Analýza růstově inhibičních mechanismů flubendazolu u buněk maligního melanomu

Kristýna Čáňová

Autoreferát disertační práce

Doktorský studijní program: Lékařská biologie

Hradec Králové

2018
Disertační práce byla vypracována v rámci prezenčního studia doktorského studijního programu Lékařská biologie na Ústavu lékařské biologie a genetiky Lékařské fakulty v Hradci Králové.

Autor: PharmDr. Kristýna Čáňová
Ústav lékařské biologie a genetiky

Školitel: prof. PharmDr. Emil Rudolf, Ph.D.
Ústav lékařské biologie a genetiky

Oponenti: doc. MUDr. Iva Slaninová, Ph.D.
Lékařská fakulta Masarykovy univerzity, Biologický ústav
Kamenice 753/5, 625 00 Brno
prof. MUDr. Václav Mandys, CSc.
Ústav patologie 3. LF a FNKV
Šrobárova 50, 100 34 Praha 10

Obhajoba se bude konat před Komisí pro obhajoby OR Lékařské biologie dne 18. června 2018 v budově Výukového a výzkumného centra UK v Hradci Králové (Kampus) v posluchárně A105 (K) od 10:00 hod.

Tato práce vznikla za podpory grantů:
SVV 2016
SVV 2017
PRVOUK P37/01
PROGRESS Q40 01

S disertační prací je možno se seznámit na studijním oddělení děkanátu Lékařské fakulty v Hradci Králové, Univerzity Karlovy, Šimkova 870, 500 03 Hradec Králové (tel. 495 816 131).

prof. PharmDr. Emil Rudolf, Ph.D.

Předseda komise pro obhajoby disertačních prací
v doktorském studijním programu Lékařská biologie

Garant studijního programu
OBSAH

1. SOUHRN ... 5
2. SUMMARY ... 6
3. ÚVOD DO PROBLEMATIKY ... 7
 3.1. Maligní melanom ... 7
 3.1.1. Definice ... 7
 3.1.2. Epidemiologie ... 7
 3.2. Melanocyty ... 7
 3.2.1. Evoluce melanocytů .. 7
 3.2.2. Melanogeneze ... 8
 3.2.3. Biologie melanocytů .. 8
 3.3. Genomické změny u melanomu ... 8
 3.4. Chemorezistence ... 9
 3.5. Benzimidazolové deriváty .. 9
 3.5.1. Mechanismus účinku benzimidazol-karbamátů 9
 3.5.2. Protinádorové vlastnosti benzimidazol-karbamátů 10
 3.5.3. Flubendazol ... 10
 3.5.4. Protinádorové účinky flubendazolu .. 10
 3.6. Mitotická katastrofa ... 10
4. CÍLE DISERTAČNÍ PRÁCE .. 12
5. MATERIÁL A METODIKA .. 13
 5.1. Buněčné linie a jejich kultivace ... 13
 5.2. Izolace melanocytů ze vzorků od pacientů .. 13
 5.3. Stanovení cytotoxicity pomocí testů WST-1 a xCELLigence 13
 5.4. Proliferace buněk HEM-LP .. 13
 5.5. Časosběrná videomikroskopie ... 14
 5.6. Analýza buněčného cyklu pomocí průtokové cytometrie a EdU značení 14
1. SOUHRN

Analýza růstově inhibičních mechanismů flubendazolu u buněk maligného melanomu

Maligní kožní melanom je ve svém pokročilém stádiu vysoce agresivním nádorovým onemocněním, často chemorezistentním na většinu současných terapeutických strategií. V současné době se výzkumy zaměřují na identifikaci nových cílů v maligních melanocytech či se snaží využít tzv. nových indikací již schválených látek, a to prostřednictvím přístupů nazývaných „drug repurposing“. Tato práce se zabývá ověřováním růstově inhibičních vlastností jednoho takového léčiva – flubendazolu (FLU) – široce využívaného anthelmintika patřícího do rodiny benzimidazolových derivátů. Toto léčivo specificky interaguje s β-tubulinem, což následně vede k poškození struktury a funkce mikrotubulů v ovlivněných buňkách. Několik členů benzimidazolové rodiny (včetně FLU) již prokázalo růstově inhibiční potenciál u nádorových buněk odvozených z nádorů prsu, tlustého střeva, krve a nervového systému. Protinádorové vlastnosti FLU u maligného melanomu však ještě do této doby nebyly ověřovány.

Cytotoxicita FLU byla testována u tří linií lidského maligného melanomu představující odlišné molekulární subtypy (A-375, BOWES a RPMI-7951) během 72 hodin pomocí WST-1 a x-CELLigence testů. Na základě jednotlivých hodnot IC₅₀ získaných z jednotlivých buněčných linií byla pro další testování vybrána koncentrace FLU 1 µM. Tato koncentrace byla relativně tolerována u normálních lidských kožních melanocytů (HEM), nicméně u melanomových buněk významně poškodila organizaci a funkci mikrotubulů, indukovala zástavu buněčného cyklu v G2/M fázi a vyvolala sérii změn v buněčné morfologii. Přítomnost dalších specifických změn (tzn. vznik obrovských mnohojaderných buněk, zvýšená exprese p21 a aktivace kaspázy-2) naznačila mitotickou katastrofu, po které následovala na kaspáze-3/7 závislá apoptotická buněčná smrt. Další analýzy prokázaly, že oba procesy nesuprovázejí aktivovaná signální dráha TP53-BAX, a jejich podrobnější mechanismy budou tedy předmětem budoucích studií.

Protinádorová aktivita FLU byla také ověřována u melanomových buněk odvozených z explantátových kultur získaných ze vzorků melanomu od pacientů léčených ve Fakultní nemocnici Hradec Králové. V pilotní studii prováděné na buňkách vzorku od vybraného pacienta FLU vyvolal inhibici růstu a cytotoxicitu, nicméně buňky na něj vykazovaly nižší citlivost (dle získané hodnoty IC₅₀). Dále testovaná koncentrace FLU 1 µM vykazovala cytostatický účinek a vyvolávala velmi ojedinělé morfologické změny u exponovaných buněk, významně odlišné od dříve pozorované mitotické katastrofy a apoptózy u buněk melanomových linií.
2. SUMMARY

Analysis of growth-inhibitory mechanisms of flubendazole in malignant melanoma cells

Malignant skin melanoma is at its advanced stage highly aggressive and chemoresistant to almost all currently available therapies. Moderns efforts are thus aimed to identify new targets in melanoma cells or to take advantage of novel indications of already approved drugs – a process called drug repurposing. This work was focused on evaluation of cell growth inhibitory properties of one such drug – flubendazole (FLU) – a widely used anthelmintic compound belonging to benzimidazole family. This drug specifically interacts with β-tubulin, which results in disruption of microtubule structure and function in the exposed cells. Several members of the benzimidazole family (including FLU) have already shown the growth inhibitory potential in tumor cells derived from breast, colon, blood and nervous system malignancies. Still, the specific activity of FLU in malignant melanoma has not been tested to the date.

