Časná volumetrie mozkových metastáz ošetřených CyberKnife

Štefan Reguli

Autoreferát dizertační práce

Doktorský studijní program: Chirurgie

Hradec Králové
2018
Dizertační práce byla vypracována v rámci kombinovaného studia doktorského studijního programu Chirurgie na Neurochirurgické klinice Lékařské fakulty UK v Hradci Králové.

Autor: MUDr. Štefan Reguli, Neurochirurgická klinika, FN Ostrava - Poruba

Školitel: prof. MUDr. Svatopluk Řehák, CSc., Neurochirurgická klinika, FN Hradec Králové

Oponenti:
doc. MUDr. Radim Jančálek, PhD., Neurochirurgická klinika FN u sv. Anny, Brno
doc. MUDr. Ondřej Kalita, PhD., MBA, Neurochirurgická klinika, FN Olomouc

Obhajoba se bude konat před Komisí pro obhajoby OR dne
v ... od hod.

S dizertační prací je možno se seznámit na studijním oddělení děkanátu Lékařské fakulty v Hradci Králové, Univerzity Karlovy, Šimkova 870, 500 03 Hradec Králové (tel. 495 816 131).

doc. MUDr. RNDr. Milan Kaška Ph.D.
Předseda komise pro obhajoby dizertačních prací v doktorském studijním programu Chirurgie
Garant studijního programu
Obsah

Použité zkratky .. 5

Souhrn .. 6

Summary .. 7

1 **Úvod do problematiky** ... 8

1.1 Epidemiologie mozkových metastáz .. 8

1.2 Klinická symptomatologie .. 8

1.3 Diagnostika mozkových metastáz ... 8

1.4 Léčba mozkových metastáz... 8

1.4.1 WBRT - ozáření celého neurokrania ... 8

1.4.2 Chirurgická resekce ... 9

1.4.3 SRT - radiochirurgická léčba ... 9

1.5 Radiochirurgie ... 10

1.5.1 Gamma Knife (gama nůž) ... 10

1.5.2 CyberKnife ... 10

1.6 Záchranná léčba .. 10

1.7 Sledování pacientů - follow-up .. 11

1.7.1 Načasování MRI kontrol .. 11

1.8 Hodnocení odpovědí na léčbu .. 11

1.9 MRI volumetrie ... 12

1.10 Prediktivní faktory přežití pacientů s metastatickým postižením mozku 12

2 **Cíle disertační práce** .. 13

2.1 Úvod .. 13

2.2 Primární cíl ... 14

2.3 Hypotéza ... 14
2.4 Sekundární cíle.. 14

3 Pacienti a metodika.. 14

3.1 Pacienti ... 14
 3.1.1 Zařazenovací kritéria .. 14
 3.1.2 Vyřazenovací kritéria .. 14

3.2 Léčba ... 16

3.3 Zobrazovací kontroly ... 16

3.4 Klinické sledování .. 16
 3.4.1 KPS (Karnofského skóre) .. 16

3.5 Statistické vyhodnocení ... 16

4 Výsledky ... 17

4.1 Pacienti a follow-up ... 17

4.2 Srovnání výpovědí hodnoty časné MRI (6. týden) proti standardní kontrole (12. týden) 18
 4.2.1 Srovnání semikvantitativních vyhodnocení ... 18
 4.2.2 Srovnání objemových změn ozářených metastáz .. 19
 4.2.3 Výskyt metachronních metastáz .. 20

4.3 Prognostický význam časných volumetrických změn pro celkové přežití pacientů 20

4.4 Prognostický význam časných volumetrických změn pro lokální kontrolu ozářených metastáz.. 23

4.5 Doba přežití a příčiny úmrtí .. 25

4.6 Faktory ovlivňující dobu přežití .. 26
 4.6.1 Počet ozářených metastáz .. 26
 4.6.2 Pohlaví ... 27
 4.6.3 Primární zdroj maligního procesu .. 28
 4.6.4 Vstupní Karnofského skóre ... 29
5 Diskuze ...30

5.1 Srovnání výsledků s publikovanými údaji...31
 5.1.1 CyberKnife a gama nůž ..31
 5.1.2 MRI volumetrie ..31
 5.1.3 Histologický typ metastáz ...32
 5.1.4 Počet mozkových metastáz ..32
 5.1.5 Karnofského skóre ...32

6 Závěry ..34

7 Použitá literatura ...36

8 Přehled publikační činnosti autora ..39
Použité zkratky

CK - kybernetický nůž *(CyberKnife)*

CT - počítačová tomografie *(computed tomography)*

GK - gama nůž *(Gamma Knife)*

KPS - Karnofského skóre *(Karnosfsky Performance Score)*

LK - lokální kontrola

MRI - magnetická rezonance *(magnetic resonance imaging)*

SRT - stereotaktická radioterapie *(stereotactic radiotherapy)*

SRS - stereotaktická radiochirurgie *(stereotactic radiosurgery)*

WBRT - radioterapie celého mozku *(whole brain radiotherapy)*
Souhrn

Mozkové metastázy představují důležitou a častou indikací pro moderních radiochirurgii. Tato neinvazivní metoda nabízí dobrou lokální kontrolu s minimální toxicitou a možností opakování ozáření.

Biologická podstata léčby i rozložení aplikované dávky je totožné s přístroji využívajícími rámovou stereotaxi a kobalt jako zdroj záření (gama nůž). Rozdíly jsou v technologickém provedení. Využití hypofrakcionované léčby CyberKnife umožňuje ošetřit i objemnější léze.

Pacienti léčení ozářením CyberKnife pro mozkovou metastázu jsou kontrolováni opakovanými vyšetřeními magnetickou rezonancí (MRI) s cílem vyloučit růst ozářených metastáz či výskyt nových ložisek.

V naší prospektivní studii vyhodnocujeme velikost metastatických ložisek na MRI s využitím počítačově asistované volumetrie, přičemž srovnáváme prediktivní hodnotu objemových změn zachycených vyšetřením MRI v 6. resp. 12. týdnu po radiochirurgické léčbě metastáz.

Cílem je identifikace rizikových pacientů, u kterých je vyšší pravděpodobnost selhání radiochirurgické léčby - u těchto pacientů je pak odůvodněno zkrácení intervalů mezi MRI kontrolami. Naopak označení pacientů, u kterých je dle časně volumetrické odpovědi předpoklad dobrého efektu radioterapie resp. dobré lokální kontroly onemocnění CNS by umožnilo efektivní a brzkou systémovou léčbu případných extracerebrálních metastáz.

V našich podmínkách unikátní soubor pacientů léčených CyberKnife pro metastatické postižení mozku pak statisticke analyzujeme a výsledky srovnáváme s literárními daty pracovišt’ využívajících stejného technologií i referenčními daty pracovišt’ využívajících jinou radiochirurgickou metodou (gama nůž).

Diskutujeme přínos odhadu prognózy podle objemových změn tumoru časně po ozáření.
Summary

The CyberKnife is a device for frameless whole-body radiosurgery using image guided robotic technology and linear accelerator as a photon source. It was introduced in USA in 2001. First CyberKnife device in eastern ad middle Europe was installed in Faculty hospital Ostrava in 2010. So we were given a chance do use the most recent technology in treating oncological patients.

Brain metastases are an important and frequently treated indication in modern radiosurgery. This non-invasive method offers good local control with minimum toxicity and repeability of the treatment.

Biological aspect and dose delivery is equivalent to devices using framed stereotaxis and cobalt as radiation source (Gamma Knife). The difference is in technological performance. The ability of fraccionated therapy with CyberKnife enables radiotherapy of larger tumours.

Patients treated with CyberKnife for metastatic brain disease are checked with repeated magnetic resonance imaging (MRI) to figure out the growth of treated tumours and/or appearance of new lesions.

In our prospective study we measure the volume of brain metastases on MRI with use of computer-assisted volumetry. We evaluate the predictive value of volumetric changes on MRI exams 6 weeks and 12 weeks post radiosurgery respectively.

The aim was to identify high-risk patients, who have higher propability of radiotherapy failure - in these patients shorter follow-up MRI intervals seem reasonable.

On the other hand identifying good radiotherapy responders (according do early significant post SRT tumour shrinkage) would enable prompt and vigorous systemic therapy of extracerebral metastases. if present.

The group of patients with CyberKnife treateded brain metastases, that is unique in our conditions, is then statistically analyzed and results are compared to peer-reviewed articles of institutions using the same technology and reference data from Gamma Knife are matched.

We discuss the benefit of prognostic estimation based upon early post-radiation volumetric tumour changes.
1 Úvod do problematiky

1.1 Epidemiologie mozkových metastáz

Onkologická onemocnění představují v současnosti druhou nejčastější příčinu smrti hned po onemocnění krevního oběhu. Podle dostupných statistik [1] zemře ročně na zhoubný nádor více než 25 000 Čechů a Češek, na celkovém počtu úmrtí se nádory podílejí 26,5 % u mužů a 21,8 % u žen.

Zvyšuje se celoživotní riziko vzniku maligního onemocnění a aktuálně se odhaduje pro muže na 43,5 % a pro ženy na 38,5 % [2].

Mozkové metastázy se vyskytují u 20-40 % pacientů s primárně extracerebrálním maligním nádorem [3] a patří mezi nejčastější tumory mozku. Pravděpodobnost metastázovalo do CNS je nejvyšší u karcinomu plic, melanomu, karcinomu ledviny, karcinomu prsu a kolorektálního karcinom [4].

