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Abstract
We simulate a fragmented market and study three types of agents and their
interactions in continuous trading and frequent-batch auctions. We model the
markets using the agent-based modeling approach. There are two exchanges on
which one asset is being traded by zero-intelligence (ZI) traders, market makers
and a latency arbitrageur. The former two agents are marked as slow traders,
the arbitrageur is a fast trader - fast trader has perfect information about the
market, slow traders are dependent on the (possibly lagged) NBBO information
provided by the regulator. Our main metric is the surplus of ZI traders, we
also measure other market’s characteristics. We then simulate the market for
different delays of the NBBO delay and we find that under certain conditions
and until certain length, the batch auctions are beneficial to ZI traders, as they
reduce the advantage and therefore the profit of the fast trader.
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Abstrakt
V této práci simulujeme trh se třemi typy agentů a pozorujeme jejich chování v
režimu spojitého obchodování a krátkých a častých aukcích. Používáme metodu
multiagentního modelování. Základ našeho trhu tvoří dvě burzy, na kterých se
obchoduje jeden statek. Naše agenty lze rozdělit na pomalé - Zero intelligence
obchodníci a tvůrci trhu a rychlé - arbitrážník. Pomalí obchodníci dostávají
informace o stavu na trhu od regulátora, tato informace může mít zpoždění
oproti situaci na trhu. Arbitrážník má přístup k oběma burzám s nulovým
zpožděním, předpokládáme u něj nekonečnou rychlost. Hlavním ukazatelem
podle kterého posuzujeme kvalitu trhu je nadbytek ZI obchodníka, ale sledu-
jeme také další charakteristiky trhu. V trhu simulujeme zpoždění informace
od regulátora pomalým obchodníkům a zkoušíme různé délky aukcí. Zjistili
jsme, že pokud jsou splněny určité podmínky, má ZI obchodník vyšší nadbytek
v režimu krátkých aukcí a to i pokud má zpožděnou informaci od regulátora.
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Motivation The financial markets have undergone an enormous change in the
last few decades, mainly thanks to advances in computer sciences and information
technologies in general. This change is generally regarded as a positive development
- for instance the transaction costs have gone down significantly, making the markets
accessible not only to large institutions but to retail investors as well. One of the
most influential concepts is that of high frequency trading (HFT) - thanks to high-
performance computers, we are now able to let computers trade, making tens of
thousands of transactions per second.

HFT also became quite a controversial topic of discussion and of interest to many
researchers. The proponents of HFT argue that it further helped drive down the
transaction costs, as high-frequency traders usually act as market makers, replacing
the inefficient human market makers and specialists, narrowing further the bid-ask
spread. On the other hand HFT is usually criticized as it is associated with many
black-hat methods and with some adverse events such as flash crashes. Just to name
a few, high-frequency traders have been many times fined due to techniques such as
quote-stuffing, front-running or spoofing.

Leaving the general critique aside, HFT nowadays is almost at its limits when
it comes to the physical restrictions. Light, hence information, can only travel so
fast. That is why we saw immense investment into the trading infrastructure, the
most famous example is that of $300m cable which decreased the time it takes the
information to go from New York to Chicago by three milliseconds (that is 3 ∗ 10−3

seconds). Such investment is incentivized mainly because trading today is conducted
on the first-come first serve basis in a continuous fashion. Therefore only a slight
time-advantage can be the difference between making and losing money as a HFT
firm.

Budish et al. (2015) have proposed a different mechanism - frequent batch auc-
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tions. With such model, the marginal speed difference is not as important and traders
should focus more on price rather than on the speed. It is similar mechanism to how
current price scale works, instead of having a continuous one different markets have
different tick sizes - discrete points at which trading can take place. The logic here is
that lower price differential than a tick size is economically insignificant and therefore
should be ignored. Similarly marginal time differences should be ignored in the same
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Chapter 1

Introduction

In recent years the financial markets have undergone a rapid change, fueled
mainly by the global technological progress. The markets, more specifically
the access to them became much more widespread, thanks first to phones, cell
phones and later to the internet. This change meant on average lower trans-
action costs and higher volume and liquidity to the investors and therefore is
generally regarded as beneficial. The transformation has changed the playing
field and it brought in new market participants who rely heavily on technology
and computational power. We refer to these traders for lack of a better word
as high-frequency traders, mainly due to the nature of their trading, as they
are making a large number of transactions in very short time periods. Due to
the fact that computers are able to process information from financial markets
at a much higher rate than humans, high-frequency trading (HFT) has been
often labeled as manipulative and generally harmful towards other market par-
ticipants due to its unfair advantage over regular traders and investors. As
HFT refers simply to the time frame at which orders are executed, we do not
do any generalizing conclusions to all high-frequency traders, rather we focus
on a smaller subset that can be studied and evaluated separately from the rest
of the market participants.

This thesis focuses on one aspect of the market design, which is the fre-
quency at which market orders are cleared. Today the majority of securities
markets work on a serial basis, orders arrive at the exchange and are put in the
queue based on the time of their arrival. A trade is made when the buying and
selling order have the same price, or if buying (selling) order which arrives to
the market as second is above (below) the counterparty. As the pairing of orders
is determined by the time of their arrival, even a small speed advantage could,
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therefore, mean the difference between getting the order executed or having it
left in the order book untouched. We refer to this market organization as a
continuous double auction (CDA).

The proponents of alternative market designs argue that the CDA by design
is not socially optimal. Their proposed alternatives usually revolve around
diminishing the importance of speed which they perceive to be the biggest
drawback of the CDAs. We simulate a market with the CDAs and batch-
auctions clearing. We compare the performance of the two clearing mechanisms
by analyzing the surplus/profit of our agents, the transaction costs, the liquidity
and the price volatility.

The thesis has the following structure: Chapter 2 presents the motivation
for this thesis and Chapter 3 summarizes the already existing literature. Chap-
ter 4 describes the agents and models that are used. Chapter 5 presents the
environment and market mechanisms under which the agents operate. Chap-
ter 6 presents the results of our simulation. The conclusion summarizes our
findings.



Chapter 2

Motivation

Let us first look at the primary motivation for even considering a different mar-
ket design than what the CDA offers. In the recent 10 years, we have seen a
lot of criticism directed towards high-frequency traders and their behavior on
various exchanges. They have been associated with black-hat (malicious) prac-
tices such as quote stuffing, front-running of orders, order spoofing, marking
the close and have been also accused of being the leading cause of many shflash
crashes. Hence establishing a slightly different market environment in which
speed is not as important of a factor could diminish the adverse effects of HFT.
We shortly look at the already mentioned black hat techniques to illustrate in
what ways exactly can the HFT make use of their speed advantage.

Rossi et al. (2015) summarize recent investigations which took place as a
reaction to various HFT’s misconducts. They analyze multiple cases where a
trading company was charged with malicious practices. E.g. Athena capital
was the main player in some stocks of the NASDAQ exchange. At times, they
were responsible for more than 70% of the volume in these stocks. This enabled
them to set the closing price, which usually serves as a reference price for other
products or contracts which are traded off the exchange. This practice is called
marking the close and it is illegal.

Another case mentioned by Rossi et al. (2015) is that of Panther Energy
Trading LLC. They were charged with spoofing, a technique which consists of
using non-bona fide orders - orders whose primary goal is not getting executed
but rather create confusion and false impressions. This technique is regarded
as harmful towards the quality of the market.

Sar (2017) states that order spoofing misrepresents the order book and
argues that section 747 (Antidisruptive practices authority) of the Dodd-Frank
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Act is a step in the right direction towards higher market quality. This section
addresses both spoofing and marking the close as malicious techniques and
lowers the barriers of an investigation against the malpractice. The fact that
these practices are included in the Dodd-Frank act shows the regulator’s stance
on the subject.

The events of the Flash Crash of May 6th, 2010 were studied in detail by
Kirilenko et al. (2011). During this day, the Dow Jones Industrial Average
(DJIA) lost roughly 9% of its value in little over 30 minutes, but it recovered
the loss in a similarly short time period. Kirilenko et al. (2011) analyzed the
actions of all market participants in the E-mini S&P 500 index contract, coming
to the conclusion that high-frequency (HF) traders were not the primary cause
of the initial downward move. They were however aggressively selling in the
latter phase of the downward move.

An article by Hunsader (2013) points at another way in which the mar-
kets are being manipulated, this time he points at the physical impossibility
of HFT’s reaction to a piece of public news. The Federal Reserve (FED) an-
nouncement was released from Washington and shortly after the HFT were
trading off that news in Chicago. The problem is that their reaction times
were extremely quick. According to the author, the only reasonable explana-
tion is that they had to have the information upfront before the announcement.
Otherwise, the author argues that the information would need to travel faster
than the speed of light. This problem is already systematically tackled and is
considered by the SEC as a market manipulation (insider trading).

Front-running is another malicious practice mainly known from days when
trading in physical pits was still prevalent. It describes a situation in which
a market participant knows of the incoming order flow and can act upon this
information before the order actually arrives. This equals to an almost sure
profit, knowing that a large buy market order (market order are executed im-
mediately against the resting limit orders) will come onto the exchange means
that any trader with this information can buy the asset, only to sell it a short
while later for a profit.

Of course, this practice has been established illegal for brokers, where the
profit of the broker comes directly as a loss to the client, who in this case gets a
worse execution price. Front-running and general faster access to information
could have been achieved by buying a seat on a given exchange. Today such an
advantage is achievable via co-location, an option offered by most exchanges
by placing servers as close to the exchange as possible. This assures that co-
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located traders are the first to receive information about the order flow and
can act upon it. The principle nowadays remains the same, however, the time
scale at which front-running takes place has changed.

Tong (2015) examines the impact of HFT activity on the execution costs
that arise to large institutional investors. More specifically, she studies the
execution shortfall, the difference between order’s weighted execution price and
the market price at the time of the order’s arrival. By controlling for factors
such as stock liquidity or corporate events Tong finds HFT to be causing an
average increase in cost to the average institutional investor, as the execution
shortfall increases with HFT’s activity.

The importance of the speed has been thoroughly documented by Baron
et al. (2016). The authors use the data from the Swedish stock exchange
OMX Stockholm and the Transaction Reporting System (TRS) along with a
list of firms which they have identified as HFT firms. Baron et al. find a
significant relation between firm’s speed and profitability. They found that
firms with lower relative latency have on average higher Sharpe ratio (risk-
adjusted return). The important distinction is that even the lower latency (or
higher speed), is not measured absolutely but rather relatively - against other
market participants.

Similarly to front-running Budish et al. (2015) looked into the arbitrage
potential which exists between closely correlated markets. At a daily, hourly or
even minute timeframe, the arbitrage potential has diminished over the years.
However, it stays constant on the very short timeframe (microseconds). Budish
et al. (2015) argue that the correlation breaks down in a very short timeframe
and that this is a negative externality of the continuous double auction, as over
time the resulting arbitrage has not been competed away.

Due to the size of the potential profit (Budish estimates it to be lower nine-
digits, Lewis & Baker assess it in the vicinity of $20B USD), the investment
that goes into building an infrastructure capable of these operations is enormous
and it ends up being a socially not optimal race towards the fastest operations.
Budish et al. (2015) mark this as a consequence of a market design where traders
with marginally lower latency get the majority of the profit. They, therefore,
propose a different approach - a frequent batch auction which should ease the
pressure which is currently put on the speed of the market participants, making
the markets more socially optimal in the process.

Most of the critique of the HF traders was related to the market regulation
and imposing policies which ease the ex-post analysis of the market partici-
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pants’ activity. This is also one the main goals of the Dodd-Frank Act when
it comes to malicious trading activities. The work by Budish et al. (2015) is
different, as it suggests a new market design which in theory should eliminate
some of the drawbacks of the current design. The paper raises interesting ques-
tions such as what criteria should be used to determine which type of auction
is better or what the length of the auction should be.



Chapter 3

Literature review

In our model, we compare the standard limit continuous trading in a fragmented
market with the batch auction approach which clears the market periodically in
intervals of length δ. In this section, we first shortly summarize the literature
covering HFT’s relation with market quality. Next, we go over the list of
alternative market clearing mechanisms. Finally, we cover the concept of zero-
intelligence traders - agents which form the core of the model.

HFT’s impact on market quality

High-frequency trading only describes one attribute of the trader’s strategy -
its speed, yet it encompasses a variety of strategies and approaches - as Biais
et al. (2014) describe it, HFT strategies are heterogeneous in nature and their
impact on the market depends on the strategy used.