Cytotoxicity of FLU was tested in three malignant melanoma cell lines representing diverse melanoma molecular types (A-375, BOWES and RPMI-7951) during up to 72 hours using WST-1 and x-CELLigence assays. Based on achieved IC50 from individual cell lines, the 1 µM FLU concentration was selected for further testing. While relatively tolerated in normal human skin melanocytes, FLU at this concentration disrupted microtubular cytoskeleton, induced G2/M cell cycle arrest and changed morphology of exposed melanoma cells. The presence of other specific changes (i.e. cell enlargement and multinucleation, overexpression of p21 and activation of caspase-2) indicated mitotic catastrophe which was followed by apoptotic cell death. Further analyses revealed that both processes were not linked by activated TP53-BAX axis and their further elucidation should be addressed in future.

FLU activity was also evaluated in melanoma cells derived from melanoma explant cultures obtained from human subjects undergoing melanoma excision in Faculty teaching hospital in Hradec Králové. In a pilot study using cells from one patient FLU showed cytotoxicity and growth inhibitory properties, however, with lesser potency as judged from higher IC50 value. 1 µM FLU concentration then had cytostatic effect in exposed cells and induced a series of very unusual morphological alterations entirely dissimilar of mitotic catastrophe and classical apoptosis.
3. ÚVOD DO PROBLEMATIKY

3.1. Maligní melanom

3.1.1. Definice
Melanom je zhoubný nádor, který vzniká z pigmentových buněk (melanocytů) a primárně se vyskytuje v kůži. Vzácně se také vyskytuje v jiných tkáních (jako je sítnice oka nebo sliznice úst a genitálu) a to díky neuroektodermálnímu původu melanocytů. Melanomy jsou běžně vysoce pigmentované, ale mohou být také amelanotické. Melanom je charakteristický agresivním růstem a schopností rychle metastazovat (1).

3.1.2. Epidemiologie
Výskyt maligního melanomu v bělošské populaci celosvětově dramaticky narůstá, zejména v oblastech se nadměrným slunečním zářením. Do hlavní rizikové skupiny výskytu melanomu se řadí lidé se světlou pletí, blonďatými nebo zrzavými vlasy a modrýma očima. Nejvyšší míra výskytu melanomu byla hlášena v Austrálii (2, 3), přičemž v České republice vzrostl výskyt melanomu kataležcům rostl za posledních 30 let (4).

Genetická predispozice hraje dominantní roli v riziку vzniku melanomu. Kromě pigmentace zejména to jsou i další dědičné faktory, jako je pozitivní rodinná anamnéza, hustota a typ stávajících něvů nebo náchylnost k spálení sluncem, nikoliv opálení (5). Nejčastěji zmíněnou mutací v případě maligního melanomu jsou mutace genů CDKN2A a CDK4, které kodují tumor-supresorové proteiny p16 a p19. Ty byly dokumentovány v některých rodinách s dědičným melanomem a přinášejí 60 až 90 % celoživotního rizika výskytu melanomu (6, 7).

Je všeobecně známo, že celkové riziko pro vznik melanomu je určeno vzájemnou součinností mezi genetickými a environmentálními faktory, zejména pak vystavením se slunečnímu záření (3). Účinky slunečního záření na výskyt melanomu však nejsou zcela zřejmé. Předpokládá se, že na vznik melanomu se podílí zejména mutagenní UV-B záření (to které je zodpovědné za opalování a spálení kůže), ale i prozánětlivé UV-A záření, které proniká hlouběji a tak aktivuje melanocyty. Navíc UV záření má na kůži imunosupresivní účinky a tím, přinejmenším teoreticky, zasahuje do imunologických mechanismů a přispívá k rozvoji rakoviny kůže (5).

3.2. Melanocyty
Melanocyty jsou pigmentové buňky vyskytující se většinou, ale ne pouze, v epidermis kůže, dále také ve vlasech nebo očích. Jejich hlavní funkci je produkce černohnědého pigmentu melaninu, který je zodpovědný za barvu kůže a vlasů (8).

3.2.1. Evoluce melanocytů
Melanocyty se diferencují z melanoblastů v neurální zárodečné liště a migrují do stratum basale epidermis, kde se vyskytují mezi keratinocyty. Alternativní cesty vedou melanocyty do vlasových folikulů nebo uveálního traktu oka a sítnice (9).

Melanocyty jsou oválné dendritické buňky, menší než keratinocyty. Nacházejí se ve spodní vrstvě epidermis, kde dohromady s 30-40 přidruženými keratinocyty tvoří epidermální-melaninovou jednotku. Ve spodní vrstvě epidermis se melanocyty vůči keratinocytům vyskytují v poměru 1:10 a tento poměr zůstává zachován po celý život.
Exprese speciálních adhezních molekul, jako jsou E- a P- kadheriny, demonstruje existenci mezibuněčných spojů v epidermální-melaninové jednotce. Tyto kontakty mezi dendritickými melanocyty a keratinocyty jsou nezbytné pro transport melaninu do keratinocytů, což zaručuje zbarvení kůže a fotoprotekci (10).

3.2.2. Melanogeneze

3.2.3. Biologie melanocytů
Počet, organizace a biologická aktivita melanocytů je v epidermis kontrolovaná a regulována genetickými, epigenetickými a environmentálními mechanismy, které nejsou úplně zřejmě objasněny. Melanocyty jsou vysoce diferenciované buňky charakterizované dlouhou životností, zvýšenou rezistencí na environmentální stres a nízkou proliferáční aktivitou. Tento stav je udržován díky komplexní soustavě různých vlivů, parakrinních faktorů a/nebo expresi molekul buněčného povrchu, které zprostředkovávají interakce mezi melanocyty, keratinocyty, fibroblasty nebo jinými orgány (např. hypofýzou) (10). Melanocyty navíc podléhají vlivům environmentálního prostředí, zejména UV záření. UV záření aktivuje keratinocyty, které vysílají signál pro zvýšení proliferace melanocytů, které jsou odpovědné za tvorbu névů. Melanocyty vyskytující se v névech se významně neliší od normálních melanocytů, mohou však začít s expresí různých faktorů a často nesou některé genetické změny typické pro rozvoj melanomu (13). Nérové buňky nestávají, ať už v určitém stadiu, aby vytvořily populaci pigmentových buněk, která tvoří pihu (14). Tato zástava proliferace je zdánlivě pod kontrolou inhibitem buněčného cyklu p16\(^{INK4A}\), přičemž defekty v expresi CDKN2A korelují se zvýšeným počtem pih a vyšším rizikem transformace melanocytů (15). Avšak vznik zhoubného melanomu z jednotlivých névů je vysoce individuální proces s postupnou akumulací genetických a epigenetických změn a silným vlivem mikroprostředí (13).

