
as much as an order of magnitude. To provide a way to avoid this overhead, we
will implement the numeric routine for solving the equation system in both .NET
and C++. This way, the transition between runtimes would occur only once
per equation system solution. The choice of whether managed or native version
would be used will depend on another conditional compilation symbol.

4The benchmarks were run on system with i5-6300HQ 2.30 GHz CPU using .NET Core 2.0.6
(CoreCLR 4.6.26212.01, CoreFX 4.6.26212.01), 64bit RyuJIT, Release mode.
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3.5 NextGenSpice.LargeSignal
The NextGenSpice.LargeSignal assembly contains the implementation of tran-
sient analysis, implementation of which we set as goal 1b. To understand the
motivation for choices made in our analysis, we first describe the process of tran-
sient analysis in greater detail. Then we proceed with the actual implementation
analysis of transient analysis in the NextGen SPICE library.

3.5.1 Transient Analysis Overview
Transient analysis models the circuit’s behavior over time. It is used to calculate
values of node voltages and currents flowing through the circuit network (which
is shortly referred to as the DC bias of the circuit) at specified timepoints in the
simulated period. The top-level illustration of the simulation algorithm is shown
in figure 3.9.

Stop

Start

Establish initial DC Bias

T = 0

Establish DC Bias

T = T + Ttimestep

T < Tstop
+

-

Update device state

Figure 3.9: Top level description of the transient analysis algorithm

The simulation starts by calculating the initial DC bias of the circuit, during
which the capacitor and inductor devices are modeled as ideal open circuits and
closed circuits, respectively. After the initial state of the circuit is established,
the state of of active devices like capacitors and inductors, or nonconstant volt-
age and current sources is updated to reflect the time passed between the two
successive timepoints. To reflect the energy stored in the capacitor and inductor
devices, these devices are replaced by so called companion models, which consist
of either voltage or current source and a resistor. Parameters of the devices in the
companion models are recomputed in each succesive timepoint (technical details

43



will be explained later). Then a DC bias calculation is performed for the next
timepoint and the process is repeated for the whole simulated period.

The details of DC bias calculation are described in the following subsections.

DC Bias Calculation

We will demonstrate the DC bias calculation on the circuit shown in figure 3.10.
Different colors of the devices will serve a purpose later.

− +

12 V

1

5 Ω

3

5 Ω

2

10 Ω

10 Ω

Figure 3.10: Example circuit for DC bias calculation.

To calculate the node voltages and branch currents, the equations correspond-
ing to the Kirchhoff’s circuit laws must be formulated. There are several methods
for algorithmic formulation of the circuit equations. As an example, we will show
the Modified Nodal Analysis (MNA) method. In MNA, there is a template for
each device type’s contribution to the equation system, which is called a device’s
stamp. Device stamps for constant voltage source and resistor are shown in fig-
ure 3.11. An important thing to notice is that voltage sources (and some other
devices) require an additional variable in the equation system for calculating the
current flowing through the device.
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Figure 3.11: Device stamps for the voltage source and resistor

Formulation of the circuit using MNA is done by iterating through the list of
circuit devices and ”stamping” them into the equation system. When applied to
the circuit in figure 3.10 the MNA creates following the equation system shown
in figure 3.12. Contributions from each device is shown in the same color as the
device.

Because node 0 corresponds to the ground node, it always holds that V0 = 0.
Therefore, the corresponding row and column can be eliminated. By solving
the resulting equation system, we obtain values V1 = 12, V2 = 10, V3 = 8 and
IV = −0.8. Branch currents flowing through the resistors can be then trivially
calculated using the formula IR = UR/R.
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Figure 3.12: Equation system after stamping devices from our circuit

DC Bias Calculation - Nonlinear Devices

In the preceding example, only linear devices were used in the circuit. This means
that the resulting equation system was also linear and an exact solution could
be obtained. Another situation arises if a nonlinear device such as diode is used
in the circuit. A semiconductor diode has nonlinear I-V characteristic which is
approximated by the Shockley equation shown in figure 3.13.

Id=IS(eVd/V -1)

Vd

Id

t

Figure 3.13: I-V characteristic of the diode

Circuits containing such devices can no longer be characterized by a system
of linear equations. Instead, a system of nonlinear equations needs to be solved.
Such systems are solved iteratively by Newton-Raphson method. In DC bias
Calculation, Newton-Raphson algorithm is realized by repeatedly linearizing the
I-V characteristics of nonlinear devices at the current candidate DC bias and
solving the linearized equation system, to obtain next candidate DC bias. Figure
3.14 shows the linearization process on the example of diode from figure 3.13
around VB, which is current guess of the voltage across the diode. The linearized
I-V characteristic then corresponds to replacing the diode by an equivalent circuit
consisting of current source with Ieq current and resistor with Geq conductance,
as shown in the figure.
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Figure 3.14: Linear equivalent circuit for the diode
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This iterative process stops when the difference between the diode currents in
two consecutive solutions fits in the relative and absolute tolerances, which are
parameters of the simulation. Another simulation parameter is the upper limit
on the Newton-Raphson iterations. If the solution does not converge until the
specified limit, then the simulation is aborted.

DC Bias Calculation - Energy Storage Devices

We have already briefly mentioned at the beginning of the subsection that capac-
itor and inductor devices are modeled by their companion models, which charac-
terize the I-V characteristic of the device for the current timepoint. Figure 3.15
shows the companion models for the capacitor and inductor devices.
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Figure 3.15: Companion models of capacitor and inductor

Parameters of the companion models are updated each timepoint via numeri-
cal integration to reflect the energy stored in the device. However, if the timestep
used in the simulation is too big, the local errors made during the integration may
accumulate and therefore produce unrealistic results of the simulation. On the
other hand, smaller timestep means that the simulation will take longer. Mod-
ern simulators internally choose the timestep dynamically: small timestep values
when the values of companion models change rapidly, and greater timestep val-
ues otherwise. This way the simulator preserves both speed and accuracy. This
process is illustrated in figure 3.16.

Internal timesteps
Output print points

Figure 3.16: Depiction of dynamic timestep mechanism, reproduced from Inside
SPICE [3]
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This process is realized by iterating individual devices and estimating the
maximum timestep for which the truncation error does not exceed the simulator
tolerances. Minimum of these values is then chosen as the next timestep.

To implement the transient analysis as described so far, we need to make
important decisions regarding individual parts of the algorithm. The main parts
that need to be analyzed are the method used for equation system formulation,
representation of the equation system, choice of numerical integration method,
choice of timestep control mechanism and interface that will be required from
device logic implementations.

3.5.2 Choice of Equation System Formulation
As we mentioned in the previous subsection, there are several methods for auto-
mated creation of the circuit equation system. Many of those are described in
great depth in Nagel’s PhD thesis [19], chapter III.

Nagel includes the comparison of the methods with respect to the size of
the equation and the programmatic effort of implementing these methods. His
research shows that the MNA method which was used in the example in section
3.5.1 produces comparatively smaller equation systems than other methods.

Another advantage of using MNA method is that it does not require finding
loops and trees in the circuit graph, which are required by methods like Modified
Tableau Analysis. Instead, as we have shown earlier, all devices contribute to the
equation system via a device type stamp. Also, adding a new device type does
not require changes to the formulation method, because the device stamp can be
made part of the device’s implementation.

For the reasons above, we decided to use the MNA method during the tran-
sient analysis.

3.5.3 Equation System Abstraction
There are multiple ways of representing the equation system. The most straight-
forward way is representing the equation matrix as full two-dimensional array.
Such representation is intuitive and easy to manipulate in the program. How-
ever, if the equation matrix is sparse (many coefficients are equal to 0), this
representation is inefficient. When using MNA, the number of nonzero elements
in a row is roughly proportional to the number of devices that connects to that
node. This means that in large circuits, where only small number of devices
connects to the same node at once, it would be more appropriate to use sparse
matrix representation.

We decided to use the full 2D array representation for simplicity, but in case
that this representation would prove to be an issue in the future, we would like
to change the implementation without affecting the user code. Therefore, we
have to expose the equation system under an interface that can be efficiently
implemented by sparse matrix representations too.

There is also an additional requirement on the equation system implementa-
tion. As we have shown in the figure 3.11, devices may need an additional circuit
variable to be correctly simulated. The equation system implementation there-
fore needs to support adding additional variables at least during the initialization
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phase of the simulation.
Because we decided to use MNA method for equation system formulation,

each device needs to modify only a small fixed set of equation system coefficients
corresponding to the device’s stamp. We have therefore decided to use an inter-
face illustrated in figure 3.17. During the initialization phase of the simulation,
each device would request any number of additional variables that it requires,
and specify which equation system coefficients it contributes to. Access to these
coefficients will be then provided using a proxy object for each accessed coefficient.

Equation systemProxies

Figure 3.17: Equation system abstraction

This interface is general enough to allow any internal equation system repre-
sentation while providing efficient access to individual coefficients.

3.5.4 Choice of Numerical Integration Method
In the description of transient analysis of energy storage devices, we mentioned
that the inner state of the device is updated based on the circuit state of the previ-
ous timepoint using numerical integration. Commonly used integration methods
include Backward Euler, Trapezoidal Rule, and Gear method. Summary of these
and other numerical integration methods can be found in QUCS Technical Pa-
pers, section 6.1. Nagel’s PhD thesis also provides detailed analysis of common
numerical integration methods in chapter VI. None of these methods can be con-
sidered best for the circuit simulation. For example, although the trapezoidal
rule is very good in terms of accuracy and speed, it may sometimes lead to a phe-
nomenon called trapezoidal ringing, which means that the value oscilates between
the exact value. The trapezoidal ringing is shown in figure 3.18.
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Figure 3.18: Trapezoidal ringing.

For this reason, modern circuit simulators implement multiple integration
methods. If the default method proves inappropriate, the user can instruct the
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simulator to use different method. We would therefore like to allow using different
integration methods in our simulator, and even allow user to add new integration
methods.

3.5.5 Choice of Timestep
While describing the simulation of energy storage devices back in section 3.5.1,
we briefly mentioned that an additional precision can be achieved by choosing
the timestep dynamically. The dynamic methods choose the timestep such that
error introduced by the integration method is lesser than a certain threshold. The
timestep choice therefore depends on the integration method and device’s state
in previous timepoints.

We decided to simplify the library’s implementation and not implement the
dynamic timestep in the initial version of the library. Therefore, the library will
rely on the user to specify an appropriate timestep value that will be used through-
out the simulation. However, the dynamic timestep is an attractive feature and
we would like to add it in the next versions of the library.
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4. Developer Documentation
The implementation of the NextGen SPICE library is contained in one Visual
Studio 2017 solution which consists of 10 projects, the overall structure of the
solution is illustrated in figure 4.1.

NextGenSpice.Parser.Test

NextGenSpice.LargeSignal.Test

NextGenSpice.Core.Test

NextGenSpice.Numerics
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NextGenSpice.Numerics.Native

QD library sourceC++

Standalone console application

Shared library projects

Native implementation

Unit test projects

Benchmarks and examples

SandboxRunner

Figure 4.1: Project structure of the solution

NextGenSpice.Core project is the core project of the library, it contains
classes for creating and validating electrical circuits. It also contains code that
automatically discovers available analysis types through the MEF framework, and
constructs analysis-specific circuit models from the circuit description.

NextGenSpice.LargeSignal project contains implementation of large-signal
circuit model which allows performing DC operating point and transient analyses.

NextGenSpice.Parser project contains implementation of the SPICE netlist
parser and allows users of the library to import circuits, subcircuits and device
model parameters into the simulator.

NextGenSpice.Numerics project defines classes for creating and representing
equation systems for the simulator, as well as other mathematical functions that
are needed in the simulator. It also serves as a managed wrapper around the
NextGenSpice.Numerics.Native C++ project, which is used to build the QD
library for double-double and quad-double arithmetic, and expose it’s methods
to managed (C#) code.

NextGenSpice represents the standalone console application, implementation
of which was the goal 2 of this thesis. It is also the only library project which
targets the .NET Core platform.