Brogaard et al. (2014) use the standard NASDAQ dataset to study the ef-
fect HFT has on the price discovery process. They find that high-frequency
traders often supply liquidity (submit limit orders) on the thinner side of the
order book and demand liquidity (market orders, or limit orders with high
chances of immediate execution) on the other side. The authors studied the
market during and following the financial crisis of 2008, where the volatility has
been abnormally high. They analyze the behavior around news announcement
and order book imbalances - and conclude that HFT firms improve price dis-
covery and that they were profitable, but there was no direct effect on price’s
instability.

Boehmer et al. (2015) study the effect of algorithmic trading more generally
- as their dataset does not include direct identification of HFT firms. The proxy
they use for the average rate of algorithmic trading in the market is the rate
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of order submission and cancellation. This proxy variable should represent the
speed with which the participants react to new market information and adjust
their orders. Given their limited dataset the interpretation of HFT’s impact
is not straightforward (they do not have a way to distinguish between market
with HFT firm and one with a larger proportion of traders using the general
algorithmic trading). The effect of algorithmic trading is generally positive
with regards to liquidity and efficiency, with exception of days with excessive
returns and small-cap stocks.

Brogaard et al. (2017) focus on extreme events and HFT’s activity during
these events which are characterized by high volatility. They use the same
dataset as in Brogaard et al. (2014). The events they study are characterized by
large moves in the National Best Bid and Offer (NBBO). During these events,
the HFT firms on average provide liquidity and therefore ease the process of
price reversal back to its original value. The exceptions are the situations
where there are multiple events happening at once in multiple stocks. Then
HFT firms take more liquidity from the market than they provide. This last
statement is in line with the events of the Flash Crash, where the entire index
S&P 500 dropped also partially due to HFT firms’ activity.

A comprehensive analysis of HFT related papers has been conducted by
Brogaard et al. (2014) and includes a thorough of HFT’s influence on the mar-
ket.

Alternative market clearing mechanisms

There were multiple alternatives proposed to the prevailing CDA structure,
their main motivation is usually addressing the drawbacks of the current clear-
ing mechanism.

Hoffmann (2014) claims that the current continuous structure of the mar-
ket leads to significant gains for the faster traders, who are willing to invest
substantial amounts into the infrastructure in order to further increase their
speed advantage. The problem, Hoffmann (2014) argues, is in the nature of the
market opportunities, where only the fastest market participant is eligible to
them. Therefore from an individual point of view, it does make sense to invest
heavily in a literal speed arms race. In his, model Hoffmann says that even a
cancellation fee for orders in the limit order book might be a partial solution
to his problem, which however would not fully deal with the adverse selection
of the resting limit orders.
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Similar conclusions are made by Biais et al. (2015), their proposed mecha-
nisms for dealing with the negative effects of fast traders are either a creation
of exchanges for slow traders only, the other being the introduction of the Pigo-
vian tax, as an attempt to deal with the negative externalities produced by fast
traders. None of these options is truly optimal, as according to the authors,
the former would force the investment into technology to be below its optimal
level, the latter can be optimized for by the companies in a way that would not
make the final equilibrium optimal.

Kyle & Lee (2017) also argue that the current standard limit order book
model which is employed by most exchanges can be exploited by faster traders.
They propose a change to this model by making it completely continuous in
all dimensions other than time only. In the standard model, the HF trader has
three main speed-related advantages which the new model mitigates. He can
pick off resting orders faster than slow traders, cancel his resting orders faster
than a slow trader can execute against them and he has a better position in
the queue, as the orders are sorted in the order in which they arrived onto the
exchange.

Kyle & Lee (2017) propose a model which is not based on individual mes-
sages as we know it today. Instead, a trader defines the price and quantity at
which he is willing to buy, where both parameters are discrete in nature. In
contrast to the continuous model, a trader defines the minimum and maximum
price at which he is willing to trade along with a quantity and maximum rate
of execution. This model is in nature quite similar to the supply and demand
functions which are in microeconomics usually drawn as linear functions of
price. It also interestingly gets rid of discrete prices, this action in itself would
however not be advantageous to the investor as it would mean that HF traders
could now make use of their speed in two dimensions - time and price.

The paper by Harris (2013) offers yet another way of leveling the playing
field. Once an order is received by the exchange, the author says that the ex-
change should add a random delay drawn from a uniform distribution before
the order is processed. He claims that this change should add a level of ran-
domness to the execution such that the time advantage of faster traders is not
as noticeable. However, there is no model nor a theoretical background that
we could build on.

Brown & Yang (2016) analyzed the role of a speed bump in a market similar
to the financial exchanges. They looked at the mechanism of Betfair - an online
betting exchange, where an individual can buy or sell his bet, bypassing the
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traditional bookmakers. Betfair has been using this mechanism for more than
10 years now. The underlying mechanism is similar to the one used on stock
exchanges, there is a limit order book for a particular bet. One can submit
orders to the limit order book or can trade immediately with a market order.
Brown & Yang (2016) focus on the adverse selection that is in the presence
of a significant predictive power in the market orders for the future direction
of the market moves as well as on the market quality (volatility, liquidity)
and cancellation of limit orders. They argue that although there can be seen
a protection of the slower traders, the influence on other metrics related to
market quality are less clear.

The paper by Budish et al. (2015) is also inclined towards a different market
structure, saying that the current organization of the markets is flawed as it is
in direct conflict even with the weak version of the Efficient Market Hypothesis
(EMH), as there is the rent implicitly in the market’s structure for whoever
is it the fastest participant. Budish et al. propose a model with n liquidity
snipers. All of these participants have the same goal, to make money of the
stalling quotes of other traders. With a continuous model, any trader who is
slower than the liquidity sniper would lose money due to his lack of speed (the
sniper is faster at hitting a stalling quote than the trader is at canceling it).

By replacing the serial processing of orders with frequent auctions, the
authors concluded that this has greatly increased the probability of canceling
the quote before a liquidity sniper could have made the trade. The relative
importance of speed decreased substantially in a way that there most likely
would not be as large of an incentive to invest heavily in speed. Policies other
than a batch-auction regime were met with strong arguments.

Budish et al. (2015) assert that a Tobin-tax (tax proposed to reduce ex-
cessive trading by imposing a small tax on every single trade) would address
the snipping quote problem but at a cost that would have to be born by the
individual investor. Other policies which are directly aimed at the perceived
negative externalities of HFT according to the authors are also not the solu-
tion because they focus on the effect of the market structure rather than on the
cause. Some of them such as the minimum resting time would go against the
problem at hand - under these rules, the order would have to stay in the order
book for a minimum duration and if there were a jump during that time, the
resting order would be filled with a probability of 1, as there would be nothing
the trader could do against the liquidity snipers.

Bishop (2017) has shown in a fairly transparent way the way in which the
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IEX has coped with order snipping in the past. IEX today works as a dark
pool - it is an exchange where the limit order book is not visible. The only
information that the exchange makes visible to the public is the last price
traded for a given security. She shows the way in which the exchange has
protected its clients against something they call "Quote crumbling". The US
securities market is very fragmented and a quote is so-called crumbling once we
see a change in bid and ask prices quoted over multiple exchanges - the quote
is most likely about to change from one set of price to another one.

Given that in the US an order can not trade at a price worse than what is
offered by the NBBO, the exchange must route the order if it’s possible to get
a better execution at a different venue. Stalling quote in this regard would be
one that is in the order book at one of the exchanges and can be picked off by a
different trader who is able to identify a crumbling order sooner. According to
the authors, such execution goes against the purpose of the NBBO. At the time
of the execution, the actual NBBO information that the exchange sees is not
the one that exists in the market. A faster market participant can make use of
his speed advantage and can pick off the resting orders before the true NBBO
information gets to them. The exchange here offers protection via a speed
bump. this time is used for an update of the NBBO, after which the incom-
ing snipping order is no longer relevant. Bishop shows a rather simple model
that the exchange has used in the past and it has decreased the percentage of
adversely selected orders substantially.

The performance of the NBBO has been more thoroughly analyzed by Ding
et al. (2014). By comparing the data of the NBBO from the Securities Infor-
mation Processor (SIP) and of an aggregate of the NBBO (authors have been
gathering the data and creating their own datafeed of the NBBO) they found
discrepancies between the two streams of information. This discrepancy is the
result of the way the NBBO is currently calculated - a market participant (after
having done a larger initial investment) can aggregate the data ahead of the
NBBO and can make use of that information ahead of the general public. Ding
et al. found that there was a positive relationship between the price and daily
volume of the stock and the number of such discrepancies. Yet the authors
have not done a quantitative analysis as to how one can make use of this speed
advantage, they only conclude that the NBBO is actually quite slow given the
number of discrepancies observed. They do raise the question as to the neces-
sity of having an NBBO even in a fragmented market, given the frequency at
which the NBBO does not correspond to reality.
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Wah & Wellman (2017) study the effects of latency arbitrage under various
market regimes. They base their model on the US securities market where the
fragmentation resulted in the creation of multiple venues on which the same
asset is traded. Latency arbitrageur is an agent who is infinitely fast (he knows
of any price change exactly at the time such price change happens) and can
make use of the price discrepancy between the venues in case there is a profit
for arbitrage - best bid (ask) price of one exchange overlaps best ask (bid) of the
other exchange. For simplicity sake, the authors employed only two exchanges,
the role of the individual investor has been passed onto ZI traders. The trader
decides to trade according to a Poisson process with intensity λ.

Two market system Wah and agent-based modelling

The idea of the batch-auctions as proposed by Budish et al. (2015) has been
modeled in the work of Wah & Wellman (2017). They found that the pres-
ence of a latency arbitrageur in a standard CDA decreases the efficiency of
the market, as his existence in the market is of no real benefit to his trad-
ing counterparts. By replacing the two exchanges with a central call market,
the authors saw an increase in the overall market efficiency. An increase was
also found if the agent of latency arbitrageur was removed completely. Unfor-
tunately, even though both of these options would reduce inefficiencies, it is
unlikely that these would be applied in real life as the latency arbitrageur can
freely enter the markets at any time and US markets are fragmented by design.

Wah et al. (2016) further develop the model, simulating an environment
with fast and slow traders and both batch auction exchange and standard CDA
exchange. Both types of traders do have the choice of picking either market,
according to their preference. The authors found the frequent batch auction to
serve as a better structural ground for slower traders, as their welfare is higher
in these markets. Faster traders in a way prey onto the existing slower traders
and they are willing to trade on both markets, even though their welfare is
higher when the trading is done continuously.

Zero-Intelligence traders

The Zero-Intelligence traders are the core of our model. Gode & Sunder (1993)
compared Zero-Intelligence (ZI) traders with human traders, both were trading
the same asset and both received an initial endowment. Forcing a restriction
upon the ZI traders in form of a budget constraint has shifted zero intelligence
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from diverging to converging towards an equilibrium price. Human traders were
still converging faster and their allocation was more efficient, but the main point
of the author’s paper was that learning, profit, motivation or intelligence were
not necessary conditions of convergence towards an equilibrium price.

Gode & Sunder claim that the structure of the market and market con-
straints are sufficient for effective allocation of an asset. The concept of ZI
traders has since been used in various agent-based models which work with
financial data e.g. Duffy & Ünver (2006) use ZI as the basis of their model,
simulating price bubbles and crashes quite similar to those caused by human
traders. Farmer et al. (2005) apply ZI principles in their study of the London
Stock Exchange (LSE) equity markets, where they treat the incoming orders
as revealed preferences of ZI traders.

However, the ZI approach has also been subject to some critique. Walia
et al. (2003) modeled the short-term market for the electricity, where flexibil-
ity costs (costs due to changes to earlier commitments) are expensive. They
argue that due to changes in trader’s valuation, the CDA as initially proposed
does not deliver as efficient of an outcome. Cliff et al. (1997) claim that the
market structure alone is not sufficient condition for the efficient allocation, as
the transaction price is only close to its theoretical equilibrium if the supply
and demand functions are symmetric. Instead, they propose slightly enhanced
agents - Zero-intelligence Plus (ZIP) traders which adjust their trading quotes
to current market situation and to their personal inventory. Cliff et al. (1997)
went on to show that ZIP’s trader performance resembles the human trader’s
behavior more than ZI did.