3.3. Genomické změny u melanomu
Míra mutací u melanomu je podle publikace „The cancer genome atlas data“ nejvyšší ze všech analyzovaných malignit (16). Podrobné vyčtění genetických a epigenetických změn zjištěných v různých formách melanomu je mimo rozsah tohoto úvodu, nicméně nejčastěji nalezené genetické změny jsou shrnuty v obrázku 1.
3.4. Chemorezistence

Chemorezistence je hlavní příčinou selhání chemoterapeutické léčby u většiny lidských nádorů. Tradíčně je chemorezistence klasifikována jako vrozená nebo získaná a to na základě počáteční odpovědí organismu na terapii. Mezi nejčastější mechanismy rezistence patří například např. zvýšená exprese efluxních proteinů, zvýšená tolerance stresových stavů a potlačení signalizace buněčné smrti. Melanom je agresivní a mnohočetně chemorezistentní typ malignity, přičemž jsou přítomné mohoucí z výše uvedených mechanismů rezistence vůči léčivům.

3.5. Benzimidazolové deriváty

Benzimidazoly jsou kondenzované heterocyklické struktury, které tvoří nedílnou součást vitamínu B12. Bylo prokázáno, že substituce jádra benzimidazolu modifikuje chemické a farmakologické vlastnosti molekuly a je rozhodujícím krokem v procesu objevování léků. První benzimidazol, který byl vyvinut a určen pro humánní použití, byl thiabendazol, následovaný řadou veterinárních antihelmintik (parbendazol, fenbendazol, oxfendazol a cambendazol). První benzimidazolkarbamát používaný u lidí byl mebendazol a následně flubendazol. V současné době jsou některé deriváty benzimidazolu klinicky schváleny včetně albendazolu, mebendazolu, thiabendazolu jako antihelmintika; omeprazol, lansoprazol, pantoprazol jako inhibitory protonové pumpy; astemizol jako antihistaminikum; enviradin jako antiavirotickum; candesarten cilexitol a telmisartan jako antihypertenziva (17).

3.5.1. Mechanismus účinku benzimidazol-karbamátů

Benzimidazolkarbamáty se specificky váží a interagují s podjednotkou mikrotubulu β-tubulinem (18), i navzdory tomu, že afinita k savému tubulimu je slabší než afinita k tubulimu helmintů (19). Vzhledem k tomu, že struktura mikrotubulů je velmi důležitá pro mnoho životně důležitých funkcí parazita, jako jsou proliferace, mitóza, intracelulární...
transport organel, udržování tvaru buňky nebo změna mikrotubulárního uspořádání, jejich zablokování vede ke konečné destrukci parazita (18, 20, 21). Kromě toho také mohou benzimidazolkarbamáty inhibovat energetický metabolismus parazitních buněk. Dále způsobují narušení transportu a metabolismus glukózy, což vede k vyčerpání energie a glykogenu a ke ztrátě buněčné motility. Dokonce i tento proces nakonec přispívá ke smrti parazita (22, 23).

3.5.2. Protinádorové vlastnosti benzimidazol-karbamátů

Ukázalo se, že benzimidazolkarbamáty interagují nejvíce s mikrotubuly u helmintů, ale i se savčím tubulinním proteinem in vitro. To vyvolalo otázku, zda tato skupina látek mohou inhibovat polymeraci tubulinu v lidských buňkách, a pokud ano, zda by takový účinek mohl vyvolat jejich antiproliferativní a/nebo protinádorové účinky. V řadě publikovaných studií se ukázalo, že albendazol a mebendazol jsou cytotoxické a indukují buněčnou smrt v širokém spektru nádorových buněk (24).

3.5.3. Flubendazol

Flubendazol (FLU) je syntetické anthelmintikum objevené v 70. letech firmou Janssen. Běžně je používán ve veterinární medicíně jako širokospektré anthelmintikum, ale je také registrován k humánnímu použití na léčbu střevních nematod (24).

3.5.4. Protinádorové účinky flubendazolu

Protinádorové účinky FLU byly poprvé zaznamenány u buněčných linií leukémie a myelomu, kde FLU způsoboval potlačení proliferace, zástavu buněčného cyklu a mitotickou katastrofu. Podobné účinky byly také pozorovány u buněčných linií nádoru prsu MDA-MB-231, BT-549, MCF-7 a SK-BR-3, kde kromě inhibičních účinků FLU byla pozorována inhibice buněčné migrace, která byla doprovázena sníženou expresí mezenchymálních markerů (β-katenin, N-kadherin, Vimentin) a indukovaná exprese epiteliálních epiteliálního nádor. FLU byl navíc popsán jako silný induktor reaktivních kyslíkových radikálů (ROS), které jsou schopné prostřednictvím cíleného autofagického proteinu ATG4B aktivovat autofagii (24, 25). U buněk kolorektálního karcinomu SW480 a SW620, FLU inhiboval jejich růst, způsobil zástavu buněčného cyklu ve fázi G2/M a také potencioval účinek paklitaxelu (26, 27). Nakonec v rozsáhlém zkoumání 321 buněčných linií, včetně různých nádorových buněčných linií, byl identifikován neuroblastom jako další maligní buněčná linie vysoce citlivá na FLU. Následné experimenty ukázaly, že FLU vykazuje širokou aktivitu vůči primárním neuroblastomovým buněkám získaným od pěti pacientů a panelu 140 buněčných linií neuroblasto tu se získanou rezistencí vůči hlavním sloučeninám vázajících se na mikrotubuly. Specifická aktivita FLU směřovala k signalizaci p53, a to jejího producentu PUMA, který byl prokázán jako klíčový mediátor indukovaných účinků (24).

3.6. Mitotická katastrofa

Ve vědecké literatuře se termín mitotická katastrofa používá k popisu několika souvisejících, ale ne zcela totožných jevů. Konkrétně jsou v současné době prezentovány dva protichůdné názory, zda mitotická katastrofa je způsob smrti buněk nebo zda představuje řadu kroků vedoucích k buněčné smrti (apoptóze nebo nekróze) (28). Mitotická katastrofa je
charakterizována několika zřetelnými morfologickými rysy, jako je tvorba velkých mnohojaderných buněk s dekondenzovaným chromatinem, zmnožení centrosomů a výskyt aberantních mitotických vřetenek. Některé studie navíc zdůrazňují, že buňky podstupující mitotickou katastrofu mají přítomné vybrané fenotypové znaky charakteristické pro apoptózu (29).