The other projects are not part of the distributed library or console applica-
tion. The SandboxRunner console application project is used to run benchmarks
for the circuit simulator, and the projects with .Test suffix contain unit tests for
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individual parts of the library.

License

The whole NextGen SPICE solution is provided under the MIT license. More de-
tails can be found in LICENSE.TXT file in the solution folder (located in /sources
folder in the attached CD).

4.1 Compilation
To allow using enhanced precision types in the simulator library, the solution
contains one C++ (NextGenSpice.Numerics.Native), which potentially inhibits
the portability of the library. As discussed in analysis section 3.4, we decided
that the use of C++ code should be conditional on presence of compile time
symbols. The use of native code depends on the conditional compilation symbols
used when compiling the NextGenSpice.Numerics project. In Visual Studio
2017, these symbols can be set in project properties → Build → Conditional
compilation symbols. Following tables lists the symbols and their meaning for
the compilation.

Symbol Precision type used
dd precision Use the dd real type and double-double arithmetic
qd precision Use the qd real type and quad-double arithmetic

no symbol Use the double type

Symbol Choice of Gauss elimination implementation
native gauss Use native implementation

no symbol Use managed implementation

The NextGenSpice.Numerics.Native.dll dll is defaultly compiled for 64-bit
runtime. To use NextGen SPICE library in 32-bit process, 32-bit version of the
native dll must be compiled.

4.2 NextGenSpice.Core
The NextGenSpice.Core assembly contains the analysis independent parts of
the NextGen SPICE library, namely the classes for circuit description, logic for
validating the circuit, and generic factory to be used for creating analysis-specific
circuit models.

4.2.1 Circuit Description
In the analysis section 3.2.1, we decided to represent the circuit description using a
separate class for each device. These classes implement the ICircuitDefinition
Device which defines the members ConnectedNodes and GetBranchMetadata
which are used to validate the circuit topology. It also defines members Tag which
can be used to identify individual devices and Clone method for duplicating the
device.
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The ConnectedNodes property returns an instance of NodeConnectionSet
class which encapsulates the node connections. This class has internal setters,
so that the connections are set only by the library and cannot be modified by the
user.

The GetBranchMetadata is used to retrieve the characteristics of the connec-
tions which are important for the circuit topology validation. The topology rules
require that there is no cycle of voltage sources and inductors, and no cutset of
current sources and capacitors. The GetBranchMetadata therefore returns collec-
tion of CircuitBranchMetadata which contain information whether the device
is current defined or voltage defined. If device is neither (e.g. resistor), then the
GetBranchMetadata returns empty collection.

The circuit description is contained in the CircuitDefinition class, which
simply wraps the collection of ICircuitDefinitionDevice and provides other
convenient methods (such as FindDevice to find a device by its tag). This class
also has internal constructors, so that it can be created only by the library’s
code. The circuit definition is created by the CircuitBuilder class, which is also
responsible for validating the circuit’s topology.

The SPICE subcircuit representation consists of two parts: a Subcircuit
Definition class which contains the description of the subcircuit in a similar
manner as the CircuitDefinition class, and the Subcircuit class which im-
plements the ICircuitDefinitionDevice interface and represents the subcircuit
usage in the circuit. The SubcircuitDefinition instances are shared among all
coresponding Subcircuit classes.

4.2.2 General Analysis Implementation Design
Before we cover the mechanism which creates the analysis-specific circuit models
from the circuit description, we will describe the interface hierarchies between
the circuit description and analysis implementation. The ICircuitDefinition
and ICircuitDefinitionDevice interfaces were described in previous subsec-
tion. The interfaces on the analysis implementation counterparts are IAnalysis
CircuitModel<TDevice> and IAnalysisDeviceModel<TAnalysis>.

Because the relationship between these two interfaces is not trivial, we will
explain them in the context of large-signal analysis model implementation. Figure
4.2 shows the relationship between the classes and interfaces for circuit description
and large-signal circuit model.

ICircuitDefinition

Devices

DefinitionDevice

IAnalysisCircuitModel<ILargeSignalDevice>

LargeSignalCircuitModel

ICircuitDefinitionDevice IAnalysisDeviceModel<LargeSignalCircuitModel>

ILargeSignalDevice

Devices
Generic type
arguments

Figure 4.2: Connection between the circuit description and analysis implementa-
tion
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The implementations of concrete analysis types are expected to extend the
IAnalysisDeviceModel interface by adding methods required from the device’s
implementation. The additional methods for large-signal analysis are defined in
ILargeSignalDevice which extends the IAnalysisDeviceModel<LargeSignal
CircuitModel> interface. The generic argument in the IAnalysisDeviceModel
interface is not used in the defined members, but provides metadata useful for
enforcing that only the classes implementing ILargeSignalDevice interface can
be registered as device models for the LargeSignalCircuitModel (the model
registration and analysis model factories will be covered in later subsection). The
IAnalysisDeviceModel interface defines the DefinitionDevice property which
serves as the link to the device from the original circuit description. The classes
implementing the device-specific simulation logic will read the device’s parameters
from it’s definition device, which allows reacting to the changes of the device’s
parameters, as requested by goal 1b.

The IAnalysisCircuitModel interface has generic parameter for the base
type of the device’s implementation, which is also the type of the items in it’s
Devices property. The LargeSignalCircuitModel class requires each device to
implement the ILargeSignalDevice interface.

4.2.3 Analysis Model Creation
The creation of analysis-specific circuit models is done via a set of factories. Each
analysis type assembly (currently, only NextGenSpice.LargeSignal is imple-
mented) exports an implementation of IAnalysisModelFactory<T> specialized
on the class which will be used to represent the circuit for the particular analysis.
In case of NextGenSpice.LargeSignal, the class LargeSignalAnalysisModel
Factory implements the IAnalysisModelFactory<LargeSignalCircuitModel>
interface and is used to build LargeSignalCircuitModel instances.

The core functionality for registering models for individual circuit devices is
implemented in the abstract AnalysisModelFactory<T> class. The registering
is done by calling the generic method SetModel<TDesc, TImpl> specialized on
definition device type and implementation device type. This function takes a
factory function as a parameter, which will be later used to construct the imple-
mentation class. For example, the registering of LargeSignalResistor as the
implementation for Resistor device is done by calling

1: IAnalysisModelFactory<LargeSignalCircuitModel> factory = /*...*/;
2: factory.SetModel<Resistor, LargeSignalResistor>(
3: e => new LargeSignalResistor(e));

Thanks to the interface definitions as described in the previous section, it is
possible to constrain the type arguments of the SetModel method to statically
check that the LargeSignalResistor class implements IAnalysisDeviceModel
<LargeSignalCircuitModel> interface (which it does by implementing ILarge
SignalDevice).

When a new circuit analysis model is to be created, all circuit devices from
the ICircuitDefiniton.Devices collection are transformed by applying the sup-
plied factory methods. Actual instantiating of the circuit model classes is dele-
gated to the classes deriving from the AnalysisModelFactory<T> via protected

54



abstract method CreateInstance. In the implementation of the LargeSignal
AnalysisModelFactory, this method return a new instance of LargeSignal
CircuitModel class.

4.2.4 Discovering Analysis Model Implementations
To simplify management of existing IAnalysisModelFactory<T> interface imple-
mentations, we introduced AnalysisModelCreator class. This class defines the
Create<TAnalysis> method, which finds appropriate factory which to be used
for creating the TAnalysis circuit model. The factory can be either registered
manually using the SetFactory<TAnalysis> method, or automatically by adding
[Export(typeof(IAnalysisModelFactory<T>))] attribute to the factory class.
The implementation is then discovered by MEF framework.

To change the mapping between the circuit devices and their implementations,
the respective factory can be obtained by GetFactory<TAnalysis> method. The
AnalysisModelCreator also defines static property Instance which holds the
global singleton, however, it is possible to create multiple instances of this class
and have different mappings in each instance.

To simplify the library’s interface for scenarios where only the global Analysis
ModelCreator instance is needed, implementations of the circuit analyses are en-
couraged to define an extension function on ICircuitDefinition which provides
simple way of creating analysis models using the global instance. For example,
NextGenSpice.LargeSignal assembly defines following extension method.

1: public static LargeSignalCircuitModel
2: GetLargeSignalModel(this ICircuitDefinition definition)
3: {
4: if (definition == null)
5: throw new ArgumentNullException(nameof(definition));
6: return AnalysisModelCreator.Instance
7: .Create<LargeSignalCircuitModel>(definition);
8: }

4.3 NextGenSpice.Parser
As we stated in the analysis chapter in section 3.3, we have decided to implement
both the parser and lexer manually. The implementation is contained in the
NextGenSpice.Parser project. The whole functionality is exposed through the
instance methods of SpiceNetlistParser class.

The class itself does not contain code for handling specific netlist statements,
processing these statements is delegated to statement processors, which will be
described later in greater detail. A new instance of the parser can be obtained
by SpiceNetlistParser.Empty() method. The returned instance does not con-
tain any statement processors, these would have to be registered manually. For
convenience, the parser class contains a static method SpiceNetlistParser
.WithDefaults(), which creates a new instance of the parser and automatically
registers statement processors implemented as part of this thesis.

The parsing itself is done simply by calling Parse() method, which accepts an
instance of TextWriter class from which the netlist should be read. this methods
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returns an instance of SpiceNetlistParserResult class, which encapsulates all
the information from the parsed file: CircuitDescription for the contained cir-
cuit, collections of defined models and subcircuit, used node names, encountered
errors etc.

All information regarding the netlist that is currently being parsed is aggre-
gated in the ParsingContext class. This class contains information such as list
of already parsed statements, instance of CircuitBuilder for constructing a cir-
cuit, and reference to an instance SymbolTable holding all so far encountered
devices, models and subcircuits.

The general algorithm for parsing SPICE netlists consists of following steps:

1. Reading the Title statement from the input file

2. Reading and processing each SPICE statement by following steps

(a) Tokenizing the statement
(b) Determinig the statement type and finding suitable statement proces-

sor
(c) Processing the statement by making changes to ParsingContext

3. Constructing the circuit description and returning the results in an instance
of SpiceCodeParserResult class

4.3.1 Tokenizing
The tokenizing of the statement is done using the TokenStream, which is a wrap-
per around the input TextWriter instance. The main purpose of this class is
to read and return tokens that form individual statements, which is done in the
TokenStream.ReadStatement() method.

One SPICE statement may span multiple lines, where each subsequent line
starts with a + symbol (see section 2.1). TokenStream class joins these lines
together, annotates individual string tokens with line numbers and line offsets,
and returns them as an IEnumerable<Token> instance.

4.3.2 Processing Statements
The SPICE netlist statements can be divided into two distinct sets of statements.
The first are device statements, which always begin with a letter (which then de-
termines the device’s type), and dot statements, which begin with a . character
followed by name of the statement, which can be arbitrary alphanumeric string,
for example .MODEL statement. Device statements can be distinguished by in-
specting only the first letter of the statement, but for the other statements, the
whole first token must be considered. Therefore, these two types of statements
are handled separately by classes implementing the IDeviceStatementProcessor
and IDotStatementProcessor interfaces, which can be added to the parser in-
stance by RegisterDevice and RegisterStatement methods. The appropriate
statement processor is then looked up by comparing with the Discriminator
property on the statement processor classes from appropriate collection.
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Because the statements in the netlist can occur in almost arbitrary order,
their processing is not entirely trivial. Consider following legal netlist fragment:

R1 2 3 5
D1 2 3 DMOD
.MODEL DMOD D(IS=1p)

The first statement states that there is 5Ω resistor between the nodes 2 and
3. This statement can be directly processed and corresponding call to the circuit
builder can be made. However, the second statement says that there is a diode
between the nodes 2 and 3, and that it’s parameters are specified by the DMOD
model. However, at the time of parsing that statement, the DMOD model not
known yet, because it is specified after the diode statement. It could be said
that the processing of the diode statement is dependent on processing of the
corresponding .MODEL statement.