U přibližně 40-50 % pacientů se metastatické postižení mozku prezentuje solitárním ložiskem, 50-60 % má pak mnohočetné postižení [3].

1.2 Klinická symptomatologie

Klinické symptomy metastatického postižení mozku zahrnují příznaky intrakraniální hypertenze (bolesti hlavy, nauzea, zvracení) a příznaky závislé na umístění metastázy v mozku (oslabení končetin, zmatenost, poruchy chůze, poruchy řeči, výpady zorného pole, poruchy taktilní citlivosti a končetinovou ataxii). Tyto symptomy jsou většinou subakutní [5].

1.3 Diagnostika mozkových metastáz

Základními zobrazovacími metodami neurokrania je CT (computed tomography - počítačová tomografie) a MRI (magnetic resonance imaging - magnetická rezonance).

Období osmdesátých a první polovina devadesátých let je v neuroradiologii označováno jako éra CT. I když to některé prvni srovnávající studie popíraly [6], postupem času byla dominance MRI v diagnostice většiny intrakraniálních patologií jasně potvrzena a konec devadesátých let je již jsou ve znamení éry MRI.

Ta s větší přesnosti určí charakter léze, postižení okolních cévních i parenchymových struktur a je mnohem citlivější pro záchyt mikrometastáz. MRI se tak stává v diagnostice metastáz mozku zlatým standardem [7].

1.4 Léčba mozkových metastáz

Diagnóza mozkové metastázy byla v onkologii dlouho považována za terminální stadium nádorového onemocnění. Pacienti s metastatickým postižením mozku byli většinou diagnostikováni v pokročilém stadiu nemoci, již s manifestními klinickými příznaky a větší masou intrakraniálního nádoru či mnohočetnými ložisky. Léčba se proto zaměřovala na tlumení příznaků.

Nejlepší podpůrná symptomatiká léčba umožňovala jen velice krátký interval přežití (1-2 měsíce).

Kortikoidy snížením perifokálního edému přinesly úlevu od bolesti hlavy i neurologických příznaků, která byla ale pouze dočasná a zpravidla trvala krátce.

1.4.1 WBRT - ozáření celého neurokrania

První a na dlouhá léta jedinou léčebnou modalitou, která dokázala prodloužit interval přežití pacientů s metastatickým postižením mozku, byla radioterapie celého neurokrania (WBRT - whole brain radiotherapy).
Medián přežití u pacientů s mozkovými metastázemi léčených pouze WBRT se pohybuje mezi 2,8-5,4 měsíců [8]. Lokální kontrola (t.j. procento ložisek, které po léčbě nevykazuje progresi objemového růstu) označených metastáz je při ozáření WBRT 24-55 % [9]. Studie z osmdesáťých let minulého století se zaměřovaly na optimalizaci ozařovacích schémat WBRT, celkově však se jednalo o léčbu paliativní, přínášející jen dočasnou úlevu od symptomů.

1.4.2 Chirurgická resekce
Až v devadesáťech letech dvacátého století byl v randomizované studii [10] definován přínos neurochirurgie pro malou skupinu pacientů se solitární mozkovou metastázou a kontrolovaným základním onemocněním. U těchto pacientů bylo prokázáno zlepšení intervalu přežití, kvality života i lokálního nálezu proti kontrolní skupině léčené pouze WBRT. Neurochirurgická resekce byla iniciálně doporučována pro pacienty s objemnými solitárními ložisky se značným mass efektem působícím přetlak středočárových struktur. V případě neznámého zdroje metastatického postižení pak byl vzorek získán příbíjíciou biopsií či resekcí mozkové metastázy vodítkem k další diagnostice a léčbě základního onemocnění.

Rozvoj neurochirurgie posledních deset let vedl k vytvoření různých operativních technik, které umožňují bezpečnější a radiikálnější resekcii. Mikrochirurgická operační tečka využívající operačního mikroskopu a endoskopu, neuronavigace a peroperační elektrolyziologické monitorace - to vše posouvá možnosti neuroonkologické ope- rativy.

1.4.3 SRT - radiochirurgická léčba

První studie prokazující efektivitu SRT vyhodnocovaly přídání SRT k WBRT u pacientů s oligometastázami mozku [12]. Cílem bylo zvýšit dávku ("boost") aplikovanou cíleně na metastázy již po WBRT a tak zlepšit jejich lokální kontrolu. Medián intervalu přežití, který byl u pacientů léčených samotnou WBRT 4,9 měsíců, se přidáním SRT prodlužil na 6,5 měsíce [13].

Postupně se hlavní léčebnou modalitou mozkových oligometastáz stala SRT, ke které se přidávala adjuvantní WBRT. Obhajoba této kombinace vychází z několika studií, potvrzujících o něco lepší lokální kontrolu po přidání WBRT k SRT [14-16].

Do popředí kritérií výsledků léčby se dostává kvalita životu pacientů, kteří aktuálně přežívají i řadu měsíců. Riziko porádační demence u pacientů s metastatickým postižením mozků léče- ných WBRT bylo popsáno v práci newyorských autorů [17]. Po léčbě WBRT se ukazuje snížení neurokognitivních a mentálních funkcí již za 4 měsíce od ozáření [18]. U pacientů, přežívajících nad tuto hranici se jeví zhoršení paměťových a mentálních parametrů následkem WBRT jako velká limitace.

V oligometastatické situaci je tedy aktuálně preferováno ozáření metastatických ložisek mozků jen technikou SRT [19].

Americká Společnost pro Radiální Onkologii (ASTRO) ve svém vyjádření z roku 2014 "neporušuje rutinně přidávat WBRT u pacientů s malým počtem metastáz mozků, kteří prodělali léčbu SRT" [5].
1.5 Radiochirurgie

Stereotaxie je označení vycházející ze starořeckých slov stereo (prostorový) a taxis (směřovat) a zdůrazňuje význam přesné lokalizace léčebné dávky záření v prostoru pacientova těla. Paralela s chirurgickou resekci je jasná a odráží se v pojmenování metody (radiochirurgie) i přístrojů (gama nůž, kybernetický nůž).

1.5.1 Gamma Knife (gama nůž)

Výhodou zařízení je vysoká přesnost a nejdelší zkušenosti s metodou. Nevýhodou je limitace na oblast hlavy a horní část kruku, která vyplývá z technického omezení polosféry ozařování. Další nevýhodou je konstrukce z radioaktivních zdrojů, která vyžaduje stínění, nese sebou prodloužování času ozáření při stárnutí zdroje a nutnost výměny radioaktivních článků.

1.5.2 CyberKnife

V roce 2010 byl ve Fakultní nemocnici v Ostravě zahájen provoz prvního CyberKnife ve střední a východní Evropě. V té době již fungovalo v Evropě 12 center CyberKnife a Ostrava se stala třináctým.

Na rozdíl od gama nože, kde se hlava pacienta centruje do ohniska zářičů je v případě CyberKnife zdroj záření i, ale pohyblivý ve všech rovinách kolem pacienta. Tím je docíleno optimální ozáření tužkovitým svazkem záření z více než 1200 různých pozic s přesností stejnou jako u gama nože [20]. Výhodou je jednoduchá fixace hlavy pacienta maskou, bez nutnosti upevňování stereotaktického rámu vruty. CyberKnife není konstrukčně limitován jenom na patologické procesy v oblasti hlavy a kruku, ale umožňuje léčbu neoplázií kdekoliv v těle. Možnost sledování pohyblivých cílů (např. plic) v reálném čase pomocí RTG paprsků a online přepočtu poholly umožňuje ozařování i takto pohyblivých nádorů s vysokou přesností.

1.6 Záchranné léčba

V případě progrese postižení mozku po prodělané léčbě SRT nastupuje nutnost záchranné (salvage) terapie.

V případě lokální progrese ozářené metastázy u pacienta se stabilizovaným základním onemocnění je možná reiradiace této metastázy SRT. U metastázy, která i po ozáření SRT jeví známky progresivního růstu a projevuje se klinickou symptomatikou je na místě zvážit chirurgickou resekcí.
V případě výskytu mnohočetných nových ložisek u pacientů, kteří nepodstoupili ozáření neuroradiologie je volbou záchraně léčby WBRT.
V určitých situacích, jako je například výskyt drobné metachronní metastázy, která pravděpodobně ani v nejblížší době nebude symptomatická, u pacienta ve špatném celkovém stavu s nekontrolovanou progresí základního onemocnění je odpovídajícím postupem pouze podpůrná léčba [21].

1.7 Sledování pacientů - follow-up
Klinické a grafické sledování pacientů po radiochirurgické léčbě metastatického postižení mozku má dva hlavní cíle. Prvním je odhalit případný neúspěch SRT, který se projeví dalším progresivním růstem ozářené metastázy (ztráta lokální kontroly). Druhým cílem je časné diagnostikovat případný výskyt nových mozkových metastáz (metachronní metastázy).

Zobrazovací metodou, která je zlatým standardem v diagnostice a sledování mozkových metastáz je magnetická rezonance (MRT). V naprosté většině případů jsou mozkové metastázy znázorněny jako dobře ohraničené sytice se ložiska na T1 vážených postkontrastních skenách, které slouží jako základ pro plánování ozářeného objemu i jako reference v dalším sledování.