Alternativní pohled na mitotickou katastrofu ji představuje jako sekvenční proces, který vrcholí buněčnou smrtí vyplývající z abnormální mitózy. V tomto případě může být samotný proces spuštěn předčasným nebo abnormálním vstupem buněk do mitózy v důsledku přítomnosti fyzických nebo chemických stresorů. Tyto stresory zahrnují činidla poškozující DNA, jako je doxorubicin nebo cisplatina, mitotické jedy zahrnující jak hyperpolymerizaci mikrotubulů (např. Taxany), tak i depolymerizační činidla (Vinca alkaloidy) nebo inhibitory mitotických proteinů (monatrol nebo hesperidin). Aktivity těchto činidel vedou k defektům v DNA (chromozómech), které pak mají vliv na vazbu na mitotické vřeténko, případně k nepravidelné tvorbě vřeténka spojenou s defekty v kontrolních bodech nebo ke vzniku multipolárních mitóz (30).

Většina maligních buněk (včetně melanomu) vykazuje různé úrovně genetické nestability (31, 32). Proto bylo navrženo, že stimulace další nestability může představovat terapeutickou strategii. V souladu s tím se zdá, že maligní buňky jsou náchylnější k buněčné smrti po mitotickém poškození ve srovnání s netransformovanými buňkami (33), což způsobuje, že mitotická katastrofa představuje potenciálně důležitou protinádorovou strategii, kterou by mohla dosáhnout různými mechanismy, které se zaměřují na buněčný cyklus.
4. CÍLE DISERTAČNÍ PRÁCE

V této práci jsme si stanovili následující cíle:

1. Stanovení biologického účinku FLU u normální linie lidských melanocytů

2. Ověření cytotoxicity FLU v lidských maligních melanomových buněčných liniích s odlišným molekulárním profilem A-375, BOWES a RPMI-7951

3. Charakterizace mechanismů, při kterých FLU indukuje cytotoxické účinky ve výše uvedených buněčných liniích, zejména s ohledem na mitotickou katastrofu a srovnání těchto účinků s účinky známých z jiných modelů

4. Získání melanomových buněk ze vzorků od pacientů a následná charakterizace buněk a ověření cytotoxicity FLU
5. MATERIÁL A METODIKA

5.1. Buněčné linie a jejich kultivace

Buněčné linie A-375 a BOWES jsou adherentní linie odvozené od lidského maligního melanomu přičemž linie A-375 obsahuje ve svých buňkách mutaci genů BRAF a CDKN2A. Buněčná linie RPMI-7951 je odvozená od maligného melanomu metastazujícího do lymfatických uzlin s mutacemi v genech BRAF, p53, CDKN2A a PTEN. HEM-LP je linie zdravých lidských epidermálních melanocytů izolovaných z neonatální předkožky z lehce pigmentované tkáně.

A-375 a BOWES byly kultivovány v médiu DMEM s přidáním 10% fetálního bovinního sérá a 1% penicilinem/streptomycinem v 5% CO₂ při 37 °C. RPMI-7951 byly kultivovány v E-MEM s přidáním 10% FBS a 1% penicilinem/streptomycinem v 5% CO₂ při 37 °C. HEM-LP byly pasážovány 1x týdně pomocí 0,05 % trypsinu/EDTA a trypsin neutalizeru, médium bylo přidáno každých 2-3 dny. Ostatní buňky byly pasážovány po dosažení 80 % konfluence 2x týdně pomocí 0,05 % trypsinu/EDTA. Kultury byly pravidelně testovány na přítomnost mykoplazmat.

5.2. Izolace melanocytů ze vzorků od pacientů

Lidské kožní melanocyty byly odvozeny z explantátových kultur získaných ze vzorků melanomu od pacientů léčených ve Fakultní nemocnici Hradec Králové. Vzorky byly následně přeneseny v transportním médii (RPMI-1640 medium, 15% FBS, humulin N 100 IU/ml, transferrin, heparin) na katedru Lékařské biologie a genetiky, kde byly dále zpracovány. Tkaná byla i s transportním médiem přenesena na Petriho misku, kde byla pomocí nůžek a skalpelu nastřihu na co nejmenší kousky. Kousky byly následně pomocí Pasteurovy pipety přeneseny do kultivačních láhví s kultivačním médiem.

5.3. Stanovení cytotoxicity pomocí testů WST-1 a xCELLigence

Cytotoxicita FLU byla testována u tří linii lidského maligního melanomu A-375, BOWES a RPMI-7971 pomocí WST-1 a xCELLigence testů. Test WST-1 byl prováděn v časových intervalech 24, 48 a 72 hodin v koncentrace 0,05-10 µM. Měření bylo provedeno ihned a následně 2 hodiny po přidání činidla pomocí spektrofotometru Tecan Infinite M200 při vlnové délce 450/650 nm. Systém xCELLigence měří elektrickou impedanci a poskytuje kvantitativní informace o biologickém stavu buňek. Rostoucí impedance (odpovídající proliferaci buňek) byla měřena každých 30 minut po dobu 24 hodin, kdy byly buňky ovlivněny FLU v koncentrace 1 µM a impedance byla následně měřena každou hodinu po dobu dalších 72 hodin. Postup je podrobně popsán v publikaci Čáňová et al. 2018.

5.4. Proliferace buněk HEM-LP

Vzhledem k pomalé proliferaci buněk HEM-LP a závislosti na hustotě nasazení, která by mohla produkova potenciálně nekonzistentní data z WST-1, jsme se rozhodli vyhodnotit účinky FLU na tyto buňky pomocí přímé mikroskopie se softwarově podporovaným počítáním buněk. Počet živých buněk byl počítán na mikroskopu Nikon Eclipse E 400.
(Nikon, Praha, Česká republika) s fázovým kontrastem v intervalu 24-96 hodin. Fotky byly získané pomocí softwaru LUCIA DI Image Analysis System LIM (Laboratory Imaging s.r.o, Praha, Česká republika) a analyzovány. Pro účely analýzy bylo vyhodnoceno minimálně 2000 buněk při zvětšení 100x a 400x.

5.5. Časosběrná videomikroskopie

Kontrolní a ovlivněné buňky byly umístěny na stolek invertovaného mikroskopu v prostoru s teplotou 37 °C. Po dobu 72 hodin bylo snímano vybrané reprezentativní zorné pole.

5.6. Analýza buněčného cyklu pomocí průtokové cytometrie a EdU značení

5.7. Aktivita kaspáz 2 a 3/7

5.8. Imunofluorescenční detekce

Morfologické změny v kontrolních a FLU ovlivněných buňkách byly pozorovány ve fluorescenčním mikroskopu Nikon Eclipse E 400 (Nikon, Prague, Česká republika) pomocí značení specifickými fluorescenčními protilátkami. Postup je podrobně popsán v publikaci Čáňová et al. 2018.

