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Introduction
Throughout the history, mathematicians have been excited about discovering new
identities. One of the famous is the Brahmagupta’s identity:(

x2
1 + ny2

1

) (
x2

2 + ny2
2

)
= (x1x2 + ny1y2)2 + n (x1y2 − y1x2)2 .

The beauty of this identity resides in the fact that if you have two integers, m1
and m2, such that both of them can be written in the form x2 + ny2 for some
integers x and y, then their product, m1m2, can be written again in the same
form; we say that x2 + ny2 represents the numbers m1, m2 and m1m2. One
may naturally ask if this is an isolated identity, or if it is just one example from
some wider family of identities. Assume that we are given two binary quadratic
forms, Q1 and Q2. Can we find any binary quadratic form Q with the following
property?

Q1(x1, y1) = m1 & Q2(x2, y2) = m2 ⇒ ∃x0, y0 : Q(x0, y0) = m1m2 (∗)

This is what we call composition of quadratic forms; we are seeking a law with
the property (∗) on the set of binary quadratic forms.

Inspired by the Brahmagupta’s identity, we may want the composition to be
just a multiplication together with some rearrangement of the variables. Formally,
we can define a binary quadratic form Q to be a composition of two binary
quadratic forms Q1 and Q2, if we are able to find some numbers ai, bi, ci, di,
i = 1, 2, such that

Q1(x1, y1) ·Q2(x2, y2) = Q(B1(x1, y1; x2, y2), B2(x1, y1; x2, y2)),
where

Bi(x1, y1; x2, y2) = aix1x2 + bix1y2 + ciy1x2 + diy1y2, i = 1, 2,

(†)

are two bilinear forms. In this way, we have quite a great freedom in how to
compose two quadratic forms, and it will always satisfy the property (∗).

There are many different binary quadratic forms. But looking a bit closer, we
can see that actually many of them are basically the same: at the first glance, the
quadratic forms x2 + 5y2 and 49x2 + 64xy + 21y2 do not seem to have anything
in common, but once we notice that

49x2 + 64xy + 21y2 = (2x + y)2 + 5(3x + 2y)2,

and, more surprisingly,

x2 + 5y2 = 49(2x− y)2 + 64(2x− y)(−3x + 2y) + 21(−3x + 2y)2,

we can conclude that these two binary quadratic forms represent the same num-
bers. In this way, we can group the “similar” binary quadratic forms into classes.
An interesting property of these classes is the fact that all quadratic forms within
one class have the same discriminant. We can now seek the law of composition
only on these classes; we can still use the same composition as in (†), but now
the problem is that by using different ways, we may end up with quadratic forms
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from different classes. Thus, we have to restrict our freedom; it turns out that
the following must hold:

a1b2 − a2b1 = Q1(1, 0), a1c2 − a2c1 = Q2(1, 0)

(see Cox [1997]). Furthermore, this definition has another advantage: it preserves
the discriminant, i.e. if the quadratic forms Q1 and Q2 have the same discrim-
inant, then their composition Q has again the same discriminant. So we can
actually study only classes of binary quadratic forms with a fixed discriminant.
And that is much simpler task, since there are only finitely many of them!

We have just described the approach taken by Gauss in his Disquisitiones
Arithmeticae in 1801, where he considered the integral quadratic forms, i.e.
quadratic forms with coefficients from Z. Another approach is attributed to
Gauss’s student, Dirichlet. He discovered so-called united forms, which are easy
to compose; the composition can be written explicitely:(

a1x
2
1 + Bx1y1 + a2Cy2

1

) (
a2x

2
2 + Bx2y2 + a1Cy2

2

)
= a1a2x

2 + Bxy + Cy2,

where x = x1x2 − Cx2y2 and y = a1x1y2 + a2y1x2 + By1y2. The trick behind
this composition is that for any pair of (primitive) binary quadratic forms of the
same discriminant, we can find another pair of quadratic forms within the same
classes, which are of the form a1x

2
1 + Bx1y1 + a2Cy2

1 and a2x
2
2 + Bx2y2 + a1Cy2

2
for some a1, a2, B and C.

Yet completely different approach was taken by Dedekind. In modern terms,
his idea was to associate a binary quadratic form with an appropriate module:

ax2 + bxy + cy2 ↦−→
[
a,
−b +

√
b2 − 4ac

2

]
Z

;

the composition of quadratic forms is then translated as module multiplication.
Again, this is defined on classes of quadratic forms, and hence we group together
some modules on the right side as well; the resulting structure is called class
group and depends on the considered discriminant.

Although very different from each other, all these three approaches actually
result in the same composition law and equip the set of classes of binary quadratic
forms (all of the quadratic forms having the same discriminant) with a group
structure.

Later on, combination of all the three aforementioned approaches and some
new methods taken by Butts and Estes [1968], Kaplansky [1968], Dulin and Butts
[1972], Towber [1980], Kneser [1982] led to composition of quadratic forms over
an arbitrary commutative ring with 1. It is worth noting that in all the aforemen-
tioned articles, whenever some kind of classes of quadratic forms are considered,
they always arise from an equivalence, which is given by action on (x, y) by ma-
trices of determinant 1. This can be seen as somewhat unnatural, as the base ring
may contain another units as well. In the case of the ring of integers of a number
field, the most natural choice seems to be to consider action by matrices, deter-
minant of which is a totally positive unit. Indeed, this approach was taken by
Mastropietro [2000], but only under the additional conditions that the base field
is a real quadratic number field of class number one, and that the discriminant
of the quadratic forms is totally negative.
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At this point we are coming to the first goal of this thesis, and that is to take
into account an equivalence of binary quadratic forms given by all totally positive
units of the base number field, and to develop, in such settings, a Dedekind-like
correspondence between classes of forms and some kind of class group. As the
base field we will consider an arbitrary number field of narrow class number one;
this is equivalent to having class number one together with the existence of units
of all signs. These conditions are quite restrictive, but there still exist infinitely
many such number fields, and the conditions are necessary for our approach: first,
the class number has to be one for a free module basis of any fractional ideal to
exist, and second, units of all signs are needed in order for such a basis to be
able to have any orientation. The construction together with some applications
can be found in Chapter 2; this part of the thesis has already been submitted for
publication as the article Zemková [2017].

The story about composition of quadratic forms over Z did not end after its
generalization to an arbitrary ring. It was not until the beginning of the 21st cen-
tury that Bhargava [2004] redefined Gauss composition, and discovered another
13 composition laws on other polynomials. The beauty of these composition laws
is in using cubes of integers:

a b

c d

e f

g h .

Similarly as Gauss, Dirichlet and others, Bhargava grouped such cubes into
classes. His result is then based on a correspondence between these classes of
integral cubes and certain triples of elements of narrow class group. Later on,
some generalizations were given by Wood [2011] and O’Dorney [2016].

Having the composition of quadratic forms over rings of algebraic integers
from Chapter 2, naturally the question is arising, whether this composition could
be generalized to composition of cubes; we give the answer in Chapter 3. Contrary
to Bhargava, our aim is not to redefine the composition of quadratic forms, but
to use it to construct a new composition law on cubes. Despite that, we will also
obtain a new description of composition of quadratic forms.

All along the way, we are meeting different kind of class groups. Class groups
are very interesting (and difficult) topic on their own, so we will devote at least
Chapter 4 to them. We will be especially interested in the relationship between
class group and narrow class group. This relationship is well known in the case
of a quadratic number field, and not so widely known, although fully described,
in general. We prove this relationship by using a new description of narrow class
group.
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1. Preliminaries
Before we can immerse into all the promised correspondences themselves, we
need to do some preparatory work. Most of the time we will work with a base
field K and its quadratic extension L. Hence, after setting the notation, we will
investigate properties of the ring of algebraic integers of the number field L and
of its ideals, where we will use the information that it is a quadratic extension
of K. We will also take a look at binary quadratic forms with coefficients in the
ring of algebraic integers of K. Importantly, we will define a new class group,
which will be used in all the correspondences later.

1.1 Basic notation
Let F be a number field. The norm of a ∈ F is defined by

NF (a) =
∏
σ

σ(a),

where σ runs over all embeddings of F into C. We will be usually interested only
in the embeddings of the field F into real numbers; denote by RF the set of all
such embeddings. We say that an element a ∈ F is totally positive if σ(a) > 0
for every σ ∈ RF . Note that if F is totally complex, i.e. it has no embeddings
into real numbers, the condition of being totally positive is trivially satisfied for
all nonzero elements.

We write OF for the ring of algebraic integers of F , and we denote by UF the
group of units, i.e.

UF = {u ∈ OF | NF (u) = ±1} ,

and by U+
F its subgroup of totally positive units, i.e.

U+
F =

{
u ∈ UF | sgn(σ(u)) = +1 ∀σ ∈ RF

}
.

If E/F is a Galois extension of fields, then we define the relative norm and
the relative trace of α ∈ E respectively by

NE/F (α) =
∏

τ∈Gal(E/F )
τ(α),

TrE/F (α) =
∑

τ∈Gal(E/F )
τ(α).

Throughout the whole thesis, we fix a number field K of narrow class number
one; this is equivalent to K being of class number one and having units of all
signs (this fact will be proved in Corollary 4.3). Assume that K has exactly r
embeddings into real numbers, and let σ1, . . . , σr be these embeddings; hence

RK = {σ1, . . . , σr}.

Furthermore, we fix a relative quadratic extension L of the number field K.
Note that the Galois group Gal(L/K) has two elements; let τ be the nontrivial
element of this group. For α ∈ L, we write α instead of τ(α): if L = K

(√
D
)
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and α = a + b
√

D for some a, b ∈ K, then α = a − b
√

D. Note that then, for
α ∈ L,

NL/K (α) = αα,

TrL/K (α) = α + α.

We will denote elements of the field K by latin letters and elements of the field
L by greek letters.

1.2 Ring of algebraic integers OL

We will describe the ring of algebraic integers of the field L as the OK-module.
The module basis of an OL-ideal will be always written in square brackets, e.g.
[α, β]OK

; the index OK will be often omitted, and the ideal will be denoted simply
by [α, β]. On the other hand, by (α, β) we understand the OL-ideal generated by
the elements α, β.

Recall that we assume h+(K) = 1, which implies h(K) = 1.1 As h(K) = 1
holds if and only if every quadratic extension of K has a relative integral basis
(see [Narkiewicz, 2004, Cor. p. 388]), there exists an OK-module basis of OL. In
the next proposition, we will take a closer look at this basis. At this point, we
can say that the condition h(K) = 1 is crucial, because otherwise OL would not
be any free OK-module. It will be explained in Section 1.5 why we need even
stronger condition h+(K) = 1.
Proposition 1.1. There exists Ω ∈ OL such that OL = [1, Ω]OK

.
Proof. Let n be an integer, and suppose that α1, . . . , αn ∈ OL are chosen in such
way that OL = [α1, . . . , αn]OK

. Since [L : K] = 2, the elements α1, . . . , αn are
linearly dependent over K if n ≥ 3. Then they are linearly dependent over OK as
well, because K is the field of fractions of the ring OK . Hence, n ≤ 2. Suppose
that n = 1, i.e. OL = [α1]OK

. Since 1 ∈ OL, there must exist z ∈ OK such
that zα1 = 1; but then α1 = 1

z
∈ K, and thus OL ⊂ K which is a contradiction.

Therefore, n = 2 and OL = [α1, α2]OK
for some elements α1, α2 ∈ OL.

We have

Disc(OL/OK) = det
(

TrL/K (α2
1) TrL/K (α1α2)

TrL/K (α1α2) TrL/K (α2
2)

)

= det
(

α2
1 + α2

1 α1α2 + α1α2

α1α2 + α1α2 α2
2 + α2

2

)
= (α2

1 + α2
1)(α2

2 + α2
2)− (α1α2 + α1α2)2

= (α1α2 − α1α2)2.

Denote Ω = α1α2, and note that Ω = α1α2. Let us look at the ideal [1, Ω]OK
:

det
(

TrL/K (12) TrL/K (1 · Ω)
TrL/K (1 · Ω) TrL/K (Ω2)

)
= det

(
1 + 1 Ω + Ω
Ω + Ω Ω2 + Ω2

)

= 2
(
Ω2 + Ω2

)
−
(
Ω + Ω

)2
=
(
Ω− Ω

)2

= (α1α2 − α1α2)2 = Disc(OL/OK).
1h(K) and h+(K) stands for the class number and the narrow class number of the number

field K, respectively; see Chapter 4 for details.
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Hence [1, Ω]OK
= OL (see e.g. [Milne, 2008, Prop. 2.24]).

It will be useful to describe Ω and the elements of the ringOL in general. As an
algebraic integer over OK , Ω is a root of a monic quadratic polynomial x2 +wx+z
for some w, z ∈ OK ; the other root is of course Ω. Set DΩ = w2 − 4z. It follows
from the proof of Proposition 1.1 that the elements Ω and Ω are interchangeable;
thus, without loss of generality,

Ω = −w +
√

DΩ

2 , Ω = −w −
√

DΩ

2 . (1.1)

From now on, Ω will be fixed, and [1, Ω] will be the canonical basis of OL (as an
OK-module). Note that L = K

(√
DΩ

)
, and that

DΩ =
(
Ω− Ω

)2
. (1.2)

Corollary 1.2. OL ⊆
{

a
2 + b

2
√

DΩ

⏐⏐⏐ a, b ∈ OK

}
Proof. Every element of OL is of the form

a + bΩ = a + b
−w +

√
DΩ

2 = 2a− bw

2 + b

2

√
DΩ

for some a, b ∈ OK .

One may expect the element DΩ to be square-free (i.e. not divisible by q2 for
any q ∈ OK\UK), but since DΩ is the discriminant of a binary quadratic form, it
may not always be the case. Hence, instead of that, we introduce the following
definition of fundamental element: an element, which is “almost square-free” and
a quadratic residue modulo 4 at the same time. Note that the condition h+(K)
implies that we work in a principal ideal domain, and thus the definition makes
sense.

Definition 1.3. An element d of OK is called fundamental if d is a quadratic
residue modulo 4 in OK and

• either d is square-free,

• or for every p ∈ OK\ UK such that p2 | d the following holds: p | 2 and d
p2

is not a quadratic residue modulo 4 in OK.

In the case K = Q, this definition agrees with the one of the fundamental
discriminant. The following lemma shows that, from this point of view, DΩ is
“a fundamental discriminant over K”.

Lemma 1.4. DΩ is a fundamental element of OK.