1.7.1 Načasování MRI kontrol
V současnosti se jednoznacně preferuje sledování sériovými MRI mozků. Otázku zůstává jak načasovat vyšetření aby již bylo možno posoudit léčebný efekt radioterapie a případně zachytit lokální progresi onemocnění [22]. Dalším důležitým momentem pro timing kontrolní MRI je snaha záchyt případných metachronních metastáz. Sheehan ve své práci uvádí medián výskytu nové mozkové metastázy 8,8 měsíců po radiochirurgické léčbě [23]. Doporučuje tedy časté pravidelné MRI kontroly v 3-měsíčních intervalech. Podobně Kocher navrhne MRI kontroly od ozáření v 3-měsíčních intervalech s cílem identifikovat lokální či vzdálenou progresi intra-kraniálního metastatického postižení u pacientů léčených SRT bez následnou WBRT [24]. Odstup tří měsíců od ozáření po první MRI kontrolu se stal standardem pro sledování pacientů po radiochirurgické léčbě metastázy mozku.

1.8 Hodnocení odpovědi na léčbu
Vyhodnocení odpovědi nádoru na léčbu je nedílnou součástí posouzení účinnosti léčby nejen v klinických studiích, ale i v běžné klinické praxi. Pojmy jako remise, stabilizace či progrese nádoru jsou běžně užívány lékaři, kteří se podíleli na léčbě onkologických pacientů [25].

Snaha standardizovat vyhodnocení efektu onkologické léčby vedla Světovou Zdravotnickou Organizaci začátkem osmdesátých let minulého století k vydání doporučení, známých jako WHO kritéria [26] - velikost ložiska se vyjadřovala jako plocha, vypočtená ze součinu nejdelšího a na něj kolmého rozměru léze. Toto dvourozměrné měření pak bylo přijato jako standard pro výzkum i běžné klinické hodnocení progrese, stability či remise nádorového onemocnění. Časová náročnost a často špatná reprodukovatelnost využity v devadesátých letech k návrhu jednoduššího odměření velikosti nádorových ložisek jen změněním jen nejdelšího rozměru (jednorozměrná metoda). Tyto nově navržená RECIST kritéria (Response Evaluation Criteria in Solid Tumors) byly pro získání mnohem jednodušší i pro většinu tumorů dostatečně přesné [27].

V případě vyhodnocování objemových změn mozkových metastáz zobrazovaných vysoce přesným vyšetřením magnetickou rezonanci s možností submilimetrových řezů s možností trojrozměrné rekonstrukce často nepravidelných ložisek, se obě tyto metody stávají málo citlivými. Nejpřesnější exaktní metodou, která však pro svoji pracnost a časovou náročnost zatím není rutinní součástí vyhodnocování MRI snímků je počítačem asistovaná volumetrie.
1.9 **MRI volumetrie**

Počítačem asistovaná (seмаautomatická) MRI volumetrie je metoda přesného vyhodnocení objemu tumorozního ložiska podle snímků MRI rezonance. Výpočet objemu se provádí na základě sumace submílimetrových řezů, ve kterých je ohraničená metastáza definovaná jako syntická struktura na T1 vážených postkontrastních snímcích magnetické rezonance. Automatické počítačové ohraničení (tzv. segmentace) však má určité limitace, zejména v odlišení jiných postkontrastních syntických struktur, jako jsou například cévy. Definitivní ohraničení ohraničení tedy musí být zkontrolováno a upraveno hodnocením lékařem.

1.10 **Prediktivní faktory přežití pacientů s metastatickým postižením mozků**

V roce 1997 vyhodnotil Gaspar [28] retrospektivně 1200 pacientů léčených pro mozkové metastázy, přičemž zaznamenával vstupní faktory vázané na pacienta, základní onemocnění a postižení mozku. Statistickou metodou zvanou analýza rekuzivního dělení (RPA - recursive partitioning analysis), která pomocí regresní analýzy vyhodnocuje významnost jednotlivých prognostických faktorů, rozdělil pacienty do třech prognostických skupin. Pacienti v prognosticky nejprůznivější skupině (RPA I) byli mladší 65 let, s KPS (Karnofsky Performance Score) 70 a více a kontrolovaným primárním onemocněním (kdy mozek byl jediným místem metastatického postižení). Median přežití v této skupině byl 7,1 měsíce. Nejnižší medián přežití (2,3 měsíce) vykazovala skupina pacientů se vstupním KPS pod 70 (RPA III).

Všichni ostatní pacienti tvořili skupinu s mediánem přežití 4,2 měsíce (RPA II). Tímto rozdílem bylo možno soubor pacientů rozdělit na tři poměrně homogenní skupiny s odloučenou prognózou.

RPA kríterii I lze užít ke srovnání výběru pacientů k zařazení do jednotlivých studií a limitovat tak podíl ovlivnění výsledku jiným zastoupením pacientů [29].

Opakovaně se tak potvrdil jako nejsilnější prognostický faktor sebeobslužnost hodnocena škálo KPS, věk a stav základního onemocnění. Krátká **doba od diagnózy primárního onemocnění do prezentace mozkových metastáz** byla považována za negativní prognostický faktor přežití. V objemnější studii zahrnující 300 za sebou léčených pacientů, kteří byli ozářeni gama nožem pro mozkovou metastázu různého zdroje [30], ale vliv časové návaznosti prezentace mozkového postižení ve vztahu k základnímu onemocnění nebyl prokázán.

Počet vstupně diagnostikovaných mozkových metastáz byl pro mnohá terapeutická schéma kritickou hodnotou určující směrování léčby k paliativní či agresivní [31]. Nové radioterapeutické techniky ale význam počtu metastáz relativizují. Ve studii Yamamoto a spolupracovníků se ukazuje určitá prognostická výhoda solitárních metastáz, ve skupině pacientů s 2-4 metastázy proti skupině s 5-10 metastázy mozkú ošetřenými SRT již ale není statisticky rozdíl v přežití ani lokální kontrolu ozářených ložisek. Spíše než počet metastáz se v některých studiích prokázal prognostický význam součtu **objemů jednotlivých ložisek**, ozářených gama nožem [32], [30].

Nástup fraccionálních technik a CyberKnife a i tuto nevýhodu potlačil [33].

Histologický typ primárního nádoru je dalším diskutovaným faktorem prognózy. Tradičně radiorezistentní nádory odolávají konvenční radioterapii (melenom, světloubuněčný karcinom ledviny či sarkom) jsou prozakatelně citlivé na ozáření stereotaktické [34].

Všechny výše uvedené faktory vázané na pacienta či nádor jsou vstupními proměnnými, které všechny měně ovlivňují celkovou prognózu.

Je-li u pacienta indikována léčba mozkové metastázy SRT, jeho další osud v neposlední řadě závisí na léčebné odpovědi mozkové metastázy na ozáření tj. dobré lokální kontrolu ozářených nádorů.

2 Cíle dizertační práce

2.1 Úvod

Časový odstup první MRI kontroly od ozáření musí být dostatečný, aby již byly spolehlivě hodnotitelné změny velikosti metastatických ložisek. Na druhou stranu je pochopitelný požadavek mít co nejvíce potvrzený efekt radiochirurgické léčby mozkových metastáž a časné pak zahájit případnou další systémovou léčbu. I záchranná terapie má větší šanci na úspěch, je-li indikována při prvních známkách zhoršení nálezu v CNS.

Doporučení časového odstupu MRI kontroly po radiochirurgické léčbě metastáž mozků vyváží z doporučení literatury, empirických zkušeností a zvyškostí pracoviště - většinou se doporučuje termín první MRI kontroly 3 měsíce po ozáření, s plánem dalších kontrol v tříměsíčních intervalech. Toto schéma bylo používáno i na našem pracovišti ve Fakultní nemocnici v Ostravě u pacientů ozářených CyberKnife pro metastatické postižení mozků.

U pacientů s diagnózou metastatického postižení mozků, kteří byli ozářeni CyberKnife mnohdy závisí indikace další systémové léčby vývoji onemocnění CNS, které je pro pacienta limitující. Je proto důležité potvrdit léčebný efekt radiochirurgie a odhadnout prognózu pacienta co nejvíce. Tyto důvody nás vedly k myšlence zkrátit interval mezi ozářením a první MRI mozků. V naši studii jsme tedy kromě standardně prováděné MRI kontroly 3 měsíce (t.j. 12 týdnů) po ozáření, provedli “časnou” MRI kontrolu v poločase tohoto intervalu - t.j. 6 týdnů po ozáření CyberKnife.
Z exaktně naměřených volumetrických nálezů MRI v 6. a 12. týdnu po radioterapii jsme pak hodnotili výpověděná hodnotu časné MRI proti standardně prováděnému vyšetření ve 12. týdnu. Vyhodnocením klinických a grafických kontrol celého souboru jsme pak hodnotili prognostický význam objemových změn ozářených ložisek zaznamenaných časnou MRI volumetrií při vyšetření 6 týdnů po radiochirurgické léčbě.

2.2 Primární cíl

Vyhodnotit klinický a prognostický význam časně MRI volumetrie, provedené 6 týdů po radiochirurgické léčbě (CyberKnife) pacientů s metastatickým postižením mozku ve srovnání s vyšetřením provedeným standardně 12 týdnů po ozáření.

2.3 Hypotéza

Časná MRI kontrola (6 týdnů po SRT) s vysokou přesností zachycuje trendy objemových změn ozářených metastáz mozku a slouží jako časný indikátor efektu radiochirurgické léčby. Objemové změny ozářených metastáz vyhodnocené MRI volumetrií již 6 týdnů po radiochirurgické léčbě mají prognostický význam pro odhad celkového přežívání pacientů.