5.9. Detekce proteinů pomocí Western blottu

Detekce vybraných proteinů byla prováděna pomocí gelové elektroforézy a následně byly proteiny přeneseny z gelu na PVDF membránu, kde byly rozpoznány specifickými protilátkami. Kvantifikace imunoreaktivních bandů na exponovaných filmech byl provedena pomocí chemiluminiscence za pomoci softwaru QuantityOne imaging software (Bio-Rad Laboratories, Hercules, CA). Postup je podrobně popsán v publikaci Čáňová et al. 2018.

5.10. Statistika

Pro statistické vyhodnocení dat byl použit program GraphPad Prism 6.0 (GraphPad Software, USA). Statistická analýza byla provedena pomocí one-way a two-way ANOVA s následným hodnocením podle Bonferroního (mnohočetný porovnávací test). Výsledky byly porovnávány s kontrolou, přičemž rozdíly byly považovány za signifikantní na hladině významnosti p <0,05.
6. VÝSLEDKY

6.1. Antiproliferativní účinky FLU na buněčné linie maligního melanomu

Efekt FLU na viabilitu a proliferaci buněk lidského maligního melanomu A-375, BOWES a RPMI-7951 byl testován v koncentračním rozmezí 0,01 - 10 µM. Test WST-1 ve všech třech liniích ukázal, že FLU působí cytotoxicity v závislosti na koncentraci a čase působení (Obr. 2A, 2B, 2C). Stejné výsledky potvrdil i systém xCELLigence, který navíc určil hodnotu IC₅₀ pro každou buněčnou liniu: A375 - IC₅₀ = 0,96 µM, BOWES - IC₅₀ = 0,90 µM a RPMI-7951 - IC₅₀ = 0,25 µM. Na základě těchto výsledků byla pro další experimenty zvolena koncentrace FLU 1 µM.

Obrázek 2 - Proliferace buněk A-375 (A), BOWES (B) a RPMI-7951 (C) po ovlivnění flubendazolem (FLU) v koncentračním rozmezí 0,01 - 10 µM pomocí testu WST-1. Data představují průměr ± SD z šesti nezávislých experimentů. * P <0,05; ** P <0,01; *** P <0,001; **** P <0,0001

6.2. Antiproliferativní účinky FLU na normální lidské melanocyty (HEM-LP)

FLU v koncentraci 0,5 µM a 1 µM způsobil nižší proliferaci buněk HEM-LP (Obr. 3). Navíc přidání 1 µM FLU vyvolalo okamžitou změnu morfologii i chování buněk. Zejména během prvních 12-24 hodin byly buňky zploštělé a naplněné četnými váčky připomínající vakuoly, přičemž některé z nich prošly rychlou degradací. Během pozdějšího času (72-96 hodin) se buňky postupně vrávly k původnímu vzhledu i chování. FLU v koncentraci 1 µM tedy má na normální humánní melanocyty HEM-LP cytotoxické a cytostatické účinky, ale zdá se, že se časem snižují a většina exponovaných buněk je dokáže tolerovat (Obr. 4).
Vliv FLU na distribuci buněčného cyklu

Buněčný cyklus byl analyzován 12 a 24 hodin po ovlivnění FLU v koncentraci 1 µM. U všech tří zkoumaných linii maligního melanomu A-375, BOWES a RPMI-7951 došlo k poklesu buněk ve fázi G1 (A-375 ~ 2 %, BOWES ~ 9 %, RPMI-7951 ~ 15 %) a rapidnímu nárůstu buněk v G2/M fázi (A-375 ~ 79 %, BOWES ~ 75 %, RPMI-7951 ~ 71 %; Obr. 6). Navíc další nezávislé měření používající značení DNA pomocí EdU ukázalo, že dochází i k významnému poklesu S fáze (A-375 ~ 8 %, BOWES ~ 11 %, RPMI-7951 ~ 45 %; Obr. 5).

Obrázek 4 - Vzhled lidských normálních melanocytů HEM-LP během 96 hodin působení flubendazolu (FLU) v koncentraci 1 µM. Fázový kontrast 100x a 400x. Měřítko 30 µm.
Obrázek 5 - Procento buněk A-375, BOWES a RPMI-7951 vyskytujících se v S fázi buněčného cyklu po 24 hodinách od ovlivnění flubendazolem (FLU) v koncentraci 1 µM. Data představují průměr ± SD ze tří nezávislých experimentů. * P <0,05; *** P <0,001; **** P <0,0001

Obrázek 6 - Změny v buněčném cyklu u melanomových buněk A-375 (A), BOWES (B) a RPMI-7951 (C) po 12 a 24 hodinách od ovlivnění flubendazolu (FLU) v koncentraci 1 µM. Data představují průměr ± SD ze tří nezávislých experimentů. * P <0,05; *** P <0,001; **** P <0,0001

6.4. Vliv FLU na inhibici buněčného cyklu

Inhibici buněčného cyklu po působení FLU jsme ověřili pomocí exprese proteinu p21, který hraje roli v zástavě buněčného cyklu jak v G1, tak v G2/M fázi. Imunofluorescenční detekce proteinu p21 v kontrolních buňkách odhalila jeho slabou přítomnost a expresi zejména v jádřech melanomových buněk. Oproti tomu 1 µM FLU indukoval zvýšenou expresi p21, který se nacházel v jádře i cytoplazmě buněk a to po 12 i 24 hodinách (Obr. 7).
6.5. Morfologické změny v buňkách ovlivněných FLU

Časosběrná video-mikroskopie nám ukazuje, že buňky se během prvních 12-24 hodin po ovlivnění 1 µM FLU dále dělí a rostou, i když méně intenzivně než u kontrol. Přibližně po 12 hodinách působení FLU byly postupně pozorovány větší buňky s více jádry a to zejména v linii RPMI-7951. Tyto mnohojáderné buňky neměly jednotné rozměry a jejich jádra se lišila ve velikosti, tvaru a počtu (Obr. 8). Výskyt mnohojáderných buněk byl také potvrzen fluorescenčním zbarvením pomocí DNA-specifického barviva - DAPI (Obr. 9). Navíc při pozdějším 24 hodinovém intervalu působení FLU došlo k dalšímu rozšíření mnohojádernosti a některé buňky byly obrovské.

Kromě mnohojáderných buněk se v linii A-375 a RPMI-7951, avšak velmi málo v linii BOWES, vyvinula perinukleární vakuolizace. Tyto buňky s vakuolami přetrvávaly dalších 12-24 hodin a poté ztratily svou adherenci, byly zaoblené a jejich membrána vykazovala řadu rychle vyčnívajících výstupků. To následně vedlo ke konečné fragmentaci buněčných těl na malé elementy. Některé buňky však nevykazovaly změny plazmatické membrány a podstoupily rychlou buněčnou demisí bez výrazných morfologických znaků (Obr. 10). Dynamika popsaných změn v ovlivněných buňkách se lišila nejen mezi jednotlivými buněčnými liniiemi, ale také mezi jednotlivými buňkami. Takže v buněčných linii A-375 a RPMI-7951 se zaoblení buněk a fragmentace vyskytovala asynchronně, zatímco v buněčné linii BOWES se zdálo, že buňky provádějí jednotlivé kroky více synchronně.
Obrázek 8 - Kontrolní buňky a obří mnohojaderné buňky 12 hodin po ovlivnění flubendazolu (FLU) v koncentraci 1 µM. Fázový kontrast 600x. Měřítko 25 µm.