Proof. Clearly DΩ is a quadratic residue modulo 4. Assume that there exists
p ∈ OK which is not a unit, and such that p2 | DΩ; set D′ = DΩ

p2 . Since
√

D′ is
a root of the polynomial x2−D′, and thus

√
D′ ∈ OL, there exist a, b ∈ OK such

that
√

D′ = a + bΩ where Ω = −w+p
√

D′

2 . Comparing the coefficients at
√

D′, we
get that p must be a divisor of 2 in OK .
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For contradiction, suppose that there exists an element t ∈ OK such that
D′ ≡ t2 (mod 4). We can find m ∈ OK such that D′ = t2 − 4m; then the
quadratic polynomial x2 + tx + m has the discriminant equal to D′ and a root
κ = −t+

√
D′

2 , which is an element of OL. Hence, there exist a′, b′ ∈ OK such that
κ = a′ + b′Ω, i.e.

−t +
√

D′

2 = a′ + b′−w + p
√

D′

2 .

Comparing the coefficients at
√

D′, we obtain that b′p = 1. But that is not
possible, because b′ ∈ OK , and p is not a unit. Hence, we have found the desired
contradiction.

On the other hand, if we take D ∈ OK such that K
(√

D
)

= L, then clearly
p2D = q2DΩ for some p, q ∈ OK . Furthermore, if D is fundamental, then p

q
has

to be a unit, because both p2D
q2 and q2DΩ

p2 are quadratic residues modulo 4. We
have proved the following lemma.

Lemma 1.5. Let D be a fundamental element of OK and K
(√

D
)

= L. Then
there exists u ∈ UK such that D = u2DΩ.

1.3 Quadratic forms with coefficients in OK

By binary quadratic forms over K we mean homogeneous polynomials of degree
2 with coefficients in OK , i.e. Q(x, y) = ax2 + bxy + cy2 with a, b, c ∈ OK . For
abbreviation, we will refer to them as quadratic forms. By Disc(Q) we denote
the discriminant of the quadratic form Q, i.e. Disc(Q) = b2− 4ac. Comparing to
the case of quadratic forms over Q, we need to slightly redefine the equivalence
relation.

Definition 1.6. Two quadratic forms Q(x, y) and Q̃(x, y) are equivalent, denoted
by Q ∼ Q̃, if there exist elements p, q, r, s ∈ OK satisfying ps − qr ∈ U+

K and
a totally positive unit u ∈ U+

K such that Q̃(x, y) = u Q(px + qy, rx + sy).

We may also write a quadratic form Q(x, y) = ax2 + bxy + cy2 as a matrix

Q =
(

a b
2

b
2 c

)
.

Then the equivalence of two quadratic forms Q and Q̃ can be written in the form

(
x y

)
Q̃

(
x
y

)
= u

(
x y

)(p r
q s

)
Q

(
p q
r s

)(
x
y

)
.

Let Q(x, y) = ax2 + bxy + cy2 be a quadratic form. Let p, q, r, s ∈ OK be
such that ps − qr ∈ U+

K , and u ∈ U+
K . Consider the binary quadratic form

Q̃(x, y) = u Q(px + qy, rx + sy) = ãx2 + b̃xy + c̃y2 equivalent to Q(x, y). Then⎛⎝ã b̃
2

b̃
2 c̃

⎞⎠ = u

(
p r
q s

)(
a b

2
b
2 c

)(
p q
r s

)
;

8



thus,
ã = u(ap2 + bpr + cr2),
b̃ = u(2apq + b(ps + qr) + 2crs),
c̃ = u(aq2 + bqs + cs2),

(1.3)

and

Disc(Q̃) = b̃2 − 4ãc̃ = u2(ps− qr)2(b2 − 4ac) = u2(ps− qr)2 Disc(Q). (1.4)

On the other hand, we have

a = 1
u(ps− qr)2 (ãs2 − b̃rs + c̃r2),

b = 1
u(ps− qr)2 (−2ãqs + b̃(ps + qr)− 2c̃pr),

c = 1
u(ps− qr)2 (ãq2 − b̃pq + c̃p2).

(1.5)

For m ∈ OK , we say that Q(x, y) represents m if there exist x0, y0 ∈ OK such
that Q(x0, y0) = m.

Lemma 1.7. Equivalent quadratic forms represent the same elements of OK up
to the multiplication by a totally positive unit.

Proof. Let Q̃ represent m ∈ OK , i.e. Q̃(x0, y0) = m for some x0, y0 ∈ OK , and
let Q ∼ Q̃, i.e. Q̃(x, y) = u Q(px + qy, rx + sy). Then

Q(px0 + qy0, rx0 + sy0) = u−1 Q̃(x0, y0) = u−1m,

and hence Q represents the element u−1m.

We say that a quadratic form Q(x, y) = ax2 + bxy + cy2 is primitive if
gcd(a, b, c) ∈ UK . The following lemma shows that a quadratic form equivalent
to a primitive quadratic form is primitive as well.

Lemma 1.8. Let Q be a primitive quadratic form, and Q̃ ∼ Q. Then Q̃ is also
primitive.

Proof. Let Q(x, y) = ax2 + bxy + cy2 and Q̃(x, y) = ãx2 + b̃xy + c̃y2. Assume
that there exists p ∈ OK such that p | gcd

(
ã, b̃, c̃

)
. Then, for every m̃ ∈ OK

represented by Q̃, it holds that p | m̃. In other words, Q̃ represents only numbers
from pOK . Since Q represents the same numbers as Q̃ (up to the multiplication
by a totally positive unit) by Lemma 1.7, there is

a = Q(1, 0)
c = Q(0, 1)
b = Q(1, 1)− a− c

⎫⎪⎬⎪⎭ ∈ pOK ,

and hence p | a, b, c. Since Q is primitive, p must be unit. Thus, Q̃ is primitive.
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We are interested in quadratic forms of given discriminant, namely of discrim-
inant DΩ =

(
Ω− Ω

)2
. But from (1.4) we can see that equivalent quadratic forms

do not always have the same discriminant; their discriminants may differ from
each other by a square of a totally positive unit. Therefore, we will consider all
quadratic forms of discriminants belonging to the set

D =
{

u2
(
Ω− Ω

)2 ⏐⏐⏐ u ∈ U+
K

}
.

Note that all the elements of D are almost square-free (by Lemma 1.4). We will
denote by QD the set of all primitive quadratic forms of discriminant in D modulo
the equivalence relation described above:

QD =

{
Q(x, y) = ax2 + bxy + cy2

⏐⏐⏐⏐⏐ a, b, c ∈ OK , gcd(a, b, c) ∈ UK ,
Disc(Q) ∈ D

}/
∼.

Remark. Note that if Disc(Q) = u2DΩ for u ∈ U+
K , then Disc

(
1
u
Q
)

= DΩ. Hence,
in every class of QD, there is a quadratic form of discriminant exactly DΩ.

If K is totally real (and of narrow class number one), then every totally
positive unit is square of a unit (for a reference, see [Edgar et al., 1986, Prop. 2.4]).
Consider equivalent quadratic forms Q and Q′ such that Disc(Q) = Disc(Q′), i.e.

Q′(x, y) = 1
ps− qr

Q(px + qy, rx + sy)

for some p, q, r, s ∈ OK . If u ∈ UK is such that ps− qr = u2, then

Q
(

p

u
x + q

u
y,

r

u
x + s

u
y
)

= Q′(x, y)

gives the equivalence of Q and Q′ with determinant 1. Therefore, in this case,
our approach could be simplified to quadratic forms of discriminant exactly DΩ,
and to the equivalence by the matrices of determinant 1.

On the other hand, if K is not totally real, then the units other than 1
become important. For example, take K = Q(i), and consider the quadratic
forms Q(x, y) = x2 + 4xy + 2y2 and Q′(x, y) = ix2 + 4xy − 2iy2. It clearly holds
that Q′(x, y) = −iQ(ix, y), but there is no matrix of determinant 1 which would
provide the equivalence between Q and Q′. That can be seen as follows: by the
first equality of (1.3), we need to find p, r ∈ Z[i] such that p2 + 4pr + 2r2 = i. But
that is not possible, because the imaginary part of p2 + 4pr + 2r2 is divisible by
2.

At the end of this section, we look at roots of equivalent quadratic forms.

Lemma 1.9. Let Q(x, y) = ax2 + bxy + cy2 be a quadratic form, p, q, r, s ∈ OK

such that ps−qr ∈ U+
K . Consider Q̃(x, y) = Q(px+qy, rx+sy) = ãx2 + b̃xy+ c̃y2,

the quadratic form equivalent to Q(x, y). Denote D = Disc(Q) and D̃ = Disc(Q̃).
Then

p−b̃+
√

D̃
2ã

+ q

r −b̃+
√

D̃
2ã

+ s
= −b +

√
D

2a
.

10



Proof. As −b̃+
√

D̃
2ã

is a root of the quadratic polynomial Q̃(x, 1) = ãx2 + b̃x + c̃,
we can write

(
−b̃+
√

D̃
2ã

1
)

Q̃

⎛⎝−b̃+
√

D̃
2ã

1

⎞⎠ = 0

(
−b̃+
√

D̃
2ã

1
)(

p r
q s

)
Q

(
p q
r s

)⎛⎝−b̃+
√

D̃
2ã

1

⎞⎠ = 0

(
p−b̃+
√

D̃
2ã

+ q r −b̃+
√

D̃
2ã

+ s

)
Q

⎛⎜⎝p−b̃+
√

D̃
2ã

+ q

r −b̃+
√

D̃
2ã

+ s

⎞⎟⎠ = 0

⎛⎜⎝p
−̃b+
√

D̃

2̃a
+q

r
−̃b+
√

D̃

2̃a
+s

1

⎞⎟⎠ Q

⎛⎜⎜⎜⎜⎝
p

−̃b+
√

D̃

2̃a
+q

r
−̃b+
√

D̃

2̃a
+s

1

⎞⎟⎟⎟⎟⎠ = 0

In particular, the expression

p−b̃+
√

D̃
2ã

+ q

r −b̃+
√

D̃
2ã

+ s

has to be one of the roots of Q(x, 1); either −b+
√

D
2a

or −b−
√

D
2a

. One can check by
direct computation (using the expressions (1.3) and (1.4)) that the former case
holds.

1.4 OL-ideals
In the following, the word “ideal” will generally stand for a fractional ideal, while
to the usual meaning will be referred as to the “integral ideal”. We assume all
ideals to be nonzero. Since K has narrow class number one, every OL ideal can
be seen as a free OK module; let us focus on some properties of these modules
for a while.

Proposition 1.10. Let I be an OL-ideal. Then there exist α, β ∈ L, α, β ̸= 0,
such that I = [α, β]. If I is integral, then α, β ∈ OL. Every other OK-module
basis of I is of the form [pα + rβ, qα + sβ] for some p, q, r, s ∈ OK such that
ps− qr ∈ UK.

Proof. First, assume that I is an integral ideal. Then, similarly as in the proof
of Proposition 1.1, any three or more elements of OL are linearly dependent over
OK . Hence, it is sufficient to prove that every possible OK-module basis of I
needs to have at least two elements, and thus is of the form I = [α, β] for some
nonzero elements α, β of OL.

For a contradiction, assume that I = [α] for a nonzero element α of OL, i.e.
I = αOK . Then it must hold that αα ∈ αOK ; hence αα = αt for an element
t ∈ OK , so α(α − t) = 0. Since α ̸= 0, we have that α = t, and thus α ∈ OK .

11



But then αΩ /∈ K and I = αOK ⊆ K at the same time; therefore αΩ /∈ I. That
is a contradiction with the fact that I is an OL-ideal.

If I is a fractional ideal, then there exists an element r ∈ OK such that
rI ⊆ OL. By the first part of the proof there exist α, β ∈ OL, α, β ̸= 0, such that
rI = [α, β]; therefore, α

r
, β

r
∈ L, and I =

[
α
r
, β

r

]
. The rest of the proposition is

clear.

Consider an ideal I = [α, β] in OL. Then there exists a 2 × 2 matrix M
consisting of elements of K such that(

α
β

)
= M ·

(
1
Ω

)
.

Then also (
α α
β β

)
= M ·

(
1 1
Ω Ω

)
, (1.6)

and thus
det M = αβ − αβ

Ω− Ω
. (1.7)

The proof of the following lemma is just a direct computation.

Lemma 1.11. Let I = [α, β] be an ideal and M the same matrix as above.
Assume that [pα + rβ, qα + sβ] is another OK-module basis of I, and M̃ the
matrix corresponding to this basis. Then det M̃ = (ps− qr) det M .

Lemma 1.12. det M ∈ K, and if α, β ∈ OL, then det M ∈ OK.

Proof. The first part is clear, since M is a matrix consisting of elements of K. To
prove the second part, consider α, β ∈ OL. Using Proposition 1.1, we can write
α = a1 + a2Ω, β = b1 + b2Ω with a1, a2, b1, b2 ∈ OK . Hence, we can compute

det M = αβ − αβ

Ω− Ω
= (a1 + a2Ω)(b1 + b2Ω)− (a1 + a2Ω)(b1 + b2Ω)

Ω− Ω

= (a1b2 − a2b1)(Ω− Ω)
Ω− Ω

= a1b2 − a2b1 ∈ OK .

If I is a fractional OL-ideal, then NL/K (I) =
(
NL/K (α) | α ∈ I

)
is the rela-

tive norm of the ideal I. Note that if I, J are two OL-ideals such that I ⊆ J ,
then NL/K (I) ⊆ NL/K (J). Since NL/K (I) is an OK-ideal and h(K) = 1 by the
assumption, this ideal has to be principal. If I = (α) is a principal ideal, then
it clearly holds that NL/K ((α)) =

(
NL/K (α)

)
. Generally, the generator of the

ideal NL/K (I) can be written explicitly in terms of the OK-module basis of I, as
the following lemma shows.

Lemma 1.13. Let I = [α, β] be an ideal, and M the same matrix as above. Then
det M generates the OK-ideal NL/K (I).

Proof. This is a well-known result holding for any finite Galois extension E/F
such that h(F ) = 1. The proof can be found e.g. in [Mann, 1958, Th. 1].

12



Let us now determine what will be later recognized as the inverse class of an
ideal. We need to start with a technical lemma, which will also turn out to be
useful later in the proof of Proposition 2.1, as the elements here will be exactly
the coefficients of the quadratic form obtained from the ideal [α, β].

Lemma 1.14. Let [α, β] be an ideal, and M the same matrix as above. Then

αα

det M
,

ββ

det M
,
αβ + αβ

det M

are coprime elements of OK.

Proof. We start by proving that αα
det M

, ββ
det M

, αβ+αβ
det M

are elements of OK . First,
assume that α, β ∈ OL. Then det M ∈ OK by Lemma 1.12; hence we need to
show that the elements αα, ββ, αβ + αβ are divisible by det M in OK . Since
α ∈ [α, β], there is (α) ⊂ [α, β]. It follows from Lemma 1.13 that

(αα) =
(
NL/K (α)

)
⊂ NL/K ([α, β]) = (det M),

and therefore αα is divisible by det M in OK . By the same argument, ββ is
divisible by det M in OK . Similarly, (α + β) ⊂ [α, β] implies that NL/K (α + β)
is divisible by det M . Since NL/K (α + β) = αα + ββ + αβ + αβ, we see that
αβ + αβ = NL/K (α + β)− αα− ββ is divisible by det M in OK as well.