2.4 Sekundární cíle

Vyhodnotit záchyt metachronních metastáz mozku v průběhu sledování, kvantifikovat podíl extracerebrálních příčin na letalitě v souboru a prozkoumat prediktivní hodnoty vstupních charakteristik (pohlaví, počet ozářených metastáz, vstupní Karnofsky Performance Score, zdroj primárního nádorového onemocnění) pro dosažení lokální kontroly a celkového přežívání u pacientů po SRT pro metastatické postižení mozku.

3 Pacienti a metodika

3.1 Pacienti

3.1.1 Zařazovací kritéria

- 1-5 radiochirurgicky ozářených metastáz CNS
- verifikované základní onemocnění
- Karnofsky Performance Score >50
- věk 18-80 let

3.1.2 Vyřazovací kritéria

- předchozí radiochirurgická léčba ozařovaného ložiska
- nekontrolované progredující základní onemocnění
- WBRT méně než 4 měsíce před SRT

Pacienti byli k radiochirurgické léčbě indikováni na základě rozhodnutí indikačního semináře Neuroonkologického centra FN v Ostravě. Vstupní data u každého pacienta odpovídala stavu
v době ozáření CyberKnife a zahrnovala věk, pohlaví, zdroj maligního onemocnění, KPS (Kar
nofský Performance Score), počet ozářených ložisek a objem jednotlivých intrakraniálních me
tastáz dle zaměřovací navigační MRI.

Celkově bylo do studie zařazeno 49 pacientů. Charakteristiku souboru pacientů uvádí tabulka 1.

Tab. 1: Charakteristika souboru pacientů

<table>
<thead>
<tr>
<th>Charakteristika</th>
<th>Počet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pohlaví (počet)</td>
<td></td>
</tr>
<tr>
<td>Muži</td>
<td>21</td>
</tr>
<tr>
<td>Ženy</td>
<td>28</td>
</tr>
<tr>
<td>Věk (roky)</td>
<td></td>
</tr>
<tr>
<td>Průměr</td>
<td>61,2</td>
</tr>
<tr>
<td>Medián</td>
<td>63</td>
</tr>
<tr>
<td>Rozptyl</td>
<td>25-80</td>
</tr>
<tr>
<td>Karnofského skóre (%)</td>
<td></td>
</tr>
<tr>
<td>Průměr</td>
<td>85,9</td>
</tr>
<tr>
<td>Medián</td>
<td>90</td>
</tr>
<tr>
<td>Rozptyl</td>
<td>60-100</td>
</tr>
<tr>
<td>Základní diagnóza (počet)</td>
<td></td>
</tr>
<tr>
<td>Nemalobuněčný karcinom plic</td>
<td>20</td>
</tr>
<tr>
<td>Melanom</td>
<td>6</td>
</tr>
<tr>
<td>Karcinom ledviny</td>
<td>6</td>
</tr>
<tr>
<td>Karcinom prsu</td>
<td>5</td>
</tr>
<tr>
<td>Maligní tumory GIT</td>
<td>4</td>
</tr>
<tr>
<td>Urogenit. malignity (mimo Ca ledviny)</td>
<td>6</td>
</tr>
<tr>
<td>Jiné</td>
<td>2</td>
</tr>
<tr>
<td>Mozkové metastázy na pacienta (počet)</td>
<td></td>
</tr>
<tr>
<td>Rozptyl</td>
<td>1-5</td>
</tr>
<tr>
<td>Průměr</td>
<td>1,6</td>
</tr>
<tr>
<td>Předchozí operace mozku pro metastázu, počet, (%)</td>
<td>17/49 (35)</td>
</tr>
<tr>
<td>Předchozí systémová léčba, počet, (%)</td>
<td>32/49 (65)</td>
</tr>
<tr>
<td>Předchozí radionukleáta, neurokrania, počet, (%)</td>
<td>9/49 (18)</td>
</tr>
</tbody>
</table>
3.2 Léčba

3.3 Zobrazovací kontroly

Vstupní záměřovací MRI mozku bylo provedeno těsně před radiochirurgickou léčbou (čas 0) a pacienti byli pozváni na kontrolní MRI mozku v odstupu 6 týdnů, 3 měsíců a 6 měsíců po ozáření CyberKnife. Vstupní i všechna kontrolní MRI vyšetření byla provedena stejnou technikou MRI pracovišti Fakultní nemocnice Ostrava Poruba na 1,5 T magnetické rezonance firmy Siemens. K volumetrické analýze byly využity postkontrastní T1 vážení transaxiální skeny s využitím izotropního zobrazení se submilimetrovou tloušťkou rezu.

Zobrazovací kontroly

Vstupní záměřovací MRI mozku bylo provedeno těsně před radiochirurgickou léčbou (čas 0) a pacienti byli pozváni na kontrolní MRI mozku v odstupu 6 týdnů, 3 měsíců a 6 měsíců po ozáření CyberKnife. Vstupní i všechna kontrolní MRI vyšetření byla provedena stejnou technikou MRI pracovišti Fakultní nemocnice Ostrava Poruba na 1,5 T magnetické rezonanci firmy Siemens. K volumetrické analýze byly využity postkontrastní T1 vážení transaxiální skeny s využitím izotropního zobrazení se submilimetrovou tloušťkou rezu.

3.4 Klinické sledování

Pacienti byli sledováni autorem v neurochirurgické ambulanci, klinické vyšetření proběhlo typicky v den provedení kontrolní volumetrické MRI 6 týdnů, 3 měsice a 6 měsíců po SRT. Další klinické a MRI kontroly byly plánovány v tříměsíčních odstupech.

Klinické vyšetření bylo zaměřeno na změnu neurologického nálezu a celkový stav pacienta byl skórován škálovou KPS.

3.4.1 KPS (Karnofského skóre)

100 % – normální stav, bez obtíží, bez známek onemocnění
90 % – schopen normální aktivity, velmi málo symptomů
80 % – schopen normální aktivity s mírnými obtížemi, symptomy
70 % – soběstačný, neschopen normálních aktivit či práce
60 % – občas vyžaduje pomoc, zvládá většinu osobních potřeb
50 % – často potřebuje pomoc, často vyžaduje lékařskou léči
40 % – invalidita, vyžaduje speciální péči a pomoc
30 % – těžká invalidita, indikace k příjetí do nemocnice
20 % – těžce nemocný, potřeba uživní hospitalizace, vyžaduje podpůrná opatření a léčbu
10 % – moribundní, rychle progredující fatální onemocnění
0 % – smrt

3.5 Statistické vyhodnocení

Pro statistické vyhodnocení byl použit systém R-project a jeho soubor statistických programů.

Veškerá data byla zpracována a jsou zálohována s využitím LabKey serveru (LabKey Corporation, Seattle, USA) instalovaného ve Fakultní nemocnici v Ostravě.

4 Výsledky

4.1 Pacienti a follow-up

Celkově bylo do studie zařazeno 49 pacientů (28 žen a 21 mužů) u kterých bylo radiochirurgicky ošetřeno 77 mozkových metastáz. Tito pacienti absolvovali vstupní navigační MRI mozku s volumetrií ložisek a následně ozáření metastáz CyberKnife.

Metastázy byly ozářeny přístrojem CyberKnife předepsanou dávkou s mediánem 24 Gy (rozmězi 15-60 Gy), s mediánem střední linie izodózy 60 % (rozmězi 50-81 %). Třicet osm metastáz bylo ozářeno jednorázově, 8 ve dvou frakcích, 5 ložisek ve třech frakcích a 26 ložisek v 5 frakcích. Nebyla zaznamenána žádná časná komplikace stereotaktické léčby.

K první klinické a MRI kontrole po 6. týdnu se dostavilo 45 pacientů, ke druhé kontrole a volumetrické MRI s odstupem 12 týdnů od ozáření se dostavilo 36 pacientů a ke třetí kontrole, 6 měsíců od SRT, pak 19 pacientů. U všech těchto pacientů bylo provedeno klinické vyšetření a magnetická rezonance s volumetrickou kalkulací metastatických ložisek.

V době statistického vyhodnocení, t.j. 34 měsíců od zařazení prvního pacienta zemřelo 32 z původního počtu 49 pacientů. Průměrná doba sledování byla 39 týdnů, průměrná doba sledování u přežívajících pacientů byla 60 týdnů.

Celkově bylo vyhodnoceno 153 vyšetření MRI mozku a volumetricky změřeno 242 metastáz.

Léčebný efekt SRT a ozářené metastázy jsme při každé kontrole hodnotili semikvantitativně, přičemž za stabilní velikost jsme považovali fluktuaci do ± 20 % původního objemu (jak bylo popsáno v kapitole 3.3 Zobrazovací metody).

Semikvantitativní hodnocení volumetrických změn sledovaných metastáz podává Tabulka 2.