Obrázek 9 - Kontrolní a mnohojaderné buňky 12 hodin po ovlivnění flubendazolu (FLU) v koncentraci 1 µM. Fluorescenční mikroskopie 600x, modrá - jádro. Měřítko 20 µm.
Obrázek 10 - Morfologické změny u buněčných linii melanomu 48 hodin po ovlivnění flubendazolu (FLU) v koncentraci 1 µM. Fázový kontrast 400x. Měřítko 10 µm.

6.6. Efekt FLU na cytoskelet

Dalším cílem bylo zjistit, jaké změny vyvolává působení FLU na strukturu a uspořádání mikrotubulů. Mikrotubuly v interfázi kontrolních buněk jsou typicky uspořádány z jediného centrozomu v blízkosti jádra. Během mitózy se pak mikrotubuly přeskuupují a tvoří mitotické vřeténko. Ve srovnání s kontrolními kulturami se u FLU ovlivněných buněk změnil počet a distribuce centrozomů, což vedlo k přítomnosti aberantních mitotických vřetýnek a následných multipolárních mitóz (Obr. 11). Rovněž mikrotubulární síť v interfázních buňkách se také rozpadla; mikrotubuly byly poškozeny a došlo ke ztrátě jejich typického uspořádání. Kromě změněné mikrotubulární topografie byly zaznamenány také některé změny v aktinových vláknech, ačkoliv ne tak závažné jako v případě mikrotubulů (Obr. 12).

Obrázek 11 - Normální mitotické vřeténko vs. aberantní multipolární vřeténko 24 hodin po ovlivnění flubendazolu (FLU) v koncentraci 1 µM. Fluorescenční mikroskopie 600x, modrá - jádro, zelená - α-tubulin, červená - β-aktin. Měřítko 10 µm.
6.7. Charakteristika flubendazolem-navozené buněčné smrti

Jak již bylo zmíněno výše, FLU v koncentraci 1 µM způsobuje u použitých melanomových buněk sérii morfologických změn jako je ztráta adhärence, tvorba membránových výčnělků, zaokrouhlení a fragmentace (Obr. 13). Přesto, ne všechny ovlivněné buňky vykazují všechny tyto kroky, které se navíc objevily v souvislosti s mnohohjerností buněk. Navzdory individuálním rozdílům v těchto morfologických změnách a jejich načasování, se 48 hodin po ovlivnění počet takto postižených buněk stále zvyšoval ve všech testovaných buněčných liniích a jejich poměr zůstal podobný s výjimkou buněk RPMI-7951 (Obr. 15). Spolu se změnami celkové morfologie a chování melanomových buněk byly přítomny i další typické markery apoptotické buněčné smrti. Patří mezi ně zejména typická kondenzace a fragmentace nukleárního chromatinu (Obr. 14).

FLU-indukovaná apoptóza byla dále potvrzena měřením aktivity vybraných kaspáz 2 a 3/7, o nichž je známo, že jsou typicky spojeny s apoptózou. Časové intervaly 12, 24 a 48 hodin byly zvoleny pro měření pomocí standardního luminiscenčního testu. 1 µM FLU aktivoval kaspázy ve všech třech buněčných liniích, avšak s jiným časovým průběhem a účinností (Obr. 16).
Obrázek 14 - Kondenzace chromatinu u buněk A-375, BOWES a RPMI-7951 24 hodin po ovlivnění flubendazolem (FLU) v koncentraci 1 µM. Fluorescenční mikroskopie, zvětšení 600x. Měřítko 10 µm.

Obrázek 15 - Procento apoptických buněk 24 a 48 hodin po ovlivnění flubendazolem (FLU) v koncentraci 1 µM. Data, uvedená v procentech, představují průměr ± SD ze tří nezávislých experimentů. ** P < 0,01; *** P < 0,001; **** P < 0,0001
Obrázek 16 - Aktivita kaspázy 2 a 3/7 v buněčných liniích A-375, BOWES a RPMI-7951 ovlivněných flubendazolem (FLU) v koncentraci 1 µM během 48 hodin. Data, uvedená v procentech kontroly (=100 %) představují průměr ± SD ze tří nezávislých experimentů. ** P <0,05, *** P <0,01; **** P <0,001

6.8. Efekt FLU na p53 zprostředkované proapoptické signály

Obrázek 17 - Expresie proapopttických proteinů v melanomových buňkách A-375, BOWES a RPMI-7951 po ovlivnění flubendazoolem (FLU) v koncentraci 1 µM zjištěno pomocí immunoblotové analýzy po 48 hodin od ovlivnění. Data představují průměr ± SD ze tří nezávislých experimentů. * P <0,05; **** P <0,0001

6.9. Efekt FLU na vzorky primárních melanomů

Během let 2013-2017 jsme získali 5 vzorků kožního melanomu z oddělení Plastické chirurgie Fakultní nemocnice v Hradci Králové. Z těchto vzorků se nám podařilo izolovat explantátové kultury, které byly v jednotlivých vzorcích poměrně heterogenní a obsahovaly různé podíly většinou fibroblastů, melanocytů a dalších buněk s rozdílnou velikostí a chováním. Na základě růstových a kultivačních charakteristik byl vybrán jeden vzorek (M-170202) pro pilotní testování.

Cytotoxicita FLU v koncentračním rozmezí 0,01 µM - 10 µM byla ověřena na získaných melanomových buňkách z primárního explantátu izolovaného od pacienta, pomocí testu WST-1. Výsledky tohoto experimentu ukázaly podobný inhibiční účinek FLU ve srovnání s našimi použitými melanomovými liniemi A-375, BOWES a RPMI-7951, přičemž koncentrace FLU 1 µM byla účinná již po 24 hodinách působení (Obr. 18). Naopak, hodnota FLU IC_{50} (stanovená pomocí GraphPad Prism Software) po 72 hodinách byla 1,42 µM; tj. výrazně vyšší než hodnota získaná ze stabilizovaných linií melanomu.