In the general case, we can find k ∈ OK such that kα, kβ ∈ OL. Hence, we
may apply the first part of the proof to the ideal [kα, kβ]. Since the corresponding
determinant is equal to k2 det M ; the terms k2 cancel out in the fractions.

Denote a = αα
det M

, b = αβ+αβ
det M

, c = ββ
det M

. To prove that a, b, c are coprime, first
note that b2 − 4ac =

(
Ω − Ω

)2
= DΩ. Therefore, if a, b, c were divisible by an

element p in OK\ UK , then DΩ
p2 would be a quadratic residue modulo 4, which is

not possible, as DΩ is fundamental by Lemma 1.4.

Proposition 1.15. Let [α, β] be an ideal. Then

[α, β] ·
[
α,−β

]
= (det M)

as OL-ideals.

Proof. Denote

I = [α, β], J =
[

α

det M
,
−β

det M

]
.

We will prove that IJ = [1, Ω], which is equivalent to the statement of the lemma.
Note that

NL/K (J) = 1
(det M)2NL/K

(
[α,−β]

)
=
( 1

det M

)
;

therefore, NL/K (IJ) = (1) by the multiplicativity of the norm. Since we have
also NL/K ([1, Ω]) = (1), to prove that [1, Ω] = IJ , we only need to show that
1, Ω ∈ IJ (see [Mann, 1958, Cor. to Th. 1]). As IJ is an OL-ideal as well, it
even suffices to prove that 1 ∈ IJ .

Clearly,

IJ =
[

αα

det M
,
−αβ

det M
,

αβ

det M
,
−ββ

det M

]
OK

.
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By Lemma 1.14,

gcd
(

αα

det M
,
αβ + αβ

det M
,

ββ

det M

)
= 1;

therefore, 1 ∈ IJ .

1.5 Relative oriented class group
In the traditional correspondence, there are binary quadratic forms on one side,
and the class group CℓL = IL/PL, or the narrow class group Cℓ+

L = IL/P+
L , on the

other side (for details about class groups see Chapter 4). Since we are working
with number fields of higher degrees, the situation is a bit more complicated. In-
spired by Bhargava’s definition of the class group, which consider the orientation
of the bases of the ideals, we define the relative oriented class group with respect
to the extension L/K. Compared to the rational numbers, our base field K has r
real embeddings; therefore, instead of one sign, we consider r signs: one for every
real embedding. Later, in Section 2.5, we will see that these signs are closely
connected to the positive definiteness of the corresponding quadratic forms.

Definition 1.16. For a ∈ K write sgn(a) = (sgn(σ1(a)), . . . , sgn(σr(a))), and
set

Io
L/K = {(I; ε1, . . . , εr) | I a fractional OL-ideal, εi ∈ {±1} , i = 1, . . . , r} ,

Po
L/K =

{(
(γ) ; sgn

(
NL/K (γ)

))
| γ ∈ L

}
;

here, (I; ε1, . . . , εr) is called the oriented ideal. Then the relative oriented class
group of the field extension L/K is defined as

Cℓo
L/K = I

o
L/K

/
Po

L/K
.

The multiplication on Io
L/K is defined componentwise as

(I; ε1, . . . , εr) · (J ; δ1, . . . , δr) = (IJ ; ε1δ1, . . . , εrδr) ;

thus, Io
L/K is clearly an abelian group, and Po

L/K is its subgroup. Therefore, the
group Cℓo

L/K is well-defined.
If two oriented ideals (I; ε1, . . . , εr) and (J ; δ1, . . . , δr) lie in the same class of

Cℓo
L/K , we say that they are equivalent and write (I; ε1, . . . , εr) ∼ (J ; δ1, . . . , δr).

Let us first compare the relative oriented class group Cℓo
L/K with the class group

CℓL of the number field L. In the following, by OL is meant the principal OL-ideal
generated by a unit (hence the identity element in the group CℓL), and by {OL}
the one-element group; ⟨±1⟩r stands for r copies of the (unique) multiplicative
group on 2 elements.

Proposition 1.17. Denote H =
{
sgn

(
NL/K (µ)

)
| µ ∈ UL

}
. Then

CℓL ≃ Cℓ
o
L/K

/(
{OL} × ⟨±1⟩r

/H

)
.
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Proof. Define maps f and g:

f : {OL} × ⟨±1⟩r −→ Io
L/K

(OL; ε) ↦−→ (OL; ε)

g : Io
L/K −→ IL

(I; ε) ↦−→ I

Then f is injective, g surjective, and Ker g = {(OL; ε) | ε ∈ ⟨±1⟩r} = Im f .
Consider restrictions f ′ and g′ of these two maps:

f ′ : {OL} ×H −→ Po
L/K(

OL; sgn
(
NL/K (µ)

))
↦−→

(
(µ); sgn

(
NL/K (µ)

))
g′ : Po

L/K −→ PL(
(γ) ; sgn

(
NL/K (γ)

))
↦−→ (γ)

Note that f ′ is indeed a restricton of f , as (µ) = OL for any µ ∈ UL. Again, f ′ is
injective, g′ is surjective, and Ker g′ =

{(
(γ) ; sgn

(
NL/K (γ)

))
| γ ∈ UL

}
= Im f ′.

Hence, we obtain the following commutative diagram:

1 {OL} × ⟨±1⟩r Io
L/K IL 1

1 {OL} ×H Po
L/K PL 1

f g

f ′

i1

g′

i2 i3

Note that Coker i1 = {OL} × ⟨±1⟩r
/H, Coker i2 = Cℓo

L/K , Coker i3 = CℓL/K , and
Ker i3 = 1. Hence, by snake lemma, there is a short exact sequence:

1 {OL} × ⟨±1⟩r
/H Cℓo

L/K CℓL 1

This sequence gives us the required isomorphism

CℓL ≃ Cℓ
o
L/K

/
{OL} × ⟨±1⟩r

/H
.

Remark. The relative oriented class group could be defined for any finite Galois
extension E/F such that h+(F ) = 1; Proposition 1.17 would remain true without
any modifications.

We know that for every OL-ideal I, we can find α, β ∈ L such that I = [α, β].
We would like to define orientation of such an ideal by using its basis. To do
that, consider once again the matrix M satisfying(

α α
β β

)
= M ·

(
1 1
Ω Ω

)
,

and take the determinant of this matrix, i.e. det M = αβ−αβ

Ω−Ω . Then define the
orientation of the ideal [α, β] as sgn (det M): we obtain the oriented ideal(

[α, β] ; sgn (det M)
)

= ([α, β]; sgn(σ1(det M)), . . . , sgn(σr(det M))) .

The question is if we are able to find a well-oriented basis for any oriented ideal
(I; ε1, . . . , εr).
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Lemma 1.18. Let (I; ε1, . . . , εr) be an oriented ideal. Then there exists a basis
[α, β] of I such that sgn (det M) = (ε1, . . . , εr), where det M = αβ−αβ

Ω−Ω .

Proof. Consider any basis [α, β] of the ideal I, and multiply α by a unit u ∈ UK

with the appropriate sgn (u); such a unit exists by the assumption that the narrow
class number of K is one.

If
(
[α, β] ; sgn (det M)

)
and

(
[α′, β′] ; sgn (det M ′)

)
are two oriented ideals,

then their multiple is the ideal [α, β] · [α′, β′] with the orientation given by
sgn (det M · det M ′). The existence of a basis of the ideal [α, β] · [α′, β′] with
such an orientation is guaranteed by the previous lemma. Note that here we need
the condition h+(K) = 1; otherwise, there may not exist any basis of the multiple
of two ideals with the required orientation.

The orientation of a principal ideal is given directly by the definition as(
(γ) ; sgn (γγ)

)
= ((γ); sgn(σ1(γγ)), . . . , sgn(σr(γγ))) .

Note that if (
γα γα
γβ γβ

)
= M̃ ·

(
1 1
Ω Ω

)
,

then det M̃ = γγ det M , and therefore,(
(γ) ; sgn (γγ)

)
·
(
[α, β] ; sgn (det M)

)
=
(
[γα, γβ] ; sgn

(
det M̃

))
.

Lemma 1.19. The identity element of the group Cℓo
L/K is ([1, Ω]; +1, . . . , +1),

and the inverse to
(
[α, β] ; sgn (det M)

)
is
([

α,−β
]

; sgn (det M)
)

(taking all of
the oriented ideals as representatives of classes in Cℓo

L/K).

Proof. The orientation of the ideal [1, Ω] is (+1, . . . , +1), because M is in this case
the unit matrix. Hence, the oriented ideal ([1, Ω]; +1, . . . , +1) is a representative
of the identity element of the group Cℓo

L/K .
We know from Proposition 1.15 that [α, β] ·

[
α,−β

]
= (det M); since the

orientation of the product [α, β] ·
[
α,−β

]
is sgn ((det M)2) = sgn

(
det Mdet M

)
,

we even have that(
[α, β] ; sgn (det M)

)
·
([

α,−β
]

; sgn (det M)
)

=
(
(det M) ; sgn

(
det Mdet M

))
,

which is an element of Po
L/K . Thus, the oriented ideals

(
[α, β] ; sgn (det M)

)
and([

α,−β
]

; sgn (det M)
)

represent inverse classes in the group Cℓo
L/K .

The following lemma states an easy but very useful observation; the proof is
immediate.

Lemma 1.20. Two oriented ideals (I; ε1, . . . , εr) and (J ; δ1, . . . , δr) are equivalent
if and only if there exists γ ∈ L such that γI = J and sgn (γγ) =

(
ε1
δ1

, . . . , εr

δr

)
.

Moreover, if I = J , then γ has to be a unit.
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2. Correspondence between
ideals and quadratic forms
Finally, we are prepared to look at the first one of the correspondences, namely
the one between the classes of quadratic forms and the relative oriented class
group. The strategy is to define maps in both directions, prove that these maps
are well-defined (on the equivalence classes) and that both of their compositions
are identity maps. Afterward, we will take a closer look at the quadratic fields; we
will see see that our new correspondence is actually a natural generalization of the
traditional correspondence with Q as the base field. At the end of this chapter,
we will restrict ourselves to quadratic forms of totally negative discriminant,
and, in such a setting, we will compare the orientation of an ideal with positive
definiteness of the associated quadratic form.

2.1 From ideals to quadratic forms
Let us define a map assigning a quadratic form to an oriented ideal.

Φ : Cℓo
L/K −→ QD(

[α, β] ; sgn (det M)
)
↦−→ 1

det M
NL/K (αx− βy) = ααx2−(αβ+αβ)xy+ββy2

det M

To be accurate, the map Φ goes between the classes of oriented ideals and classes
of quadratic forms; we omit to write the classes to relax the notation. We have to
check that this map is well-defined. First, let us see that the image of this map
lies in QD.

Proposition 2.1. Consider a representative
(
[α, β] ; sgn (det M)

)
of a class in

Cℓo
L/K, and denote by Qα,β its image under the map Φ. Then Qα,β is a represen-

tative of a class of QD.

Proof. We have

Qα,β(x, y) = ααx2 − (αβ + αβ)xy + ββy2

det M
.

Lemma 1.14 ensures both that the coefficients of Qα,β are elements of OK , and
that this quadratic form is primitive. Thus, it only remains to verify the discri-
minant of Qα,β; one easily computes that

Disc(Qα,β) =
(
Ω− Ω

)2
,

which is an element of D.

To prove that the map Φ does not depend on the choice of the representative
of the class in Cℓo

L/K , we start with two lemmas, which connect units from the
quadratic extension L with the equivalence of quadratic forms.

Lemma 2.2. Let µ ∈ UL, and let Q(x, y) be a quadratic form with Disc(Q) ∈ D.
Then there exist some elements p0, q0, r0, s0 ∈ OK such that p0s0− q0r0 = µµ and
Q(x, y) = 1

p0s0−q0r0
Q(p0x + q0y, r0x + s0y).
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Proof. Let Q(x, y) = ax2 + bxy + cy2, and assume that Disc(Q) = DΩ (multiply
Q by a suitable totally positive unit if needed). There exist u, v ∈ OK such that
µ = u

2 + v
2
√

DΩ; hence µµ =
(

u
2

)2
+DΩ

(
v
2

)2
. From the condition p0s0−q0r0 = µµ

and by comparing the coefficients of the quadratic forms (p0s0− q0r0)Q(x, y) and
Q(p0x + q0y, r0x + s0y), we get the following system of equations:

p0s0 − q0r0 =
(

u
2

)2
+ DΩ

(
v
2

)2
,

(p0s0 − q0r0)a = ap2
0 + bp0r0 + cr2

0,

(p0s0 − q0r0)b = 2ap0q0 + b(p0s0 + q0r0) + 2cr0s0,

(p0s0 − q0r0)c = aq2
0 + bq0s0 + cs2

0.

(2.1)

One can check that

p0 = u− bv

2 , q0 = −cv, r0 = av, s0 = u + bv

2

fulfill the system of equations (2.1). It remains to show that p0, q0, r0, s0 are
elements of OK . This is obvious for q0 and r0; for p0 and s0, it follows from the
computation

µµ =
(

u

2

)2
+ DΩ

(
v

2

)2
=
(

u

2

)2
+ (b2 − 4ac)

(
v

2

)2
= u2 − b2v2

4 + acv2,

and from the fact that both acv2 and µµ are elements of OK .

Lemma 2.3. Let Q be a primitive quadratic form, and p, q, r, s ∈ OK be such
that ps− qr ∈ UK. If there exists µ ∈ UL such that sgn (µµ) = sgn (ps− qr), then
Q(x, y) ∼ 1

ps−qr
Q(px− qy,−rx + sy).

Proof. Use the elements p0, q0, r0, s0 from Lemma 2.2: p0s0 − q0r0 = µµ, and

Q(x, y) = 1
p0s0 − q0r0

Q(p0x + q0y, r0x + s0y).

Note that sgn (p0s0 − q0r0) = sgn (µµ) = sgn (ps− qr), and thus ps−qr
p0s0−q0r0

∈ U+
K .

We can find the equivalence between the quadratic forms 1
ps−qr

Q(px−qy,−rx+sy)
and 1

p0s0−q0r0
Q(p0x + q0y, r0x + s0y); this equivalence is obtained by the change

of coordinates given by the matrix(
p0 q0
r0 s0

)(
p −q
−r s

)−1

,

and by the multiplication by the totally positive unit ps−qr
p0s0−q0r0

. Finally,

1
ps− qr

Q(px− qy,−rx + sy) ∼ 1
p0s0 − q0r0

Q(p0x + q0y, r0x + s0y) = Q(x, y).