Therefore, before each statement is applied to the circuit, all its dependencies
are checked, and if there are unresolved dependencies, the the processing of the
statement is deferred until the whole file has been parsed. This is achieved by
adding a corresponding class derived from DeferredStatement instance to the
ParsingContext.DeferredStatements collection.

After all the statements have been parsed, each deferred statement is repeat-
edly checked, and applied if their dependencies have been resolved by applying
some other statement. If any statement remains unprocessed, then a correspond-
ing error is recorded to the ParsingContext.Errors collection.

There is also a static ParserHelper class, which contains extension method
GetNumericValue(this Token, ICollection<SpiceParserError>) that sim-
plifies parsing numbers and scale factors (see section 2.1.1), and method ToError
(this Token, SpiceParserErrorCode, param object[]) which simplifies cre-
ating error messages.

4.4 NextGenSpice.LargeSignal
The NextGenSpice.LargeSignal project contains the implementation of the
large-signal circuit model which is used to perform transient and DC analysis
of circuits. The simulation functionality is exposed through the LargeSignal
CircuitModel class which implements the simulation algorithm described in sec-
tion 3.5.1. The simulation is managed by EstablishDcBias method, which calcu-
lates the circuit state at time 0, and AdvanceInTime which advances the state by
given timestep. The device-specific simulation logic is delegated to classes imple-
menting the ILargeSignalDevice interface. This interface defines the following
methods.

• RegisterAdditionalVariables – Allows device implementation to add ad-
ditional variables to the equation system (like branch variable for the voltage
source as shown in section 3.5.1).

• Initialize – Lets devices request equation system coefficient proxies, and
perform other necessary initialization.
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• ApplyModelValues – Applies devices stamp into the equation system. This
is where the nonlinear devices are linearized.

• OnEquationSolution – Lets devices update the inner state based on the
last solution of the equation system. Also, nonlinear devices should check
for solution convergence (compare current solution with the previous one).

• OnDcBiasEstablished – Called after the Newton-Raphson iterations have
reached a fixed point and the calculation of the current timestep has com-
pleted.

The figure 4.3 shows the implemented simulation algorithm and when the
respective methods are called. The methods from the ILargeSignalDevice in-
terface are in shown in green and are always called for every ILargeSignalDevice
in the LargeSignalCircuitModel.

Stop

EstablishDcBias

T = 0 T = T + Ttime

Initialize

AdvanceInTime(Tstep)

Initialized?

RegisterAdditionalVariables

ApplyModelValues

OnEquationSolution

Create equation system

OnDcBiasEstablished

Converged?

Solve linear equation system

+_

_

Figure 4.3: Implementation of the simulation algorithm

The following table lists the classes which implement the large-signal logic for
individual circuit devices, and corresponding section in QUCS Technical papers
which describe the stamps and mathematical models used in the implementation.
Also, the models for semiconductor devices (diode and BJT) are described in
depth in Semiconductor Device Modeling with SPICE by G. Massobrio [23], ch
1 and 2.
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Device class QUCS section
LargeSignalResistor 9.2
LargeSignalCapacitor 6.3.1
LargeSignalInductor 6.3.2
LargeSignalVoltageSource 9.18
LargeSignalCurrentSource 9.18
LargeSignalVccs 9.20.1
LargeSignalCccs 9.20.2
LargeSignalVcvs 9.20.3
LargeSignalCcvs 9.20.4
LargeSignalDiode 10.2
LargeSignalBjt 10.4

The actual stamping is delegated to <device>Stamper classes to make the
implementation cleaner.

4.5 NextGenSpice.Numerics and
NextGenSpice.Numerics.Native

NextGenSpice.Numerics.Native is the only C++ project in the solution. It is
used to build a dynamically linked library, which contains the implementation of
QD library used by NextGen SPICE for double-double and quad-double precision
types. It also contains native implementation of Gaussian elimination algorithm
for solving the equation system to speed up the the simulation (see analysis
section 3.4).

NextGenSpice.Numerics is the managed counterpart of the NextGenSpice
.Numerics.Native project. It contains C# wrappers around the dd real and
qd real types from QD library, with PInvoke calls to its exported methods. It
also contains the managed implementation of gauss-elimination that is used when
the library is compiled without the conditional compilation symbols mentioned
at the beginning of this chapter.

4.5.1 Equation System Implementation
The NextGenSpice.Numerics project contains implementations of the equation
system. There is a separate class for equation system for each precision type:
EquationSystem, DdEquationSystem and QdEquationSystem. These classes rep-
resent the equation system as the full matrix and vectors. To make the inter-
face independent of the implementation and the actual precision type used, the
equation system is exposed to through the implementations of IEquationSystem
Adapter and IEquationSystemAdapterWide interfaces. The first interface de-
fines methods for getting proxies proxies for individual equation system coef-
ficients and the equation solution as described in the analysis chapter in sec-
tion 3.5.3. This interface will be exposed to the device’s implementation. The
other interface defines another methods that the simulator needs, like Solve and
Clear. The actual implementation of these interfaces is requested from static
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class EquationSystemAdapterFactory. This arrangement was chosen mainly to
allow runtime changes of precision type for benchmarking purposes.

If the implementation were to change to a sparse matrix representation, then
all needs to be done is implementing the IEquatioSystemAdapterWide interface
and replacing the class instantiated in the EquationSystemAdapterFactory.

4.6 NextGenSpice
This project contains the implementation of the standalone SPICE-like console
application. This application directly uses the other parts of the NextGen SPICE
library described in the preceding sections. This project implements necessary
statement processors to handle .PRINT, .OP and .TRAN statements in the input
netlist files. These statements are inserted into OtherStatements collection on
the ParsingContext and later retrieved from the property of same name on
SpiceNetlistParserResult object. If no error occurs while parsing the netlist,
the application executes the requested simulations and prints the results on the
standard output.

4.7 SandboxRunner
This project serves only development purposes and is not deployed as part of the
library. This project uses BenchmarkDotNet NuGet package to run benchmarks
for comparing the individual precision methods. It also contains examples of code
which uses the library.

4.8 Unit Test Projects
There are three unit test projects in the solution, NextGenSpice.Core.Test
for the core simulation library, NextGenSpice.Parser.Test for the parser and
NextGenSpice.LargeSignal.Test for the large-signal simulations. These project
use the XUnit NuGet package to run unit tests for the main parts of the tested
projects. The unit tests do not aim for strict 100% code coverage (The coverage
is around 80% for each project), instead, they test the most important parts of
the library to avoid breaking the code when implementing new features to the
library.
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5. User Documentation - Library
This chapter describes how to use the NextGen SPICE simulator, and provides
the guidelines for adding new circuit analyses and device types. The necessary
binaries are available in the /binaries folder on the attached CD for copying.

5.1 Tutorials
This sections shows the usage of the library on simple examples to present the ba-
sic idea of how to use the NextGen SPICE library. All these examples will use the
.NET Core Console Application project template. The project should reference
the NextGenSpice.Core assembly for circuit description, NextGenSpice.Parser
assembly for parser implementation, NextGenSpice.LargeSignal assembly for
the actual simulator, and all assemblies with the System.Composition preffix
from the /binaries folder. Also, NextGenSpice.Numerics.Native.dll needs
to be copied to the same folder as the compiled executable. We will use gnuplot
[24] to create the plots of the simulation results, so reader should have it installed
as well.

5.1.1 Calculating DC Bias of the Ciruit
Suppose we wanted to calculate node voltages in the circuit shown in figure 5.1.

− +

12 V

1

5 Ω

3

5 Ω

2

10 Ω

10 Ω

Figure 5.1: Example circuit

Before we start with the actual analysis, we first need to construct the circuit
representation. This is done using the CircuitBuilder class. Following code
fragment constructs the circuit description of our circuit.

1: // requires NextGenSpice.Core.Circuit and
2: // NextGenSpice.Core.Devices namespace
3: var builder = new CircuitBuilder();
4: builder
5: .AddDevice(new[] {1, 0}, new VoltageSource(12))
6: .AddDevice(new[] {0, 2}, new Resistor(10))
7: .AddDevice(new[] {1, 2}, new Resistor(10))
8: .AddDevice(new[] {2, 3}, new Resistor(5))
9: .AddDevice(new[] {1, 3}, new Resistor(5));

10: var circuit = builder.BuildCircuit();
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For convenience, class CircuitBuilderExtensions defines extensions meth-
ods that can be used to make the code more readable. The circuit can be equiv-
alently created by the following code.

1: // extensinos are contained in
2: // NextGenSpice.Core.Extensions namespace
3: var builder = new CircuitBuilder();
4: builder
5: .AddVoltageSource(1, 0, 12)
6: .AddResistor(0, 2, 10)
7: .AddResistor(1, 2, 10)
8: .AddResistor(2, 3, 5)
9: .AddResistor(1, 3, 5);

10: var circuit = builder.BuildCircuit();

The circuit object created in the preceding code fragments is only a descrip-
tion of the circuit. In the next step, we use it to create it’s large-signal model,
which we will use to perform the actual analysis.

1: // requires NextGenSpice.LargeSignal namespace
2: // equivalent to
3: // var m = AnalysisModelCreator
4: // .Instance.Create<LargeSignalCircuitModel>(circuit);
5: var model = circuit.GetLargeSignalModel();

The call to the method EstablishDcBias performs the actual node voltage
calculation. Calculated node voltages can be found in an array in LargeSignal
CircuitModel.NodeVoltages property.

1: model.EstablishDcBias();
2: Console.WriteLine(model.NodeVoltages[1]); // 12
3: Console.WriteLine(model.NodeVoltages[2]); // 8
4: Console.WriteLine(model.NodeVoltages[3]); // 10

The simulator also automatically calculates data for individual devices, and
stores them in their large-signal model instances contained in the LargeSignal
CircuitModel.Devices collection. In our case, all currents flowing through the
circuit devices are calculated. As an example, we show how to get value of current
flowing through the voltage source in our circuit.

First, we need to identify the device in the collection. This can be done by pro-
viding a tag parameter during the circuit representation construction. Arbitrary
object can be used as a tag, we will use a string tag.

1: builder
2: .AddVoltageSource(1, 0, 12, "VS")
3: // equivalent to
4: // .AddDevice(new[] { 1, 0 }, new VoltageSourceDevice(12, "VS"))
5: ...

This tag is then used to query the LargeSignalCircuitModel.Devices col-
lection, which stores the implementations of ILargeSignalDevice interface for
each circuit from the description. For convenience, each analysis model defines
method FindDevice() to simplify the syntax.
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1: // requires NextGenSpice.LargeSignal.Devices namespace
2: // equivalent to
3: // var vsource = (ITwoTerminalLargeSignalDevice) model.Devices
4: // .SingleOrDefault(dev => Equals(dev.DefinitionDevice.Tag, "VS"));
5: var vsouce = (ITwoTerminalLargeSignalDevice) model.FindDevice("VS");
6: Console.WriteLine(vsouce.Current); // -0.8

The casting to ITwoTerminalLargeSignalDevice interface is necessary, be-
cause some circuit devices may have more than two terminals (e.g. transistors),
and the Current property would note make sense for them. The whole example
example then reads as follows:

1: var builder = new CircuitBuilder();
2: builder
3: .AddVoltageSource(1, 0, 12, "VS")
4: .AddResistor(0, 2, 10)
5: .AddResistor(1, 2, 10)
6: .AddResistor(2, 3, 5)
7: .AddResistor(1, 3, 5);
8: var circuit = builder.BuildCircuit();
9:

10: var model = circuit.GetLargeSignalModel(); ;
11: model.EstablishDcBias();
12:
13: Console.WriteLine(model.NodeVoltages[1]); // 12
14: Console.WriteLine(model.NodeVoltages[2]); // 8
15: Console.WriteLine(model.NodeVoltages[3]); // 10
16:
17: var vsouce = (ITwoTerminalLargeSignalDevice) model.FindDevice("VS");
18: Console.WriteLine(vsouce.Current); // -0.8

5.1.2 Performing Transient Analysis
In previous section, we showed how to use the library to compute DC Bias of the
circuit. Now we will show how to perform transient analysis. Consider the circuit
shown in figure 5.2.