Chapter 4

Methodology

Our model closely follows Wah & Wellman (2017). It is modeled using the two
exchanges on which a single security is traded by three types of traders. In
section 4.1 we introduce the general concepts of the two trading venues model.
Section 4.2 describes the agents and defines their behavior, finally in section
4.3 we define the metrics and characteristics which we then analyze. This
approach has been chosen because of two reasons. Firstly, batch auctions from
the theoretical point of view seem to be the best approach to counter most of
the drawbacks of the current market design. Secondly, the previous research
of batch auctions does not work with any existing data but rather simulates
the data on the spot. This is very practical, because any real high-frequency
data provided by an exchange are hard to get and extremely costly. Also, any
historical data could not be used reliably as the batch auction regime as of
today is not fully adopted on any exchange.

4.1 Two exchanges model

4.1.1 Order book

The standard limit order book in our model represents the exchange. An order
book of a given security is a collection of buying and selling limit orders. The
word limit means that every order has a specified maximum (minimum) price
at which the trader is willing to buy (sell) the asset. An example of the limit
order book is shown in Figure 4.1. The buy (sell) side of the market is called
the bid (ask) side and the orders on both sides of the market are ordered with
a price-time priority. We refer to the price of the bid and ask orders which are
first in their respective queues as best bid and best ask respectively. In our
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example, the best bid is 100 and best ask is 101. The difference between the
best bid and best ask is referred to as the bid-ask spread, in Figure 4.1 this
spread equals 1.
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Figure 4.1: An example of a limit order book

Price-time priority

To illustrate the price-time priority, let us now have a market with three traders
A, B and C. AS the market opens, traders A and C already have their limit
buy and sell orders in at prices 100 and 101 respectively. Trader B enters the
market at time t1 by submitting a buying order at price 100. Given that there
already is a limit order at this price, trader B is currently at the second place
of the queue of bid orders. Figure 4.1 depicts the situation. At time t2 trader
C decides he wants to sell his asset immediately. He, therefore, submits a new
sell order at time t2 at price 100 and given trader A was the first to submit his
order at this particular price level, he is the one whose order got cleared. The
last order book in Figure 4.1 shows the state after the clearing took place at
time t2. This price-time priority holds for both market clearing mechanisms,
given the times t refer to different clearing times.
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Figure 4.2: An example of the price-time priority
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Continuous double auction

Nowadays the CDA is the standard market clearing, implemented at most of
the stock exchanges in the world. When the exchange is open, it enables anyone
to trade virtually at any time as the time is treated as a continuous variable.
As the price-time priority still puts enough emphasis on time, even a marginal
time difference (t1 − t0 = ϵ > 0) means that due to the serial processing of
orders, one order does have a priority in the queue simply because it arrived
marginally faster. In practice, one way how some of the exchanges are trying
to mitigate the effects of serial processing is weighing the executions against
resting limit orders by their respective weights. For instance, orders which are
at the end of the queue also can get partially executed if they are large enough.

In our model all limit orders are of quantity 1, therefore no weighting is
applied. We also impose a restriction that each order has a unique arrival time
- no two new orders can be processed at the same time. Therefore the order
in the queue, as well as the order in which the orders get executed, follows the
First-In-First-Out (FIFO) principles.

After an order is received by the order book, there are two possible outcomes
- it can either be cleared against a resting limit order or it can be added into
the order book. Let us recall our example in Figure 4.1 and let’s assume that
the exchange is clearing using continuous trading. At time t1 we see the first
case as trader B’s order is added into the order book because the order’s price
is below that of the best ask. The second case takes place at time t2. The new
order submitted by trader C crosses the spread (is submitted at price better
than or equal to that of the best bid) and it gets cleared at price 100. The
clearing quantity equals to one, clearing price is that of the resting limit order.
If trader C were to submit his order at price lower than 100, he would still get
the execution price of the resting limit order.

Frequent-batch auctions

The frequent-batch auction design suggests a different treatment on the micro
level and is slightly more complicated due to the various situations which might
arise. On the macro level, the order book still consists of two queues of waiting
limit orders. But instead of having a continuous clearing of the order book
we now have the trading session separated into a sequence of n equally long
segments during which the order book accumulates all of the changes and then
the market clears at the end of each segment. Such segments should be very
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short in nature, in other words, their frequency is expected to be in the vicinity
of 5 ∗ 102 ∼ 103 auctions every second.

Let us define this formally, we have a trading session which is T time units
long. There are τ auctions during every time unit. The total number of batch
auctions then simply equals the number of time units multiplied by the number
of auctions per unit of time - N = T ∗τ . Orders which arrive during the interval
(ti − ti+1] are treated with the same time priority. Processing new orders at the
end of each auction can result in a total of three cases which are represented
in Figure 4.3. Blue and red line represent the cumulative buying and selling
orders respectively.

First the bid and ask orders do not cross at all - the bid-ask spread is strictly
larger than zero. This situation is illustrated in figure 4.3a. At this point, all
the orders are added as limit orders into the order book. If any two orders are
added into the orde rbook at the same price, their real order in the queue is
picked randomly. The orders are added to the order book on top of already
remaining resting orders (at the respective price levels). Therefore on a macro
level, the price-time priority still holds from one auction to the next. In the
real world we would also have to account for the fact that the size is different
across orders. In our model, we do not have to weight the orders as we only
work with orders of size 1.

The second option is that the bid and ask columns overlap exactly at one
price only. This establishes the clearing price as the one where the bid and ask
columns overlap. The number of cleared contracts corresponds to the quantity
min(qBID, qASK) where qBID, qASK are the quantities of the bid and ask orders
respectively at the clearing price level.

Any remaining orders which have been submitted at this clearing price and
cannot be cleared as there are not enough limit orders on the other side of the
market are then added to the order book. Also, other orders which have been
added at a worse price and were not cleared are added to the order book at
top of already existing orders. Finally if at the clearing price there are still
any limit orders left which have been added during the previous auction, they
simply remain in the order book. Again if there are multiple orders being added
at one price level during one auction, their position in which they are processed
is picked randomly.
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Figure 4.3: Three states of frequent batch auction

Finally only in batch auctions is it possible to have the best bid above best
ask price. That is of course only temporairly before the market clears at the
end of the auction. In continuous trading, such state would not be possible,
because any bid (ask) order submitted above (below) current ask (bid) price
would be immediately paired. In such a situation we still need to define one
clearing price and it corresponds to the mean of the highest bid price of an
order which would clear with the lowest ask price.

All new orders are added into the order book in the same way we have
already defined. Next, we take each best order at both bid and ask side of
the market and we compare their prices. If the bid-ask spread is lower than or
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equal to zero, both orders clear during this auction and the market keeps on
clearing orders until the bid-ask spread is larger than zero. There is a single
clearing price for the entire auction and it equals to

pBID + pASK

2 (4.1)

where pBID and pASK represent the best bid and ask price of orders which are
cleared during the auction. Therefore if the price of the best bid order equals
that of the best ask order (as we have specified in the previous case), the clearing
price is the same. In our model, we again do not apply any weighting when
deriving the clearing price. In practice, a more robust way how the clearing
price could be calculated is the mean of the weighted prices of the bid and ask
orders which get cleared during the auction.

An important final distinction between continuous and batch auction trad-
ing is that during the order accumulation phase, the information about the
deleted and newly added orders is not available to the public. During the accu-
mulation, the exchange behaves as a dark pool - an exchange with no publicly
available information about its bid and ask prices. Only once the market clears
do we see the new state of the exchange.

National Best Bid and Offer

Both exchanges fall under one regulator who updates the information about
the National Best Bid and Offer (NBBO) and sends it back to the exchanges.
NBBO in our model is based on the regulation enforced by the Security Ex-
change Commission (SEC) in the United States. In practice, the NBBO is an
aggregate information with the price and name of the exchange offering the
best bid and ask prices. The main purpose of the NBBO is to protect individ-
ual investors and traders who do not have the complete market information.
Trader’s orders are re-routed using the NBBO information from one exchange
to another in order to get the best price possible.

The NBBO is a signal aggregated by the regulator across both exchanges,
it is then made publicly available. The information which traders see is the
market state after every clearing of the exchanges. In our model, we make use
of the fact that slow traders often see the NBBO information lagged behind
the real state of the market. This lagging then causes wrong order routing and
arbitrage opportunities arise which in today’s markets are mainly picked off by
faster traders who can construct their own synthetic NBBO that is faster than
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the one provided by the regulator. This situation is explained in greater detail
later.

Asset

There is one asset which is traded on both exchanges. The fundamental value
of the asset is modeled in the same way as in LeBaron (2002), it is of a mean-
reverting nature and follows a stationary auto-regressive process of order 1.

rt = max(0, µ + α(rt−1 − µ) + ϵt) (4.2)

In (4.2) rt is publicly observable signal of the fundamental value of the asset
at time t. For simplicity sake, we assume that the signal is perfectly correlated
with the true fundamental value. The information is available to all traders
with no delay. The current value of the signal depends on its past value rt−1

and on the mean of this process µ. In each period a shock is drawn from a
normal distribution ϵt ∼ N (0, σ2). The degree to which the asset reverses
back to its mean is given by the mean-reversion parameter α. Given the initial
values (specified later) and the characteristics of (4.2), it is unlikely that the
fundamental value of the asset would drop below zero, but we want to make
sure that it does not by taking the maximum of zero and the resulting value of
the process.

4.2 Agents

4.2.1 Agent based modelling

We use the agent-based modeling (ABM) approach to investigate the aggre-
gate behavior and market characteristics under various market regimes and
conditions. In each simulation our two exchanges have the same properties -
either both are trading continuously or using the batch auctions. We employ
three main types of traders. Regular investors and low-frequency traders are
be represented with a zero-intelligence trader. More sophisticated traders are
modeled as market makers - only submitting passive limit orders on both sides
of the market. Finally, we introduce the latency arbitrageur whose sole purpose
is to profit off any arbitrage discrepancies.
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4.2.2 Zero-intelligence traders

The core of our model is formed with Zero-Intelligence (ZI) traders as defined
by Wah & Wellman (2017). The ZI traders were first introduced by Gode
& Sunder (1993). Our agents do not have any initial endowment, they are
restricted in terms of the asset’s quantity constraint.

The arrival times of our ZI traders are given by a Poisson process of intensity
λ. Upon arrival, the ZI trader is assigned with a probability of p = 0.5 to be
either a buyer or a seller. In our environment of the two trading venues, each
ZI trader are assigned to one of the trading exchanges by default. He basis his
valuation of the asset on his private and public components. The public part
is a reflection of the current fundamental value and the ZI trader estimates it
using the following equation:

r̂t = µ(1 − (1 − α)T −t) + rt(1 − α)T −t (4.3)

which can be also rewritten as:

r̂t = µ + (rt − µ)(1 − α)T −t

where T is the length of the trading session, t is the current time, α is the
mean-reversion factor and α is the mean of past asset values. In other words
the estimate r̂t is based on the current value of the asset rt and on the mean
of past asset values µ. As t → T , the relative importance of latest asset value
increases, once t = T it is easy to see from the equation 4.3 that r̂t = rt.

Apart from the public component, ZI trader is the only agent type who
also has a private component for the valuation of the asset. The private part
is based mainly on the number of assets that the trader already owns and it
should reflect his preferences about his owning fewer or more of the additional
assets. We impose a restriction on the number of units that the trader can be
long or short at any time and we refer to this maximum (minimum) amount
as qmax. Then ZI trader’s preferences can be represented using the following
vector:

Φ = (φ−qmax+1, . . . , φq, φq+1, . . . , φqmax) (4.4)

Φ is a vector of length 2qmax of elements φq, where q is trader’s current
position restricted by the inequality −qmax ≤ q ≤ qmax. We construct the
vector Φ by independently drawing 2qmax times from a normal distribution -
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φq ∼ N (0, σ2
q ). We then sort φq in an non-increasing order, this way the vector

Φ represents the diminishing marginal utility. Given a position q the private
component is φq+1 in case the ZI trader is a buyer or φq if he is a seller.

Putting the private and public components into one equation, we get the
following cases for the asset valuation:

vt =

⎧⎪⎨⎪⎩r̂t + φq+1, if buying

r̂t + φq, if selling
(4.5)

We now have a mechanism for calculating the perceived value of the asset
by any of the ZI traders. The price is derived by taking the perceived value
and adjusting it for additional surplus which the ZI trader demands on top
of the perceived value. The amount is drawn from a uniform distribution
between the minimum and maximum amount that any ZI trader can demand.
st ∼ U(Smin, Smax). Combining the demanded surplus with (4.5) we obtain the
following:

pt ∼

⎧⎪⎨⎪⎩U(vt − Smax, vt − Smin), if buying

U(vt + Smin, vt + Smax), if selling
(4.6)

Demanding additional surplus on one hand theoretically increases trader’s
potential surplus on a given trade, but it also decreases his chances of having the
order executed - it represents the traditional trade-off between better execution
time and better execution price.