Obrázek 18 - Proliferace M-170202 během působení FLU v koncentracích 0,01 µM - 10 µM měřená pomocí testu WST-1. Data, uvedená v procentech, představují průměr ± SD ze tří nezávislých experimentů. * P <0,05; ** P <0,01; ***P <0,001; ****P <0,0001
Cytometrické studie melanomových buněk získaných z explantátu melanomu ukázaly, že buňky rostly poněkud pomaleji ve srovnání s melanomovými buněčnými liniemi a typicky se lišily jejich velikostí a vzhledem. Při expozici 1 µM FLU; tj. pod dávkou IC50, reagovaly tím, že změnily svou vnitřní organizaci. Navíc se objevily větší vakuoly nebo vakuolovité struktury a postupně docházelo ke změnám v adherenci. Naopak, na rozdíl od takto ovlivněných melanomových buněčných linií se nevyskytly obrovské, mnohohjaderné buňky. Během delší doby od ovlivnění (24-48 hodin) se buňky začaly smršťovat, někdy pomalu a někdy rychle a rozšiřovat své cytoplazmatické membrány (Obr. 19). Následně pozorovaná demise buněk byla obecně mnohem méně homogenní než v ovlivněných melanomových buněčných liniích a obsahovala alespoň tři odlišné vzory - 1) individuální smrštění buněk doprovázené zvlněním plazmatické membrány, 2) kolektivní rychlé smrštění bez jakékoliv zřetelné aktivity buněčné membrány a 3) vnitřní fragmentace, následovaná destrukcí buněk.

Obrázek 19 - Morfologické změny u vzorku explantátu melanomu ovlivněného 1µM FLU po 48 hodin. Fázový kontrast 600 x. Měřítko 5 µm.
7. DISKUZE

Maligní melanom představuje poměrně vzácnou, ale velmi nebezpečnou formu kožní malignity, která je ve své pokročilé fázi charakterizována agresivním růstem s vysokou tendencí k metastatickému šíření a chemorezistencí. Proto není v současné době k dispozici žádná účinná cytostatická léčba pokročilého maligního melanomu a nové cílené terapie vykazují pouze omezenou klinickou účinnost (35). Díky tomu pokračují studie biologie melanomu, které jsou zaměřeny na identifikaci nových předpokládaných cílů u maligních melanocytů, které by mohly být použity pro vývoj léčby. Alternativně, prostřednictvím přezkoumání již zavedených terapeutických konceptů se vědci snaží najít nové aplikace pro budoucí léčbu této malignity (36).

Jedním ze zámerů cílené terapie v maligních buňkách je cytoskelet, konkrétně mikrotubuly. Mikrotubuly hrají podstatnou roli v různých procesech, jako je mitóza, intracelulární transport a signalizace nebo udržování tvaru a polarity buněk (37). Zejména mitotické vřeténko, které tvoří mikrotubuly při dělení buněk, se stalo základním cílem pro chemoterapeutický přístup k širokému spektru malignit. Účinnost léků, zaměřených na mikrotubuly, byla potvrzena úspěšným použitím vinka alkaloidů nebo taxanů u široké škály nádorů. Jejich klinický úspěch vyvolal celosvětové hledání sloučenin s podobným mechanismem účinku, ale zlepšenémi vlastnostmi, zejména kvůli převládající existenci toxických vedlejších účinků a vyvinuté chemorezistenci (38, 39).

Konzum minulého století byly publikovány první experimenty demonstrující cytotoxicitu vybraných benzimidazolkarbamátů (tj. albendazolu a mebendazolu) u několika linii nádorových buněk. Přestože byly původně schváleny pro léčbu parazitických červů jak u lidí, tak u zvířat, selektivní zaměřování na mikrotubuly rychle podnutilo vědecké zkoumání jejich potenciálního antiproliferativního účinku (24).

První zpráva o protinádorové aktivitě FLU se týkala jejich účinků na buňky leukémie a myelomů, kdy nízké koncentrace FLU indukovaly mitotickou katastrofu a buněčnou smrt v maligních buňkách. Navíc v buňkách rezistentních vůči vinblastinu, v důsledku nadměrné exprese P-glykoproteiny, byla zachována citlivost na FLU (40). V následných studiích provedených na několika buněčných linii karcinomu prsu (MDA-MB-231, BT-549, SK-BR-3 a MCF-7) a linii kolorektálního karcinomu a neuroblastomu, FLU vykazoval širokou protinádorovou aktivitu prostřednictvím různých mechanismů (41, 42).

Na základě těchto, již dříve publikovaných zkušeností s FLU, jsme v naší současné práci chtěli vyšetřit potenciální aktivitu FLU v in vitro modelu melanomu lidské pokožky nejprve pomocí několika zavedených melanomových buněčných linii s odlišnými molekulovými subtypy. Použité testy cytotoxicity ukázaly, že FLU předvídatelně inhibuje buněčný růst a proliferaci u všech použitých melanomových buněčných linii, avšak v závislosti na čase a koncentraci. Kromě toho, existence rozdílné citlivosti exponovaných buněk (jak je naznačeno dosaženými hodnotami IC₅₀) nejspíše dokazovala vlastní heterogenitu odezvy mezi jednotlivými buněčnými liniami, která již byla prokázána s jinými benzimidazolovými deriváty a melanomovými buněčnými liniami (43). Na základě těchto počátečních experimentů jsme si vybrali 1 μM koncentraci FLU pro další testování v melanomových buňkách a pro ověřování jeho účinku na normálních melanocytech lidské pokožky.
Naše výsledky naznačují, že FLU má v těchto normálních melanocytech cytostatický účinek, což usuzujeme díky rychlým morfologickým změnám (tj. zploštení a expanze buněk), zpomalému růstu a alespoň zpočátku zvýšenému zániku buněk. Na druhé straně se tyto nepříznivé změny snížily v pozdějším období (48 hodin a dále) a některé exponované melanocyty obnovily svou dynamiku a proliferaci. Zdá se tedy, že použitá koncentrace 1 μM FLU je v tomto modelu normálních kožních buněk dostatečně tolerována. Přesto je však třeba si uvědomit, že tato "tolerance" může být způsobena spíše zvláštním stavem melanocytů. Melanocyty jsou zodpovědné za syntézu melaninu v kůži a jako takové jsou vysoce odolné proti environmálním stresům a apoptóze. Jejich tolerance k FLU proto musí být potvrzena a porovnána s jinými kožními buňkami (fibroblasty nebo keratinocyty), aby se ověřilo, zda by normální kůže nebyla touto sloučeninou vážněji postižena.

Abychom dále identifikovali mechanismy cytotoxicity FLU na testovaných buněčných liních melanomu, provedli jsme analýzu buněčného cyklu, která odhalila, že u FLU ovlivněných buněčných populací se významně zvýšil počet buněk ve fázi G2/M což odpovídalo poklesu buněk ve fázi G1 a S buněčného cyklu. Tato zázvama buněk ve fázi G2/M se zdá být charakteristickým účinkem pro mnoho benimidazolkarbamátu v nádorových buňkách, protože to bylo pozorováno také u nádorových buněk jater a tlustého střeva ovlivněných albendazolem a v nádorových buňkách tlustého střeva ovlivněných FLU (26, 44).