−
+5 V

1 50 Ω 2

0.125 H

3
1 µF

Figure 5.2: Simple series RLC circuit.

We will calculate how the circuit behaves if the 5 V from the voltage source
come in a sudden pulse. The NextGen SPICE library supports many input source
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behaviors, the full list can be found in section 5.2.2. We will specify the desired
behavior by passing an instance of PulseBehavior to voltage source when build-
ing the circuit.

1: var circuit = new CircuitBuilder()
2: // behaviors are located in NextGenSpice.Core.BehaviorParams namespace
3: .AddVoltageSource(1, 0, new PulseBehavior()
4: {
5: InitialLevel = 0,
6: PulseLevel = 5,
7: Delay = 5e-3, // 5 ms
8: PulseWidth = 25e-3 // 25 ms
9: })

10: .AddResistor(1, 2, 50)
11: .AddInductor(2, 3, 0.125)
12: .AddCapacitor(3, 0, 1e-6)
13: .BuildCircuit();

Then, as in the previous example, we get the LargeSignalCircuitModel and
calculate the initial state of the circuit using the EstablishDcBias() method.
After that, we can call the AdvanceInTime() method to perform the timesteps.
Following code fragment can be then used to print voltage values of nodes 1 and
3 over time.

1: var model = circuit.GetLargeSignalModel();
2: model.EstablishDcBias();
3:
4: Console.WriteLine("Time V(1) V(3)");
5:
6: var timestep = 0.2e-3; // use 0.2 ms timestep
7: while (model.CurrentTimePoint <= 55e-3) // simulate for 55 ms
8: {
9: var time = model.CurrentTimePoint;

10: var v1 = model.NodeVoltages[1];
11: var v3 = model.NodeVoltages[3];
12:
13: Console.WriteLine($"{time} {v1} {v3}");
14:
15: model.AdvanceInTime(timestep);
16: }

If we redirect the program output to a file named output.txt, we can run
gnuplot and use following commands to create a plot.svg file with plot of the
voltage values over time as shown in figure 5.3.

1: set terminal svg size 600, 250
2: set output 'plot.svg'
3: set key autotitle columnhead
4: set xlabel 'Time'
5: set ylabel 'Value'
6: set grid ytics lt 0 lw 1 lc rgb '#bbbbbb'
7: set grid xtics lt 0 lw 1 lc rgb '#bbbbbb'
8: plot for [i=2:3] 'output.txt' using 1:i with lines
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Figure 5.3: Results on the RLC circuit.

5.1.3 Loading Circuits from Netlists
The NextGen SPICE library supports loading circuit description from SPICE
netlist files. The supported syntax is shown in chapter 2. We will demonstrate
this on the circuit shown in figure 5.4. This is the same circuit we have shown
earlier in the introduction chapter because of it’s 1µΩ resistor.

1: Back to Back diodes
2: *
3: V1 IN 0 SIN(0 5 100 0 0 0)
4: D1 IN A D1N4148
5: R1 A B 1e-6
6: D2 0 B D1N4148
7: *
8: .MODEL D1N4148 D (
9: + IS=2.52e-9 N=1.752 TT=2e-8

10: + CJO=9e-13 M=0.25 VJ=20 BV=75
11: + RS=0.568)

V1 100Hz
−

+
5 V

IN

D1N4148D1

A

1 µΩR1

B

D1N4148D2

Figure 5.4: Back to back diode circuit and corresponding netlist

When imported from a netlist file, each device is automatically tagged by
its name in uppercase letters so that it can be found among the other devices.
Following code fragments prints the current flowing through the D1 diode, and
figure 5.5 shows the plot of the data.

1: // parser is located in NextGenSpice.Parser namespace
2:
3: // import circuit definiton from the file
4: var parser = SpiceNetlistParser.WithDefaults();
5: var result = parser.Parse(new StreamReader("circuit.cir"));
6: var circuit = result.CircuitDefinition;
7:
8: // get simulation model
9: var model = circuit.GetLargeSignalModel();

10: var d1 = (ITwoTerminalLargeSignalDevice) model.FindDevice("D1");
11: var inNode = result.NodeIndices["IN"];
12:
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13: Console.WriteLine("Time V(IN) I(D1)");
14:
15: var timestep = 10e-6; // use 10 us timestep
16: while (model.CurrentTimePoint <= 10e-3) // simulate for 10 ms
17: {
18: var time = model.CurrentTimePoint;
19: var vin = model.NodeVoltages[inNode];
20: var id1 = d1.Current;
21:
22: Console.WriteLine($"{time} {vin} {id1}");
23:
24: model.AdvanceInTime(timestep);
25: }
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Figure 5.5: Plot of simulation output of back-to-back diode circuit.

5.1.4 Defining a Subcircuit in Source Code
NextGen SPICE support defining a custom subcircuit, which then can be used
multiple times throughout the circuit and even in different circuits. In this tu-
torial, we will define a subcircuit representing a 9V battery with 1.5Ω internal
resistance, which is modelled as 9V voltage source and 1.5Ω resistor in series, as
shown in figure 5.6.

N-
− +

9 V 1.5 Ω N+

Figure 5.6: Subcircuit for 9V , 1.5Ω battery

The subcircuit is created using the CircuitBuilder class, just as if it were a
normal circuit, only instead of BuildCircuit() method, the BuildSubcircuit()
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method needs to be called with an array specifying which subcircuit nodes should
be treated as terminals. The battery definition then can be used as an argument
to AddSubcircuit() extension method, or passed to the SubcircuitDevice class
constructor. Following code fragment constructs part of a circuit with two 9V
batteries in series.

1: var builder = new CircuitBuilder();
2: var batteryDefinition = builder
3: .AddVoltageSource(1, 2, 9)
4: .AddResistor(2, 3, 1.5)
5: .BuildSubcircuit(new [] {1, 3});
6:
7: builder.Clear();
8: builder
9: .AddDevice(new[] {0, 1}, new Subcircuit(batteryDefinition))

10: .AddSubcircuit(new[] {1, 2}, batteryDefinition);
11: ...

It is also possible to inspect the state of the devices inside the subcircuit during
simulation. The SubcircuitDevice’s counterpart in LargeSignalDeviceModel
.Devices implements ILargeSignalSubcircuit interface, which exposes the de-
vices inside via the Devices property.

In this section, we described the usage of the simulator on simple examples,
in next section, we revisit individual parts of the simulator and provide detailed
description of it’s interface.

5.2 NextGenSpice.Core
The NextGenSpice.Core assembly contains the analysis independent parts of the
NextGen SPICE library, namely the classes for circuit description, and logic for
validating the circuit.

5.2.1 Creating the Circuit Description
As we briefly described in the tutorials in previous section. The NextGen SPICE
library works by first creating an analysis-independent CircuitDefinition class,
which is then transformed into the analysis-dependent circuit model. The descrip-
tion of the circuit (the CircuitDefinition class) is created using the Circuit
Builder class using the Add(int[] terminals, ICircuitDefinitionDevice
device) method. The circuit builder then saves the reference to the device
and sets node connections appropriately. If multiple copies of the same de-
vice should be added to the circuit, it is necessary to clone the device via the
ICircuitDefinitionDevice.Clone method.

For convenience, there is a static class CircuitBuilderExtensions which
contains extension methods on CircuitBuilder like AddResistor, AddDiode
etc., which can be used to shorten the code that adds the individual devices.

5.2.2 Supported Circuit Devices
Following table lists devices available in the NextGen SPICE simulation library.
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Device Nodes Parameters
Resistor N+, N− Resistance
Capacitor N+, N− Capacitance, initial voltage
Inductor N+, N− Inductance, initial current
VoltageSource N+, N− Voltage or InputSourceBehavior
CurrentSource N+, N− Current or InputSourceBehavior
Vccs N+, N−, NRef+, NRef− Gain
Vcvs N+, N−, NRef+, NRef− Gain
Cccs N+, N− VoltageSource, gain
Ccvs N+, N− VoltageSource, gain
Diode N+, N− DiodeParam
Bjt NC , NB, NE, NS BjtParam

The parameters listed in the table are set in the class constructor and directly
map to the SPICE netlist statement parameters which were described in depth
in section 2.2. The DiodeParam and BjtParam classes encapsulate the model
parameters for the diode and BJT devices, and again map to the same parameters
as in the netlist .MODEL parameters. Additionally, each device class accepts an
optional object parameter as its tag.

The InputSourceBehavior class is the base class for several source behavior
specification classes. Again, these classes directly map to the transient input
sources from the SPICE netlist syntax, as described in 2.2.4. The supported
behaviors are listed in the following table.

Behavior class Netlist Description
ConstantBehavior DC Constant input source value
SinusoidalBehavior SIN Sinusoidal source
PieceWiseLinearBehavior PWL Arbitrary piece-wise linear source
PulseBehavior PULSE Source with regular pulses
ExponentialBehavior EXP Source with exponential edges
AmBehavior AM Amplitude modulated source
SffmBehavior SFFM Single frequency modulated source

5.2.3 Creating Analysis-Specific Circuit Models
Before any circuit analysis can be performed, the circuit definition must be trans-
formed into the analysis-specific circuit model. NextGen SPICE currently sup-
ports only the LargeSignalCircuitModel which will be described in section 5.4
in more detail.

The circuit models are created using the AnalysisModelCreator class and
its instance method GetModel<TCircuitModel>(ICircuitDescription). This
class encapsulates IAnalysisModelFactory<TCircuitModel> implementations
for individual analysis model types. Factory implementations for analysis mod-
els provided by NextGen SPICE library are automatically registered using the
MEF framework. These factories can be configured to use specific implementa-
tions for individual circuit devices. The configuration is done on the factory itself,
which can be obtained using the AnalysisModelCreator.GetFactory<TCircuit
Model>().
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There is a global instance of the AnalysisModelCreator class available at
AnalysisModelCreator.Instance property. There is also an extension method
on the ICircuitDefinition interface which uses the global model creator to
create the LargeSignalCircuitModel, which can be used to simplify the code.

5.3 NextGenSpice.Parser
The NextGenSpice.Parser assembly contains the implementation of the SPICE
netlist parser. The parser itself is represented by the SpiceNetlistParser class.
The parser is designed to be extensible by registering statement processors for
individual netlist statements, which will be covered later. An instance of the
parser can be obtained via static methods SpiceNetlistParser.Empty() which
return an instance of the parser without any statement processors registered, and
SpiceNetlistParser.WithDefaults() which returns instance with handlers for
all devices implemented in the NextGen SPICE library.

The parsing itself is done using the Parse method which returns an instance
of SpiceNetlistParserResult which contains following properties:

• CircuitDefinition – Definition of the circuit contained in the netlist.

• Subcircuits – Collection of ISubcircuitDefinition classes for the sub-
circuits defined in the top-level of the netlist (Subcircuits defined inside
another subcircuit are not returned).

• Models – collection of device model (parameter sets) defined in the netlist
(again, models defined inside a subcircuit are not returned).

• Title – The content of the title statement from the netlist.

• Errors – Collection of SpiceParserError classes which wrap the errors
encountered during the parsing.

• NodeNames – NextGen SPICE uses int type to store the id of a node, this
array can be indexed by the node id to obtain the string name that was
used in the netlist.

• NodeIndices – Dictionary providing the inverse mapping to NodeNames
property.

• OtherStatements – Collection of SpiceStatements that can be used to
return user-defined statements from the parser.

To simplify obtaining references to individual circuit device instances, each
instance has been tagged with the uppercase name of the device used in the
netlist, so that a particular device can be easily obtained by FindDevice methods
on circuit definition and circuit models.
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5.4 NextGenSpice.LargeSignal
The NextGenSpice.LargeSignal assembly contains the implementation of the
large-signal circuit model which is used to perform transient analysis of circuits.
The simulation functionality is exposed through the LargeSignalCircuitModel
class, and its EstalblishDcBias and AdvanceInTime instance methods. The
EstablishDcBias method is used to calculates the DC bias of the circuit at
initial timepoint, and AdvanceInTime method is used to get the DC bias after
given timestep.