Proposition 2.4. The map Φ does not depend on the choice of the representative(
[α, β] ; sgn (det M)

)
.
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Proof. First, we would like to show that the definition of Φ is independent on the
choice of the basis [α, β] of an ideal, i.e. that the quadratic form arising from the
basis [pα + rβ, qα + sβ], such that p, q, r, s ∈ OK , ps− qr ∈ UK , is equivalent to
the one obtained from the basis [α, β]; but this is not true in general, since the
change of the basis may change the orientation as well. Thus, we have to add an
assumption that the oriented ideals obtained from these two bases are equivalent
in Cℓo

L/K : consider two oriented ideals

I =
(
[α, β] ; sgn (det M)

)
, Ĩ =

(
[pα + rβ, qα + sβ] ; sgn

(
det M̃

))
,

such that p, q, r, s ∈ OK , ps−qr ∈ UK , and assume I ∼ Ĩ. Denote Q(x, y) = Φ(I),
Q̃(x, y) = Φ(Ĩ); we need to prove that Q ∼ Q̃. We have

Q̃(x, y) = NL/K ((pα + rβ)x− (qα + sβ)y)
det M̃

= (p2αα+pr(αβ+αβ)+r2ββ)x2−(2pqαα+(ps+qr)(αβ+αβ)+2rsββ)xy+(q2αα+qs(αβ+αβ)+s2ββ)y2

(ps−qr) det M

=
αα(px−qy)2−(αβ+αβ)(px−qy)(−rx+sy)+ββ(−rx+sy)2

(ps−qr) det M
= 1

ps− qr
Q(px− qy,−rx + sy),

where det M̃ = (ps − qr) det M by Lemma 1.11. Since we have I ∼ Ĩ and
[α, β] = [pα + rβ, qα + sβ], there exists µ ∈ UL by Lemma 1.20, such that
sgn (µµ) = sgn (ps− qr). Thus, the quadratic forms Q(x, y) and Q̃(x, y) are
equivalent by Lemma 2.3.

Now, let us consider any two equivalent oriented ideals; the equivalence is
given by multiplication by a principal oriented ideal

(
(γ) ; sgn (γγ)

)
, i.e. we have

a pair of oriented ideals
(
[α, β] ; sgn (det M)

)
and

(
[γα, γβ]; sgn (γγ det M)

)
. The

situation in this case is much easier, because the image of the oriented ideal(
[γα, γβ]; sgn (γγ det M)

)
under the map Φ is the quadratic form

1
γγ det M

NL/K (γαx− γβy) = γαγαx2 − (γαγβ + γαγβ)xy + γβγβy2

γγ det M

= ααx2 − (αβ + αβ)xy + ββy2

det M
,

which is identical to the quadratic form obtained from
(
[α, β] ; sgn (det M)

)
.

2.2 From quadratic forms to ideals
To get an oriented ideal from a quadratic form, define a map

Ψ : QD −→ Cℓo
L/K

Q(x, y) = ax2 + bxy + cy2 ↦−→
([

a,
−b+
√

Disc(Q)
2

]
; sgn (a)

)
By abuse of notation, we omit to write the classes; we have to show that this
map is well-defined.
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Proposition 2.5. Let Q(x, y) = ax2 + bxy + cy2 be a representative of a class in
QD. Then its image under the map Ψ is an element of Io

L/K.

Proof. Set D = Disc(Q), and note that

aΩ = b− uw

2u
· a + a

u
· −b +

√
D

2 ,

−b +
√

D

2 Ω = − c

u
· a− b + uw

2u
· −b +

√
D

2 ,

where D = u2DΩ for a totally positive unit u ∈ U+
K , and Ω = −w+

√
DΩ

2 by
(1.1). Hence,

[
a, −b+

√
D

2

]
is indeed an OL-ideal, and we only need to compute the

orientation of the basis. Let M be such a matrix that(
a a

−b−
√

D
2

−b+
√

D
2

)
= M ·

(
1 1
Ω Ω

)
.

We need to prove that sgn (det M) = sgn (a). There is

det M =
a−b+

√
D

2 − a−b−
√

D
2

Ω− Ω
= a
√

D

Ω− Ω
= ua

with the same unit u as above, i.e.
√

D = u
√

DΩ = u
(
Ω− Ω

)
. Since u is totally

positive, we have sgn (det M) = sgn (a).

Proposition 2.6. The map Ψ does not depend on the choice of the representative
Q(x, y).

Proof. Let Q(x, y) = ax2 + bxy + cy2 be a quadratic form of discriminant D ∈ D,
and u ∈ U+

K . Then

Ψ(uQ(x, y)) =
([

ua,
−ub +

√
u2D

2

]
; sgn (ua)

)

=
(
(u) ; sgn (uu)

)
·
([

a,
−b +

√
D

2

]
; sgn (a)

)
,

because both u and uu are totally positive. Hence,

Ψ(uQ(x, y)) ∼
([

a,
−b +

√
D

2

]
; sgn (a)

)
= Ψ(Q(x, y)).

Now, let p, q, r, s ∈ OK be such that ps− qr ∈ U+
K , and consider the quadratic

form Q̃(x, y) = Q(px + qy, rx + sy) = ãx2 + b̃xy + c̃y2. We have

Ψ(Q(x, y)) =
([

a,
−b +

√
D

2

]
; sgn (a)

)
,

Ψ(Q̃(x, y)) =

⎛⎜⎝
⎡⎢⎣ã,
−b̃ +

√
D̃

2

⎤⎥⎦ ; sgn (ã)

⎞⎟⎠ ;

we need to show that these two oriented ideals are equivalent.
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Let us first examine only how to come from the basis
[
a, −b+

√
D

2

]
to the basis[

ã, −b̃+
√

D̃
2

]
; we will deal with the orientations afterwards.

[
ã, −b̃+

√
D̃

2

]
· 1

ã−−−−−−−−−−→
[
1, −b̃+

√
D̃

2ã

]
( q p

s r )
−−−−−−→

[
p−b̃+
√

D̃
2ã

+ q, r −b̃+
√

D̃
2ã

+ s

]

·
(

r
−̃b+
√

D̃

2̃a
+s

)−1

−−−−−−−−−−→

⎡⎢⎣p
−̃b+
√

D̃

2̃a
+q

r
−̃b+
√

D̃

2̃a
+s

, 1

⎤⎥⎦ (Lemma 1.9)=
[

−b+
√

D
2a

, 1
]

( 0 1
1 0 )

−−−−−−−−−−→
[
1, −b+

√
D

2a

]
·a−−−−−−→

[
a, −b+

√
D

2

]

Recall that the multiplication of the basis by an element γ change the ori-
entation by sgn (γγ), and the action by a matrix M on the basis change the
orientation by sgn (det M). Since a ∈ K, there is aa = a2, which is totally po-
sitive. Thus, the multiplication by a does not change the orientation; the same
holds for 1

ã
∈ K. Also, both −(ps − qr) and −1 are totally negative, and hence

both the transformations by the matrices ( q p
s r ) and ( 0 1

1 0 ) change the orientation
to the opposite one; together they does not affect the orientation. Therefore, the

only impact might have the multiplication by
(

r −b̃+
√

D̃
2ã

+ s
)−1

:

sgn

⎛⎜⎜⎝
⎛⎜⎝r
−b̃ +

√
D̃

2ã
+ s

⎞⎟⎠
−1⎛⎜⎝r

−b̃ +
√

D̃

2ã
+ s

⎞⎟⎠
−1
⎞⎟⎟⎠

= sgn

⎛⎜⎝
⎛⎜⎝r
−b̃ +

√
D̃

2ã
+ s

⎞⎟⎠
⎛⎜⎝r
−b̃−

√
D̃

2ã
+ s

⎞⎟⎠
⎞⎟⎠

= sgn
((
−rb̃ + 2sã

)2
− r2D̃

)
= sgn

(
r2b̃2 − 4rsãb̃ + 4s2ã2 − r2(b̃2 − 4ãc̃)

)
= sgn

(
4ã(ãs2 − b̃rs + c̃r2)

)
(1.5)= sgn

(
4ã(ps− qr)2a

)
= sgn (ãa)

(we used the facts that 4ã2 and 4(ps−qr)2 are totally positive). All the mentioned
transformations together changed the orientation of the ideal from sgn (ã) to
sgn (ã)·sgn (ãa) = sgn (ã2a) = sgn (a), and that is exactly the desired orientation.

Hence, the oriented ideals
([

a, −b+
√

D
2

]
; sgn (a)

)
and

([
ã, −b̃+

√
D̃

2

]
; sgn (ã)

)
are

equivalent.

2.3 Proof of the bijection
We are ready to prove that the maps Φ and Ψ defined in the two previous sub-
sections are mutually inverse bijections.
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Theorem 2.7. Let K be a number field of narrow class number one. Let D be
a fundamental element of OK. Set L = K

(√
D
)
, and D =

{
u2D | u ∈ U+

K

}
. We

have a bijection

QD
1:1←→ Cℓo

L/K

Q(x, y) = ax2 + bxy + cy2 Ψ↦−→
([

a,
−b+
√

Disc(Q)
2

]
; sgn (a)

)
ααx2−(αβ+αβ)xy+ββy2

αβ−αβ√
D

Φ←− [
(
[α, β] ; sgn

(
αβ−αβ√

D

))
Proof. Let Ω be such that OL = [1, Ω]. By Lemma 1.5, there is a unit u ∈ UK

(not necessarily totally positive) such that D = u2DΩ; then we have OL = [1, uΩ]
and u2DΩ = (uΩ − uΩ)2. If we begin with the canonical basis [1, uΩ] of OL

instead of [1, Ω], we get the same results for D in the place of DΩ. Therefore,
without loss of generality, we may assume that D = DΩ. Note that under this
assumption

αβ − αβ√
D

= det M.

Let
I =

(
[α, β] ; sgn (det M)

)
be a representative of a class in Cℓo

L/K , and

Qα,β(x, y) = ααx2 − (αβ + αβ)xy + ββy2

det M

its image under the map Φ. If we use the map Ψ now, we obtain the oriented
ideal

I′ =
([

αα

det M
,
αβ + αβ

2 det M
+ Ω− Ω

2

]
; sgn

(
αα

det M

))
.

Since det M = αβ−αβ

Ω−Ω , there is αβ+αβ
2 det M

+ Ω−Ω
2 = (αβ+αβ)+(αβ−αβ)

2 det M
= αβ

det M
. Thus,

I′ =
([

αα

det M
,

αβ

det M

]
; sgn

(
αα

det M

))
.

If we multiply I′ by the principal oriented ideal
((

det M
α

)
; sgn

(
det M

α
det M

α

))
, we

get exactly the ideal I. Therefore, I ∼ I′ = ΨΦ(I), and ΨΦ = idCℓo
L/K

.
On the other hand, consider

Q(x, y) = ax2 + bxy + cy2,

a representative of a class in QD. Its image under the map Ψ is the oriented ideal⎛⎝⎡⎣a,
−b +

√
Disc(Q)
2

⎤⎦ ; sgn (a)
⎞⎠ .

Using the map Φ, we get a quadratic form

Q′(x, y) =
a2x2 + abxy + b2−Disc(Q)

4 y2

det M
,
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where ⎛⎝ a a
−b−
√

Disc(Q)
2

−b+
√

Disc(Q)
2

⎞⎠ = M ·
(

1 1
Ω Ω

)
,

and det M = ua for a unit u ∈ U+
K . Hence,

Q′(x, y) = 1
u

(ax2 + bxy + cy2),

and Q ∼ Q′ = ΦΨ(Q). Therefore, ΦΨ = idQD .

Corollary 2.8. QD carries a group structure arising from the multiplication
of ideals in K

(√
D
)
. The identity element of this group is represented by the

quadratic form x2− (Ω+Ω)xy +ΩΩy2, and the inverse element to ax2 +bxy +cy2

is the quadratic form ax2 − bxy + cy2.

Proof. The group structure of QD is given by the bijection with Cℓo
L/K from The-

orem 2.7. The identity element is given as the image under the map Φ of the ori-
ented ideal ([1, Ω]; +1, . . . , +1) (which represents the identity element in Cℓo

L/K);
thus, the identity element is x2 − (Ω + Ω)xy + ΩΩy2.

Consider the quadratic forms ax2 + bxy + cy2 and ax2 − bxy + cy2, and set
D = b2− 4ac. The images of these two quadratic forms under the map Φ are the
oriented ideals([

a,
−b +

√
D

2

]
; sgn (a)

)
and

([
a,

b +
√

D

2

]
; sgn (a)

)
,

which represent the mutually inverse classes of Cℓo
L/K by Lemma 1.19. Hence, the

quadratic forms ax2 + bxy + cy2 and ax2− bxy + cy2 are inverse to each other.

2.4 Quadratic fields
Let us look at the case of quadratic fields: assume K = Q, and L = Q

(√
D
)
.

In this case, there exists only one real embedding of K, and that is the identity.
Thus, Proposition 1.17 says that

CℓL ≃ Cℓ
o
L/K

/
{OL} × ⟨±1⟩/H

,

where H =
{
sgnNL/K (µ) | µ ∈ UL

}
. To give more precise results, we need to

distinguish three possible cases according to the sign of D and the existence of
a negative unit:

1. If D < 0, then there is NL/K (γ) > 0 for every γ ∈ L; therefore, the oriented
ideals ([α, β]; sgn(det M)) and ([−α, β];− sgn(det M)) cannot be equivalent, and
it is easy to see that Cℓo

L/K ≃ CℓL × ⟨±1⟩. Moreover, any pair of quadratic forms
ax2 +bxy+cy2 and −ax2 +bxy−cy2 cannot be equivalent either; if one of them is
positive definite, then the other one is negative definite. This explains the factor
⟨±1⟩ in the relative oriented class group, because in the usual correspondence
only positive definite forms are considered whenever D < 0.
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2. Let D > 0, and assume that every unit has positive norm, i.e. for every
µ ∈ UL there isNL/K (µ) = +1. Consider the following surjective homomorphism:

f : Io
L/K −→ Cℓ+

L

(I; +1) ↦−→ IP+
L

(I;−1) ↦−→
√

DIP+
L

Since Ker f = Po
L/K , it follows that Cℓo

L/K ≃ Cℓ+
L . Furthermore, it is well known

that in this case is Cℓ+
L ≃ CℓL × ⟨±1⟩; hence, we have that Cℓo

L/K ≃ CℓL × ⟨±1⟩.
3. Finally, assume that D > 0, and that there exists a unit of negative

norm, i.e. µ0 ∈ UL such that NL/K (µ0) = −1; then H = {(+1), (−1)} = ⟨±1⟩.
Therefore, we get directly from Proposition 1.17 that Cℓo

L/K ≃ CℓL. Since it is
well known that in this case the groups CℓL and Cℓ+

L are isomorphic, we have as
well that Cℓo

L/K ≃ Cℓ+
L .