Tab. 2: Hodnocení objemové odpovědi metastáz na léčbu v době 6 týdnů, 3 měsíců a 6 měsíců od ozáření CyberKnife

<table>
<thead>
<tr>
<th>doba od SRT</th>
<th>metastázy</th>
<th>zmenšené¹</th>
<th>stabilní²</th>
<th>zvětšené³</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. týden</td>
<td>61 (84)</td>
<td>7 (10)</td>
<td>5 (7)</td>
<td></td>
</tr>
<tr>
<td>3. měsíc</td>
<td>51 (84)</td>
<td>5 (8)</td>
<td>5 (8)</td>
<td></td>
</tr>
<tr>
<td>6. měsíc</td>
<td>27 (87)</td>
<td>2 (6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ regrese objemu metastázy o více než 20 % proti vstupnímu objemu
² objem metastázy v rozmezí ± 20 % ve srovnání s vstupním objemem
³ progrese objemu metastázy o více než 20 % proti vstupnímu objemu

Některé metastázy ozářené pomocí CyberKnife se v průběhu sledování zmenšily natolik, že již nebyly identifikovatelné magnetickou rezonancí. Podíl těchto vymizelých metastáz byl v 6. týdnu, 3. měsíci resp. 6. měsíci 3 %, 10 % resp. 16 %.
4.2 Srovnání výpovědní hodnoty časné MRI (6. týden) proti standardní kontrole (12. týden)

4.2.1 Srovnání semikvantitativních vyhodnocení

U každého pacienta proběhla těsně před ozářením CyberKnife magnetická rezonance, na které byly vyzažené a volumetricky vyhodnoceny ozařované metastázy. Objem metastázy v době ozáření jsme označili V(0). Podobně jsme volumetricky vyhodnotili ozářená ložiska v šestém a dvanáctém týdnu po ozáření - objemy pak byly označeny jako V(6) a V(12).

Poté jsme pro každou metastázu objemy V(6) a V(12) srovnali s výchozím objemem V(0) a objemovou odpověď na léčbu vyhodnotili semikvantitativně. Nádory, kterých objem se nezměnil o více než 20 % proti vstupnímu objemu byly označeny jako stacionární (stabilní objem). V případě nárůstu objemu o více než 20 % byl stav metastázy hodnocen jako progrese (zvětšení objemu). V případě zmenšení objemu o více než 20 % byl nález označen jako regrese (zmenšení objemu).

Celkově jsme tedy vyhodnotili objemovou odpověď 61 metastatických ložisek, které byly vyšetřeny MRI v 6. i 12. týdnu po SRT.

Tab. 3: Vyhodnocení objemových změn jednotlivých metastáz 6 týdnů po ozáření CyberKnife

<table>
<thead>
<tr>
<th>objemová změna metastází*</th>
<th>počet metastáz</th>
</tr>
</thead>
<tbody>
<tr>
<td>regrese</td>
<td>51</td>
</tr>
<tr>
<td>stacionární</td>
<td>6</td>
</tr>
<tr>
<td>progrese</td>
<td>4</td>
</tr>
</tbody>
</table>

*Metastázy, kterých objem se nezměnil o více než 20 % proti vstupní hodnotě, byly označeny jako stacionární. Zvětšení objemu nad tuto hranici bylo považováno za progresi a zmenšení pod tuto hranici za regresi.

Tab. 4: Vyhodnocení objemových změn jednotlivých metastáz 12 týdnů po ozáření CyberKnife

<table>
<thead>
<tr>
<th>objemová změna metastází*</th>
<th>počet metastáz</th>
</tr>
</thead>
<tbody>
<tr>
<td>regrese</td>
<td>51</td>
</tr>
<tr>
<td>stacionární</td>
<td>5</td>
</tr>
<tr>
<td>progrese</td>
<td>5</td>
</tr>
</tbody>
</table>

*Metastázy, kterých objem se nezměnil o více než 20 % proti vstupní hodnotě, byly označeny jako stacionární. Zvětšení objemu nad tuto hranici bylo považováno za progresi a zmenšení pod tuto hranici za regresi.

Dobrý efekt na zmenšení ozářené metastázy je jasně patrný z kontrol v 6. i 12. týdnu a představuje 83,6% ozářených metastáz.

Přímým srovnáním dvojic kontrol pro jednotlivé metastázy získáváme úplnou shodu pro 6. a 12. týden u 86,9% metastáz.

Statistickým vyhodnocením Fisher’s Exact Test for Count Data

p-value = 1, identické výsledky.
V případě, že označíme součet objemů všech ozářených metastáz u daného pacienta jako Vt a budeme analogicky srovnávat Vt(6) a Vt(12) s iniciálním objemem Vt(0) u jednotlivých pacientů dostáváme pro jednotlivé pacienty (celkový počet 36 pacientů vyhodnocených v 6. a 12. týdnu) hodnoty uvedené v tabulkách 5 a 6.

Tab. 5: Vyhodnocení změn součtu objemů metastáz pro jednotlivé pacienty 6 týdnů po ozáření CyberKnife

<table>
<thead>
<tr>
<th>odpověď na léčbu*</th>
<th>počet pacientů</th>
</tr>
</thead>
<tbody>
<tr>
<td>regrese</td>
<td>29</td>
</tr>
<tr>
<td>stacionární</td>
<td>5</td>
</tr>
<tr>
<td>progrese</td>
<td>2</td>
</tr>
</tbody>
</table>

*V případě, že součet objemů všech ozářených metastáz u daného pacienta při MRI kontrole vzrostl o více než 20 % proti vstupnímu stavu, byla odpověď na léčbu označena jako progrese. V případě zmenšení součtu objemů o více než 20 % jsme odpověď označili jako regrese. V ostatních případech byl stav označen jako stacionární.

Tab. 6: Vyhodnocení změn součtu objemů metastáz pro jednotlivé pacienty 12 týdnů po ozáření CyberKnife

<table>
<thead>
<tr>
<th>odpověď na léčbu*</th>
<th>počet pacientů</th>
</tr>
</thead>
<tbody>
<tr>
<td>regrese</td>
<td>30</td>
</tr>
<tr>
<td>stacionární</td>
<td>4</td>
</tr>
<tr>
<td>progrese</td>
<td>2</td>
</tr>
</tbody>
</table>

*V případě, že součet objemů všech ozářených metastáz u daného pacienta při MRI kontrole vzrostl o více než 20 % proti vstupnímu stavu, byla odpověď na léčbu označena jako progrese. V případě zmenšení součtu objemů o více než 20 % jsme odpověď označili jako regrese. V ostatních případech byl stav označen jako stacionární.

Přímým srovnáním dvojic kontrol pro jednotlivé pacienty získáváme úplnou shodu pro 6. a 12. týden u 86,1 % pacientů. Statistickým vyhodnocením Fisher's Exact Test for Count Data p-value = 1, identické výsledky.

4.2.2 Srovnání objemových změn ozářených metastáz
Ve snaze kvantifikovat průběh objemových změn v čase jsme provedli součet hodnot objemů jednotlivých metastáz v době ozáření, v šestém a dvanáctém týdnu. Získali jsme

\[
\begin{align*}
\sum V(0) &= 320,8 \text{ cm}^3 \\
\sum V(6) &= 189,0 \text{ cm}^3 \\
\sum V(12) &= 168,2 \text{ cm}^3
\end{align*}
\]

Z uvedeného vyplývá, že 86,4 % celkové redukce objemu sledovaných metastáz v našem souboru zachyceném 3 měsíce od ozáření bylo pozorováno již v šestém týdnu. Lze tedy předpokládat, že většina objemových změn metastáz hodnocených 12 týdnů od ozáření nastává již v první půlce tohoto intervalu.
Dalším způsobem jak posoudit průběh objemových změn v čase je srovnání součtu absolutních hodnot objemových změn. Nejdříve jsme vypočítáli součet absolutních hodnot objemových změn, které jednotlivé metastázy prodělaly od ozáření po první kontrolu v šestém týdnu:

\[V_{\text{sum}(0-6)} = \sum | V(0) - V(6) | \]

Pro kohortu pacientů, kteří absolvovali všechna měření v nultém, šestém a dvanáctém týdnu je:

\[V_{\text{sum}(0-6)} = 142,6 \, \text{cm}^3 \]

Analogy jsme provedli součet absolutních hodnot objemových změn, které jednotlivé metastázy prodělaly od ozáření po kontrolu ve 12. týdnu:

\[V_{\text{sum}(0-12)} = \sum | V(0) - V(12) | \]

Pro kohortu pacientů je celková objemová změna metastáz, kterou prodělaly do 12 týdne od ozáření

\[V_{\text{sum}(0-12)} = 155,6 \, \text{cm}^3 \]

Ve výsledku tvoří podíl absolutních hodnot objemových změn zaznamenaných 6. týdnů od SRT 91,6% součtu absolutních hodnot objemových změn jednotlivých metastáz zaznamenaných ve 12. týdnu po SRT.

Z uvedeného vyplývá vysoká výpovědní hodnota semikvantitativně hodnocené volumetrické analýzy časné MRI provedené 6 týdnu po ozáření mozkových metastáz Cyberknife ve srovnání se standardní kontrolou prováděnou ve 12 týdnu.

4.2.3 Výskyt metachronních metastáž

Dalším sledovaným parametrem v našem souboru pacientů byl výskyt metachronních metastáz - t.j. nových enhacujících ložisek, které nebyly identifikovány na předchozím MRI vyšetření. Celkově jsme metachronní metastázy diagnostikovali u 14 z celkového počtu 49 pacientů (28,6%). Při první kontrole v 6. týdnu bylo metachronní postižení mozku identifikováno u 4 pacientů, u dalších dvou pacientů byl záchyt metachronní metastázy ve 12. týdnu. Ve 24. týdnu bylo metachronní postižení mozku potvrzeno u 2 pacientů a u dalších 4 pacientů jsme metachronní postižení zachytili na pozdějších kontrolách (ve 34., 44., 72. a 73. týdnu).

Do třetího měsíce po ozáření se tedy u 8 pacientů vyskytla metachronní metastáza, z toho u 6 pacientů byla diagnostikována již v 6. týdnu po ozáření což je důvod navíc k provádění časných kontroly MRI již 6 týdnů po ozáření.