Now let us look at the problem of order routing in case of ZI traders. First,
if the trader had any resting limit order on any of the two exchanges, he cancels
them in order to submit a new order. Therefore at any time each ZI trader
only has up to one limit order in the order book. Our market consists of two
trading venues - let e denote the number of a particular exchange, e ∈ {1, 2}.
The trader is assigned to an exchange (denoted by X) Xe and by default routes
all of his orders there. The only case at which the trader routes his orders to
the other exchange is if the perceived (not actual) NBBO signal tells him that
the other exchange offers an immediate and better execution than his original
exchange.

In case our ZI trader is a buyer (seller), we want to see an ASK (BID) order
on the second exchange to be in terms of the price below (above) the best ASK
(BID) at the default exchange. Rewriting it formally, as e marks the default
exchange let h denote the second exchange i.e. e ̸= h, BIDi and ASKi are the
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respective best bid and best ask price at venue i such that i ∈ {e, h, NBBO}
where NBBO represents the exchange which currently offers the best price of
either a BID or an ASK side of the market. Let the ZI trader be a buyer,
then his order is routed ⇐⇒ (ASKNBBO = ASKh < ASKe) ∧ (pt ≥ ASKh).
The first condition is that of a better execution price, the second implies an
immediate execution. The routing is analogical in case the ZI trader is a seller.

We are not working with market orders, therefore technically all orders
are sent as the limit orders with the price of pt and are immediately matched
against resting limit orders only if they are being submitted at price worse or
equal to that of a resting limit order. In case the order is being rerouted and the
expected resting limit order has already been executed or deleted the trader’s
new order is simply added to the order book at price pt at its respective place
in the queue.

4.2.3 Market makers

Market maker (MM) as an agent shares some of the characteristics of ZI traders.
Our MM trader is based upon the model of Wah et al. (2017). Each MM is
assigned to one of the exchanges by default, MM is also considered to be one
of the slow traders - he is dependent on the NBBO provided by the regulator
as he is not capable of constructing his own synthetic signal. MM too arrive at
the market according to a Poisson process of intensity λMM .

Upon the arrival, MM deletes all of his resting limit orders from the order
book and submits new ones. Market maker then is neutral when it comes to
choosing a market direction. He does not submit only one order at one side of
the market, instead, he submits a chain of orders on both sides of the market.
There are n orders being submitted on each side of the market with δ ticks
between them.

The center price of these orders is given by the estimate of the fundamental
value of the asset, that is equation (4.3) which we have already defined. The
market maker sets the default spread sMM around this central price symmetri-
cally, that is the chains of bid and ask orders start at prices BIDMM = r̂t − η

and ASKMM = r̂t + η for the bid and ask order respectively, given an estimate
of the fundamental value r̂t. In other words, the size of the market maker’s
spread is given simply by the equation sMM = 2η. Then the list of prices
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ξj
t at which the n bid and ask orders are submitted by the market maker is

represented with:

ξj
t ∼

⎧⎪⎨⎪⎩(r̂t − η, r̂t − η − δ, . . . , r̂t − η − (n − 1)δ), j = BID

(r̂t + η, r̂t + η + δ, . . . , r̂t + η + (n − 1)δ), j = ASK
(4.7)

where r̂t is the estimate of the asset’s fundamental value, η is the initial
offset from the estimate and δ marks the number of ticks between each order.
The orders are spaced symmetrically on both sides of the market. Our MM
model does not handle its current inventory (position) in any way, nor is he
restricted to the number of contracts he can be long or short at any given time.

Unlike the ZI trader, the market maker does not route his orders in any
way, all of the orders are processed at his default exchange. Similarly to the
ZI trader, he is assigned by default to one of the exchanges. The market
maker also works with the NBBO information - as his goal is to only send limit
orders (orders which would not get executed right away), he filters out his own
orders which would be executed immediately. By accounting for the NBBO
information, he only keeps orders which fulfill the condition of not crossing the
bid-ask spread on both exchanges - sell orders have to be strictly above the
BIDNBBO and buy orders need to be strictly below the ASKNBBO.

ξ̂j
t ∼

⎧⎪⎨⎪⎩(Bt, Bt − δ, . . . , Bt − (n − k − 1)δ), j = BID

(At, At + δ, . . . , At + (n − k − 1)δ), j = ASK
(4.8)

where ξ̂j
t is the filtered list of prices at which the MM trader submits his BID

and ASK orders. Bt and At stand respectively for the first bid and ask price,
at which the market maker can submit his order without having it immediately
executed. The list of prices starts with At and Bt and is n − k elements long,
where k (k ∈ N, k ≤ n) is the number of orders which have been filtered out.
The trader does not have to submit any orders on one side of the market if
the condition of no bid-ask spread crossing is not fulfilled even for the order
furthest from the mid. In such situation, the NBBO best bid (ask) price would
be above (below) the MM’s short (long) order which is furthest from the mid.
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4.2.4 Latency arbitrageur

Latency arbitrageur (LA) is a slightly different agent compared to the previous
two we have introduced. Her arrivals to the exchange are not proactive but
rather reactive. There is no process which would dictate LA’s arrivals, as she
only trades if an arbitrage opportunity is present. In our context, an arbitrage
is a situation which offers an immediate profit with zero risk. In a market
with n exchanges such situation would be defined as BIDi > ASKj, where
i, j ∈ (1, . . . , n), i ̸= j. Formally we would define an arbitrage potential in time
t as ωt = max(BIDi − ASKj, 0). The two prices have to be from two different
exchanges as a situation with overlapping BID and ASK prices would never
happen in a single market - the market would clear these orders instead. In
case the bid and ask prices do not overlap, the arbitrage potential equals zero.

The arbitrageur in practice makes use of her superior speed to profit from
the discrepancy by selling the asset on the exchange where it is overpriced and
immediately buying it on the other exchange where it is underpriced. In our
simulation, we work only with one arbitrageur, who is infinitely fast and she is
the only trader capable of building a synthetic NBBO data feed. The infinite
speed is the approximation of the fact that trade who is collocated (has servers
extremely close to exchange’s servers) can be orders of magnitude faster than
other traders. She, therefore, knows with 0 latency what the best bid and best
ask price is on all of the exchanges. And she can react to this information with
zero latency as well.

Our LA agent trades at time t only when an arbitrage opportunity gives
a profit potential larger than zero. She trades by submitting two orders at a
price which is in the middle of the true NBBO’s bid and ask prices.

pt = BIDi − ωt

2 = ASKj + ωt

2 (4.9)

,
In the case mentioned above the LA trader sends the selling order to the

exchange i and the buying order to the exchange j. In the ideal case both of
the these orders get executed against the resting limit orders at prices BIDi

and ASKj. The profit π of the LA in this case would be equal to the full
arbitrage potential ω.
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4.2.5 Arbitrage opportunity

There are two ways in which an arbitrage opportunity can arise in our mar-
ket settings - by lagging the NBBO information or by introducing the batch
auction. Such opportunity emerges because of the order routing used by ZI
traders. However, if we were to remove routing of the orders altogether and
all ZI and MM traders would simply only look at the prices at their default
trading venues, there would still be price discrepancies across exchanges even
if all the participants had perfect NBBO information.

Arbitrage - lagged NBBO

Figure 4.4 represents the first case - arbitrage due to lags in the NBBO signal.
We assume the market is clearing in a continuous regime, the situation would
be analogous under frequent auctions. In the diagram we refer to the two
exchanges as New York and Chicago, each has its own set of best bid and ask
prices. They are both under the surveillance of the regulator, who sees the
publicly available information about best bid and offer and aggregates it into
a public signal and delivers it to the public with some delay δ. Green color
marks the trader who is submitting his order during the period.
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Figure 4.4: Arbitrage under lagged NBBO

In the first period, one of the slow traders submits a new selling order to
the New York exchange. This information is sent to the regulator. During
the second stage, the regulator has processed all the information from the last
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period and he is sending it to the slow traders with some delay. Before the
information arrives, one of the slow traders submits a new order which is not
routed to the New York exchange (where it would be filled immediately) but
rather is sent to his default Chicago exchange. Even though the regulator
already has the information, due to the delay δ this information is not reflected
in trader’s decision-making process.

In the final step, the latency arbitrageur detects a new arbitrage opportu-
nity. She, therefore, submits two orders at price 112 and sends them to the
respective exchanges. They are cleared immediately and she receives a profit
of 4. The exchange’s best bid and ask prices return to the initial state. At this
point, if one of the slow traders were to trade, his orders are routed according
to the lagged information. Market makers, for instance, would not submit new
orders because they perceive that their limit orders could get executed under
the lagged NBBO.

Arbitrage - batch auction

Under frequent batch auctions clearing, an arbitrage could arise even with
perfect information about the NBBO. Let’s assume that the traders arrived
both during one auction and submitted the same orders as in Figure 4.4. As
any order which is submitted during an auction is not visible and becomes
public only after the market clears, the second trader does not know of the
first limit order. Once the market clears and the orders are added to their
respective order books, only then do both slow and fast traders know about
the new state of the order book. The latency arbitrageur immediately submits
the same two orders, this time she has to wait until the market clears to see
whether her orders were executed or not.

In summary, an arbitrage opportunity can have two sources - lagged NBBO
or market clearing using frequent-batch auctions. Under continuous trading
and perfect information all orders are routed properly and therefore there is
no arbitrage. Under continuous trading with lagged NBBO, the arbitrageur’s
position remains always zero as thanks to her infinite speed she is surely the one
who gets both misrouted quotes filled. During a frequent batch auction, the
opportunity arise even with perfect information, but they are corrected during
the next auction - either by the arbitrageur or by one of the slow traders.
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4.3 Market metrics
Our model revolves around the zero-intelligence trader, who represents the
general investment and trading public. Because of that, the primary metric
at which we focus is the ZI trader’s surplus. It is measured as an aggregate
of all ZI traders - their profit, final position at the end of the trading session
and the sum of their trading components. The private benefit in a sense is the
core of our model, as that is where the overall surplus is generated. Without
the private component, the sum of the profit from realized trades and current
position marked to market would equal zero once we sum across all traders.

Let’s have a zero-intelligence trader, who has made n trades during the
entire session. Then formally his total surplus equals

π =

⎧⎪⎨⎪⎩−qT ∗ rT , qT > 0

qT ∗ rT , qT < 0
+

n∑
i=1

⎧⎪⎨⎪⎩φi − pi, qi > 0

pi − φi, qi < 0
(4.10)

where π is the total surplus, qT is the quantity the trader holds at the end
of the trading session. rT is the final value of the asset’s fundamental process.
Each trade i is characterized by the price at which it was opened pi, its quantity
qi and trader’s private benefit φi. The left part of the equation summarizes the
valuation of the position at the end of the trading session. The right part sums
over all of the trades and accounts for the price at which the trade was executed
and trader’s personal benefit from this trade.

In a similar manner, we can measure market maker’s and arbitrageur’s
surplus. These traders lack the personal component we, therefore, refer to this
value as profit rather than a surplus. It is calculated in the same way as in
4.10, but qi = 0 for all trades. The market surplus is the sum of these three
metrics.

Next, we keep track of the total number of trades. Trade in this context is
a pairing of a bid and ask order. This metric represents the magnitude of the
activity in our model.

The average bid-ask spread is a time-weighted measure of the liquidity and
transactions costs that traders face. Narrower spread means that the cost of
getting into and out of a position immediately is relatively low. Spread is
usually tight in high volume, highly liquid contracts such as the crude oil or
S&P 500 futures contracts.

Similarly, the mean of the execution speed can be considered as a measure
of liquidity. Faster execution is generally a proxy for the more liquid market.
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This statistic is the mean of the difference between the arrival time of the order
and its execution time. We measure both limit orders which are added to the
order book as well as orders which are executed right away. This should draw a
more realistic picture of the true average execution time. Previous works were
calculating only the execution time of limit orders which were first added to
the order book. Orders which were not executed are ignored in computing this
statistic.