Kromě zázvany buněčného cyklu došlo také u melanomových buňek ovlivněných FLU k řadě morfologických změn, které zahrnovaly: 1) časnovou intracelulární vakulizaci, zvětšení buněk, hrubnutí cytoplasmy a mnohojadernost a 2) ztrátu adhersení, hrubnutí cytoplazmy a mnohojadernost a známou ztrátu adherence, zaokrouhlení buněk - 2) ztrátou adherence, zaokrouhlení buněk.

Mitotická katastrofa je proces způsobený aberantní mitózou vedoucí ke smrti buněk - apoptóze nebo nekróze (28, 45). Vzhledem k tomu, že mitotická katastrofa může být indukována nejen mitotickými inhibitory, ale také činidly poškozující DNA, inhibována mitotickými proteiny nebo replikačním stresem, vykazuje řadu morfologických a biochemických charakteristik. V našich použitých melanomových buňkách ovlivněných FLU, bylo přítomno hned několik těchto vlastností, jako je přetrávavající blok G2/M fáze, nadměrná exprese inhibitoru buněčného cyklu p21, mnohojadernost buněk a zvýšená aktivita kaspázy 2, což jasně demonstreuje aktivaci tohoto procesu. Je ale zajímavé, že mitotická katastrofa byla doprovázena chromatinovou kondenzací, mitochondriálním uvolňováním proapoptotického cytochromu c a faktorem indukujícím apoptózu (AIF), aktivací kaspázy a degradací DNA.

Schopnost FLU inhibovat růst a proliferaci buněk melanomu zahrnuje vznik mitotické katastrofy a apoptózy byla testována také na melanomových buňkách odvozených z explantátových kultur získaných ze vzorků melanomu od pacientů. Jak bylo popsáno ve výsledkové části, všech pět vzorků maligního melanomu mělo odlišný histopatologický stupeň a obsahovalo několik buněčných typů v různých počátečních poměrech a biologických vlastnostech. Jejich podrobná charakterizace a třídění však nebylo primárním cílem současné práce a výsledné primární kultury obsahovaly směs buněčných fenotypů, které podle našeho názoru přesněji odražejí skutečné složení nádoru. Na základě růstových a kultivačních charakteristik všech vzorků byl nakonec vybrán jeden pro piloto testování. Tyto buňky byly nejprve udržovány ve standardních laboratorních podmínkách a následně byly ovlivněny koncentrační řadou FLU. Podobně jako u stabilizovaných melanomových buněčných linii FLU indukoval inhibici růstu a proliferace melanomových buňek v závislosti na čase a koncentraci, jeho účinnost však byla nižší, jak je také patrné z vyšší hodnoty IC50. Navíc morfologické studie ovlivněných melanomových buněk odhalily zcela odlišný efekt FLU; tj. buňky prakticky nevytvářely obrovské mnohojaderné struktury, místo toho se měnila jejich struktura cytoplazmy následována vnitřní implozi. Přítomnost klasické, morfologicky odlišné apoptózy byla velmi nízká a buňky se často rychle zmenšovaly a připomínaly nekrotické
buňky. Tyto pozorování jsou na jedné straně překvapující, neboť podle našich znalostí nebyly nikdy popsány v léčbě benzimidazoly. Na druhou stranu bylo předloženo, že indukovaná mitotická katastrofa by mohla působit jako prevence apoptózy nebo nekrózy (28), což by mohlo být tento případ. Vzhledem k tomu, že jsme neměli žádné další údaje, nemůžeme tuto možnost potvrdit, ačkoli se zdá, že ji podporuje několik morfologických ukazatelů. Každopádně je potřeba provést další zkoumání tohoto jevu.
8. ZÁVĚRY

Tento výzkum byl zaměřen na zkoumání biologických aktivit a zejména antiproliferativních účinků derivátu benzamidazolkarbamátu - flubendazolu (FLU) - v in vitro modelech melanomu lidské kůže. Vzhledem k původním cílům jsme dospěli k následujícím závěrům:

1) V lidských maligních melanomových buněčných liniích s odlišným molekulárním profylem (A-375, BOWES a RPMI-7951), FLU během působení 72 hodin vykazuje cytotoxitu závislou na čase a koncentraci. Cytotoxicita FLU se navíc mění mezi jednotlivými ovlivněnými buněčnými liniemi a vyplývá z konkrétně stanovených hodnot IC$_{50}$ (A375 - IC$_{50}$ = 0,96 μM, BOWES - IC$_{50}$ = 0,90 μM a RPMI-7951-IC$_{50}$ = 0,25 μM).

2) Koncentrace 1 µM FLU zvolená pro další testování, má spíše cytostatický než cytotoxický účinek u normálních melanocytů lidské kůže. V těchto buňkách indukuje FLU morfologické změny, zpomaluje proliferaci a způsobuje omezenou aktivaci buněčné smrti. Pozorované účinky jsou však časově omezené a na konci testovaného intervalu ubývají. Dospělo se tedy k závěru, že působení FLU je alespoň v melanocytech tolerováno.

3) FLU v koncentraci 1 µM indukuje v exponovaných melanomových buněčných liniích zástavu buněčného cyklu ve fázi G2/M, zvyšuje expresi inhibitoru buněčného cyklu p21 a vytváří řadu morfologických změn včetně tvorby obrovských mnohojaderných a vakuolových buňek. FLU interaguje s mikrotubuly jak dělících, tak interfázních buňek a je odpovědný za zahájení procesu mitotické katastrofy. FLU-simulovaná mitotická katastrofa vede k apoptóze v exponovaných melanomových buňkách, která je charakterizována zvýšenou aktivitou kaspázy 2 a 3/7 a typickými morfologiemi jader a membrán. TP53, ani BAX nebo BCL-2 proteiny nejsou přímo a univerzálně zapojeny do apoptózy způsobené FLU, a proto jsou zapotřebí další výzkumy týkající se tohoto mechanismu.

4) Pět explantátových kultur ze vzorků melanomu od pacientů s odlišným histopatologickým stupněm umožnily jejich testování citlivosti FLU. Vzhledem k jejich heterogenitě a různým biologickým vlastnostem byly pro pilotní testování použity pouze buňky odvozené z jednoho vzorku. Jejich citlivost na FLU se ukázala být nižší než u stabilizovaných buněčných linií melanomu (IC$_{50}$ = 1,42 μM). Při ovlnění 1 µM FLU (dávka nižší než IC$_{50}$) se u melanomových buňek zpomaluje jejich růst a dochází k řadě morfologických změn odlišných od těch, pozorovaných u stabilizovaných linií melanomu. Jejich morfologie smrti je také odlišná.
9. POUŽITÁ LITERATURA

10. PŘEHLED PUBLIKAČNÍ ČINNOSTI

Původní vědecké práce v časopisech s IF

Původní vědecké práce v recenzovaném neimpaktovaném časopise