5.4.1 Accessing the Computed State

The calculated node voltages are stored in an array in the NodeVoltages property
on the LargeSignalCircuitModel class. The Devices property stores large-
signal representation classes as ILargeSignalDevice instances for the devices
used in the circuit. These instances can be used to inspect the state computed
for each circuit device. The ILargeSignalDevice instance for a particular device
can be obtained by using the FindDevice method, which has overloads accepting
ICircuitDefinitionDevice instance, or an object which was used as a tag
during circuit construction. The state is exposed in two ways: GetDeviceState
Providers method returning a collection of IDeviceStateProvider classes, and
through the individual properties on the device implementation instance.

The IDeviceStateProvider instances can be used to print all the available
state variables. The Name property gives the name of the variable, like ”I” for the
current flowing through the device, and GetValue method can be used to obtain
the respective value.

The same state can be accessed through individual properties on the device im-
plementation class instance. For example, in case of two terminal devices like re-
sistor or voltage source, the respective class implements the ITwoTerminalLarge
SignalDevice interface, which exposes Voltage and Current property contain-
ing the voltage across the device and current flowing through the device, respec-
tively. The ITwoTerminalLargeSignalDevice interface is implemented by all
implemented devices except the BJT transistor.

The BJT transistor implementation class LargeSignalBjt exposes proper-
ties CurrentBase, CurrentCollector and CurrentEmitter which expose the
currents flowing through the respective terminals, and VoltageBaseCollector,
VoltageBaseEmitter and VoltageCollectorEmitter for voltages between indi-
vidual pairs of terminals.

5.4.2 Modifying the Device Parameters

The device’s implementation used in the LargeSigalCircuitModel retain refer-
ences to the corresponding circuit definition classes. This means that changes
made to the device parameters inside CircuitDefinition are reflected in the
next DC bias point calculation. To demonstrate, recall the circuit we used in the
DC Bias calculation tutorial (figure 5.1). The following code snippet prints the
DC bias values for increasing values of the rightmost resistor.
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1: // build circuit
2: var builder = new CircuitBuilder();
3: builder
4: .AddVoltageSource(1, 0, 12, "VS")
5: .AddResistor(0, 2, 10)
6: .AddResistor(1, 2, 10)
7: .AddResistor(2, 3, 5)
8: .AddResistor(1, 3, 5, "R1");
9: var circuit = builder.BuildCircuit();

10: var model = circuit.GetLargeSignalModel();
11: var vsouce = (ITwoTerminalLargeSignalDevice)model.FindDevice("VS");
12: var res = (ResistorDevice)circuit.FindDevice("R1");
13:
14: // sweep for values from 1 Ohm to 15 Ohm
15: for (int i = 1; i <= 15; i++)
16: {
17: res.Resistance = i+1; // set resistance
18:
19: // calculate
20: model.EstablishDcBias();
21: var v1 = model.NodeVoltages[1];
22: var v2 = model.NodeVoltages[2];
23: var v3 = model.NodeVoltages[3];
24: var iV = vsouce.Current;
25:
26: // print values
27: Console.WriteLine($"{i+1}Ohm: {v1}V {v2}V {v3}V {iV}A");
28: }

5.4.3 Changing the Integration Method

Some circuits are sensitive to the choice of numerical integration method used
during the simulator. The default integration method is GEAR-2 method, which
is a reasonable compromise between accuracy and stability. However, use of
GEAR-2 method dampens the oscilations of RLC circuits. Consider the trivial
circuit in figure 5.7. Because this circuit lacks any resistance, the voltage at node
1 should oscillate indefinitely with amplitude of 1V.

1

1 nF 1 µH

i = 1mA

Figure 5.7: Indefinitely oscillating circuit

However, the GEAR-2 method dampens the oscillation. The simulator results
with GEAR-2 method are shown in figure 5.8
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Figure 5.8: Simulation results on oscillating circuit using GEAR-2 method

For comparison, the figure 5.9 shows the same simulation with trapezoidal
integration method.
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Figure 5.9: Simulation results on oscillating circuit using trapezoidal rule

Even though the trapezoidal method is more precise in terms of smaller local
truncation error and does not dampen the oscillations, it is less stable than other
methods. For comparison figure 5.10 shows plots of data obtained using the
trapezoidal rule on the back-to-back diode circuit we have shown back in figure
5.4. Notice the numerical noise, also known as trapezoidal ringing, present in the
plot.1
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Figure 5.10: Simulation results of back-to-back diode using the trapezoidal rule

The numerical method that is used during the simulation can be changed
by replacing the IntegrationMethodFactory property on LargeSignalCircuit
Model.CircuitParameters object. Following code fragment shows how to con-
figure the simulator to use the Trapezoidal Rule integration method.

1We have increased the timestep to 100µs, the original 10µs timestep also produces numerical
oscilation, but due to the density of the oscilation the plot would be merged into a single thick
line.
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1: LargeSignalCircuitModel model = /* ... */;
2:
3: // requires NextGenSpice.LargeSignal.NumIntegration namespace
4: model.CircuitParameters.IntegrationMethodFactory =
5: new SimpleIntegrationMethodFactory(
6: () => new TrapezoidalIntegrationMethod());

The supported integration methods are listed in the following table

Integration method Class name
GEAR method GearIntegrationMethod
Trapezoidal rule TrapezoidalIntegrationMethod
Backward (implicit) Euler BackwardEulerIntegrationMethod
Adams Moulton AdamsMoultonIntegrationMethod
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6. Extending the Library
This chapter describes the functionality of the library can be extended by the
user. Also, in section 6.3, we provide an example code that implements a simple
diode device that will demonstrate the process on a concrete example.

6.1 Adding New Circuit Devices
Adding new circuit devices requires both creating a class that is used in circuit
description and class that implements the actual large-signal simulation logic.
We will describe both parts in separate subsections.

6.1.1 Adding Device Description
Each device description class must implement the ICircuitDefinitionDevice
interface. To simplify the implementation of new devices, the library provides ba-
sic implementation of this interface in CircuitDefinitionDevice abstract class.
Furthermore, there exists TwoTerminalCircuitDevice abstract class which de-
fines additional member which can be useful for devices with two terminals.

These classes can be then immediately used as arguments to the Circuit
Builder.AddDevice method and thereby in the circuit definition. If the device
should participate in the circuit topology validation, then the derived classes
should override the GetBranchMetadata method and return the CircuitBranch
Metadata instances that describe which terminals are connected by voltage-
defined and current-defined branches.

6.1.2 Adding Large-Signal Device Implementation
To use these devices during a circuit analysis, their analysis-specific logic must
be implemented and then registered in the respective IAnalysisModelFactory
instance, so that the AnalysisModelCreator knows which implementation to use
when creating the LargeSignalCircuitModel.

The Device’s large-signal implementation needs to implement the ILarge
SignalDevice interface. This interface defines following members:

• RegisterAdditionalVariables – Allows implementation to add additional
variables to the equation system via supplied IEquationSystemAdapter
instance.

• Initialize – Lets devices request equation system proxies from IEquation
SystemAdapter, and perform other necessary initialization, like getting
numerical integrators from ISimulationContex.SimulationParameters.
IntegrationMethodFactory.

• ApplyModelValues – Applies devices MNA stamp into the equation sys-
tem. If the device is nonlinear, the linearized equivalent circuit should be
stamped.
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• OnEquationSolution – Lets devices check for solution convergence (com-
pare current solution with the previous one). The tolerancies can be ac-
cessed in ISimulationContext.SimulationParameters object, and if the
solution did not converge, the ISimulationContext.ReportNotConverged
method should be called.

• OnDcBiasEstablished – Called after the Newton-Raphson iterations have
reached a fixed point and the calculation of the current timestep has com-
pleted.

The mapping between circuit definition classes and their analysis implemen-
tations is done for each analysis model separately by calling the SetModel<TRep,
TMod> method on the respective IAnalysisModelFactory instance. The method
accepts a function which creates the implementation class from the circuit def-
inition class. The following code snippet shows how to register LargeSignal
Resistor as the implementation of Resistor device for LargeSignalCircuit
Model.

1: var factory = AnalysisModelCreator.Instance
2: .GetFactory<LargeSignalCircuitModel>();
3:
4: factory.SetModel<Resistor, LargeSignalResistor>(
5: resistor => new LargeSignalResistor(resistor));

This mapping can be later changed by another call to SetModel method. It
is also possible to create separate AnalysisModelCreator instances and have
different mappings in each instance.

6.2 Extending the Parser
An optional step when adding a new device to the simulator is extending the
parser to allow importing the new device from spice netlists.

6.2.1 Adding New Device Processors
The parser implemented in NextGen SPICE library delegates parsing of individ-
ual device statements to classes implementing the IDeviceStatementProcessor
interface. Implementations of this interface can be added to the parser by call-
ing the RegisterDevice method. We recommend creating new device statement
processors by deriving from DeviceStatementProcessor abstract class. The de-
rived class then needs to implement only the Discriminator char property which
specifies the letter identifying the device (The letter should be uppercase), and
DoProcess method that does the actual processing.

For simple devices with no dependencies, the DoProcess method may directly
add the device to the CircuitBuilder accessible on the protected property of
the same name in DeviceStatementProcessor. In case of devices like diode
which depend on other statements (diode statement depends on .MODEL state-
ment which defines its model parameters), the statement processing needs to be
deferred until later. This is done by adding a DeferredStatement on the active
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ParsingContext accessible through the Context property of DeviceStatement
Processor base class. The DeferredStatement defines the following methods.

• CanApply – Should return true if all dependencies of the statement have
been processed and the statement can be processed next.

• Apply – Should add the device into the circuit using the CircuitBuilder
on the ParsingContext

• GetErrors – Should return a collection of SpiceParserErrors that de-
scribe errors prevent the statement processing. This method is called once
it is certain that no statement can be processed.

The DeviceStatementProcessor class also provides property DeviceName
that exposes the name of the currently parsed device, and following methods.

• GetNodeIds(int start, int count) – Returns node ids of count nodes
specified in the statement starting by token on with index start.

• GetValue(int index) – parses the numeric value out of the token on
indexth token.

Both these method do the necessary error handling. The number of errors
generated can be checked in the Errors property, and additional errors can be
added to the Context.Errors collection. If no error is encountered, the processor
should either add the device to the circuit using the CircuitBuilder property,
or add a DeferredStatement to Context.DeferredStatements collection. The
following code fragment shows how the resistor statements are parsed.

1: protected override void DoProcess()
2: {
3: var nodes = GetNodeIds(1, 2);
4: var rvalue = GetValue(3);
5:
6: if (Errors == 0)
7: CircuitBuilder.AddDevice(nodes, new Resistor(rvalue, DeviceName));
8: }

Because the resistor device does not depend on any other statement, the de-
vice can be added to the circuit straight away. In case of diode statements, diode
devices cannot be added to circuit until the corresponding .MODEL statement is
parsed. Because .MODEL statements are used to set parameters for many de-
vice types, there is a ModeledDeviceDeferredStatement<T> class deriving from
DeferredStatement. which implements the checking for models. This class is
used in the DiodeStatementProcessor as shown in the following code fragment.

1: protected override void DoProcess()
2: {
3: var nodes = GetNodeIds(1, 2);
4: // cannot check for model existence yet, defer checking for model later
5:
6: if (Errors > 0) return;
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7:
8: var name = DeviceName; // captured in lambda
9: var modelToken = RawStatement[3];

10: Context.DeferredStatements.Add(
11: new ModeledDeviceDeferedStatement<DiodeParams>(
12: scope: Context.CurrentScope,
13: addFunc: (par, cb) => cb.AddDevice(nodes, new Diode(par, name)),
14: modelNameToken: modelToken));
15: }

6.2.2 Adding New Model Types
Some devices (like diode and BJT transistor) require a corresponding .MODEL
statement. The SpiceNetlistParser therefore can be extended to parse new models
for new devices. The handling of models for the device is done by returning
IDeviceModelHandler instances that do the parsing. The library again supplies
a abstract class DeviceModelHandlerBase<TParam> that implements the basic
logic. Derived classed need only specify the mapping to the parameter names. We
show an example implementation of the IDeviceModelHandler later in section
6.3.2.