Finally, we also observe the price volatility. In the markets lower volatility
stands for higher stability of the security and in general, is preferred by the risk-
averse traders and investors. Here we measure it as the mean of the logarithm
of the standard deviation of the price series.

4.4 Code and Simulation
The code is written using the objective-oriented programming (OOP) approach,
where we define each entity (trader/regulator/exchange) as a separate object.
These objects then are then linked - i.e. the traders know of the regulator
and his attributes (current asset price, NBBO information, etc..). Even in
continuous trading, the time is treated discretely and the principles of discrete-
event simulation (DES) are used. DES ensures that during every event the
order of agent’s actions keeps its priority - e.g. in continuous mode, the asset’s
public signal is calculated first, then slow traders trade, market clears and at
the end of the event arbitrageur reacts with no latency and market clears again.

For reproducibility purposes, the entire codebase of this thesis is written
using open-source software and it is publicly available on GitHub1. Python 3.6
forms the core of the model, the results are saved in a PostgreSQL database.
The simulation ran for two weeks on multiple computers, mainly in the com-
putational center of UTIA - Institute of Information Theory and Automation.
Each simulation has a separate pseudorandom seed, generated by the numpy

Python library. These seeds are used for instance in generating the arrival times
of the agents, in estimating the private valuation of ZI agents or computing the
process of the asset’s fundamental value.

1https://github.com/OskarGottlieb/master-thesis



Chapter 5

Preliminary analysis

5.1 Our environment
Before doing robust analysis from which statistically significant conclusions can
be made, we first simulate the environment for a few sets of parameters. Given
that the code used to simulating this is quite complex, these initial runs serve
as an integration test (making sure that the agents behave accordingly when
interacting with one another). From this initial analysis, we can see that the
code is running as expected and we can set an expectation as to what should
be the result of the statistically significant tests.

This initial analysis works with 200 zero-intelligence and 2 market makers.
We assign the equal number of agents (equal number by category) to each
exchange. In this testing environment, we do not include the arbitrageur. The
intensities λMM = λZI = 0.005 for both traders. Initially ZI traders do not
discount any additional surplus Smin = Smax = 0. ZI trader’s private value
is drawn from the normal distribution with σ2

q = 500, 000. Market makers
submit 5 orders on each side of the market, with first order being 250 ticks away
from the fundamental value. The orders are 100 ticks apart from one another.
Session length equals 10, 000 where one time unit represents one millisecond.
By default, we use the continuous clearing approach with no delay of the NBBO
information. Given the initial values of our environment’s parameters we could
include the arbitrageur and still should receive (after enough sampling) a very
similar result, as arbitrageur would not interact with the market because there
would not be any arbitrage opportunities.

The asset’s starting fundamental value is set to 10, 000 and its variance is
σ2 = 500, 000. The mean-reversion parameter is set to α = 0.05. The smallest
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possible change in the value of the asset (tick size) is set to 1. No trader can
submit and trade against his order - no self-matching of orders is allowed.

5.2 Experiments
Each experiment will change up to three parameters and we will see what the
implications of such change are for the market characteristics. Each exper-
iment is the summary of two hundred repetitions unless explicitly specified
otherwise. We plot the mean values over the samples, the mean along with its
95% confidence intervals are presented in their respective tables.

5.2.1 Changing ZI’s additional surplus

We keep the minimal additional surplus demanded at zero and only let the
maximum move from zero to 1000 in increments of 100. The results are shown
in Figure 5.1, Table 7.1 contains the detailed results.

a Mean bid-ask spread b Mean execution time
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c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 5.1: ZI’s demands of additional surplus

Increasing the required amount has a direct effect on all of the metrics we
observe. The increase should theoretically move ZI’s bid and ask further away
from the mid-price (the middle of the best bid and ask prices). Directly we see
that the number of trades decreases linearly, with that the mean execution time
increases. The decrease in the number of trades has a direct effect on market
maker’s profit, which decreases as well. This is in line with expectations, as
fewer trades means fewer fills for market makers. Interestingly the mean bid-ask
spread decreases, which should be a sign of increased liquidity.
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Similarly, due to fewer transactions in narrower bid-ask spread, we also
observe a decrease in volatility. Finally, the surplus of ZI trader’s illustrates
the trade-off between having the trade executed and getting a better price. The
resulting surplus has its peak around the values 400 − 500. Even with fewer
trades, the ZI trader can achieve a higher overall surplus. But demanding too
much additional surplus could again decrease it.

5.2.2 Market maker count

We keep market maker’s parameters constant and only change the number
of MM agents. Increments of two are selected as with each increment each
trading venue gets exactly one new market maker. Figure 5.2 summarizes this
behaviour, detailed results are in Table 7.2.

a Mean bid-ask spread b Mean execution time
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c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 5.2: Number of MM agents

From the theoretical point of view, the role of market makers is to increase
liquidity and market quality by absorbing some of the price risk. MM then
profits from the bid-ask spread where he quotes passively. We can see that
increasing the number of market makers increases their overall profit, but the
marginal income with each additional MM decreases. This points to the fact
that the market is getting more saturated with additional traders. The spread
decreases and so does price volatility, both in line with the theoretical expec-
tations. The number of trades increases only slightly.
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The surprising part is that ZI trader’s surplus decreases with additional
market makers. This goes against the expected outcome as the market maker is
considered generally beneficial and this would place him into the same category
with the arbitrageur. However, the behavior of market makers has not been
studied before in a similar model. In this settings with perfect information
about the NBBO, the market maker only submits passive orders, accounting
for the information from both exchanges. We could think of its actions as
a form of front running of the resting limit orders. MM never directly takes
the liquidity, but his profit could come from the pocket of the ZI trader - more
specifically it would be the opportunity cost of ZI’ trader’s non-executed trades.
Given that market maker only submits passive orders it is of no surprise that
the mean execution time increases with additional traders.

5.2.3 MM’s number of orders & spread

We turn back to the default settings with two market makers and in this ex-
periment, we change two of its attributes, the number of orders he submits on
both sides of the market and the initial spread he chooses around the asset.
The x-axis marks the number of orders which range from 1 to 9 in increments
of two. On the y-axis, we plot the spread around the asset starting at 100 and
increasing in increments of 100 until 500. The value is newly represented with
a heatmap (Figure 5.3) where the deeper the color (blue) the larger the value
of the market characteristic which we observe. The tables with the preliminary
results are from now added in the attachment of this thesis.

a Mean bid-ask spread b Mean execution time
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c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 5.3: Number of MM’s orders and spread

The overall effect of the market makers in our settings is rather small, in
terms of a couple of percentages for each of the observed variables. The ex-
ception being the profit of the market makers themselves. It increases with
increasing number of orders submitted. The marginal increment is decreasing
which is a similar trend we saw with the number of traders, although the under-
lying effect should be different. The additional orders are added further down
the order book with a smaller probability of being executed, in the previous
case we had more traders competing around similar price levels. The trend of
the spread parameter does seem to be twofold. In case of fewer trades, it seems
that larger initial spread yields a higher profit. The implication is inverse with
7 or 9 submitted orders.

The cause of this interaction lies in the way the market maker agent works.
The MM first estimates the fundamental value of the asset. Then he submits
the orders but cancels those which would be executed immediately. Submitting
only a few orders with tight spread could result in very few orders actually
being sent to the exchange because the market maker would cancel them as
they would get executed immediately. As the spread increases the market
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maker cancels fewer orders and his profit increases. Once he is sending 7 or
9 orders, it could be more profitable to trade with a tighter spread as even
though market maker cancels some of his orders, the rest of them remains in
the order book. Choosing a large spread, on the other hand, could result in
fewer orders being executed.

The fact that the probability that the orders deep in the order book will be
executed is small also impacts the mean execution time which increases with
the number of orders submitted. The initial spread parameter again has a
twofold effect depending on the number of orders submitted. The explanation
is analogical as in the case of MM’s profit.

Submitting more orders causes an overall tighter spread. The effect of the
market maker’s initial spread on the market’s spread is ambiguous. Similar
conclusions can be made with price volatility which increases as the number
MM’s orders decreases and there is not a clear trend with spread’s influence.
The effect on the number of trades is negligible.

Interesting is the effect on zero-intelligence trader’s surplus. Although small
in magnitude, it decreases with the number of orders submitted - this is in line
with our previous observation that more market makers have an adverse effect
on ZI trader’s surplus. The market maker’s initial spread points to the fact that
MM is more beneficial to ZI traders if he narrows the spread by quoting closer
to the midpoint. ZI traders are then able to make trades with MM being their
counterparty - those are trades which otherwise might not have been paired
up.

5.2.4 MM’s intensity of orders & order spacing

We look also at MM’s second set of parameters - their intensity and number of
ticks they place in between individual orders. The intensity approximates the
speed of the trader as every arrival means that the trader updates his orders
which might have been out-of-date. The x-axis represents the number of ticks
(price units) between the bid and ask orders, the y-axis shows three intensities
- 0.005, 0.01 and 0.05.
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a Mean bid-ask spread b Mean execution time

c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 5.4: MM’s intensity and spacing parameters

Visually we can see that the bid-ask spread exhibits similar behavior as
price volatility. Similarly, the number of trades correlates with MM’s profit.
The largest difference in these figures is due to the intensity of the Poisson
process and the fact that the y-axis is not linear. Increasing the intensity
(trader’s indirect speed) narrows the market’s bid-ask spread and reduces the
price volatility. The same effect can be achieved by narrowing the spacing
between MM’s orders.

The larger intensity and smaller spacing also increase the total number of
trades as well as MM’s profit. The effect of the two parameters on mean-
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execution time is rather ambiguous. The most interesting part is yet again the
effect on ZI’s surplus. As we saw before increasing either the number of market
makers or the number of orders that they send out had a negative effect on ZI
trader’s surplus. Here increasing the intensity does not yield the same result,
quite the contrary. Increasing the number of trades through higher turnover of
market makers could result in higher overall ZI’s surplus.

5.2.5 Session length

Next we alter the session length parameter and we let move it from 1, 000 to
10, 000 in increments of 1, 000. The details can be seen in Figure 5.5.

a Mean bid-ask spread b Mean execution time
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c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 5.5: Session length

The effect is in line with the expectations - values which depend on the
length of the session do exhibit a linear dependency - the number of trades as
well as the profit of the market maker and zero-intelligence trader’s surplus. On
the other hand, the market state characteristics do stabilize rather quickly and
do not change as much with increasing session length - the spread, execution
time and price volatility. The reason for the initial shift in these characteristics
is that in the beginning, the market does not have any orders and it takes a
while for it to achieve a stable state in which all the traders either are actively
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trading or already have traded.

5.2.6 National best bid and offer

A delayed NBBO information allows for the creation of arbitrage opportunities.
In this case, these opportunities are not immediately exploited as there is no
arbitrageur. We lag the NBBO information in increments of 100 where zero
lag means that all market participants have perfect information. Figure 5.6
summarizes our findings.

a Mean bid-ask spread b Mean execution time

c Price volatility d ZI’s surplus
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e Number of trades f MM profit

Figure 5.6: Delayed NBBO signal

The NBBO delay exhibits a similar effect on ZI Surplus, MM profit and
the number of trades as the session’s length - these value stabilize around the
delay of 500. Market maker’s first drop from no delay to delay of 100 yields a
significant drop, in case of the number of trades and ZI surplus the decrease is
more gradual. Every arbitrage opportunity can be thought of as a misallocation
of individual orders. Therefore the delayed information causes that ZI traders
submit orders which they perceive will be executed, but are added into the
order book instead. Because of that, the mean execution time increases with
increasing NBBO delay. The price volatility is also affected negatively by the
lagged signal.

Finally, the bid-ask spread decreases until the delay value of 200, after
which it increases with increasing NBBO lag. The interpretation of the bid-ask
spread is unclear, the important note is that the value of 200 corresponds to
the mean arrival time of both MM and ZI agents, as λMM = λZI = 0.005.
This information will be important in the next section in which we look at the
relationship between the length of a batch auction and the delay of the NBBO
information.



Chapter 6

Results

In this section the parameters of the environment are the same as in Chap-
ter 5. In each experiment, it is explicitly specified which parameters differ
from the default environment. As we are dealing with a simulation we use the
Monte Carlo method in order to obtain statistically significant estimates of the
market’s characteristics.