Let us summarize our observations into the following proposition:

Proposition 2.9. Let K = Q, and let L = Q
(√

DΩ
)

for a fundamental element
DΩ ∈ Z.

1. If DΩ < 0, then Cℓo
L/Q ≃ CℓL × ⟨±1⟩.

2. If DΩ > 0 and µµ = 1 for every µ ∈ UL, then Cℓo
L/Q ≃ CℓL × ⟨±1⟩ ≃ Cℓ+

L .

3. If DΩ > 0 and there exists µ ∈ UL such that µµ = −1, then Cℓo
L/Q ≃ CℓL ≃ Cℓ+

L .

Remark. The proposition shows us that the relative oriented class group Cℓo
L/K

(and hence the correspondence between oriented ideals and quadratic forms) is a
generalization of Bhargava’s view to the classical correspondence; see [Bhargava,
2004, Sec. 3.2].

2.5 Totally positive definite quadratic forms
A very interesting and well-studied class of quadratic forms are the totally positive
definite ones, which form a natural generalization of sums of squares. As such,
they have been studied for example in the context of representations of totally
positive integers, e.g. in Blomer and Kala, 2015], Chan et al. [1996], Earnest and
Khosravani [1997], Kala [2016], Siegel [1945]. Of course, a binary quadratic form
can never be universal; nevertheless, our results may prove to be useful also in
the study of quadratic forms of higher ranks.

If DΩ is totally negative (i.e. σ(DΩ) < 0 for every σ ∈ RK ; this fact will be
denoted by DΩ ≺ 0), then we can study the totally positive definite quadratic
forms. Recall that a quadratic form Q(x, y) = ax2 + bxy + cy2 is totally positive
definite if σ(Q(x, y)) = σ(a)x2 + σ(b)xy + σ(c)y2 is positive definite for every
σ ∈ RK . It is clear from the matrix notation that Q(x, y) = ax2 + bxy + cy2 is
totally positive definite if and only if a ≻ 0 (i.e. a is totally positive). Therefore,
if Q(x, y) = ax2 + bxy + cy2 is a totally positive definite quadratic form, then its
image under the map Ψ is the oriented ideal

([
a,

−b+
√

Disc(Q)
2

]
; +1, . . . , +1

)
.

One may ask if it is possible to describe the totally positive definite quadratic
forms in terms of the oriented ideals. We start with the following lemma, which
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says that if DΩ ≺ 0, then all ideals within one class of Cℓo
L/K have the same

orientation.

Lemma 2.10. If DΩ ≺ 0 and (I; ε1, . . . , εr) ∼ (J ; δ1, . . . , δr), then εi = δi for all
i = 1, . . . , r.

Proof. By Lemma 1.20, if (I; ε1, . . . , εr) ∼ (J ; δ1, . . . , δr), then there exists γ ∈ L
such that J = γI and δi = sgn(σi(γγ))εi for all i = 1, . . . , r. Since DΩ ≺ 0,
there is γγ ≻ 0 for every γ ∈ L. Therefore, sgn(σi(γγ)) = +1, and δi = εi for all
i = 1, . . . , r.

Proposition 2.11. Let DΩ ≺ 0, let Q ∈ QD, and let i ∈ {1, . . . , r}. Then the
following are equivalent:

(i) σi(Q) is positive definite,

(ii) Q is the image under the map Φ of an oriented ideal
(
[α, β] ; sgn (det M)

)
such that σi(det M) > 0,

(iii) Q is the image under the map Φ of an oriented ideal
(
[α, β] ; sgn (det M)

)
such that σi

(
ℑ
(

β
α

))
> 0, where ℑ

(
c1 + c2

√
DΩ

)
= c2 for any c1, c2 ∈ K.

Proof. Let Q(x, y) = ax2 + bxy + cy2. Since DΩ ≺ 0, the positive definiteness of
σi(Q) is given by the sign of σi(a). First, we will prove that (i) ⇔ (ii): Recall
that

Ψ(Q) =
⎛⎝⎡⎣a,

−b +
√

Disc(Q)
2

⎤⎦ ; sgn (a)
⎞⎠ .

If I =
(
[α, β] ; sgn (det M)

)
is an oriented ideal such that Φ(I) = Q(x, y), then

ΨΦ(I) = Ψ(Q). Hence, since I ∼ ΨΦ(I), there is

(
[α, β] ; sgn (det M)

)
∼

⎛⎝⎡⎣a,
−b +

√
Disc(Q)
2

⎤⎦ ; sgn (a)
⎞⎠ .

By the previous lemma, sgn (det M) = sgn (a). On the other hand, consider an
oriented ideal I =

(
[α, β] ; sgn (det M)

)
. Then the first coefficient of the quadratic

form Φ(I) is equal to αα
det M

, and sgn
(

αα
det M

)
= sgn (det M), because αα is totally

positive. Therefore, σi(Q) is positive definite if and only if σi(det M) > 0.
Let us prove (ii)⇔ (iii). Assume that Q is the image under the map Φ of an

oriented ideal
(
[α, β] ; sgn (det M)

)
. Recall that Ω = −w+

√
DΩ

2 by (1.1), and write
α = a1 + a2

√
DΩ, β = b1 + b2

√
DΩ for some a1, a2, b1, b2 ∈ K. One can easily

compute that

det M = αβ − αβ

Ω− Ω
= 2(a1b2 − a2b1),

and
β

α
= a1b1 − a2b2DΩ + (a1b2 − a2b1)

√
DΩ

a2
1 − a2

2DΩ
.

Thus,

ℑ
(

β

α

)
= a1b2 − a2b1

a2
1 − a2

2DΩ
,
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where a2
1 − a2

2DΩ = a2
1 + a2

2 |DΩ| is totally positive. Hence,

sgn
(
ℑ
(

β

α

))
= sgn (a1b2 − a2b1) = sgn (det M) .

The result about totally positive definite quadratic forms follows immediately
from Proposition 2.11.

Corollary 2.12. Let DΩ ≺ 0. A quadratic form is totally positive definite if and
only if it is the image under the map Φ of an oriented ideal

(
[α, β] ; sgn (det M)

)
such that ℑ

(
β
α

)
is totally positive.
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3. Composition of cubes
In the famous article Bhargava [2004], it is proved the existence of a group law on
certain equivalence classes of cubes over Z by proving a bijection between these
classes and balanced triples of oriented ideals in a quadratic field. Inspired by
this article, we will extend the group law to equivalence classes of cubes over OK

for any number field K of narrow class number one.
We will start with introducing the cubes, and, in Section 3.2, we will use

these cubes to describe composition of quadratic forms in a different way than in
Chapter 2. Then we generalize Bhargava’s balanced triples of ideals, and provide
some equivalent ways how to look at them. Finally, we prove the desired bijection
between equivalence classes of cubes and balanced triples of ideals.

3.1 Cubes
Bhargava introduced cubes of integers as elements of Z2⊗ZZ2⊗ZZ2; if we denote
by {v1, v2} the standard Z-basis of Z2, then the cube

a111 a121

a112 a122

a211 a221

a212 a222

(3.1)

with aijk ∈ Z can be viewed as the expression

2∑
i,j,k=1

aijkvi ⊗ vj ⊗ vk,

which is an element of Z2⊗Z2⊗Z2. Similarly, we can consider O2
K ⊗O2

K ⊗O2
K ,

this time taking the tensor product over the ring OK , and represent its elements
as cubes with vertices aijk ∈ OK . We will often refer to such a cube as in (3.1)
shortly by (aijk) tacitly assuming aijk ∈ OK for all i, j, k ∈ {1, 2}.

Considering a cube

a b

c d

e f

g h ,

(3.2)

it can be sliced in three different ways, which correspond to three pairs of 2× 2
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matrices:
R1 =

(
a b
c d

)
, S1 =

(
e f
g h

)
,

R2 =
(

a e
c g

)
, S2 =

(
b f
d h

)
,

R3 =
(

a e
b f

)
, S3 =

(
c g
d h

)
.

To each of these pairs, a binary quadratic form Qi(x, y) = − det (Rix− Siy) can
be assigned:

Q1(x, y) = (bc− ad)x2 + (ah− bg − cf + de)xy + (fg − eh)y2

Q2(x, y) = (ce− ag)x2 + (ah + bg − cf − de)xy + (df − bh)y2

Q3(x, y) = (be− af)x2 + (ah− bg + cf − de)xy + (dg − ch)y2
(3.3)

Formally, we will look at the assignment of the triple of quadratic forms (3.3) to
the cube (3.2) as a map Θ̃:

a b

c d

e f

g h

Θ̃↦−→
(
− det(R1x− S1y),− det(R2x− S2y),− det(R3x− S3y)

)
.

One can compute that all the quadratic forms in (3.3) have the same discrim-
inant, namely

Disc(Qi) = a2h2 + b2g2 + c2f 2 + d2e2

− 2(abgh + acfh + aedh + bdeg + bfcg + cdef) + 4(adfg + bceh)

for every i = 1, 2, 3. Hence, we can define the discriminant of a cube A as the
discriminant of any of the three assigned quadratic forms; we denote this value
by Disc(A). Furthermore, we say that a cube is projective if all the assigned
quadratic forms are primitive.

Consider the group Γ̃ = M2(OK) ×M2(OK) ×M2(OK), where M2(OK)
denotes the group of 2×2 matrices with entries fromOK . This group has a natural
action on cubes: if ( p q

r s ) is from the i-th copy of M2(OK), 1 ≤ i ≤ 3, then it
acts on the cube (3.2) by replacing (Ri, Si) by (pRi + qSi, rRi + sSi). Note that
the first copy acts on (R2, S2) by column operations, and on (R3, S3) by row
operations. Hence, analogous to the fact that row and column operations on
rectangular matrices commute, the three copies of M2(OK) in Γ̃ commute with
each other. Therefore, we can always decompose the action by T1 × T2 × T3 ∈ Γ̃
into three subsequent actions:

T1 × T2 × T3 = (id× id×T3)(id×T2 × id)(T1 × id× id). (3.4)

Thus, we will usually restrict our attention to the action with only one nontrivial
copy.
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Consider the action by ( p q
r s )× id× id on the cube (3.2); the resulting cube is

pa + qe pb + qf

pc + qg pd + qh

ra + se rb + sf

rc + sg rd + sh .

Let us investigate the quadratic forms assigned to this cube:

Q′
1(x, y) = − det

((
pa + qe pb + qf
pc + qg pd + qh

)
x−

(
ra + se rb + sf
rc + sg rd + sh

)
y

)

= − det
((

p ·
(

a b
c d

)
+ q ·

(
e f
g h

))
x−

(
r ·
(

a b
c d

)
+ s ·

(
e f
g h

))
y

)

= − det
((

a b
c d

)
(px− ry)−

(
e f
g h

)
(−qx + sy)

)
= Q1(px− ry,−qx + sy),

Q′
2(x, y) = − det

((
pa + qe ra + se
pc + qg rc + sg

)
x−

(
pb + qf rb + sf
pd + qh rd + sh

)
y

)

= − det
((

a e
c g

)(
p r
q s

)
x−

(
b f
d h

)(
p r
q s

)
y

)
= (ps− qr) ·Q2(x, y),

Q′
3(x, y) = − det

((
pa + qe ra + se
pb + qf rb + sf

)
x−

(
pc + qg rc + sg
pd + qh rd + sh

)
y

)

= − det
((

a e
b f

)(
p r
q s

)
x−

(
c g
d h

)(
p r
q s

)
y

)
= (ps− qr) ·Q3(x, y).

We can see that

Disc ((( p q
r s )× id× id) (A)) = (ps− qr)2 Disc(A).

Furthermore, for t ∈ OK , we understand by tA the cube A with all vertices
multiplied by t. It is clear that Disc(tA) = t4 Disc(A). We can summarize our
observations into the following lemma.

Lemma 3.1. Let A be a cube, t ∈ OK and T1, T2, T3 ∈M2(OK). Then

Disc (t (T1 × T2 × T3) (A)) = t4(det T1)2(det T2)2(det T3)2 Disc(A).

Let us denote

GL+
2 (OK) =

{
T ∈M2(OK) | det T ∈ U+

K

}
,

and consider the subgroup

Γ = GL+
2 (OK)×GL+

2 (OK)×GL+
2 (OK)
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of the group Γ̃. Then Γ acts on cubes. It follows from the computations above
that, for u ∈ UK and T1 × T2 × T3 ∈ Γ, cubes A and u(T1 × T2 × T3)(A) give rise
to equivalent triples of quadratic forms. This justifies the following definition.

Definition 3.2. We say that two cubes A and A′ are equivalent (which will be
denoted by A ∼ A′) if there exist u ∈ UK and T1 × T2 × T3 ∈ Γ such that
A′ = u(T1 × T2 × T3)(A).

Recall that we denote by D the set of all possible discriminants, i.e. the set{
u2
(
Ω− Ω

)2 ⏐⏐⏐ u ∈ U+
K

}
. Note that if A is a cube such that Disc(A) ∈ D, then

all cubes A′ equivalent to A satisfy Disc(A′) ∈ D. We will denote by CD the set
of equivalence classes of projective cubes of discriminant in D, i.e.

CD = {A ∈ O
2
K ⊗O2

K ⊗O2
K | A is projective, Disc(A) ∈ D}

/
∼.

Note that if A is a representative of an equivalence class in CD, then the three
quadratic forms assigned to the cube A are representatives of equivalence classes
in QD; hence, the map Θ̃ restricts to a map Θ : CD −→ QD×QD×QD. To relax
the notation, we will often omit to write the equivalence classes; by A ∈ CD we
understand that the cube A which is a representative of the class [A] in CD, and
Θ(A) = (Q1, Q2, Q3) actually means Θ

(
[A]
)

=
(
[Q1], [Q2], [Q3]

)
.

A cube A is called reduced if

A =
1 0

0 d

0 f

g h

for some d, f, g, h ∈ OK . The following lemma will help us to simplify some of
the proofs.

Lemma 3.3. Every projective cube is equivalent to a reduced cube.

Proof. In the case of cubes over Z, the proof with full details can be found in
[Bouyer, Sec. 3.1]. The proof in the case over OK is completely analogous,
because OK is a principal ideal domain. Here we only outline the rough idea.
Consider a projective cube

a b

c d

e f

g h .

It follows from projectivity that gcd(a, b, c, d, e, f, g, h) = 1; hence, we can find
a cube equivalent to the original one with 1 in the place of a. This can be used
to clear out the vertices b, c and e.
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We will point out one specific cube, and that is the cube

0 1

1 Ω + Ω

1 Ω + Ω

Ω + Ω
(

Ω + Ω
)2

− ΩΩ ;
(3.5)

since the cube is triply symmetric, all the three quadratic forms assigned to this
cube are equal to Qid(x, y) = x2 −

(
Ω + Ω

)
xy + ΩΩy2, the representative of the

identity element in the group QD. Therefore, we will denote the cube in (3.5) by
Aid.