6.3 Example: Adding a Diode Device
In previous sections we described all the steps needed to add a new device
to the simulator. To provide a concrete example, we will show in this sec-
tion how to implement a simple diode device. The NextGen SPICE library al-
ready contains diode device implementation, represented by classes Diode and
LargeSignalDiode, which is more complex version of the one we will show in
this section. The library is designed so that circuit description classes can be
reused, and the new diode implementation would require implementing only the
device’s large-signal logic. However, to demonstrate how completely new devices
can be added to the library, we will not reuse the existing diode class. Our diode
will be modeled solely by the Shockley diode equation and parameters shown in
figure 6.1. The names in capital letters will be later used in diode statements in
SPICE netlists.

I = IS

(
e

V
n·Vt − 1

)

Parameter Name Description
IS IS Saturation current
n N Ideality coefficient
Vt VT Thermal voltage

Figure 6.1: Shockley diode equation and its parameters for modeling the diode

To differentiate from diode already implemented in the library, we will use
the prefix Shockley for the classes implemented in this tutorial.
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6.3.1 Creating a Diode Device Definition
First, we have to create a class implementing ICircuitDescriptionDevice,
which will be used to represent the diode in the circuit description. Since diode
has two terminals, we will derive our class from the TwoTerminalDevice class,
which already implements members needed by the interface. The only thing we
have to add are the diode parameters. To keep with the practice of encapsulating
the device parameters in separate class for semiconductor devices, we will define
classes ShockleyDiode and ShockleyDiodeParams as follows.

1: public class ShockleyDiodeParams
2: {
3: // specify default parameters
4:
5: public double SaturationCurrent { get; set; } = 1e-14;
6: public double ThermalVoltage { get; set; } = 25.8563e-3;
7: public double IdealityCoefficient { get; set; } = 1;
8: }
9:

10: // requires .Core.Devices namespace
11: public class ShockleyDiode : TwoTerminalCircuitDevice
12: {
13: public ShockleyDiodeParams Param { get; set; }
14:
15: public ShockleyDiode(ShockleyDiodeParams param, object tag = null)
16: : base(tag)
17: {
18: Param = param;
19: }
20: }

6.3.2 Parsing diode statements
Next we will show how to extend the parser to handle the new device. Suppose
our Shockley diode statement should be specified by following syntax.

S<name> <anode> <cathode> <model name>
.MODEL <name> SHOCKLEY([IS=<val>] [N=<val>] [VT=<val>])

We will start with the .MODEL statement. Parsing ShockleyDiodeParams
from the .MODEL statement is done by a class deriving from DeviceModelHandler
Base<T> specialized on the ShockleyDiodeParams type. The mapping of indi-
vidual properties is set in the constructor by calling the Map method as shown in
the following code fragment.

1: // requires NextGenSpice.Parser.Statements.Devices; namespace
2: private class ShockleyDiodeModelHandler
3: : DeviceModelHandlerBase<ShockleyDiodeParams>
4: {
5: public ShockleyDiodeModelHandler()
6: {
7: Map(p => p.SaturationCurrent, "IS");
8: Map(p => p.ThermalVoltage, "VT");
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9: Map(p => p.IdealityCoefficient, "N");
10: }
11:
12: public override string Discriminator => "SHOCKLEY";
13:
14: protected override ShockleyDiodeParams CreateDefaultModel()
15: {
16: return new ShockleyDiodeParams();
17: }
18: }

Now we will create the actual Shockle diode statement processor by deriving
from DeviceStatementProcessor. This class will also override the GetModel
StatementHandlers method and return an instance of the ShockleyDiodeModel
Handler class which we implemented above.

1: public class ShockleyDiodeStatementProcessor : DeviceStatementProcessor
2: {
3: public override char Discriminator => 'S';
4:
5: public ShockleyDiodeStatementProcessor()
6: {
7: MinArgs = MaxArgs = 3;
8: }
9:

10: protected override void DoProcess()
11: {
12: var nodes = GetNodeIndices(1, 2);
13: // cannot check for model existence yet,
14: // defer checking for model later
15:
16: if (Errors == 0) // no errors in node names or device name
17: {
18: // use local variable to be captured in lambda
19: var name = DeviceName;
20: var modelToken = RawStatement[3];
21: Context.DeferredStatements.Add(
22: new ModeledDeviceDeferedStatement<ShockleyDiodeParams>(
23: Context.CurrentScope,
24: (par, cb) =>
25: cb.AddDevice(nodes, new ShockleyDiode(par, name)),
26: modelToken));
27: }
28: }
29:
30: public override IEnumerable<IDeviceModelHandler>
31: GetModelStatementHandlers()
32: {
33: return new[] { new ShockleyDiodeModelHandler() };
34: }
35: }

We now can register this class to SpiceNetlistParser, which will use them
when parsing the netlist files.

1: var parser = SpiceNetlistParser.WithDefaults();
2: parser.RegisterDevice(new ShockleyDiodeStatementProcessor());
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6.3.3 Implementing Large-Signal Diode Logic
Lastly, we will implement the large-signal logic for the shockley diode as the
LargeSignalShockleyDiode. We will derive our class from TwoTerminalLarge
SignalDevice<ShockleyDiode> class which provides the basic members needed
by the ILargeSignalDevice interface.

Our ShockleyDiode device has nonlinear I-V characteristic, which needs to
be iteratively linearized, as described in section 3.5.1. The large-signal logic
should therefore liearize the I-V characteristic at the candidate DC bias point
and enter the corresponding coefficients into the equation system. To simplify
manipulation with IEquationSystemCoefficientProxy objects, we will use the
CurrentStamper and ConductanceStamper classes, which encapsulate writing
stamps for current source and resistor devices, which form the linearized diode
equivalent model. Also, we will use the VoltageProxy wrapper which will read
the anode and cathode node voltages and return their difference, which is the
voltage across the diode. These classes will be initialized by calling the Register
method with the IEquationSystemAdapter during the initialization phase.

1: // classes encapsulating the work with equation system coefficient proxies
2: // requires NextGenSpice.LargeSignal.Stamping namespace
3: private VoltageProxy voltage; // used to get voltage across the diode
4:
5: // stamping equivalent circuit model
6: private CurrentStamper currentStamper;
7: private ConductanceStamper conductanceStamper;
8:
9: public LargeSignalShockleyDiode(ShockleyDiode definitionDevice)

10: : base(definitionDevice)
11: {
12: voltage = new VoltageProxy();
13: currentStamper = new CurrentStamper();
14: conductanceStamper = new ConductanceStamper();
15: }
16:
17: public override void Initialize(IEquationSystemAdapter adapter,
18: ISimulationContext context)
19: {
20: // get proxies
21: voltage.Register(adapter, Anode, Cathode);
22: currentStamper.Register(adapter, Anode, Cathode);
23: conductanceStamper.Register(adapter, Anode, Cathode);
24: }

The actual logic for writing the equation system coefficients is done in the
ApplyModelValues method. We will use the DeviceHelpers class to calculate
the linear equivalents of the diode, and then use the Stamp method on the stamper
classes to write the coefficients into the equation system.

1: public override void ApplyModelValues(ISimulationContext context)
2: {
3: var Is = DefinitionDevice.Param.SaturationCurrent;
4: var Vt = DefinitionDevice.Param.ThermalVoltage;
5: var n = DefinitionDevice.Param.IdealityCoefficient;
6:
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7: var Vd = voltage.GetValue();
8: // calculates current through the diode and it's derivative
9: DeviceHelpers.PnJunction(Is, Vd, Vt * n, out var Id, out var Geq);

10: Current = Id;
11:
12: // stamp the equivalent circuit
13: var Ieq = Id - Geq * Vd;
14: conductanceStamper.Stamp(Geq);
15: currentStamper.Stamp(Ieq);
16: }

Because the diode is a nonlinear device, the DC bias calculation needs to be
iterated until the values are in the specified tolerances. The convergence check
for nonlinear devices is done in the OnEquationSolution method. Also we will
update the Voltage property so that the voltage across the diode can be accessed
by the outside code once the calculation is completed.

1: public override void OnEquationSolution(ISimulationContext context)
2: {
3: var newVoltage = voltage.GetValue();
4: var abstol = context.SimulationParameters.AbsoluteTolerance;
5: var reltol = context.SimulationParameters.RelativeTolerance;
6:
7: // Check if converged
8: if (!MathHelper.InTollerance(newVoltage, Voltage, abstol, reltol))
9: {

10: // request additional DC bias iteration
11: context.ReportNotConverged(this);
12: }
13:
14: // update voltage for reading
15: Voltage = newVoltage;
16: }

To use the LargeSignalShockleyDiode as the diode implementation in Large
SignalCircuitModel, we need to register it in the AnalysisModelCreator in-
stance used to create the circuit model.

1: // requires NextGenSpice.Core.Representation
2: var factory = AnalysisModelCreator.Instance
3: .GetFactory<LargeSignalCircuitModel>();
4: factory.SetModel<ShockleyDiode, LargeSignalShockleyDiode>(
5: e => new LargeSignalShockleyDiode(e));

This concludes the diode implementation, the whole example can be found in
the /sources/SandboxRunner/DiodeImplExample.cs file on the attached CD.
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7. User Documentation -
Standalone Application
This chapter describes how to use the NextGenSpice standalone application. To
run the application, the user needs to have .NET Core Runtime version 2.0 or
newer installed on their computer. The latest version of the .NET Core Runtime
can be downloaded from the official website1. Because the program is command
line based, an external tool is needed for the visualization of the transient analysis
output. For this purpose, we recommend downloading and installing gnuplot from
the official website.2

The program’s binaries can be found in the /binaries folder on the attached
CD. Before the library can be used, the contents of the /binaries folder need to
be copied to an appropriate location (in this text, we will assume that the files
are copied to C:\NextGenSpice\ folder). If everything is set correctly, following
command should produced the output shown.

C:\NextGenSpice> dotnet NextGenSpice.dll
Usage: dotnet NextGenSpice.dll <input file>
C:\NextGenSpice>

The program does accept exactly one argument: path to a file containing
the circuit in SPICE netlist format, as described in chapter 2. The application
reads all the statements in the file and reports back any errors encountered. If
there are no errors, then individual circuit analyses are executed. First, the
respective simulation statement is printed back to standard output, and after
that the simulation results are printed. The output format is described in the
following sections.

.OP Statement Output Format

In the operating point analysis, the output consists of series of <variable> =
<value> pairs, each on separate line. If no .PRINT statement is specified, then
all available data is printed.

To illustrate, consider following netlist file.

1: BRIDGE-T CIRCUIT
2: *
3: VBIAS 1 0 12
4: R1 1 2 10
5: R2 2 0 10
6: R3 2 3 5
7: R4 1 3 5
8: *
9: .OP

10: .END

− +
VBIAS

12 V

1

5 Ω R4

3

5 Ω

R32

10 Ω

R2

10 Ω R1

1https://www.microsoft.com/net/download/Windows/run
2http://www.gnuplot.info/download.html
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This file is available on the attached CD in /examples/bridget.txt. Copy
this file to the C:\NextGenSpice\ folder. Following code snippet shows how the
NextGenSpice output for this netlist file.

C:\NextGenSpice> dotnet NextGenSpice.dll bridget.txt
.OP
V(1) = 12
V(2) = 8
V(3) = 10

I(VBIAS) = -0.8
V(VBIAS) = 12

I(R1) = 0.4
V(R1) = 4

I(R2) = 0.8
V(R2) = 8

I(R3) = -0.4
V(R3) = -2

I(R4) = 0.4
V(R4) = 2
C:\NextGenSpice>

.TRAN Statement Output Format

In the transient analysis, the program prints the output data in individual rows for
each simulated timepoint. First, the program prints a header which identifies the
data in each column. The first column always specifies the timepoint value, the
other columns hold the data specified by the .PRINT statement. The individual
columns are separated by one space character. As an example, we show a simple
circuit which demonstrates the time-domain capacitor behavior.