Záchyt metachronního ložiska u pacienta v celkově dobrém stavu a dobrou reakci na SRT disponuje na první místo v záchranné terapii ozáření metachronní metastázy Cyberknife (v našem souboru 10 ze 14 pacientů s metachronním postižením (71,4%). U dvou pacientů (14,3%) jsme ozařovali metachronní postižení technikou WBRT a u dvou pacientů (14,3%) jsme pro celkové zhoršení stavu radioterapie neindikovali.

4.3 Prognostický význam časných volumetrických změn pro celkové přežití pacientů

Volumetrickou, počítačově asistovanou analýzou jednotlivých metastatických ložisek v době ozáření, při časné MRI kontrole 6 týdnů od ozáření a následně při kontrole 12 týdnů od ozáření jsme získali hodnoty objemů V(0), V(6) a V(12) pro jednotlivé mozkové metastázy.

Jako redukcí objemu v šestém týdnu po ozáření, jsme označili rozdíl původního objemu ložiska v době ozáření a objemu ložiska v šestém týdnu.
Pro **poměrnou redukci objemu** v šestém týdnu (uváděnou v procentech) pak platí:

\[
Red(0-6) = \frac{[V(0) - V(6)]}{V(0)} \times 100\%
\]

Analogicky pak poměrná redukce objemu ve 12. týdnu bude definována jako:

\[
Red(0-12) = \frac{[V(0) - V(12)]}{V(0)} \times 100\%
\]

Pro vyhodnocení prediktivní hodnoty na celkové přežití u jednotlivých pacientů jsme u pacientů s vícečetnými metastázami počítali s celkovým objemem metastáz u daného pacienta.

Vyhodnocení celkového přežívání a redukce objemů ozářených metastáz vztažené na jednotlivé pacienty je znázorněno pro 6. týden v Grafu 1, pro 12. týden pak v Grafu 2.

Graf 1: Vztah doby přežití a poměrné redukce objemu metastáz v 6. týdnu po ozáření Cyberknife
Graf 2: Vztah doby přežití a poměrné redukce objemu metastáz ve 12. týdnu po ozáření CyberKnife

Statistickým zpracováním s využitím Kaplan-Meierovy neparametrické analýzy jsme prokázali, statisticky významný rozdíl celkového přežití u skupiny pacientů, kteří měli ve 12. týdnu redukci objemu metastáz 50 % a více, proti skupině, u které redukce objemu nedosahovala 50 % (Graf 3)

Graf 3: Kaplan-Meierova křivka odhadu přežití u pacientů s redukcí objemu ozářených metastáz 50 % a více dle MRI 12 týdnů po ozáření a skupiny pacientů s objemovou redukcí metastáz, která 12 týdnů po ozáření nedosahovala 50 %
Medián přežití ve skupině, u které došlo ve 12. týdnu k regresi objemu o více než 50 % byl 13,0 měsíce ve srovnání se 5,9 měsíci, ve skupině s regresí menší než 50 %.

Při hodnocení objemových změn v 6. týdnu nebyla hranice zmenšení metastáz pod 50 % pro predikci přežití statisticky významná, pravděpodobně na vrub další regrese objemu metastáz mezi 6. a 12. týdnem. Rozdělením sledovaného souboru na pacienty s redukcí objemu metastáz 30 % a více v 6. týdnu po SRT proti skupině, která této redukce nedosáhla potvrzujeme statisticky významný predikční faktor přežití, kterým redukce objemu 30 % a více v šestém týdnu po SRT (Graf 4).

Graf 4: Kaplan-Meierova křivka odhadu přežití u pacientů s redukcí objemu ozářených metastáz 30 % a více dle MRI 6 týdnů po ozáření a skupiny pacientů s objemovou redukcí metastáz, která 6 týdnů po ozáření nedosahovala 30 %

Medián přežití ve skupině, u které došlo v 6. týdnu k regresi objemu o více než 30 % byl 11,5 měsíce ve srovnání se 6,0 měsíci, ve skupině s regresí menší než 30 %.

Z uvedeného vyplývá, že výraznější zmenšení objemu ozářených mozkových metastáz - nad 30 % v 6. týdnu resp. nad 50 % ve 12. týdnu - je statisticky významným pozitivním prognostickým faktorem doby přežití u pacientů s metastatickým postižením mozku léčených ozářením CyberKnife.

4.4 Prognostický význam časných volumetrických změn pro lokální kontrolu ozářených metastáz

V kohortě pacientů, kteří absolvovali MRI volumetrie v nultém, šestém a dvanáctém týdnu jsme dále sledovali 61 ozářených ložisek, ze kterých jsme zaznamenali v dalším průběhu selhání
lokální kontroly u 9 ložisek (14,8 %). V celém souboru iniciálně zařazených 77 metastáz byla ztráta lokální kontroly pozorována u 11 ložisek (14,3 %). Selhání lokální kontroly bylo diagnostikováno v rozpětí 17 - 64 týdnů od SRT. U 63 % pacientů se selháním lokální kontroly následovala záchranná terapie (WBRT 25 %, CyberKnife reiradiace 25 %, chirurgická resekce 13 %) u zbývajících 37 % pacientů byla indikována paliativní péče.

Cílem statistické analýzy bylo zjistit, zdali mají volumetrické změny zaznamenané za prvních 6 resp. 12 týdnů po ozáření prognostický význam pro odhad lokálního selhání ložisek. Situaci 6 týdnů po ozáření CyberKnife znázorňuje boxplot diagram (Graf 5).

Graf 5: Predikční hodnota objemové redukce metastáz 6 týdnů po ozáření CyberKnife pro odhad selhání lokální kontroly ozářených metastáz

Statistické vyhodnocení:
Pro statistickou analýzu byl použit Kruskal-Wallis nепarametrický test dvou výběrů: p-hodnota = 0,8643 pro hladinu významnosti 0,05.

není statisticky významně

Situaci 12 týdnů po ozáření CyberKnife znázorňuje boxplot diagram (Graf 6).
Graf 6: Predikční hodnota objemové redukce metastáz 12 týdnů po ozáření CyberKnife pro odhad selhání lokální kontroly ozářených metastáz

Statistické vyhodnocení:
Pro statistickou analýzu byl použit Kruskal-Wallis neparametrický test dvou výběrů: p-hodnota = 0.005106 pro hladinu významnosti 0.05.
je statisticky významně

Prokázali jsme, že ve 12. týdnu po ozáření SRT byla výraznější objemová redukce spojena s lepší lokální kontrolou metastáz. Vztah objemových změn v 6. týdnu po SRT a následné ztráty lokální kontroly nebyl statisticky významný.

4.5 Doba přežití a příčiny úmrtí

Celkový medián přežití v našem souboru byl 180 dnů (t.j. přibližně 26 týdnů resp. 6,5 měsíce) Při vyhodnocování příčin úmrtí jsme vycházeli z dostupné lékařské dokumentace a zobrazovacích vyšetření. U pacientů s progresí nálezu v CNS (grafický a klinicky) jsme za příčinu smrti označili CNS.
U pacientů, se stabilním nálezem na CNS a doloženou příčinou úmrtí mimo CNS, jsme příčinu úmrtí označili jako extraxerebrální. Tito pacienti neměli na žádném z provedených vyšetření prokázanou progresi onemocnění CNS ve smyslu metachronních metastáz či ztráty lokální kontroly ozářených ložisek.
A konečně u pacientů, kde nebylo možno jednoznačně stanovit podíl onemocnění CNS či extracerebrálních orgánů, byla příčina úmrtí označena jako neznámá.
Statistika úmrtí v našem souboru:

Celkově zemřelo: 32 pacientů

Příčina úmrtí:

- CNS: 12 pacientů
- extracerebrální: 12 pacientů
- neznámá: 8 pacientů

Za prvních 6 měsíců po SRT zemřelo celkem 17 pacientů, z toho 10 na extracerebrální příčinu, 4 na progresi onemocnění CNS a u 3 pacientů nebyla přesná příčina úmrtí stanovena.
Ve skupině pacientů zemřelých na komplikace CNS, byl podíl přeživších 6 měsíců 67 %, nad jeden rok pak 8 %.
U pacientů s extracerebrální příčinou úmrtí přežívalo nad 6 měsíců pouze 17 % pacientů, nad jeden rok pak 8 % pacientů.
U pacientů s nejednoznačnou příčinou úmrtí, byl podíl přeživších nad 6 měsíců 63 % a nad 1 rok 13 %.

Z uvedeného vyplývá, že extracerebrální onemocnění bylo hlavní příčinou úmrtí v prvním půlroce po ozáření mozkových metastáž.

4.6 Faktory ovlivňující dobu přežití

4.6.1 Počet ozářených metastáž
Z celkového počtu 49 léčených pacientů mělo vstupně solitární metastázu 33 pacientů. U 8 pacientů jsme označovali dvě metastatická ložiska, u 6 pacientů 3 metastázy a u dvou pacientů vstupně 5 metastatických ložísek.
Srovnání přežívání u pacientů se solitární metastáznou proti skupině s vícečetným metastatickým postižením mozku podává Graf 7.
Graf 7: Kaplan-Meierova křivka vztahu doby přežití a počtu ozářených metastáz (solitární resp. vícečetné postižení mozku)

Statistickou analýzou se neprokázal významný rozdíl v délce přežití u pacientů léčených vstupně pro solitární metastázu ve srovnání s pacienty léčenými vstupně pro vícečetné metastatické postižení mozku.