3.2 Composition of binary quadratic forms
Bhargava establishes Cube Law, which says that composition of the three binary
quadratic forms arising from one cube is the identity quadratic form. He shows
that, in the case of projective cubes, this law is equivalent to Gauss composition
by using Dirichlet’s interpretation. In our case, the coefficients of the quadratic
forms lie in OK instead of Z, and hence we are not allowed to use Dirichlet
composition without reproving a generalized version. Instead of following this
path, we will use the bijection between QD and Cℓo

L/K from Chapter 2, and show
that the product of the three obtained ideal classes is a principal ideal class.
Recall that the bijection is given by the maps Ψ and Φ:

QD
1:1←→ Cℓo

L/K

Q(x, y) = ax2 + bxy + cy2 Ψ↦−→
([

a,
−b+
√

Disc(Q)
2

]
; sgn (a)

)
ααx2−(αβ+αβ)xy+ββy2

det M

Φ←− [
(
[α, β] ; sgn (det M)

)
Lemma 3.4. Let A ∈ CD, and denote Θ(A) = (Q1, Q2, Q3). Let Ji be the image
of Qi under the map Ψ, 1 ≤ i ≤ 3. Then there exists an element ω ∈ L such that
J1J2J3 =

(
(ω) ; sgn (ωω)

)
.

Proof. Using Lemma 3.3, we can assume that A is reduced. Hence, the quadratic
forms arising from this cube are

Q1(x, y) = −dx2 + hxy + fgy2,

Q2(x, y) = −gx2 + hxy + dfy2,

Q3(x, y) = −fx2 + hxy + dgy2,

(3.6)

all of them having discriminant D = h2 + 4dfg. Their images under the map Ψ
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are the oriented ideals

J1 =
([
−d,
−h +

√
D

2

]
; sgn (−d)

)
,

J2 =
([
−g,
−h +

√
D

2

]
; sgn (−g)

)
,

J3 =
([
−f,
−h +

√
D

2

]
; sgn (−f)

)
.

(3.7)

Denote by J the product of the three (unoriented) ideals, and set ω = −h+
√

D
2 ;

by [Mann, 1958, Cor. to Th. 1], it is sufficient to prove that ω ∈ J and that
NL/K (ω) = −dfg.

First, we have

NL/K (ω) = −h +
√

D

2 · −h−
√

D

2 = h2 −D

4 = −dfg,

where the last equality follows from D = h2 + 4dfg. Furthermore,

J =
[
−dfg, dfω, dgω, fgω,−dω2,−fω2,−gω2, ω3

]
OK

=
[
−dfg, dfω, dgω, fgω, dhω, fhω, ghω, h2ω

]
OK

,

where we have used the relations

ω2 = dfg − hω, ω3 = −dfgh + (h2 + dfg)ω.

Set G = gcd(df, dg, fg, dh, fh, gh, h2); we want to show that G is a unit, because
then necessarily ω ∈ J . It follows from primitiveness of the quadratic forms in
(3.6) that gcd(d, f, g, h) = 1; therefore, G = gcd(df, dg, fg, h). Let p ∈ OK be
a prime such that p | G. Since the quadratic form Q1 is primitive and p divides
both fg and h, we have that p - d. But as p | df , it has to hold that p | f .
Therefore, p | gcd(f, h, dg) = 1, and hence both p and G are units.

As a consequence of this lemma, we get a new description of composition of
quadratic forms.

Theorem 3.5. Let A ∈ CD, and let Q1, Q2, Q3 are the three quadratic forms
arising from the cube A. Then their composition Q1Q2Q3 is a representative of
the identity element of the group QD.

Proof. It follows from Lemma 3.4 that Ψ(Q1Q2Q3) = Ψ(Q1) · Ψ(Q2) · Ψ(Q3) is
a principal ideal. Therefore, by Theorem 2.7,

Q1Q2Q3 ∼ ΦΨ(Q1Q2Q3) = x2 −
(
Ω + Ω

)
xy + ΩΩy2,

i.e. Q1Q2Q3 is a representative of the identity element of the group QD.
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3.3 Balanced ideals
Our main goal is to equip the set CD with a group law. In this section, we will
focus on the other side of the seeking correspondence: balanced triples of ideals.
We will show that there are essentially three equivalent views on such a triple.

Let Ii =
(
Ii; sgn (det Mi)

)
, 1 ≤ i ≤ 3, be oriented OL-ideals. We say that the

triple (I1, I2, I3) is balanced if I1I2I3 = OL and det M1 det M2 det M3 ∈ U+
K .

Let (I′
1, I

′
2, I

′
3) be another balanced triple, where I′

i =
(
I ′

i; sgn (det M ′
i)
)

for
1 ≤ i ≤ 3. The two balanced triples (I1, I2, I3) and (I′

1, I
′
2, I

′
3) are equivalent if

there exist κi ∈ L, 1 ≤ i ≤ 3, such that I′
i = κiIi. Note that then the equality

OL = I ′
1I

′
2I

′
3 = (κ1I1)(κ2I2)(κ3I3) = (κ1κ2κ3)OL

implies that κ1κ2κ3 ∈ UL. Furthermore, since det M ′
i = NL/K (κi) det Mi, we

have NL/K (κ1κ2κ3) ∈ U+
K . Also note that (I1, I2, I3) ∼

(
1
κ
I1, κI2, I3

)
for any

κ ∈ L\{0}.
The equivalence class of balanced triples of oriented ideals will be denoted

by [(I1, I2, I3)]. The set of all equivalence classes of balanced triples of oriented
ideals together with ideal multiplication forms a group; we will denote this group
by Bal

(
Cℓo

L/K

)
, i.e.

Bal
(
Cℓo

L/K

)
=
{[

(I1, I2, I3)
]
| (I1, I2, I3) a balanced triple of OL-ideals

}
.

On the other hand, by ([J1], [J2], [J3]) we will mean a triple of equivalence classes
of oriented ideals such that [J1] · [J2] · [J3] = [(OL; +1, . . . , +1)]; in other words,
J1J2J3 is a principal oriented ideal for any choice of the representatives. Again,
the set of all equivalence classes forms a group; we will denote this group by
T rip

(
Cℓo

L/K

)
, i.e.

T rip
(
Cℓo

L/K

)
=
{(

[J1], [J2], [J3]
) ⏐⏐⏐ ∃ ω ∈ L s.t. J1J2J3 =

(
(ω) ; sgn (ωω)

)}
.

We will show that these two groups, Bal
(
Cℓo

L/K

)
and T rip

(
Cℓo

L/K

)
, are naturally

isomorphic.

Proposition 3.6. The maps

Bal
(
Cℓo

L/K

)
←→ T rip

(
Cℓo

L/K

)
[

(I1, I2, I3)
]

ϕ1↦−→
(
[I1], [I2], [I3]

)
,

[ (
1
ω
J1, J2, J3

) ]
ϕ2←− [

(
[J1], [J2], [J3]

)
,

J1J2J3 =
(
(ω) ; sgn (ωω)

)
are mutually inverse group homomorphisms.

Proof. If a triple (I1, I2, I3) is balanced, then I1I2I3 = (OL; +1, . . . , +1), which
is a principal ideal. If (I′

1, I
′
2, I

′
3) ∼ (I1, I2, I3), then there exist κi ∈ L, 1 ≤ i ≤ 3,

such that I′
i = κiIi; hence, I′

i ∼ Ii, and
(
[I′

1], [I′
2], [I′

3]
)

=
(
[I1], [I2], [I3]

)
. Thus,

the map ϕ1 is well-defined.
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On the other hand, assume that J1, J2, J3 are oriented ideals such that
J1J2J3 =

(
(ω) ; sgn (ωω)

)
; then 1

ω
J1J2J3 = (OL; +1, . . . , +1). The definition of

ϕ2 does not depend on the choice of the generator ω of the principal ideal, because
any other generator has to be of the form µω with µ ∈ UL and NL/K (µ) ∈ U+

K ,
and hence

[(
1
ω
J1, J2, J3

)]
=
[(

1
µω
J1, J2, J3

)]
. Moreover, if we take different rep-

resentatives,
(
[λ1J1], [λ2J2], [λ3J3]

)
=
(
[J1], [J2], [J3]

)
, then

ϕ2

((
[λ1J1], [λ2J2], [λ3J3]

))
=
[( 1

λ1λ2λ3ω
λ1J1, λ2J2, λ3J3

)]
=
[( 1

ω
J1, J2, J3

)]
.

Therefore, the map ϕ2 does not depend on the choice of the representative, and
so it is well-defined.

It is clear that both of the maps are group homomorphisms. We will show
that they are mutually inverse. If (I1, I2, I3) is a balanced triple of ideals, then its
image under ϕ2ϕ1 is again (I1, I2, I3), because the product of the three oriented
ideals is the principal ideal (OL; +1, . . . , +1) = ((1); +1, . . . , +1); thus, ϕ2ϕ1 = id.
For the other direction, if

(
[J1], [J2], [J3]

)
is such that J1J2J3 =

(
(ω) ; sgn (ωω)

)
,

then

ϕ1ϕ2

((
[J1], [J2], [J3]

))
=
([ 1

ω
J1

]
, [J2], [J3]

)
=
(
[J1], [J2], [J3]

)
;

therefore, ϕ1ϕ2 = id.

Proposition 3.7. The group T rip
(
Cℓo

L/K

)
is naturally isomorphic to the group

Cℓo
L/K × Cℓo

L/K.

Proof. The projection

T rip
(
Cℓo

L/K

)
−→ Cℓo

L/K × Cℓo
L/K(

[J1], [J2], [J3]
)
↦−→

(
[J1], [J2]

)
is a group isomorphism, because for given [J1] and [J2], the equivalence class [J3]
is given uniquely as [(J1J2)−1].

3.4 From ideals to cubes
Finally, we have prepared all the ingredients, and so we can start with the con-
struction of the correspondence. As the first step, we will build (an equivalence
class of) a cube from a balanced triple of ideals. In this section, we will closely
follow the ideas of [Bhargava, 2004, Sec. 3.3].

For α ∈ L define
τ(α) = α− α

Ω− Ω
.

If α = a + bΩ for some a, b ∈ K, then the definition of τ says that τ(α) = b. It
follows that τ is additive: for any α, β ∈ L, it holds that

τ(α + β) = τ(α) + τ(β).
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Furthermore, note that if
(
[α, β] ; sgn (det M)

)
is an oriented ideal, then we can

express det M as τ (αβ). For an oriented ideal, we will often write [α, β] instead
of
(
[α, β] ; sgn (det M)

)
, the orientation of the ideal implicitly given.

We would like to construct a cube from a given balanced triple of oriented
ideals. Consider the following map:

Φ′ : Bal
(
Cℓo

L/K

)
−→ CD(

[α1, α2], [β1, β2], [γ1, γ2]
)
↦−→

(
τ(αiβjγk)

) (3.8)

(on both sides, the equivalence classes are omitted). The aim of this section is to
prove that this map is well-defined. First, we will show how an action by Γ̃ on
bases of triples of ideals translates to an action on cubes.

Lemma 3.8. If A is the image of
(
[α1, α2], [β1, β2], [γ1, γ2]

)
under the map Φ′,

then the image of(
[p1α1 + r1α2, q1α1 + s1α2], [p2β1 + r2β2, q2β1 + s2β2], [p3γ1 + r3γ3, q3γ1 + s3γ2]

)
under the map Φ′ is the cube

(( p1 r1
q1 s1 )× ( p2 r2

q2 s2 )× ( p3 r3
q3 s3 )) (A).

Proof. We will consider only the pair of balanced triples
(
[α1, α2], [β1, β2], [γ1, γ2]

)
and

(
[pα1 + rα2, qα1 + sα2], [β1, β2], [γ1, γ2]

)
; the rest follows from (3.4) and

symmetry. Denote aijk = τ(αiβjγk). Then the image of the balanced triple(
[pα1 + rα2, qα1 + sα2], [β1, β2], [γ1, γ2]

)
under the map Φ′ is a cube (bijk), where

b1jk = τ((pα1 + rα2)βjγk) = pa1jk + ra2jk,

b2jk = τ((qα1 + sα2)βjγk) = qa1jk + sa2jk,

for any j, k ∈ {1, 2}, and thus

(bijk) = (( p r
q s )× id× id)

(
(aijk)

)
.

In the case over Z, Bhargava says (in the proof of Theorem 11) that if the
balanced triple of ideals is replaced by an equivalent triple, the resulting cube
does not change. That is not completely true; as we will prove, the two resulting
cubes indeed lie in the same equivalence class. But they does not necessarily have
to be the same, as shows the following example.
Example. Assume K = Q, L = Q(i); then OL = [1, i]. Both of the triples of
oriented ideals B =

(
[1, i], [1, i], [1, i]

)
and B′ =

(
[i,−1], [1, i], [1, i]

)
are balanced;

moreover, B ∼ B′, because [i,−1] = i · [1, i], and i is a unit from L with (totally)
positive norm. We have

Φ′(B) =
0 1

1 0

1 0

0 −1 ,

Φ′(B′) =
1 0

0 −1

0 −1

−1 0 ;
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hence we can see that Φ′(B) ̸= Φ′(B′). But one can check that the cubes are
equivalent under the action by id×( 0 1

−1 0 )× id.

Proposition 3.9. The map Φ′ does not depend on the choice of the representative(
[α1, α2], [β1, β2], [γ1, γ2]

)
.

Proof. First, we will prove that Φ′ does not depend on the choice of the bases of
the oriented ideals. If [ω1, ω2] and [pω1 + rω2, qω1 + sω2], p, q, r, s ∈ OK , are two
bases of the same oriented ideal, then ps−qr ∈ U+

K by Lemma 1.11 and the equal-
ity of the orientation. Hence, consider a balanced triple

(
[α1, α2], [β1, β2], [γ1, γ2]

)
,

and let
(
[p1α1+r1α2, q1α1+s1α2], [p2β1+r2β2, q2β1+s2β2], [p3γ1+r3γ2, q3γ1+s3γ2]

)
be the same balanced triple with different bases. Then pisi−qiri ∈ U+

K , 1 ≤ i ≤ 3,
and it follows from Lemma 3.8 that the images of these two balanced triples under
the map Φ′ are equivalent cubes.