1: SIMPLE CAPACITOR CIRCUIT
2:
3: V1 1 0 PULSE(0 15 0 1N 1N 100)
4: C1 0 2 1U
5: R1 2 1 1
6:
7: .TRAN .5U 6U
8: .PRINT TRAN V(2) I(C1)
9: .END − +

PULSE

V1
1

1 Ω R1

2

1 µFC1

This netlist can be found in /examples/capacitor.txt in the attached CD.
Copy this file to the C:\NextGenSpice\ folder and run the following command.
You should see the following output.
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C:\NextGenSpice> dotnet NextGenSpice.dll capacitor.txt
.TRAN 5E-07 6E-06 0
Time V(2) I(C1)
0 0 0
5E-07 3 -12
1E-06 7.8 -7.2
1.5E-06 10.68 -4.32
2E-06 12.408 -2.592
2.5E-06 13.4448 -1.5552
3E-06 14.06688 -0.933120000000001
3.5E-06 14.440128 -0.559872
4E-06 14.6640768 -0.335923200000001
4.5E-06 14.79844608 -0.201553919999999
5E-06 14.879067648 -0.120932351999998
5.5E-06 14.9274405888 -0.0725594111999996
6E-06 14.95646435328 -0.0435356467200009
C:\NextGenSpice>

To simplify visualizing the data output from the .TRAN statement using gnu-
plot, we have included the plot.ps1 PowerShell script in the /binaries folder.
This script performs following steps:

1. Run the NextGenSpice program with specified input file.

2. Save the output to a file with same name and .out extension.

3. Runs gnuplot and creates an .svg file containing the plotted simulation
data.

4. Opens the .svg file for viewing.

It is important that the input netlist file contains exactly one .TRAN state-
ment, and that the path to gnuplot executable is set in the PATH environmental
variable. To use the script, use the PowerShell command prompt and run the
following command. The output plot file should be immediately opened by the
web browser.

PS C:\NextGenSpice> .\plot.ps1 capacitor.txt

The attached CD contains more examples in the /examples folder.
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8. Results
In this chapter ve evaluate the simulator the NextGen SPICE library’s perfor-
mance based on the used precision type. We will also compare the our simulator
with the ngspice and SpiceSharp simulator. We will test the performance on the
following circuits:

• adder – a four-bit adder circuit.

• astable – a simple stable multivibrator.

• backtoback – the back-to-back diode circuit from the Mike Robbins’ paper
about using double-double in circuit simulation [15].

• cfflop – a saturating complementary flip flop.

• choke – circuit containing two diodes used to choke the voltage source.

• diffpair – simple differential pair.

• ecl – emmiter coupled logic inverter.

• rca3040 – circuit simulating a RCA3040 wideband amplifier

• rtlinv – cascade RTL inverters.

• sbdgate – Shottky-barrier TTL inverter.

• ua709 – circuit simulating the UA 709 opamp.

The backtoback circuit is the circuit with two back-to-back diodes and a 1µΩ
resistor which was shown back in the introduction chapter in section 1.4. The
adder circuit was taken from Andrei Vladimirescu’s The SPICE Book [1], p. 199.
Detailed description of the other circuits, including their schematics, can be found
in appendix I of the Nagel’s Ph.D. thesis [19]. For convenience, we included a
copy of his thesis in the attached CD at /references/ERL-520.pdf.

The circuits taken from the Nagel’s Ph.D. thesis needed to be slightly modi-
fied, because they were intended for SPICE2, which uses different names for some
model parameters than SPICE3 (e.g. SPICE2 uses CCS for collector-substrate
junction capacitance, SPICE3 and NextGen SPICE library uses CJS). Moreover,
the .OPTION statements had to be removed because they are not implemented in
our parser. However, no other modifications to the netlists were needed in order
to parse them in our library. The actual versions of the netlist files which were
used for benchmarks can be found on the attached CD in the /examples folder.

8.1 Comparison of Precision Type Performance
We have run a transient analysis on these circuits using the double, double-
double and quad-double precision types with native implementation Gaussian
elimination algorithm. We used the BenchmarkDotNet library to obtain the
results shown in the following table. The simulations are grouped by the simulated
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circuits, also, relevant information about each circuit is included. Times in the
table do not include the time spent parsing the circuit, rows with NA mean that
the calculation of some timepoint did not converge after 10000 iterations.1

Method Mean Error StdDev Scaled
adder: 451 variables, 446 devices (180 BJT transistors), 50 timepoints
double NA NA NA ?
double-double 9.147 s 0.2595 s 0.1716 s ?
quad-double 86.230 s 1.3810 s 0.9134 s ?
astable: 17 variables, 10 devices, 100 timepoints
double 14.78 ms 0.1047 ms 0.0979 ms 1.00
double-double 178.91 ms 0.6506 ms 0.5768 ms 12.11
quad-double 1,404.55 ms 17.1084 ms 14.2863 ms 95.04
backtoback: 7 variables, 4 devices, 1000 timepoints
double 2.640 ms 0.0758 ms 0.0843 ms 1.00
double-double 6.696 ms 0.0684 ms 0.0640 ms 2.54
quad-double 46.549 ms 0.3565 ms 0.3335 ms 17.65
cfflop: 18 variables, 19 devices, 1000 timepoints
double 16.493 ms 0.3227 ms 0.6061 ms 1.00
double-double 57.694 ms 0.5024 ms 0.4699 ms 3.50
quad-double 460.006 ms 7.4204 ms 6.9410 ms 27.93
choke: 11 variables, 8 devices, 100 timepoints
double 752.0 µs 14.774 µs 13.820 µs 1.00
double-double 2,223.9 µs 44.123 µs 45.311 µs 2.96
quad-double 17,512.9 µs 248.354 µs 220.159 µs 23.30
diffpair: 21 variables, 12 devices, 100 timepoints
double NA NA NA ?
double-double 8.487 ms 0.0807 ms 0.0630 ms ?
quad-double 65.206 ms 0.1859 ms 0.1553 ms ?
ecl: 25 variables, 12 devices, 50 timepoints
double NA NA NA ?
double-double 2.282 ms 0.0191 ms 0.0179 ms ?
quad-double 18.135 ms 0.4415 ms 0.7254 ms ?
rca3040: 44 variables, 26 devices, 400 timepoints
double NA NA NA ?
double-double 150.7 ms 20.12 ms 13.31 ms ?
quad-double 1,286.7 ms 29.24 ms 19.34 ms ?
rtlinv: 15 variables, 8 devices, 100 timepoints
double 549.5 µs 5.197 µs 4.607 µs 1.00
double-double 1,632.0 µs 31.832 µs 44.625 µs 2.97
quad-double 11,414.4 µs 152.975 µs 135.608 µs 20.77

1The simulations mentioned in this chapter were run on system with i5-6300HQ 2.30 GHz
CPU using .NET Core 2.0.6 (CoreCLR 4.6.26212.01, CoreFX 4.6.26212.01), 64bit RyuJIT,
Release mode.
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sbdgate: 65 variables, 35 devices, 200 timepoints
double NA NA NA ?
double-double 130.3 ms 25.47 ms 16.85 ms ?
quad-double 1,273.4 ms 27.82 ms 18.40 ms ?
ua709: 61 variables, 39 devices, 125 timepoints
double NA NA NA ?
double-double 123.5 ms 20.96 ms 13.86 ms ?
quad-double 1,244.7 ms 27.23 ms 18.01 ms ?

As seen from the table, using the built-in double type leads to the fastest sim-
ulation. However, the simulation of adder, diffpair, ecl, rca3040, sbdgate
and ua709 did not converge. Because the same circuits converge when enhanced
precision types are used, the nonconvergence is probably due to truncation errors
during the equation solution, which lead to oscillation around the correct solu-
tion, but outside the simulator tolerances. We also ran all these simulations in
ngspice simulator successfully without any nonconvergence issues, even though
the ngspice uses only standard double precision. We attribute this to the fact
that ngspice has been in development for many years and contains many tweaks
to ensure convergence.

In terms of simulator output, the output values differ mostly in the 10th
significant digit or lower and the data plots for each precision type are visually
indistinguishable from each other. The sole exception is the backtoback circuit.
In the version where only double precision was used, the truncation errors lead
to numerical noise discussed in section 1.4 of the introduction chapter. Figure
8.1 shows the plots for the double and double-double precision type.
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Figure 8.1: Comparison of the simulation results for backtoback circuit for double
and double-double precision type
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Nevertheless, the noise seems to be much smaller than the one produced when
simulating the circuit with LTspice (see figure 5.4 back in the introduction chap-
ter).

Using double-double precision over standard double precision helped solve
convergence issues in many circuits and helped eliminate noise at the cost of slower
simulation speed. From our observations, using quad-double over double-double
does not bring any additional benefits (number of iterations needed to simulate
the circuit stays the same, double-double already eliminates possible noise from
truncation errors in the backtoback circuit) and only slows down the simulation
by an order of magnitude. Therefore, we do not recommend using the quad-double
type when using the NextGen SPICE library. Instead, we recommend using the
double-double precision even though the simulation may be slower than when
using only double precision.

In the future versions of the library, we would certainly like to add more
convergence aids to ensure convergence even with double precision type. Then
the choice of precision type would be based on whether the circuit is expected to
be ill-conditioned or not.

8.2 Comparison with Ngspice Simulator
Following table compares the simulation times of our library with the ngspice
simulator. The times listed in the table were obtained using the rusage trantime
command in ngspice interactive mode, which lists the time the simulator spent
on the transient analysis in seconds with three decimal places. Because of the
low resolution of the trantime information, we compared the runs only on the
simulations which take several milliseconds. The ngspice simulator was run 5
times and the run times were averaged. The adder circuit was simulated for
both 50 timesteps (as in previous section) and 6400 timesteps.

Circuit ngspice NextGen SPICE (double-double)
cfflop 11 ms 57 ms

rca3040 8 ms 150 ms
sbdgate 6 ms 130 ms

ua709 5 ms 124 ms
adder (50 ns) 67 ms 9,147 ms

adder (6400 ns) 8.3 s 898.1 s

The ngspice simulator is noticeably faster. The ratio of the runtimes of ngspice
and that of our library seem roughly proportional to the number of variables in
the equation system, in case of the adder circuit with 451 variables, the ngspice
simulator was more than 100 times faster. We used the performance profiler
integrated in Visual Studio 2017 to find out which parts of our simulator are
the slowest. It turns out that the simulator spends more than 95% of the time
solving the equation system. The equation systems for the larger circuits are very
sparse, in case of adder circuit, only around 1% of the matrix entries are nonzero.
Because our simulator uses full matrix representation, it spends too much time on
multiplying and adding the zero entries. On the other hand, ngspice uses sparse
matrix representation which performs only the necessary arithmetical operations.

90



Therefore, in the next versions of the library, we should implement the sparse
matrix representation, and perhaps also consider using different method for solv-
ing the equation system to speed up the simulation. Possible choice would be
using LU factorization which is also used by ngspice, or even iterative methods
like Gauss-Seidel.

8.3 Comparison with SpiceSharp
NextGen SPICE is not the only circuit simulator library for .NET in development.
There is SpiceSharp [8], whose development started shortly after that of our
library. The SpiceSharp is made to resemble the original SPICE3F5, with some
modifications to make the source code more appropriate for the .NET platform.
Several parts of the source code contain comments with references to the original
SPICE3’s source and explanation how is it modified.

To compare the user interface of SpiceSharp with that of NextGen SPICE
library, consider following code fragment for simulating the simple RLC circuit,
which we have simulated in the NextGen SPICE tutorials back in section 5.1.2.
We omitted the declarations of outer class and namespace usings for brevity.