6.1 Batch auction and lagged NBBO
Now we have a solid understanding of the model, its agents and their influence
on the market. In this experiment, we introduce the arbitrageur along with the
batch auctions. Latency arbitrageur reacts to profit opportunities which are
worth at least 1. Batch auction of length 0 is the standard continuous market
clearing which we have used so far. Previous works only analyzed a batch
auction where the length of the auction was set equal to the delayed NBBO
information. In this experiment, we allow for asymmetric market settings,
letting both parameters move from 0 to 1, 000 in increments of 100. Figures
6.1 and 6.2 represent the market settings without and with an arbitrageur
respectively.
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a Mean bid-ask spread b Mean execution time

c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 6.1: Batch auction with NBBO delay, no arbitrageur
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a Mean bid-ask spread b Mean execution time

c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 6.2: Batch auction with NBBO delay, with arbitrageur

The two sets of plots are fairly similar, but there are a couple of important
distinctions mainly when it comes to ZI trader’s surplus and MM’s profit. For
each delay of the NBBO, we want to test the means of the market’s metrics in
the continuous auction against each length of the batch auction. The hypothesis
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is then set in the following way:

H0 : µi
c = µi

a

H1 : µi
c > µi

a

(6.1)

where µi
c and µi

a are the means of the given variable i for the continuous
trading and respective batch auction. In the same way we can set the alterna-
tive hypothesis to µi

c < µi
a.

In case of the ZI traders, both with and without the arbitrageur we set
the alternative hypothesis to the mean of their surplus being lower in batch
auctions than it is continuous trading. We set the hypothesis in the same way
for the arbitrageur and market maker’s profit. The p-values are presented in
Tables 7.3, 7.4 7.5, 7.6 and 7.7. The x-axis of each table represents the delay
of the NBBO information, y-axis stands for the length of the auction. The
auctions of length zero is not in the table, as in each column it stands for the
continuous clearing which we test against.

In case of the ZI traders’ surplus we can reject the null hypothesis in almost
all the cases, although there are a couple of instances where we can not reject
it. Market maker’s profit is significantly lower for all lags of the NBBO and
all lengths of the auctions when there is an arbitrageur present. Without the
arbitrageur, the profit is still significantly lower in most cases under NBBO lag
smaller than 200. With larger lags, the situation does get more complicated as
there are areas with small and areas with high p-values. Even though they look
randomly scattered at first, we can see one pattern which can be seen i.e. on
multiple plots in Figure 6.2. The p-values are very low along the line where the
length of the auction is slightly above the delay of the NBBO information. This
is a pattern which can be seen throughout other experiments which we present
in next section. The second explanation for the scattered p-values is the fact
that there are only two market makers in this settings, which is a relatively low
number compared to the number of ZI traders.

Finally, the profit of the arbitrageur is smaller in the batch-auction regime
with the exception of the leftmost column where the NBBO signal is not lagged.
This corresponds to the theoretical model, where the arbitrageur is able to
profit in the continuous regime where other market participants react slowly to
the public lagged NBBO signal. Once the auction is introduced the arbitrageur
loses his edge of absolute certainty of getting the full arbitrage potential, which
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results in lower profit than in the continuous regime. Similarly, we can see that
he is active in batch auctions even when the NBBO information is perfectly
known to all agents. However here he does not have any comparative advantage
as not only he is not clearing his orders instantly but also his competition has
the exact same information.

The mean execution time increases with the introduction of batch auctions,
which is in line with the expected outcome as generally an increase in the
time interval it takes to process the order increases the average time an order
rests in the order book. The execution time does seem lower along the same
diagonal of values where the NBBO delay is slightly smaller than the length of
the batch auction. The bid-ask spread exhibits strong improvements mainly in
situations with the latency arbitrageur. This is a direct consequence of the fact
that there are more spots in the market without arbitrageur, where misrouted
orders decrease the average spread.

The number of trades in both markets decreases with increasing length
of the auction. The exception is the shortest batch auction of length 100.
Generally, the main reason for this decrease is the fact that there are fewer
spots for market clearing. Every trader can trade (submit orders) only once
during an auction. Any future orders replace the ones which were submitted
before. In continuous markets this is not the case as any arrival of a trader
means a new opportunity for a trade.

The introduction of batch auctions of this length has brought in overall
lower surplus for all market participants. Also interestingly the presence of the
arbitrageur seems to increase the benefit of the zero-intelligence traders in the
continuous trading regime. These conclusions contradict the results of Wah &
Wellman (2017) and we investigate them in the next section.

6.2 Arbitrageur’s effect
For each lag of the NBBO and each length of the auction (or continuous clear-
ing), we test the two means of the ZI trader’s surplus with the alternative
hypothesis being that ZI trader’s surplus with arbitrageur is greater than with-
out him. The p-values are shown in Table 7.8.

We can reject the null hypothesis in the continuous regime with the NBBO’s
lag being greater than or equal to 300. Some of the p-values of the shortest
batch auction are also significant. Although counter-intuitive at first, this result
does make sense in our market settings where the intensity of both ZI traders
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and MMs is λ = 0.005. Therefore the mean arrival time of all the traders (with
exception of arbitrageur) is 200 time units. Once we lag the NBBO information
above this threshold it seems that the routing of the orders is random and the
traders react to market with a delay which is longer than their respective mean
arrival time.

The arbitrageur under these conditions can be actually beneficial, as he
would execute (for a cost - his profit) the misrouted trades which would be
canceled in a market without arbitrageur. These orders are in themselves valu-
able even when they are not executed at the best possible price. Once the delay
is above the threshold of 200 before this information is known to all market par-
ticipants, chances are that the order has already been canceled by the trader,
it, therefore, represents an opportunity cost for the ZI traders and MMs.

6.3 NBBO delay and Poisson intensity
We conduct one more experiment by testing our previous hypothesis with a
slightly new environment. We test now only the continuous trading with de-
layed NBBO. The NBBO delay ranges from 0 to 290 in increments of 10. We
also changed the intensity of the Poisson process of both ZI traders and MMs
to λ = 0.01. The p-values from testing the means of zero intelligence trader’s
surplus are summarized in Table 7.9. Each NBBO delay has been sampled 200
times.

From the results, we can conclude that the arbitrageur is again beneficial
once the delay of the NBBO information increases past the mean arrival time
of the traders, in our case 1

0.01 = 100. Figure 6.3 shows the relationship between
the surplus and the delay of the signal.
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a Delayed NBBO with arbitrageur b Delayed NBBO without arbitrageur

Figure 6.3: Continuous trading with and without arbitrageur, λ =
0.01

Under the arbitrageur, there is a sudden drop in the surplus, which stabi-
lizes and remains roughly constant for larger delays. The market without an
arbitrageur exhibits a more gradual decline, which seems to be proportional to
the length of the delay. The decline also most likely stabilizes once the delay
is large enough - we saw similar behavior in the plot of the figure 5.6. The two
bar plots intersect roughly around the delay of 100, which corresponds to the
point where the difference in means is statistically significant.

6.4 Batch auction and lagged NBBO in smaller
increments

We now look at the same experiment as in 6.1 but we change the clearing
intervals and NBBO delays. They now range from 0 to 180 in increments of 20.
The Poisson intensity is back at its original level of λ = 0.005, which means
that we investigate the area within the mean arrival time of our agents. Figures
6.4 and 6.5 summarize these measured metrics in a market settings with and
without an arbitrageur respectively. The NBBO signal delay is again on the
x-axis, auction length is on the y-axis.
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a Mean bid-ask spread b Mean execution time

c Price volatility d ZI’s surplus

e Number of trades f MM profit

Figure 6.4: Batch auction with NBBO delay, with arbitrageur - (De-
lay up to 180)
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a Mean bid-ask spread b Mean execution time

c Price volatility d ZI’s surplus

e Number of trades f MM profit

g Arbitrageur profit

Figure 6.5: Batch auction with NBBO delay, no arbitrageur - (Delay
up to 180)
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The tests of the means of ZI trader’s surplus in batch-auctions against
continuous trading with and without arbitrageur are summarized in tables 7.10
and 7.11 respectively. The alternative hypothesis in these tests is that the
mean of the surplus in batch auctions is greater than the surplus in continuous
trading. In both cases, there is a threshold beyond which switching to batch
auctions is not beneficial to ZI traders. Market settings with an arbitrageur
have this threshold around a greater length of the auction than the ones without
the arbitrageur. The interpretation of this is that in a market setting with an
arbitrageur, changing the clearing to batch auctions has a stronger impact on
ZI trader’s surplus as the general public is partially protected from the actions
of the arbitrageur. In the first column where the NBBO signal is not lagged,
we can see that with the exception of the shortest auction switching to batch
auctions would not be beneficial to ZI traders. On average an increase in the
length of the auction means a lower number of trades, hence lower overall
benefit.

Next, we compare the relative difference between ZI traders in markets with
and without the arbitrageur for all combinations of parameters. The results
are in Table 7.12. In the first column, none of the results are significant as that
is where the arbitrageur does not have an edge. Once we introduce the delayed
signal we obtain a diagonal above which ZI trader’s surplus is larger when
the arbitrageur is not present - we can see the degree to which an arbitrageur
actually decreases ZI trader’s surplus. The implication that an arbitrageur
can be malicious is opposite to what we found in a market setting with longer
auctions and NBBO signal delays.

The MM’s results were not as significant and they are studied in a slightly
different market settings in more detail in the next section. Arbitrageur’s profit
is summarized in the Table 7.13. Compared to the continuous trading the
batch auction on average has the profit. The exception is the shortest auction
with larger NBBO delays, where the arbitrageur’s profits are higher than in
continuous regime.

6.5 Changing the number of MMs
In the last two experiments, we test for the influence of the batch auctions on
the market where the number of ZI traders or MMs changes. We use the same
grid as in the previous experiment but we restrict ourselves only to a market
with an arbitrageur. First, we compare ZI trader’s surplus in markets with 8
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MMs against markets with 4 and 0 MMs. The results are summarized in tables
7.14 and 7.15 respectively. There are 500 observations for each market settings.

We have used the same parameters for the MMs as in Section 5. We keep
the number of ZI traders at 200 and we set the alternative hypothesis to ZI
traders’ surplus with 8 MMs being lower than one with fewer MMs. In both
tests, we can reject the null hypothesis (that the means equal) in most of the
frequent batch-auctions and continuous trading with no latency. An exception
is the bottom center part of our table, where batch auctions are longest but
it is impossible to infer any sort of trend from this discrepancy. In continuous
trading, with latency, more market makers seem to have a positive effect on
the zero intelligence traders’ surplus.

Tables 7.16 and 7.17 test for the difference in means of arbitrageur’s profit
for the same market setting. In both tests there seem to be a threshold on the
diagonal where the NBBO delay is about the same as the length of the batch
auction. Above this threshold, the arbitrageur’s profit actually gets smaller
when we include more market makers. Below the threshold, the difference in
profit between the two setups is about zero and mostly non-significant.

There is also a significant jump between delayed continuous market and
frequent batch auctions - with more MMs arbitrageur’s profit decreases more
in continuous markets (with a delayed NBBO signal) than it does in frequent
auctions. We could say that arbitrageur is better off without any market mak-
ers. From these results, it seems that the market makers used in our model act
in a similar way as the arbitrageur - they compete with the arbitrageur in all
market settings and are helpful towards ZI traders only in continuous trading
with lagged NBBO.

We also tested for settings with same possible numbers of market makers but
a different number of ZI traders (50 and 100). In both cases, the results were
less significant but very similar in nature. Of course with increasing number of
MMs, their profit increased as well.

6.6 Changing the number of ZI traders
Finally, we compare markets with 50 ZI agents against markets with 100 and
200 agents. The number of MMs is set to 8. We first test the means of
the MM’s profit, setting the alternative hypothesis to them being higher in
markets with more ZI traders. The results are summarized in tables 7.18 and
7.19 respectively.
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Once we increase the number of ZI traders from 50 to 100 the MM’s profit
increases in a majority of the grid. The exceptions are the shortest auction and
a steep diagonal (slope of this diagonal could be expressed as "NBBO"= −3
"auction length"). In both cases, the difference in means oscillates around zero.
With the second increase of ZI agents to 200, the diagonal starts to look as
a threshold above which the profit increases and below which decreases with
more agents. The shortest auction remains neutral in its effect on MM’s profit.