4.6.2 Pohlaví
V našem souboru 49 pacientů bylo 28 žen a 21 mužů. Srovnáním Kaplan-Meierovy křivky přežití pro jednotlivá pohlaví jsme zkoumali vliv pohlaví na dobu přežití u pacientů po ozáření mozkových metastáz CyberKnife.

Situaci znázorňuje Graf 8.
Graf 8: Kaplan-Meierova křivka vztahu doby přežití a pohlaví pacientů ozářených pro mozkovou metastázu

Statistická analýza neprokázala významný vliv pohlaví na dobu přežití v naší skupině pacientů.

4.6.3 Primární zdroj maligního procesu
Vzhledem k širokým konfidenčním intervalům jsme při stávajícím počtu pacientů v naší skupině nepotvrdili statistickou významnost v odlišném přežívání pro některou z diagnoz. Pro přesnější statistické vyhodnocení bude potřeba větší počet pacientů.

4.6.4 Vstupní Karnofského skóre

V našem souboru představovali pacienti s lepší soběstačností - schopní normální aktivity s mírnými či žádnými symptomy (t.j. KPS 80 a více) naprostou většinu (37 z celkového počtu 49 pacientů, t.j. 76 %). Zbylých 12 pacientů (24 %) nebylo schopno všechn běžných aktivit a vyžadovali určitou míru asistence (t.j. KPS 60-70).

V první skupině (KPS 80-100) přežívalo 6 měsíců po SRT 68 % pacientů a 9 měsíců po SRT 43 % pacientů.

Ve výkonnostně horší skupině (KPS 60-70) byl podíl přežívajících v 6. měsici 48 % a v 9. měsíci po SRT již jen 8 %.

Nepoměr zastoupení pacientů v obou skupinách neumožňuje potvrzení statistické významnosti Kaplan-Meierovou metodou, přesto se dá předpokládat kratší doba přežití u pacientů s nižším KPS.
5 Diskuze

Primárním cílem naší studie bylo pomocí počítačově asistované volumetrie vyhodnotit objemové změny ozářených metastázních oblastí a tyto změny otestovat ve vztahu k celkovém přežívání resp. lokální kontrole ozářených ložisek. První kontrolní checkpoint jsme postavili již 6 týdnů po SRT, druhý pak standardně 3 měsíce od SRT.

Na základě analyz statistických dat jsme prokázali, že většina objemových změn mozkových metastázních oblastí v prvním čtvrtletí po radiochirurgické léčbě proběhne již v první polovině tohoto intervalu. Semikvantitativní hodnocení objemových změn v 6. a 12. týdnu pak přináší téměř identické výsledky.

Analýza objemových změn ozářených metastázních oblastí nás vedla k předpokladu, že metastázy, u kterých je regrese objemu časná a razantní mají menší riziko selhání lokálního kontrolu.

Detailní statistické vyhodnocení volumetrických změn našeho souboru prokazuje, že v šestém týdnu je možno odhadnout prognozu pacienta stran doby přežití, nelze však spolehlivě odhadnout riziko selhání lokálního kontroly. MRI v 6. týdnu po SRT přinesla i nejvyšší záhyčy metachronních metastázních oblastí, což umožnilo jejich efektivní léčbu.

Zdá se tedy opodstatněné provést první MRI kontrolu již 6. týdnu po SRT - tato kontrola je výtečná pro časný odhad prognozy pacienta (a tím pádem umožňuje výběr pacientů potencionálně profitujících s maximální systémové léčbou). Navíc časná MRI v 6. týdnu po SRT přinesla vyšší záhyč metachronních ložisek a tak umožnila časnou a efektivní záchranné terapii.

Naproti tomu objemová analýza ložisek ve 3. měsíci po SRT umožňuje krom odhadu přežití i možnost vytvořit pacienty s vyšším rizikem ztráty lokální kontroly.

Tato kontrola tedy umožňuje označit high risk pacienty, u kterých se zdá opodstatněné MRI kontroly časovat v kratších odstupu pro vyšší riziko lokálního relapsu onemocnění a naopak low risk pacienty, u kterých je možno pokračovat ve standardních trojměsíčních intervalech kontrol.

V naší studii se nepotvrdil statisticky významný rozdíl přežívání u pacientů s ozářenou solitární metastázní oblastí proti pacientům s iniciálně ozářenými vícečetnými ložisky (2-5 metastázních).

Stejně tak se nepotvrdil vliv pohlaví pacientů na celkové přežití.

Prospektivní sledování objemových změn metastázních oblastí potvrdilo pozorovat, že ne každá objemově zvětšená ložiska znamená ztrátu lokální kontroly. V případě, že zaznamenejeme zvětšení ložiska o více než 20 % proti předchozí kontrole, je na místě časná (s odstupem 6 týdnů) MRI kontrola, která v případě, že verifikuje další progresi znamená ztrátu lokální kontroly. V opačném případě se jedná o tzv. pseudoprogrese, kde probíhá částečná zvětšení ložiska, které nemá progresujičí charakter a na další MRI se zmenší nebo zůstane stacionární.

Ztráta lokální kontroly znamená selhání radiační léčby, často se spojuje s zhoršením klinického stavu, vyžaduje záchrannou terapii a je celkově spojena s horší prognozou.

Pseudoprogrese je relativně častý těž, většinou nevyvolává klinické příznaky a mnohdy je následován další regresí objemu metastázní oblastí.

Vliv aktivity extrakraniálních metastázních a samotného primárního ložiska bývá často diskutován jako limitující faktor u pacientů po radiochirurgické léčbě mozkových metastázních oblastí [36]. Situace se tedy postupně obrácí - donedávna platila diagnoza mozkové metastázy za terminální a neléčitelné stadium maligního onemocnění, nereagující na systémovou léčbu. Nyní jsme schopni mnohdy metastatický proces mozkovou kontrolou a znázornění procento pacientů s léčenou mozkovou metastázní oblastí zmíří na extracerebrální příčiny. Podle studí korejských autorů [37] dvojice třetiny pacientů léčených SRT pro mozkovou metastázu nemalobuněčného karcinomu plic zemře v důsledku progrese základního onemocnění, třetina pak na podkladě progrese intrakraniálního nálezu.
Výsledky z našeho souboru potvrzují extracerebrální příčinu jako nejčastější příčinu úmrtí v prvním půlroce od SRT pro mozkovou metastázu. Časné vytipování dobrých responderů radiokhirurgie by pak mohlo vést k časnéjší i intenzivnější systémové léčbě v případě výskytu extracerebrálních ložisek a v konečném důsledku k prodloužení přežití u této skupiny pacientů. I z tohoto pohledu se jeví užitečná první MRI kontrola již 6 týdnů po SRT.

5.1 Srovnání výsledků s publikovanými údaji

5.1.1 CyberKnife a gama nůž
Práce potvrzující klinickou účinnost, přesnost a technickou spolehlivost CyberKnife se objevují brzy po komerčním spuštění výrobky a zahájením léčby na přístrojích CyberKnife [38]. Technické srovnání, distribuce záření a efekt léčby byl opakovaně srovnáván s referenčním přístrojem - gamanožem [39].

Recenční srovnání obou přístrojů při léčbě metastáze mozku podává Sio a kolektiv [40]. Autoři srovnávají relativní dozimetrické charakteristiky gama nože a CyberKnife u 15 pacientů s 26 mozkovými metastázami. Prokázalo se, že plánování léčby metastáž pro Cyberknife resp. gamanůž vyústilo v dozimetricky srovnatelné plány, které vyly téměř shodné v pokrytí cíle a minimální dávce uvnitř cílového objemu. Ve srovnání s gama nožem byly plány pro Cyberknife o něco více homogenní a dosáhly větší konformity, plány gama nože měli ve většině případů průměr pokles dávky na okraji ozářované léze.

Výhodou CyberKnife je možnost frakcionace s ozářením objemnějších metastáze ve 3 nebo 5 sezeních. Tyto léčiska nelze jednorázově ozářit gama nožem, z důvodu rizika akutní toxicity. Ve své práci srovnává Cho skupinu 40 pacientů s metastážemi menšími než 3 cm léčenými gama nožem se skupinou 37 pacientů s metastázy přesahujícími 3 cm léčených CyberKnife [33]. I přes jisté odlišnosti v dozimetrických charakteristikách nebyl shledán rozdíl v dosažení lokální kontroly či přežití pacientů a nebyla prokázána vyšší toxicita při léčbě objemnějších lézí.

Celkově tedy možno považovat léčbu objemnějších metastáze CyberKnife frakcionační technikou za efektivní a bezpečnou.

V našem souboru bylo 51 % metastáž ozářeno technikou frakcionace, přičemž podíl frakcionované ozářených metastáze ze skupiny s prokázaným selháním lokální kontroly tvořil 44 %. Výsledky odpovídají výše uvedeným literárním údajům.

5.1.2 MRI volumetrie
Technika počítačem asistované MRI volumetrie slouží k přesnému zjištění objemu mozkové metastázy. První publikovaná práce zkoumající objem radiokhirurgicky ozářených metastáž je z roku 2000 [41]. Autoři potvrzují vyšší riziko radiotoxicity při jednorázovém ozářování objemnějších metastáze gama nožem. Na základě dat této studie byl stanovený limit pro ozáření metastázy gama nožem - průměr ložiska větší jako 3 cm.