1: private static void SpiceSharp()
2: {
3: var circuit = new Circuit(
4: new VoltageSource("V1", "1", "0",
5: new Pulse(0, 5, 5e-3, 0, 0, 25e-3, double.MaxValue)),
6: new Resistor("R1", "1", "2", 50),
7: new Inductor("I1", "2", "3", 0.125),
8: new Capacitor("C1", "3", "0", 1e-6)
9: );

10:
11: Transient tran = new Transient("TRAN", 0.2e-3, 55e-3);
12: Console.WriteLine("Time V(1) V(3) I(VC)");
13:
14: RealPropertyExport i_v1 = new RealPropertyExport(tran, "V1", "i");
15: Console.WriteLine("Time V(1) V(3)");
16: tran.OnExportSimulationData += (sender, args) =>
17: {
18: var time = args.Time;
19: var v1 = args.GetVoltage("1");
20: var v3 = args.GetVoltage("3");
21: var i = i_v1.Value;
22:
23: Console.WriteLine($"{time} {v1} {v3} {i}");
24: };
25:
26: tran.Run(circuit);
27: }

The SpiceSharp user interface is very similar to the SPICE netlist syntax.
This means that all devices and nodes are identified by a string. In the NextGen
SPICE library, the individual devices can be (optionally) tagged by an arbitrary
C# object.

Another difference is how a circuit is constructed, in case of simple devices, the
identifiers of connected nodes are passed to the constructor, and the constructed
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devices can be passed to the Circuit class constructor. However, the connections
for transistors can be only set by calling the Connect instance method, which we
found counterintuitive.

The individual simulations are done by calling a Run method on a dedicated
simulation object with the simulated circuit as an argument (see lines 11 and 26
of the source above). Getting the simulation data is a bit tricky. The easiest way
to get the node voltages in the individual timepoints is registering a handler on
the OnExportSimulationData event (lines 14 to 20). To get e.g. current flowing
through the voltage source, one has to use a RealPropertyExport class (line
14) and specify the name of the device and a string name of the property to be
extracted. The value of this voltage source current can be then accessed via the
Value property during the OnExportSimulationData callback (line 21).

The SpiceSharp’s interface makes heavy use of string values, in the example
above we show that getting a current though a device requires knowledge of
how the appropriate string identifier. What’s worse, the strings are also used to
set individual parameters for semiconductor devices. following code fragment is
taken from the SpiceSharpTest/Models/Semiconductors/DIO/DiodeTests.cs
file from the SpiceSharp’s Github repository (version from 4th May 2018).

1: // Build circuit
2: Circuit ckt = new Circuit();
3: ckt.Objects.Add(
4: CreateDiode("D1", "OUT", "0", "1N914",
5: "Is=2.52e-9 Rs=0.568 N=1.752 Cjo=4e-12 M=0.4 tt=20e-9"),
6: new VoltageSource("V1", "OUT", "0", 0.0)
7: );

The CreateDiode method is a helper method which parses the parameter
string and sets individual parameters by calling SetParameter method on Diode
Model class, which internally uses reflection to set appropriate property. The
downside of this is that the parameter names cannot be hinted by automatic
code completion feature of the IDE (like Intellisense in Visual Studio). These
actual object on which the parameters are stored can be accessed, but it takes
several casts and is by no means intuitive. Because of this, we consider the
interface of our NextGen SPICE library superior to that of SpiceSharp.

Although it’s interface is user unfriendly, SpiceSharp implements more circuit
analyses and more circuit devices. Also, the implemented models for semiconduc-
tor devices are more detailed than those implemented in NextGen SPICE library.
We would like to address this in the next version of our library and expand the
set of implemented devices and add new analysis types.

We tried to compare the performance of SpiceSharp and the NextGen SPICE
library. However, we have had difficulties parsing the netlist files containing the
benchmark circuits in the SpiceSharp parser. Some netlist needed to be altered
(e.g. SIN source changed to SINE, adding an argument with default value which
is not strictly needed by SPICE3, or converting parts of the netlist to lowercase).
The SpiceSharp simulator then reported a singular matrix when simulating the
adder and sbdgate circuit, and in the circuits which were actually simulated,
the SpiceSharp simulator used bigger timestep than we specified. This lead to
very shorter simulation times and lower-resolution plots. This makes it difficult
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to compare the simulators performances. Following table lists measured times
and number of timesteps computed.

Method Timepoints Mean Error StdDev Scaled
backtoback
NextGen SPICE 1000 846.4 µs 10.319 µs 9.148 µs 1.00
SpiceSharp 5550 69,987.3 µs 565.747 µs 472.424 µs 82.70
cfflop
NextGen SPICE 1000 59,352.3 µs 1,151.949 µs 1,232.573 µs 1.00
SpiceSharp 81 2,051.9 µs 29.520 µs 27.613 µs 0.03
choke
NextGen SPICE 100 2,236.1 µs 42.844 µs 40.076 µs 1.00
SpiceSharp 73 557.4 µs 7.231 µs 6.764 µs 0.25
diffpair
NextGen SPICE 100 8,576.7 µs 165.504 µs 215.202 µs 1.00
SpiceSharp 59 1,032.8 µs 10.943 µs 10.236 µs 0.12
rtlinv
NextGen SPICE 100 1,569.9 µs 13.843 µs 12.271 µs 1.00
SpiceSharp 80 988.7 µs 10.505 µs 9.826 µs 0.63

When comparing the runtimes per individual timepoint, the NextGen SPICE
is around four times slower, which can be explained by the usage of double-double
precision in NextGen SPICE and sparse matrix representation in SpiceSharp.
However, when simulating te backtoback circuit, the SpiceSharp needed far more
timepoint computations. As seen from in figure 8.2, the SpiceSharp does not
correctly handle circuits with very small resistors.
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Figure 8.2: Plot of the backtoback circuit from SpiceSharp

The plots of other circuits were similar to the ones produced by the NextGen
SPICE, although the greater timestep resulted in visible straight regions in the
plot. For example, figure 8.3 shows plot of voltage in cfflop circuit on the 6 node.
At 2·10−7 mark, the SpiceSharp output has visible straight edge. Also, the output
our NextGen SPICE shows clearly the slight S shape of the slopes when voltage
changes. This shape is not clearly visible on the SpiceSharp output.
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Figure 8.3: Comparison of simulation results on the cfflop circuit

8.4 Summary
Considering the measurements listed in this chapter, the representation of equa-
tion system and method for solving it is crucial part of the circuit simulator. Our
choice of the simplest implementation possible – full matrix and Gaussian elimi-
nation – caused our simulator to be orders of magnitude slower on large circuits
than other circuit simulators. However, thanks to the abstraction we used during
the implementation, more appropriate methods can be implemented in future
versions of the library.

In terms of the simulator output, NextGen SPICE produces visually same
plots as other circuit simulators, and because of the double-double precision type
used, it does not suffer from the noise caused by truncation error during equation
system solution.
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Conclusion
To conclude our thesis, we will revisit the goals we set in the introduction chapter
in section 1.5

1. Implement SPICE-like simulation library

(a) Target .NET Standard for maximum portability – Our library requires
.NET Standard 2.0, which makes it available on all major platforms
running one of the newer version of .NET runtime.

(b) Support performing time-domain simulation of the circuit, and allow
changing parameters of circuit devices between individual timesteps. –
We designed our simulator in such a way that users of our library decide
when next circuit state is computed and how big the timestep should
be. Between the individual timesteps, users can modify parameters of
the devices in the simulated circuit, and have the changes affect the
next calculated circuit state.

(c) Support following set of devices
i. Ideal resistor

ii. Ideal voltage source
iii. Ideal current source
iv. Ideal inductor
v. Ideal capacitor

vi. SPICE diode
vii. SPICE BJT transistor
We successfully implemented all circuit devices listed above. In addi-
tion, we also implemented linear controlled sources: voltage controlled
voltage source, voltage controlled current source, current controlled
voltage source and current controlled current source.

(d) Allow new types of circuit analyses and circuit devices to be added to
the simulator without modifying the library’s source code. – We have
written a guide on how to add new devices in library’s user documen-
tation in chapter 6 and provided an example of adding new device in
section 6.3.

(e) Implement SPICE netlist parser to allow importing circuits and macro-
models from standard SPICE netlist files. – Our parser supports suf-
ficient subset of the SPICE3 netlist syntax to allow importing circuits
and subcircuits (macromodels) containing devices implemented in our
simulator. We have tested our parser on existing SPICE netlists with
success. However, because the parser implementation present in the
library implements only the data statements (devices, subcircuits and
device models), it is necessary to remove any control statements from
the netlist file before parsing them in NextGen SPICE.

(f) Allow users of the library to choose between double, double-double, and
quad-double precision types and compare the library’s performance with
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respect to speed and accuracy for each listed precision type. – Users can
compile our library themselves and choose the precision type to be
used by defining a certain conditional compilation symbol. We com-
pared the simulator performance for each precision type and found out
that the double-double type currently provides the best combination
of convergence and simulation speed for our library.

2. Use the simulation library to implement SPICE-like console application for
.NET Core, which would accept implemented subset of SPICE netlist syntax.
– Our NextGenSpice application targets .NET Core 2.0 and provides the
desired functionality by extending the library’s parser to handle .TRAN .OP
and .PRINT statements. We then used the library’s functionality to run the
simulations and print the requested data to standard output.

Future Work

The NextGen SPICE library offers only a narrow subset of the SPICE-like simula-
tors used today. Following list contains features which we consider most beneficial
for the next version of the library.

• Sparse matrix representation – As discussed in the 8.1, the Gauss-Jordan
elimination and full matrix representation proved to be a performance bot-
tleneck when simulating larger circuits. Using sparse matrix methods which
are used by the standard SPICE implementations would significantly speed
up the simulation.

• Dynamic timestep – Current implementation of the transient analysis al-
gorithm relies on the user to choose a fixed timestep. As discussed in the
analysis 3.5.5, dynamic timestep mechanism can speedup simulation in re-
gions where the capacitor charges and inductor fluxes do not change quickly.

• Implementing .INCLUDE statement – Currently all used models and subcir-
cuits need to be defined in the netlist file. SPICE3’s .INCLUDE statement
works similarly to the #include directive in C or C++ languages: the con-
tents of the included file are treated as if they were copied and pasted in
place of the .INCLUDE statement. This allows better reuse of the subcircuits
and defined models.

• Interactive console application – Current NextGenSpice console application
offers limited interaction with the user. Also, when the user wants to run
the same simulation with different parameters, the netlist file must be edited
and the application run again. SPICE3 introduced an interactive mode, in
which the program reads only the circuit description from the netlist file.
The simulation statements and other control statements are then supplied
on the standard input by the user.

• More devices and analysis types – Last but not least, the NextGen SPICE
library as implemented in this thesis offers only a fraction of circuit analysis
types and circuit devices. Examples of devices which are completely miss-
ing are switches (voltage and current controlled), other types of transistors
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(JFET, MOSFET), transmission lines, coupled inductors and semiconduc-
tor versions of resistor and capacitor devices. From the analysis types,
the NextGenSpice library is missing e.g. the AC frequency sweep analysis,
which requires small-signal models of the simulated devices.
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Attachments
Contents of the attached CD

• /sources – folder containing the NextGenSpice solution.

• /examples – folder containing sample input files for the NextGenSpice
standalone program.

• /binaries – folder containing the binary files for the NextGen SPICE li-
brary and standalone console application, and plot.ps1 Powershell script
for running and automatically plotting the output data.

• /references – folder containing copy of the documents which were the
source for circuit simulation theory for this thesis.

/qucs.pdf – the QUCS Technical Papers [18]
/ERL-520.pdf – Laurence W. Nagel’s PhD thesis on SPICE2 [19]

• /documentation – folder containing the PDF version of the API reference
for the NextGen SPICE simulator library.

• /tex – folder containing the LATEX source for this thesis
/en – folder with the .tex files
/img – folder with images used in this thesis
/LICENSE.TXT – file containing licensing information

• /thesis.pdf – file containing this thesis.

• /README.txt – file describing the contents of the CD.
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