The effect on arbitrageur’s profit for the same market settings is shown in
Tables 7.20 and 7.21. The results of the two experiments are almost identical,
they only differ in the magnitude of the difference. A threshold can be drawn
again dividing the grid into two parts. Below this diagonal threshold, the
difference in both cases is on average zero. We could say that the arbitrageur
hits a certain limit which does not increase once we introduce more ZI traders.
Above the diagonal the profit of the arbitrageur increases with more ZI traders.

The diagonal is very similar to the one we saw in the previous example -
it affects mainly the arbitrageur and it limits his profit potential. The sets
of parameters below this diagonal represent situations where the length of the
auction is significantly larger than the delay of the NBBO signal. Then a slow
trader who arrives throughout the auction could already have the correct signal
about the state of the market and he could base his decision upon the same
information as the arbitrageur. This then means that the relative advantage
of the arbitrageur decreases as there is a chance that a new trader submits
an order at a better price and gets his order executed "at the expense" of the
arbitrageur.

6.7 Discussion
The results show the benefits of the proposed batch-auctions for the general
trading and investment public. As we saw in previous sections, given the num-
ber of parameters the model produces non-trivial results. For instance, the
arbitrageur as an agent could be of benefit if the NBBO signal is delayed
significantly compared to the mean arrival times of the agents. An almost
completely opposite outcome can be achieved if we change the intensities of
ZI’s and MM’s processes.

Similarly, the market maker’s influence on ZI’s surplus is not in line with
both the theory and previous experiments. When we compared MM’s behavior
in both market regimes we only tested for one set of MM’s parameters. Using
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multiple sets of parameters for both regimes would be extremely computation-
ally demanding, we have therefore skipped these calculations in this thesis. Yet
we did see a different effect the MMs had on ZI traders when we changed e.g.
the intensity of the MM’s process (ZI trader’s intensity remained the same).
This points to the possibility that even the simple MMs could be beneficial
when appropriate parameters of the MM are picked. The interpretation of the
results is therefore not straightforward, we have to take into account the rela-
tionship between various system attributes and the ways in which they interact
with one another.

We also use a rather simple models of MMs, one which does not handle the
inventory in any way and is in fact more primitive than our ZI traders. MMs
tend to be more sophisticated traders, so in the future a different model could
be more appropriate. Another option is that the MM could be included along
with the arbitrageur as the fast trader, as market making is today mainly done
through HFT.

We assumed that the behavior of our agents remains constant and does
not change with the change of the market regime. In continuous trading, the
arbitrageur has the ultimate advantage if the NBBO signal is delayed. He,
therefore, submits two orders which are in the middle of the overlapping best
bid and best ask prices and he has the certainty of getting the trade. This
certainty is lost in batch-auctions yet the arbitrageur keeps on trading the
same way. He still does have an information edge but does not use it fully - he
could, for instance, submit orders very close to the best bid and best ask levels
- increasing the probability of getting the trade even with a smaller profit.

Also, the switch to batch auctions gives a clear advantage to those with
resting limit orders. Latency arbitrageur’s profit is cut almost immediately by
half, due to the fact that the resting limit orders get a better clearing price.
This is of course under the assumption that there is only this trade during the
auction and the clearing price is set only by it.



Chapter 7

Conclusion

High-frequency trading is still a relatively new concept with fairly unclear im-
pact on the market quality. We focus on one aspect of HFT - the high-speed la-
tency arbitrage which has been criticized by many for its social non-optimality.
From various solutions which have been suggested in the literature, we pick and
study the change of the market clearing - the effect of a switch from continuous
to frequent-batch auctions. This change does not impact the general principles
of the exchanges, it rather focuses on the micro-level of market clearing and
how this change could impact the surplus of the general public.

The basis of our model comes from the fragmented market model used by
Wah & Wellman (2017). Compared to the previous work, this thesis introduces
a new agent (market maker) and allows for an NBBO signal and the clearing
interval to be of different length. This allows for an interesting study of re-
lationships between the two parameters and its impact on the overall market
quality. The tests show the existence of multiple thresholds/lines where the
market characteristics differ substantially.

We find that for a short enough auction the ZI traders experience a higher
surplus in batch-auctions than in continuous regime. This is mainly due to the
fact that in batch auctions the arbitrageur’s edge decreases significantly. We
also conclude that the arbitrageur can increase ZI surplus under longer delays
of NBBO signals, as he pairs ZI traders’ orders which would have been canceled
otherwise. Contrary to previous research the market maker in our environment
has not been of a benefit to ZI traders in most of the situations.

The latency arbitrage can be interpreted in the economic theory as a market
failure, one that most likely can not be solved with a market solution. The
proposed change to frequent-batch auctions does have a significant drawback
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for the exchange - lower number of trades. The exchange’s business model
is easily scalable and relies on the volume of securities traded. Choosing an
approach which yields a lower revenue is not in line with exchange’s optimal
way of running their business. Therefore, the most likely way of implementing
this policy would be a state-wide or international regulation, as the incentives
of the agents (traders, exchanges) do not align.

The optimal policy would depend on three factors - the regulator’s goal
(maximizing trader’s surplus, or minimizing abitrageur’s profit), the length
of the NBBO delay and the length of the auction. The first is selected by
the regulator, second is observable empirically and third would have to be
selected appropriately. The regulator would have to choose the length of the
auction carefuly, as on one hand it does improve ZI trader’s surplus, but it
then decreases once we increase the length of the auction significantly. It is
therefore possible that these two offseting effects do not produce a state in
which batch-auctions are beneficial - simply because the NBBO is delayed by
a significant amount.
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ZI Surplus MM Profit Bid/Ask

0
1736890.7

(1731897.65, 1741883.75)
27520.21

(25910.45, 29129.96)
600.59

(598.34, 602.84)

100
1847959.5

(1842928.73, 1852990.27)
26230.04

(24846.99, 27613.09)
557.54

(555.65, 559.43)

200
1942544.7

(1937369.71, 1947719.69)
23847.81

(22399.94, 25295.69)
524.18

(522.45, 525.91)

300
1994291.1

(1988723.58, 1999858.62)
22943.62

(21453.86, 24433.38)
491.47

(489.7, 493.24)

400
2021207.4

(2015400.18, 2027014.62)
19699.18

(18152.18, 21246.18)
468.65

(467.06, 470.23)

500
2018753.81

(2013158.32, 2024349.29)
17363.68

(16136.58, 18590.77)
448.96

(447.32, 450.6)

600
1990797.55

(1985070.68, 1996524.41)
16401.87

(15165.23, 17638.51)
433.27

(431.69, 434.86)

700
1945695.5

(1939764.76, 1951626.24)
16226.2

(14946.63, 17505.77)
422.72

(421.19, 424.26)

800
1876604.55

(1870228.9, 1882980.2)
14556.11

(12865.98, 16246.24)
410.87

(409.38, 412.36)

900
1809020.9

(1802979.4, 1815062.4)
14035.75

(12699.9, 15371.59)
405.19

(403.69, 406.69)

1000
1726788.15

(1720691.89, 1732884.41)
13072.67

(11852.2, 14293.13)
400.55

(398.94, 402.17)

# Trades Volatility Time

0
3316.82

(3310.36, 3323.29)
5.66

(5.65, 5.67)
14.85

(14.73, 14.96)

100
3108.73

(3103.03, 3114.43)
5.59

(5.58, 5.6)
15.82

(15.72, 15.93)

200
2913.32

(2907.33, 2919.3)
5.52

(5.51, 5.53)
16.88

(16.75, 17.01)

300
2702.95

(2696.58, 2709.32)
5.46

(5.44, 5.47)
17.92

(17.77, 18.06)

400
2504.26

(2498.48, 2510.04)
5.41

(5.4, 5.43)
18.95

(18.78, 19.11)

500
2315.29

(2309.79, 2320.78)
5.37

(5.36, 5.38)
19.44

(19.26, 19.62)

600
2134.17

(2129, 2139.35)
5.33

(5.32, 5.34)
20.26

(20.09, 20.43)

700
1969.99

(1964.68, 1975.31)
5.31

(5.3, 5.32)
21.3

(21.12, 21.48)

800
1810.53

(1805.3, 1815.75)
5.27

(5.26, 5.28)
22.25

(22.04, 22.46)

900
1676.52

(1671.65, 1681.39)
5.25

(5.24, 5.26)
23.11

(22.89, 23.34)

1000
1548.39

(1543.47, 1553.32)
5.23

(5.22, 5.25)
24.32

(24.07, 24.58)

Table 7.1: Preliminary results - ZI’s additional surplus.
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ZI Surplus MM Profit Bid/Ask

0
1740301.57

(1735611.87, 1744991.27)
0

(NaN, NaN)
616.38

(614.45, 618.31)

2
1735913.43

(1731011.57, 1740815.29)
28037.64

(26548.49, 29526.79)
601.84

(599.89, 603.78)

4
1730364.9

(1724990.9, 1735738.9)
53065.6

(50957.95, 55173.24)
585.64

(583.29, 587.99)

6
1727467.89

(1723486.06, 1731449.72)
79666.66

(77659.91, 81673.41)
567.28

(565.71, 568.85)

8
1722878.9

(1717221.49, 1728536.31)
100521.63

(97316.92, 103726.35)
553.1

(551.06, 555.14)

10
1724289.52

(1719075.45, 1729503.6)
118938.73

(115874.95, 122002.51)
538.88

(536.83, 540.92)

# Trades Volatility Time

0
3309.24

(3303.32, 3315.15)
5.69

(5.67, 5.7)
13.53

(13.45, 13.62)

2
3319.53

(3313.15, 3325.92)
5.66

(5.65, 5.67)
14.82

(14.71, 14.93)

4
3329.64

(3322.71, 3336.56)
5.63

(5.62, 5.65)
16.33

(16.2, 16.47)

6
3339.18

(3334.17, 3344.19)
5.62

(5.61, 5.62)
18.28

(18.16, 18.41)

8
3351.88

(3344.57, 3359.18)
5.58

(5.57, 5.59)
20.11

(19.91, 20.32)

10
3357.25

(3351.12, 3363.39)
5.56

(5.55, 5.57)
22.35

(22.11, 22.59)

Table 7.2: Preliminary results - MM’s count.
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0 20 40 60 80 100 120 140 160 180
20 95 *** 288 *** 248 *** 207 *** 167 *** 135 *** 109 *** 82 *** 58 *** 37 ***
40 -27 360 *** 215 *** 256 *** 151 *** 176 *** 99 *** 104 *** 40 *** 48 ***
60 -139 292 *** 254 *** 111 *** 168 *** 146 *** 48 *** 49 *** 58 *** -22
80 -243 182 *** 229 *** 150 *** 9 *** 83 *** 49 *** 36 *** -64 -50
100 -341 63 *** 186 *** 95 *** 48 *** -92 -16 -27 -63 -78
120 -439 -47 92 *** 91 *** -10 -53 -190 -121 -84 -146
140 -532 -151 -11 50 *** -29 -106 -149 -283 -218 -167
160 -619 -249 -119 -36 -21 -134 -185 -242 -369 -314
180 -703 -341 -212 -128 -74 -110 -225 -262 -321 -456

Table 7.10: Difference in means (in thousands) of the ZI’s surplus
in continuous regime against batch-auctions (with arbi-
trageur) - delay up to 180

0 20 40 60 80 100 120 140 160 180
20 91 *** 92 *** 68 *** 58 *** 44 *** 38 *** 32 *** 34 *** 24 *** 22 ***
40 -32 123 *** 1 56 *** -14 32 *** -25 13 *** -33 0
60 -142 50 *** 18 *** -91 -31 -18 -94 -59 -32 -94
80 -242 -58 -29 -64 -180 -100 -103 -76 -165 -136
100 -344 -176 -71 -132 -150 -264 -174 -164 -162 -153
120 -442 -291 -161 -149 -215 -234 -337 -245 -206 -234
140 -536 -393 -264 -186 -249 -286 -308 -406 -328 -260
160 -625 -491 -370 -269 -241 -330 -349 -372 -477 -403
180 -708 -581 -461 -361 -290 -313 -401 -398 -435 -540

Table 7.11: Difference in means (in thousands) of the ZI’s surplus
in continuous regime against batch-auctions (with arbi-
trageur) - delay up to 180