Využití volumetrie ložisek indikovaných k SRT jako možného prediktoru doby přežití a lokální kontroly prezentuje Baschnagel [42].

Snaha předpovědět chování ozářených lezí případně odhadnout přežívání pacientů podle objemových změn metastázy po ozáření se objevuje v pracích Sharptonové a Feigla [35, 43].

Sharptonová ve svém souboru pacientů léčených CyberKnifeem pro mozkové metastázy sledovala objemové změny relativně časně po ozáření (část pacientů měla kontrolní MRI 6 týdnů po SRT, část pacientů 12 týdnů po SRT). Podle výsledků sledování pacientů prokázala prognostický vliv výraznější časně redukce objemu na lepší lokální kontrolu ozářených ložisek.

V našem souboru je podařilo potvrdit prediktivní hodnotu výraznější objemové redukce ozářených metastáž při kontrole 12 týdnů po SRT pro lepší lokální kontrolu těchto ložisek. Výsledky jsou v souladu s pozorováním Sharptonové [35].
Navíc jsme prokázali prediktivní hodnotu časně redukce objemu ozářených metastáz (alespoň 30% v 6. týdnu resp. 50% ve 12. týdnu) pro celkové přežití pacientů.

5.1.3 Histologický typ metastáz
Odtížnost efektu radiochirurgie se projevuje v léčbě metastáz nádorů radiorezistentních na standardní radioterapii.
V naší skupině pacientů bylo léčeno 6 pacientů s renálním karcinomem a 6 pacientů s maligním melanomem (celkově téměř čtvrtina všech ozářených pacientů), přičemž u žádného z těchto pacientů nebyla po dobu sledování zaznamenána ztráta lokální kontroly ozářeným metastáz. Můžeme tedy potvrdit dobrý efekt léčby CyberKnife na tyto, na klasické ozáření radiorezistentní metastázy.

5.1.4 Počet mozkových metastáz
Počet mozkových metastáz byl tradičně silný negativní prognostický faktor a vícečetné metastázy se dnes dávávaly považovat za indikaci k pouze palivativnímu ozáření (WBRT). Stereotaktická radiochirurgie ale přináší možnost ozáření více ložisek bez zvýšení lokální toxicity s dobrou lokální kontrolou. Ve svých prácech popisuje Yamamoto SRT u pacientů s vícečtěrnými mozkovými metastázami (až 10 ložisek). Srovnává skupinu pacientů s ozářenými 2-4 ložisky proti skupině s ozářenými 5-10 ložisky mozku, přičemž tyto skupiny nevykazují statisticky významné odlišnosti v délce přežívání, záctyhu metachronních metastáz ani v lokální kontrole ozářených nádorů [47], [48]. Celkově je v posledních letech patrná tendence léčit radiochirurgicky i vícečetná metastatická ložiska mozku.
V naší studii jsme neprokázali statisticky významné rozdíly v přežívání u pacientů v závislosti na počtu ozářených metastáz.

5.1.5 Karnofského skóre
Karnofského skóre, které popisuje funkční stav a sebeobslužnost pacienta bylo opakovaně vysoko hodnoceno jako silný prediktor přežití u pacientů léčených radioterapií pro mozkové metastázy [28], [29], [49]. Pacienti, kteří již vstupně vykazovali nižší míru sebeobslužnosti (za hranicí se považuje KPS 70) měli prokazatelně nižší medián přežití i procento přeživších v prvním roce po ozáření. Hodnota KPS 70 a více se tak stala indikátorovým kritériem pro některé druhy onkologické terapie včetně radiochirurgie. V případě metastatických nádorů mozku se někdy diskutuje podíl potenciálně reverzibilního neurologického deficitu na nízké sebeobslužnosti pacienta. Léčba tedy může být indikována i u pacientů s KPS 60 a méně, protože se předpokládá regrese neuroděficitu po ozáření a následné zvýšení KPS [43].
V námi prezentovaném souboru byla většina pacientů s vysokým vstupním KPS (více než 3/4 pacientů mělo vstupně KPS > 70). Podle Gasparových kriterií RPA, které jsme podrobněji představili ve stati 1.10 Úvod do problematiky, spadá naprostá většina pacientů našeho souboru do třídy RPA I a II (t.j. s KPS 70 a více). Jenom 2 z celkového počtu 49 pacientů (4 %) vykazovali vstupně KPS pod 70 % a řadili se tak do prognosticky nepříznivé třídy RPA III. Nepoměr zastoupení pacientů s nižším KPS neumožnil potvrzení statistické významnosti Kaplan-Meierovou metodou. I přesto na základě srovnání procenta přežití 6 a 9 měsíců od SRT u pacientů s KPS nad 70 % proti pacientům s nižším KPS se v naší skupině dá předpokládat horší prognóza u pacientů s nižším KPS.
6 Závěry

V naši prospektivní studii jsme pomocí počítačem asistované MRI volumetrie sledovali objemové změny 77 metastáz mozku po ozáření CyberKnife u 49 pacientů.

1. Popisujeme novou, v naší zemi zatím unikátní léčebnou radiochirurgickou metodu. Změny velikosti metastáz jsme hodnotili v současné době nejpřesnější technologií - počítačově asistovanou volumetrií izotropních submilimetrových řezů MRI. Veškerá data byla sbírana, zpracována a zálohována na zabezpečeném serveru LabKey ve Fakultní nemocnici Ostrava.

2. Potvrdili jsme naší hypotézu a prokázali prognostický a klinický význam časné MRI volumetrie provedené 6 týdnů po radiochirurgické léčbě metastatického postižení mozku.

3. Potvrdili jsme velmi dobrou léčebnou odpověď ozářených ložisek (84-87 % všech ložisek zmenšeno při kontrole 12 týdnů, 3 a 6 měsíců po ozáření) včetně dobřeho účinku na tradičně radiorezistentní metastázy.

5. Zjistili jsme, že objemové zmenšení ozářené metastázy nad 30 % v 6. týdnu resp. nad 50 % ve 12. týdnu je statisticky významným prognostickým faktorem delšího přežití. Razantnější redukce objemu jako prediktor lepší lokální kontroly se prokázala ve 3. měsíci po SRT.

7. Nejčastější příčinou úmrtí v prvních 6 měsících po SRT byla extracerebrální komplikace základního onemocnění.

Srovnání tohoto, v našich podmínkách ojedinělého souboru pacientů, s literárními údaji potvrzuje dobrou lokální kontrolu a minimální toxicitu radiochirurgické léčby. Díky důmyslné frakcionácii ozáření pomocí CyberKnife (bez redukce biologicky efektivní dávky i pro větší metastázy) bylo možné docílit dobře léčebné odpovědi i u větších metastáz.

Výsledkem studie implementovaným do praxe bude standardní zavedení první MRI kontroly již 6 týdnů po SRT. Již v této době je předpoklad časného záčtu metachronních metastáz mozku a jejich účinné léčby. U pacientů s predikcí dobré odpovědi na radiochirurgickou léčbu metastatického postižení mozku je pak na místě maximální snaha zabránit progresi extracerebrálních metastáz. Je předpoklad, že případná časně zahájená ofenzivní systémová léčba může snížit úmrtnost na extracerebrální příčinu a zlepšit prognózu u této skupiny pacientů.

V budoucnu máme v plánu pokračovat ve sběru volumetrických a klinických dat pacientů na-dále. Zvažujeme využití dalších modalit magnetické rezonance (zejména MRI spektroskopie) k odhadu biologického chování metastáz a jejich citlivosti na radiochirurgickou léčbu.
7 Použitá literatura

1. Ústav zdravotnických informací a statistiky ČR, Zemřeli 2015, Vývoj standardizované úmrtnosti (SDR) pro vybrané skupiny pětileté smrti, s. 9-10. ISBN 978-80-7472-157-1
8 Přehled publikační činnosti autora

Původní vědecké práce v impaktovaném časopise

Původní vědecké práce v recenzovaném neimpaktovaném časopise

- REGULI, Š., R. LIPINA a T. HRBÁČ. Neurochirurgická léčba mozkových nádorů. Onkologie. 2011, roč. 5, č. 2, s. 72-74. ISSN 1802-4475

Ostatní práce v impaktovaném časopise

- REGULI, Š., R. LIPINA, J. KRAJČA a P. HANZLÍKOVÁ. Magnetická rezonance v diagnostice kraniotraumat - kazuistika. Česká a slovenská neurologie a neurochirurgie. 2013, roč. 76/109, č. 6, s. 736-739. ISSN 1210-7859 (IF: 0,366)

- LIPINA, R., T. PALECEK, S. REGULI, M. KOVAROVA Death in consequence of late failure of endoscopic third ventriculostomy. Childs Nerv Syst, Jul 2007, 23(7), 815-819. (IF: 0,993)
kapitoly z knih

přednášky a plakátová sdělení

- přednášky na řadě odborných kongresů na republikové i regionální úrovni
- přednášky v rámci výuky na LF Ostravské Univerzity
- přednášková činnost v rámci výuky postgraduálních kurzů (neurotraumatologie) ILF Praha
- přednášky v rámci pořádaných endoskopických kurzů s mezinárodní účastí
- plakátová sdělení - zahraničí (1. autor)
 - LncRNA expression pattern in GBM patients (Kongres Evropské neurochirurgické společnosti - EANS Atény 2016)
 - Analysis of LncRNAs and mRNAs using RNA sequencing in glioblastoma (Kongres Evropské neurochirurgické společnosti - EANS Benátky 2017)