Now, let B = (I1, I2, I3) and B′ = (I′
1, I

′
2, I

′
3) be two equivalent balanced

triples. First, assume that I2 = I′
2 and I3 = I′

3; then there exists µ ∈ UL

such that NL/K (µ) ∈ U+
K and I′

1 = µI1. If I1 =
(
[α1, α2] ; sgn (det M1)

)
, then

I′
1 =

(
[µα1, µα2] ; sgn (det M1)

)
, and there exist some elements p, q, r, s ∈ OK

such that µα1 = pα1 + rα2 and µα2 = qα1 + sα2. Comparing the expression of
the norm of I′

1 using the bases [µα1, µα2] and [pα1 + rα2, qα1 + sα2], we get that

NL/K (µ) det M1 = NL/K ([µα1, µα2])
= NL/K ([pα1 + rα2, qα1 + sα2]) = (ps− qr) det M1;

hence, ps− qr = NL/K (µ), and thus ps− qr ∈ U+
K . By the first part of the proof,

the images of (I1, I2, I3) and (µI1, I2, I3) are equivalent cubes.
Now, consider the general case; assume I′

i = κiIi for some κi ∈ L, 1 ≤ i ≤ 3. If
B =

(
[α1, α2], [β1, β2], [γ1, γ2]

)
, then B′ =

(
[κ1α1, κ1α2], [κ2β1, κ2β2], [κ3γ1, κ3γ2]

)
.

We have that

Φ′(B) =
(
τ(αiβjγk)

)
,

Φ′(B′) =
(
τ((κ1αi)(κ2βj)(κ3γk))

)
=
(
τ((κ1κ2κ3)αiβjγk)

)
.

Therefore, Φ′(B′) = Φ′
(

((κ1κ2κ3)I1, I2, I3)
)
, which is equivalent to Φ′(B) by

the previous part of the proof, because κ1κ2κ3 is a unit in L of totally positive
norm.

Proposition 3.10. Let B ∈ Bal
(
Cℓo

L/K

)
. Then Disc Φ′(B) ∈ D, and the cube

Φ′(B) is projective.

Proof. First, assume that B = ([1, Ω], [1, Ω], [1, Ω]). Then

Φ′(B) =
0 1

1 Ω + Ω

1 Ω + Ω

Ω + Ω
(

Ω + Ω
)2

− ΩΩ

= Aid;
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therefore, Disc Φ′(B) =
(
Ω− Ω

)2
∈ D.

Now, let

B =
( (

[α1, α2] ; sgn (det M1)
)

,
(
[β1, β2] ; sgn (det M2)

)
,
(
[γ1, γ2] ; sgn (det M3)

) )
.

Then there exists u ∈ U+
K such that det M1 det M2 det M3 = u. Moreover, recall

that (
α1
α2

)
= M1 ·

(
1
Ω

)
,

(
β1
β2

)
= M2 ·

(
1
Ω

)
,

(
γ1
γ2

)
= M3 ·

(
1
Ω

)
.

It follows from Lemma 3.8 that

Φ′(B) = (M1 ×M2 ×M3) (Aid).

Therefore, by Lemma 3.1, the discriminant of the cube Φ′(B) is equal to

(det M1)2(det M2)2(det M3)2 Disc (Aid) = u2
(
Ω− Ω

)2
,

and thus Disc Φ′(B) ∈ D.
It remains to prove that the cube Φ′(B) is projective. If the cube Φ′(B) were

not projective, then all the coefficients of the three assigned quadratic forms would
be divisible by a prime p ∈ OK (in fact, by a square of a prime), and Disc Φ′(B)

u2p2 = DΩ
p2

would be a quadratic residue modulo 4 in OK ; that would contradict Lemma
1.4.

3.5 From cubes to ideals
As the second step in the construction of the correspondence, we need to recover
a balanced triple of oriented ideals from a given cube (aijk). For this purpose,
Bhargava solves a system of equations

αiβjγk = cijk + aijkΩ, 1 ≤ i, j, k ≤ 2,

αiβjγk · αi′βj′γk′ = αi′βj′γk′ · αiβjγk, 1 ≤ i, i′, j, j′, k, k′ ≤ 2,

with indeterminates αi, βj, γk, cijk. That is computationally difficult,1 and we will
not follow this path. Instead of that, we will use our results from Theorems 2.7
and 3.5, i.e. the bijection (group isomorphism) between Cℓo

L/K and QD, and the
fact that the composition of the three quadratic forms arising from one cube lies
within the same class as Qid; denote

T rip (QD) =
{(

[Q1], [Q2], [Q3]
) ⏐⏐⏐ [Qi] ∈ QD, 1 ≤ i ≤ 3, [Q1Q2Q3] = [Qid]

}
.

It follows from Theorem 3.5 that the map Θ (defined as a restriction of the
map assigning triple of quadratic forms to a cube) actually goes into T rip (QD).
The set T rip (QD) together with the operation of componentwise composition
forms a group. It is clear that if the classes [Q1], [Q2] are given, the class [Q3] is
determined uniquely. Hence, similarly to Proposition 3.7, we get:

1[Bouyer, App. 1.1] mentions a program in Sage running for 24 hours.
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Proposition 3.11. The group T rip (QD) is naturally isomorphic to the group
QD ×QD.

Proposition 3.11 was the last missing piece to close the cycle of maps as
illustrated in Figure 3.1.

CD T rip (QD) QD ×QD

Cℓo
L/K × Cℓo

L/KT rip
(
Cℓo

L/K

)
Bal

(
Cℓo

L/K

)

Th. 3.5

≃
Prop. 3.11

Ψ×ΨΦ× Φ

≃
Prop. 3.7

≃
Prop. 3.6

Φ′ Ψ′ 1:1
Th. 2.7

Figure 3.1: Diagram of the construction of the map Ψ′.

Going around the cycle in the diagram, we can formally define a map

Ψ′ : CD −→ Bal
(
Cℓo

L/K

)
[A] ↦−→

[(
Ψ(Q1), Ψ(Q2), (Ψ(Q1)Ψ(Q2))−1

)]
,

(3.9)

where Q1, Q2 (and Q3) are the quadratic forms arising from the cube A. This
map is well-defined, because all the maps on the way are well-defined.

3.6 Composition of cubes
At this point, just one last step is remaining, and that is to prove that both Ψ′Φ′

and Φ′Ψ′ are identity maps. Let us start by simplifying the diagram displayed in
Figure 3.1:

CD T rip (QD)

T rip
(
Cℓo

L/K

)
Bal

(
Cℓo

L/K

)

Θ
Φ× Φ× Φ Ψ×Ψ×ΨΦ′ Ψ′

Figure 3.2: Simplified diagram of the construction of the map Ψ′.

It is clear from Figure 3.1 that the map Ψ×Ψ×Ψ (and also the map Φ×Φ×Φ)
provide a group isomorphism between T rip

(
Cℓo

L/K

)
and T rip (QD).

Proposition 3.12. Φ′Ψ′ is the identity map on CD.

Proof. First, note that by using the result of Lemma 3.4 and the isomorphism ϕ2
from Proposition 3.6, we could have defined the map Ψ′ equivalently as

Ψ′ : CD −→ Bal
(
Cℓo

L/K

)
[A] ↦−→ ϕ2

((
[Ψ(Q1)], [Ψ(Q2)], [Ψ(Q3)]

))
;

the situation is depicted in Figure 3.3.
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[A]
(
[Q1], [Q2], [Q3]

)

(
[Ψ(Q1)], [Ψ(Q2)], [Ψ(Q3)]

)[ (
1
ω

Ψ(Q1), Ψ(Q2), Ψ(Q3)
) ]

CD T rip (QD)

T rip
(
Cℓo

L/K

)
Bal

(
Cℓo

L/K

)

Θ

Ψ×Ψ×Ψ

ϕ2

Ψ′

Figure 3.3: Situation in the proof of Proposition 3.12.

Let A be a representative of a class in CD. By Lemma 3.3, we can assume
without loss of generality that A is of the form

1 0

0 d

0 f

g h .

Then
Ψ(Q1) =

([
−d,
−h +

√
D

2

]
; sgn (−d)

)
,

Ψ(Q2) =
([
−g,
−h +

√
D

2

]
; sgn (−g)

)
,

Ψ(Q3) =
([
−f,
−h +

√
D

2

]
; sgn (−f)

)
,

and we have proved in Lemma 3.4 that

Ψ(Q1)Ψ(Q2)Ψ(Q3) =
((
−h +

√
D

2

)
; sgn (−dfg)

)
,

where D = Disc(A) = h2 + 4dfg. Hence, if we apply the map ϕ2 to the triple(
[Ψ(Q1)], [Ψ(Q2)], [Ψ(Q3)]

)
, we obtain

[
(J1, J2, J3)

]
, where

J1 =
([
−h−

√
D

2fg
, 1
]

; sgn
(

1
fg

))
,

J2 =
([
−g,
−h +

√
D

2

]
; sgn (−g)

)
,

J3 =
([
−f,
−h +

√
D

2

]
; sgn (−f)

)
.
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ijk Argument of the map τ bijk

111 −h−
√

D
2fg

(−g)(−f) = −h+
√

D
2 = −uw+h

2 − uΩ −u

112 −h−
√

D
2 (−g)−h+

√
D

2 = D−h2

4f
= dg 0

121 −h−
√

D
2

−h+
√

D
2 (−f) = D−h2

4g
= df 0

211 fg 0

122 −h−
√

D
2fg

−h+
√

D
2

−h+
√

D
2 = h2−D

4fg
−h+

√
D

2 = −d−h+
√

D
2 = dh−uw

2 − udΩ −ud

212 (−g)−h+
√

D
2 = g h−uw

2 − ugΩ −ug

221 −h+
√

D
2 (−f) = f h−uw

2 − ufΩ −uf

222 −h+
√

D
2

−h+
√

D
2 = D+h2

4 − h
√

D
2 = h2+2dfg−uhw

2 − huΩ −uh

Table 3.1: Computation of the cube (bijk) = Φ′
([

(J1, J2, J3)
])

.

Denote B = Φ′
([

(J1, J2, J3)
])

. Using the facts that D = u2DΩ for a totally

positive unit u ∈ U+
K , and that Ω = −w+

√
DΩ

2 , we compute that

B =
−u 0

0 −ud

0 −uh

−ug −uh

(see Table 3.1 for detailed computations). Noting that B = −uA, we have that
[A] = [B], and hence Φ′Ψ′ = idCD .

Proposition 3.13. Ψ′Φ′ is the identity map on Bal
(
Cℓo

L/K

)
.

Proof. We broadly follow the ideas of [Stange, Sec. 5.4]. Let ρ1 be the isomor-
phism between Bal

(
Cℓo

L/K

)
and T rip (QD) given by the map (Φ × Φ × Φ)ϕ1,

where ϕ1 is the map defined in Proposition 3.6, and denote by ρ2 the map ΘΦ′

(see Figure 3.4). We will show that ρ1 = ρ2; then Ψ′Φ′ = idBal(Cℓo
L/K) follows,

since Ψ′Φ′ = ρ−1
1 ρ2.

Consider a balanced triple B ∈ Bal
(
Cℓo

L/K

)
, and let

B =
( (

[α1, α2] ; sgn (det M1)
)

,
(
[β1, β2] ; sgn (det M2)

)
,
(
[γ1, γ2] ; sgn (det M3)

))
.

Then ρ1(B) is equal to([
NL/K (α1x− α2y)

det M1

]
,

[
NL/K (β1x− β2y)

det M2

]
,

[
NL/K (γ1x− γ2y)

det M3

])
. (3.10)
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CD T rip (QD)

T rip
(
Cℓo

L/K

)
Bal

(
Cℓo

L/K

)
ρ1

ρ2

Θ

Φ× Φ× Φ

ϕ1

Φ′

Figure 3.4: Maps ρ1 and ρ2.

Let us compute ρ2(B). Recall that Φ′(B) =
(
τ(αiβjγk)

)
and τ(α) = α−α

Ω−Ω ; for
ζ ∈ L, set

G(ζ) =
(

τ(α1β1ζ) τ(α2β1ζ)
τ(α1β2ζ) τ(α2β2ζ)

)
.

Then

det G(ζ) = −NL/K (ζ) · α1α2 − α1α2

Ω− Ω
· β1β2 − β1β2

Ω− Ω
= −NL/K (ζ) det M1 det M2.

Note that G(γ1) is the upper face of the cube
(
τ(αiβjγk)

)
, and G(γ2) is the lower

face; hence, if Q3 denotes the third quadratic form assigned to this cube, it holds
that

Q3(x, y) = − det (G(γ1)x−G(γ2)y) .

Therefore,

Q3(x, y) = − det (G(γ1x− γ2y)) = NL/K (γ1x− γ2y) det M1 det M2. (3.11)

Since B is a balanced triple of ideals, there exists a totally positive unit u ∈ U+
K

such that det M1 det M2 det M3 = u. Thus, we can rewrite the expression (3.11)
as

Q3(x, y) = u ·
NL/K (γ1x− γ2y)

det M3
.

Similarly, we can prove that

Q1(x, y) = u ·
NL/K (α1x− α2y)

det M1
,

Q2(x, y) = u ·
NL/K (β1x− β2y)

det M2
.

Thus,
ρ2(B) =

(
[Q1], [Q2], [Q3]

)
;

comparing with (3.10), we see that ρ1(B) = ρ2(B).

We can summarize our results; we need the term fundamental element, which
we have introduced in Definition 1.3.

Theorem 3.14. Let K be a number field of narrow class number one. Let D
be a fundamental element of OK. Set L = K

(√
D
)
, and D =

{
u2D | u ∈ U+

K

}
.

Then we have a bijection between CD and Bal
(
Cℓo

L/K

)
given by the map Φ′ defined

in (3.8) (equivalently by the map Ψ′ defined in (3.9)).
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Proof. Let Ω be such that OL = [1, Ω]; similarly as in the proof of Theorem 2.7
we can assume without loss of generality that D = DΩ. In Propositions 3.12 and
3.13, we have proved that Φ′ and Ψ′ are mutually inverse bijections.

Corollary 3.15. CD carries a group structure arising from multiplication of ba-
lanced triples of oriented ideals in K(

√
D). The identity element of this group is

represented by the cube Aid,

Aid =
0 1

1 Ω + Ω

1 Ω + Ω

Ω + Ω
(

Ω + Ω
)2

− ΩΩ .

The inverse element to
[
(aijk)

]
is
[
(−1)i+j+k(aijk)

]
, i.e.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b

c d

e f

g h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a b

c −d

e −f

−g h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. The group structure of CD follows from Theorem 3.14.
A representative of the identity element in the group Bal

(
Cℓo

L/K

)
is the triple(

[1, Ω], [1, Ω], [1, Ω]
)
; its image under the map Φ′ is the class represented by the

cube Aid.
Consider a cube (aijk); by Theorem 3.14, there exists a balanced triple of

ideals

B =
( (

[α1, α2] ; sgn (det M1)
)

,
(
[β1, β2] ; sgn (det M2)

)
,
(
[γ1, γ2] ; sgn (det M3)

) )
such that Φ′(B) = (aijk), i.e. aijk = τ(αiβjγk), 1 ≤ i, j, k ≤ 2. It follows from
Lemmas 1.15 and 1.19 that the inverse element to B is B−1 =

(
I1, I2, I3

)
, where

I1 =
([

α1

det M1
,− α2

det M1

]
; sgn (det M1)

)
,

I2 =
([

β1

det M2
,− β2

det M2

]
; sgn (det M2)

)
,

I3 =
([

γ1

det M3
,− γ2

det M3

]
; sgn (det M3)

)
.