0 20 40 60 80 100 120 140 160 180
0 3 240 *** 250 *** 232 *** 212 *** 193 *** 171 *** 141 *** 122 *** 98 ***
20 0 45 *** 70 *** 83 *** 89 *** 96 *** 94 *** 94 *** 88 *** 83 ***
40 -2 4 + 36 *** 32 *** 47 *** 49 *** 47 *** 51 *** 49 *** 49 ***
60 0 -2 14 *** 30 *** 13 *** 29 *** 29 *** 34 *** 31 *** 26 ***
80 4 * 0 -8 18 *** 23 *** 11 *** 19 *** 30 *** 21 *** 13 ***
100 0 1 -7 5 * 13 *** 21 *** 14 *** 4 * 23 *** 24 ***
120 0 -4 -3 -8 7 *** 13 *** 24 *** 16 *** 0 10 ***
140 0 -3 -3 -4 -8 13 *** 13 *** 18 *** 12 *** 5 **
160 -2 -2 -1 -1 -9 -2 8 *** 12 *** 14 *** 10 ***
180 -1 0 1 0 -4 -9 -5 6 ** 8 *** 13 ***

Table 7.12: Difference in means (in thousands) of ZI’s surplus in all
market settings without and with the arbitrageur (delay
up to 180)
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0 20 40 60 80 100 120 140 160 180
20 2 *** 47 *** 11 *** -22 -41 -58 -74 -85 -94 -104
40 1 ** 127 *** 85 *** 94 *** 63 *** 67 *** 48 *** 46 *** 30 *** 30 ***
60 0 135 *** 137 *** 107 *** 125 *** 112 *** 96 *** 95 *** 94 *** 83 ***
80 0 136 *** 156 *** 141 *** 120 *** 136 *** 132 *** 120 *** 112 *** 116 ***
100 0 137 *** 160 *** 160 *** 147 *** 129 *** 141 *** 145 *** 137 *** 129 ***
120 0 136 *** 161 *** 167 *** 164 *** 151 *** 136 *** 143 *** 152 *** 149 ***
140 0 136 *** 161 *** 169 *** 172 *** 165 *** 154 *** 140 *** 147 *** 153 ***
160 0 136 *** 161 *** 169 *** 175 *** 173 *** 167 *** 157 *** 146 *** 148 ***
180 0 136 *** 160 *** 169 *** 176 *** 178 *** 174 *** 167 *** 160 *** 148 ***

Table 7.13: Difference in means of the arbitrageur’s profit in contin-
uous regime against batch-auctions

0 20 40 60 80 100 120 140 160 180
0 6 *** -11 -13 -14 -15 -13 -14 -12 -13 -12
20 17 *** 11 *** 11 *** 7 *** 8 *** 9 *** 7 *** 5 ** 6 ** 4 *
40 17 *** 6 ** 13 *** 12 *** 11 *** 9 *** 9 *** 6 *** 11 *** 0
60 12 *** 5 ** 6 ** 9 *** 8 *** 4 * 9 *** 10 *** 9 *** 8 ***
80 14 *** 7 *** 6 *** 5 ** 13 *** 11 *** 8 *** 8 *** 7 * 7 **
100 10 *** 6 *** 4 * 6 *** 7 *** 13 *** 9 *** 7 *** 10 *** 7 ***
120 10 *** 7 *** 7 *** 1 9 *** 6 *** 12 *** 13 *** 7 *** 5 **
140 8 *** 10 *** 5 ** 1 3 + 4 * 6 *** 11 *** 14 *** 7 ***
160 8 *** 4 ** 5 ** 5 ** 0 3 + 8 *** 3 * 11 *** 10 ***
180 8 *** 8 *** 7 *** 4 ** 5 ** 0 3 * 3 + 8 *** 8 ***

Table 7.14: Difference in means (in thousands) of ZI’s surplus in all
market settings with 8 and 4 MMs

0 20 40 60 80 100 120 140 160 180
0 11 *** -22 -24 -27 -26 -24 -29 -26 -27 -23
20 36 *** 27 *** 23 *** 16 *** 19 *** 23 *** 19 *** 14 *** 16 *** 12 ***
40 34 *** 20 *** 28 *** 21 *** 25 *** 20 *** 23 *** 18 *** 19 *** 11 ***
60 31 *** 14 *** 21 *** 27 *** 19 *** 17 *** 25 *** 22 *** 15 *** 16 ***
80 29 *** 20 *** 10 *** 16 *** 29 *** 23 *** 19 *** 21 *** 16 *** 11 ***
100 26 *** 16 *** 12 *** 16 *** 15 *** 28 *** 21 *** 11 *** 19 *** 16 ***
120 22 *** 17 *** 13 *** 5 ** 15 *** 13 *** 25 *** 24 *** 14 *** 13 ***
140 20 *** 20 *** 13 *** 6 *** 6 ** 13 *** 15 *** 26 *** 24 *** 15 ***
160 18 *** 16 *** 15 *** 8 *** 3 * 5 ** 13 *** 13 *** 21 *** 20 ***
180 20 *** 17 *** 14 *** 12 *** 9 *** -1 5 ** 9 *** 12 *** 18 ***

Table 7.15: Difference in means (in thousands) of ZI’s surplus in all
market settings with 8 and 0 MMs



Bibliography 66

0 20 40 60 80 100 120 140 160 180
0 0 12 *** 15 *** 16 *** 16 *** 17 *** 16 *** 16 *** 16 *** 16 ***
20 -1 4 *** 5 *** 6 *** 6 *** 8 *** 6 *** 7 *** 8 *** 9 ***
40 0 0 2 *** 3 *** 3 *** 5 *** 5 *** 5 *** 5 *** 7 ***
60 0 0 0 2 *** 2 *** 2 *** 3 *** 4 *** 5 *** 4 ***
80 0 0 -1 1 ** 2 *** 1 * 3 *** 2 *** 3 ** 3 ***
100 0 0 0 0 1 *** 2 *** 2 *** 2 *** 2 *** 3 ***
120 0 0 0 -1 0 1 *** 2 *** 2 *** 0 1 ***
140 0 0 0 0 0 1 *** 1 *** 2 *** 1 *** 1 **
160 0 * 0 0 * 0 0 0 0 * 1 *** 1 *** 2 ***
180 0 * 0 0 0 0 0 0 0 * 1 *** 2 ***

Table 7.16: Difference in means (in thousands) of arbitrageur’s profit
in all market settings with 8 and 4 MMs

0 20 40 60 80 100 120 140 160 180
0 0 26 *** 31 *** 32 *** 32 *** 34 *** 33 *** 33 *** 34 *** 33 ***
20 -1 7 *** 11 *** 13 *** 13 *** 15 *** 16 *** 15 *** 16 *** 18 ***
40 -1 -1 5 *** 8 *** 7 *** 9 *** 10 *** 11 *** 11 *** 12 ***
60 0 0 1 ** 3 *** 4 *** 5 *** 5 *** 8 *** 8 *** 9 ***
80 0 0 0 2 *** 4 *** 3 *** 5 *** 4 *** 6 *** 7 ***
100 0 0 0 1 + 1 *** 4 *** 3 *** 4 *** 5 *** 5 ***
120 0 0 0 -1 1 *** 2 *** 4 *** 4 *** 3 *** 3 ***
140 0 0 0 0 1 ** 1 *** 2 *** 4 *** 3 *** 3 ***
160 0 0 * 0 ** 0 0 1 * 1 *** 2 *** 3 *** 4 ***
180 0 0 0 0 + 0 1 * 1 ** 1 *** 2 *** 3 ***

Table 7.17: Difference in means (in thousands) of arbitrageur’s profit
in all market settings with 8 and 0 MMs

0 20 40 60 80 100 120 140 160 180
0 23 *** 25 *** 19 *** 18 *** 19 *** 17 *** 17 *** 17 *** 19 *** 17 ***
20 4 *** 1 2 * 3 ** 2 * -2 -1 -4 -3 -7
40 11 *** -3 6 *** 3 ** 9 *** 7 *** 7 *** 8 *** 11 *** 10 ***
60 13 *** -2 2 ** 12 *** 8 *** 7 *** 13 *** 13 *** 13 *** 17 ***
80 13 *** 0 0 5 *** 13 *** 11 *** 13 *** 13 *** 18 *** 18 ***
100 10 *** 3 *** -1 7 *** 7 *** 15 *** 14 *** 15 *** 17 *** 13 ***
120 8 *** 6 *** 1 + 2 * 12 *** 9 *** 17 *** 17 *** 16 *** 19 ***
140 7 *** 6 *** 2 ** 1 7 *** 13 *** 6 *** 18 *** 17 *** 16 ***
160 5 *** 4 *** 4 *** 0 3 *** 10 *** 14 *** 9 *** 16 *** 17 ***
180 4 *** 6 *** 4 *** 2 * 0 3 *** 14 *** 15 *** 8 *** 14 ***

Table 7.18: Difference in means (in thousands) of MM’s profit in all
market settings with 50 and 100 ZI traders
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0 20 40 60 80 100 120 140 160 180
0 36 *** 35 *** 31 *** 28 *** 28 *** 28 *** 26 *** 27 *** 27 *** 25 ***
20 4 *** -1 -2 -2 1 + 1 4 *** 3 ** 6 *** 4 ***
40 11 *** -10 10 *** 8 *** 18 *** 15 *** 22 *** 21 *** 23 *** 19 ***
60 6 *** -10 2 * 19 *** 16 *** 15 *** 22 *** 26 *** 24 *** 24 ***
80 5 *** -6 3 *** 1 25 *** 20 *** 28 *** 18 *** 22 *** 26 ***
100 1 -3 -5 15 *** 1 24 *** 23 *** 29 *** 28 *** 18 ***
120 -2 -2 -3 6 *** 19 *** 3 ** 24 *** 25 *** 28 *** 32 ***
140 -3 1 0 -4 20 *** 17 *** 4 *** 23 *** 26 *** 27 ***
160 -5 -3 -1 -5 3 *** 29 *** 17 *** 5 *** 19 *** 26 ***
180 -4 -1 -1 -1 -3 12 *** 33 *** 14 *** 5 *** 14 ***

Table 7.19: Difference in means (in thousands) of MM’s profit in all
market settings with 50 and 200 ZI traders

0 20 40 60 80 100 120 140 160 180
0 0 32 *** 39 *** 42 *** 43 *** 44 *** 44 *** 45 *** 45 *** 45 ***
20 -2 21 *** 42 *** 61 *** 78 *** 93 *** 104 *** 114 *** 121 *** 130 ***
40 0 3 *** 31 *** 29 *** 48 *** 48 *** 58 *** 58 *** 64 *** 64 ***
60 1 + 1 + 6 *** 26 *** 21 *** 27 *** 36 *** 32 *** 35 *** 39 ***
80 1 * 0 2 *** 11 *** 21 *** 15 *** 17 *** 22 *** 26 *** 22 ***
100 0 0 0 3 *** 12 *** 17 *** 13 *** 12 *** 15 *** 18 ***
120 0 0 -1 1 * 4 *** 12 *** 14 *** 11 *** 8 *** 9 ***
140 0 + 0 -1 0 1 * 5 *** 11 *** 13 *** 10 *** 8 ***
160 0 0 * 0 0 0 2 *** 6 *** 10 *** 11 *** 10 ***
180 0 0 0 0 0 0 2 *** 6 *** 9 *** 11 ***

Table 7.20: Difference in means (in thousands) of arbitrageur’s profit
in all market settings with 50 and 100 ZI traders

0 20 40 60 80 100 120 140 160 180
0 0 104 *** 115 *** 120 *** 121 *** 123 *** 124 *** 125 *** 124 *** 125 ***
20 -2 77 *** 129 *** 161 *** 184 *** 199 *** 213 *** 223 *** 230 *** 239 ***
40 0 7 *** 62 *** 54 *** 82 *** 80 *** 93 *** 92 *** 104 *** 101 ***
60 1 * 0 17 *** 44 *** 32 *** 44 *** 52 *** 51 *** 52 *** 55 ***
80 1 *** 0 2 *** 22 *** 34 *** 23 *** 27 *** 35 *** 37 *** 33 ***
100 0 + 0 0 6 *** 20 *** 29 *** 20 *** 18 *** 25 *** 29 ***
120 0 0 -1 1 *** 8 *** 18 *** 23 *** 18 *** 14 *** 18 ***
140 0 * 0 -1 0 1 ** 9 *** 17 *** 21 *** 18 *** 13 ***
160 0 0 * 0 0 0 3 *** 10 *** 15 *** 19 *** 17 ***
180 0 0 0 + 0 0 0 4 *** 9 *** 14 *** 18 ***

Table 7.21: Difference in means (in thousands) of arbitrageur’s profit
in all market settings with 50 and 200 ZI traders
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