Denote u = det M1 det M2 det M3. Then

Φ′
(
B−1

)
=
(

τ
(
(−1)i+j+k+1u−1αiβjγk

))
=
(

(−1)i+j+k+1u−1τ
(
αiβjγk

))
.
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Multiplying the cube by u, we get an equivalent cube
(

(−1)i+j+k+1τ
(
αiβjγk

) )
;

hence, we have to compute τ
(
αiβjγk

)
. If we write

αiβjγk = cijk + aijkΩ,

for some cijk ∈ OK , 1 ≤ i, j, k ≤ 2, then

αiβjγk = cijk + aijkΩ.

Since Ω = −w+
√

DΩ
2 , we have that Ω = −Ω− w; therefore,

αiβjγk = (cijk − aijkw)− aijkΩ,

and
τ
(
αiβjγk

)
= (−aijk).

It follows that the cube Φ′ (B−1) is equivalent to the cube
(

(−1)i+j+kaijk

)
.

Together with the isomorphisms we have known before, we have proved the
following corollary.

Corollary 3.16. The groups CD, T rip (QD) and Cℓo
L/K × Cℓo

L/K are isomorphic.

We have actually proved even more; see Figure 3.5.

CD T rip (QD) QD ×QD

Cℓo
L/K × Cℓo

L/KT rip
(
Cℓo

L/K

)
Bal

(
Cℓo

L/K

)

≃
Th. 3.5

≃
Prop. 3.11

≃

≃
Prop. 3.7

≃
Prop. 3.6

≃≃ Theorem 3.14

Figure 3.5: Summary of the isomorphisms.
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4. Class groups
In both of the correspondences, we were working with relative oriented class
group, which has been defined in Section 1.5. In this final chapter, we will define
yet another group, which we call ε-class group. On the first glance, this group
looks similar to the relative oriented class group, but this time we will need only
one number field (not an extension of number fields).

At first, let us recall the usual definitions of class groups. Consider a number
field F . Let IF be the set of all fractional OF -ideals, PF the subset of all principal
OF -ideals, and P+

F the set of all principal OF -ideals generated by the totally
positive elements of F , i.e. the ideals of the form (α) = αOF for α ∈ F totally
positive. Note that IF forms a group under the multiplication of ideals, and both
PF and P+

F are its subgroup. Then the class group is defined as

CℓF = IF

/
PF

.

and the narrow class group is defined as

Cℓ+
F = IF

/
P+

F
.

Denote by h(F ) (called class number) and h+(F ) (called narrow class number)
the orders of the groups CℓF and Cℓ+

F , respectively.

4.1 ε-class group
Let us denote the real embeddings of the field F by σ1, . . . , σr.1 Let us consider
the set

Iε
F = {(I; ε1, . . . , εr) | I ∈ IF , εi ∈ {±1} , i = 1, . . . , r}

and call it the set of (fractional) ε-ideals. We can define the multiplication on
this set by

(I; ε1, . . . , εr) · (J ; δ1, . . . , δr) = (IJ ; ε1δ1, . . . , εrδr) .

Then, by similar reason as in the case of the (narrow) class group, this set forms an
abelian group; namely the identity element is (OF ; +1, . . . , +1), and the inverse
element to (I; ε1, . . . , εr) is (I−1; ε1, . . . , εr), because ε2

i = +1. Then the set

Pε
F = {((α) ; sgn(σ1(α)), . . . , sgn(σr(α))) | α ∈ F}

is clearly a subgroup of Iε
F ; we will call it the group of principal (fractional)

ε-ideals. Now we can define the ε-class group Cℓε
F as the factorgroup, i.e.

Cℓε
F = I

ε
F

/
Pε

F
.

1In general, these σi’s do not have anything in common with the real embeddings of our
fixed field K, and we should use e.g. σ′

1, . . . , σ′
r′ . But as the number fields F and K will not

ever appear next to each other in this thesis, we can afford to use the same notation for both
of them.
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Equivalently, we can define the multiplication of an ε-ideal (I; ε1, . . . , εr) by
a nonzero element α ∈ F as

α · (I; ε1, . . . , εr) = (αI; sgn(σ1(α))ε1, . . . , sgn(σr(α))εr) ,

and say that two ε-ideals (I; ε1, . . . , εr), (J ; δ1, . . . , δr) are in the same ε-ideal class
if (J ; δ1, . . . , δr) = α · (I; ε1, . . . , εr) holds for a nonzero element α ∈ F .

From now on, we will write simply ε instead of ε1, . . . , εr, and sgn (α) in-
stead of sgn(σ1(α)), . . . , sgn(σr(α)); then by εδ we understand componentwise
multiplication, i.e. εδ stands for ε1δ1, . . . , εrδr.

Note that if there is no real embedding, then there are no signs added, and
the condition of the totally real element is trivially satisfied. Thus the notion of
the ε-class group and the class group (and also the narrow class group) coincide
in this case.

We would like to find out if there is any relationship between the narrow class
group and the ε-class group in general. It is clear that for every fractional ideal
I ∈ IF , there are exactly 2r copies of I in Iε

F (one copy for every possible vector
of signs ε). But the group Pε

F also contains much more elements than the group
PF . It turns out that the narrow class group and the ε-class group are always
isomorphic.

Theorem 4.1. For a number field F , it holds that Cℓε
F ≃ Cℓ+

F .

Proof. Consider the following group homomorphisms:

f : IF −→ Iε
F

I ↦−→ (I; +1, . . . , +1)

f ′ : P+
F −→ Pε

F

(γ) ↦−→ ((γ); +1, . . . , +1)

Clearly both f and f ′ are injective, and f ′ is a restriction of f on P+
F . Further-

more, consider the following group homomorphism g and its restriction g′:

g : Iε
F −→ ⟨±1⟩r

(I; ε) ↦−→ ε

g′ : Pε
F −→ ⟨±1⟩r(

(γ) ; sgn (γ)
)
↦−→ sgn (γ)

Note that both g and g′ are surjective; the surjectivity of g′ is a consequence of
Weak Approximation Theorem (see e.g. [Fröhlich and Taylor, 1993, II.(2.14)]).
Moreover, we have

Ker g = {(I; ε) | εi = +1 ∀i = 1, . . . , r} = Im f,

Ker g′ =
{(

(γ) ; sgn (γ)
)
| sgn σi(γ) = +1 ∀i = 1, . . . , r

}
= Im f ′.

Hence, we obtain the following commutative diagram:
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1 IF Iε
F ⟨±1⟩r 1

1 P+
F Pε

F ⟨±1⟩r 1

f g

f ′

i1

g′

i2 i3=id

Note that Coker i1 = Cℓ+
F , Coker i2 = Cℓε

F , Coker i3 = 1, and Ker i3 = 1.
Hence, by Snake Lemma, there is the following exact sequence:

1 Cℓ+
F Cℓε

F 1

This sequence gives us the required isomorphism between Cℓε
F and Cℓ+

F .

In the previous proof, we could also proceed in a different way. We could fix
for every i = 1, . . . , r an element αi of F such that

sgn(σj(αi)) =
{
−1, if j = i,
+1, if j ̸= i,

(such an element αi exists by Weak Approximation Theorem), and define a map
ϕ : Cℓε

F −→ Cℓ+
F by

(I; ε1, . . . , εr)Pε
F

ϕ↦−→

⎛⎝ ∏
εi=−1

αi

⎞⎠ IP+
F .

One has to check that this is a well-defined group homomorphism on the classes
of ε-ideals with the inverse

IP+
F ↦−→ (I; +1, . . . , +1)Pε

F .

This approach is helpful mainly in the cases of extensions of lower degree, such
as quadratic and biquadratic number fields, where one has a canonical way how
to fix the elements αi.
Example. Let F be a quadratic number field, i.e. F = Q(

√
D), D a nonzero

square-free integer. We will examine the dependence of the ε-class group on D
through the above given isomorphism ϕ.

If D < 0, then there are no real embeddings, and ϕ is the identity map. Thus,
assume D > 0; then r = 2, and the situation is a bit more complicated. We need
to find the elements α1 and α2. Without loss of generality, we may assume that
σ1(
√

D) > 0. Then necessarily σ2(
√

D) < 0. Hence, α2 :=
√

D and α1 := −
√

D
are the natural choices of αi’s, and the isomorphism ϕ looks as follows:

ϕ : Cℓε
F −→ Cℓ+

F

(I; +1, +1)Pε
F ↦−→ IP+

F

(I; +1,−1)Pε
F ↦−→

(√
DI

)
P+

F

(I;−1, +1)Pε
F ↦−→

(
−
√

DI
)
P+

F

(I;−1,−1)Pε
F ↦−→ (−DI)P+

F

Note that for a fractional OF -ideal I the following holds:

γ ∈ UF ⇔ γI = I. (4.1)
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Suppose first that there exists u ∈ UF such that NF (u) = −1; it is known that
such a unit u exists if and only if the period of the continued fraction expansion of√

D (or of
√

D−1
2 in the case D ≡ 1 (mod 4)) is odd. Without loss of generality, we

can assume that sgn (u) = (+1,−1). We obtain by multiplying by the units u, −u
and −1 that all the ε-ideals (I; +1, +1), (I; +1,−1), (I;−1, +1) and (I;−1,−1)
lie in the same ε-ideal class. Thus, in order to see that ϕ is well-defined, we would
like to show that the ideals I,

√
DI, −

√
DI, −DI also lie in the same narrow

ideal class. But we have to be a bit careful, because to obtain the (narrow ideal)
equivalence, we can only use totally positive elements. Multiplying by D gives
the equivalence between the ideals I and DI = −DI; multiplying by u

√
D (note

that this element is totally positive) gives the equivalence between the ideals I
and u

√
DI =

√
DI = −

√
DI.

Now suppose that there does not exist any element of UF of the norm −1.
Using (4.1), we can see that in this case (I; +1, +1) and (I; +1,−1) do not lie in
the same oriented ideal class. Still, multiplying by −1 gives us the equivalence be-
tween (I; +1, +1) and (I;−1,−1), and also between (I; +1,−1) and (I;−1, +1).
These correspond to the equivalence between the ideals I and DI (multiplying by
D, which is totally positive), and between

√
DI and −

√
DI (this holds trivially

because −
√

DI =
√

DI), respectively. Finally, we want to prove that the ideals
I and

√
DI are not equivalent. Let β ∈ F\{0} be such that βI =

√
DI. This

is equivalent to I =
√

D
β

I. We will again use (4.1): since we have supposed that
there is not any element ofOF of the norm −1, it has to hold thatNF

(√
D

β

)
= +1.

As NF

(√
D
)

< 0, we obtain that NF (β) < 0, and thus β is not totally positive.
Therefore, the ideals I and

√
DI do not lie in the same narrow ideals class.

4.2 Relation between class group and narrow
class group

Proposition 4.2. For a number field F set H =
{
sgn (µ) | µ ∈ UF

}
; then

CℓF ≃ Cℓ
ε
F

/(
{OF} × ⟨±1⟩r

/H

)
.

Proof. Consider the following group homomorphism π and its restriction π′:
π : Iε

F −→ IF

(I; ε) ↦−→ I

π′ : Pε
F −→ PF(

(γ) ; sgn (γ)
)
↦−→ (γ)

Clearly both π and π′ are surjective; therefore, we can consider the following
commutative diagram:

1 Ker π Iε
F IF 1

1 Ker π′ Pε
F PF 1

π

π′
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Using Snake Lemma, we obtain a short exact sequence:

1 Ker π
/

Ker π′ Cℓε
F CℓF 1

Noting that

Ker π = {(OF ; ε) | ε ∈ ⟨±1⟩r} = {OF} × ⟨±1⟩r ,

Ker π′ =
{(

(µ) ; sgn (µ)
)
| µ ∈ UF

}
= {OF} ×H,

we obtain the required isomorphism.

The result also tells us the relation between the class number and the narrow
class number.

Corollary 4.3. Let F be a number field with r real embeddings, and let t ∈ Z be
such that ⏐⏐⏐⏐UF

/
U+

F

⏐⏐⏐⏐ = 2t.

Then
h+(F ) = 2r−t h(F ).

In particular, if h+(F ) = 1, then h(F ) = 1 and r = t, i.e. there exist units of all
signs in F .

Proof. Let H be the same as above. Then clearly

H ≃ UF

/
U+

F
,

and hence |H| = 2t. Then the claim follows directly from Proposition 4.2.
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Conclusion
The thesis had two main goals. The first one has been to develop a theory of
composition of binary quadratic forms, which would be analogous to the classic
one (which dates back to Gauss, Dirichlet and Dedekind), but in a more general
setting. The crucial question has been, what this “more general setting” should
be. The second goal has been to try to use the new theory for a generalization
of the composition of Bhargava cubes.

In the very beginning of the research, it was necessary to gain an insight
into class group and narrow class group, their relation to binary quadratic forms
and the difference between them. This difference is well-known in the case of
quadratic number fields, but other cases are often omitted in literature. In Chap-
ter 4, we have given an alternative description of narrow class group, which has
easily yielded the relationship to class group in an arbitrary number field. Unfor-
tunately, this relationship is still dependent on the index of the group of totally
positive units in the group of all units, and in general it is a difficult problem to
compute this index.

The first main goal has been fulfilled in Chapter 2. We have developed the
theory of composition of binary quadratic forms, which is analogous to Dedekind’s
approach. The composition is given by a bijection between equivalence classes
of quadratic forms and the relative oriented class group; the obtained results
are summarized in Theorem 2.7. While Dedekind worked with rational integers
as the coefficients of quadratic forms, we have considered the ring of algebraic
integers of an arbitrary number field. It has emerged from the construction what
the crucial condition is: the underlying number field has to be of narrow class
number one. Of course, this condition is still quite restrictive, but we have seen
in Sections 1.2 and 1.5 that it is necessary for the chosen approach; loosening this
condition would lead to a less explicit description.

Chapter 3 has been devoted to Bhargava cubes. We have generalized the
cubes to our setting: instead of cubes over rational integers, we have studied
cubes with entries from the ring of algebraic integers. We have seen that three
binary quadratic forms can be constructed from each such a cube. Assuming that
the underlying number field is of narrow class number one, we have been able
to use the theory of composition, namely the bijection between quadratic forms
and relative oriented class group. That has given us two interesting results: the
first one is an alternative description of composition of quadratic forms (Theorem
3.5), and the second one is a composition law on the cubes themselves (Theorem
3.14). By that we have accomplished the second goal of the thesis.

Overall we can say that all intended goals were achieved. It is worth noting
that Bhargava used his cubes to define another composition laws on different
polynomials; the two aforementioned results indicate that our theory might be
suitable for generalization of the other composition laws as well.
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