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Rigorous Electromagnetic Theory of the Optical
Response of Periodic Nanostructures

Institute of Physics of Charles University

Supervisor of the master thesis: RNDr. Roman Antoš, Ph.D.
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Department: Institute of Physics of Charles University
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Abstract: The diffraction of light is an important phenomenon with wide physical and engineering
applications and diffraction gratings are optical components with a periodic structure which are used to
diffract light into several beams propagating in various directions. Direct methods like AFM or SEM
proved to be insufficient to study the shape of planar diffraction gratings and therefore they must be
supplemented with results obtained from optical spectroscopy. Computer simulations are the integral
part of this method. This Thesis is focused on two particular simulation methods - the RCWA and
the C-Method. It gives a rich theoretical introduction, discusses the weaknesses of these methods and
also describes improvements of the RCWA using the Airy-like series and proper Fourier factorization.
Both methods are implemented, tested on simple examples and afterwards the convergence for particular
cases is investigated. The C-Method and the modified RCWA algorithm exhibit excellent convergence.
At the end, the numeric results are compared with experiments, giving a very good agreement in the
ellipsometric parameters.
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Chapter 1

Introduction

1.1 A short excursion to history

The scattering of light is a physical phenomenon well-known from everyday life as the rainbow, glittering
of the water surface, polished gemstones or prisms. The diffraction gratings, which are periodic structures
diffracting the light are also well-known from everyday life, as DVD discs, holograms or a back of colorful
spider in Fig. 1.11. A bird feather is the first known studied diffraction grating; in 1673 observed J.
Gregory the diffraction pattern produced by a sunlight going through a feather. The first man-made
grating was done by D. Rittenhouse in 1785 from hairs strung between two screws. The appearance of
diffraction orders was studied by T. Young in 1803. Another contribution was done by Fresnel in 1818;
he studied the bending of light and invented the so-called Fresnel zones. The mathematical formalism
of the wave theory was for the first time done by G.R. Kirchhoff.

Figure 1.1: Peacock spider as a walking diffraction grating

The foundations of optical spectroscopy were laid by J. von Frauenhof in 1821. He designed the
first spectroscope for the purpose of observing the star Sirius. In 1887 A. Michelson developed the
interferometer, which he used to measure the speed of light and it still nowadays has its role in optical
instruments. In the late 19th century, probably in 1888, P. Drude invented the experimental technique
called ellipsometry. A special kind of this technique called spectroscopic ellipsometry will be described
later here in detail.

The significant contribution in a theoretical study of optics and waves has been done by Lord Rayleigh
between the years 1871–1899. For example, he was able to explain why the sky is blue, and the Rayleigh-
Jeans law of radiation of the black body was the first step towards the quantum mechanics.

Extensive study of advanced optical properties of gratings, which cannot be explained by Fraunhofer’s
grating equation, was initiated by the discovery of diffraction anomalies by R. W. Wood in 1902 [1].

In 1934 C.V. Raman wrote a series of papers [2]–[4]. The first paper was concerned with the color of
the Indian roller bird. He proposed, without further investigation, that the colourful feathers of this bird
could be caused not by the thin-film interference, but by diffraction by small cavities. The subsequent
papers are concerned with the coupled wave theory.

1Wikipedia, The Free Encyclopedia, s.v. ”Maratus,” (accessed March 1st, 2018)
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The further development in this field was determined by the discovery of X-ray generators, lasers and
CCD sensors. These devices are now standard equipment in optical laboratories.

The theoretical models of diffraction gratings were affected by the development of computers, which
offered much faster data processing and short computation time.

The main application of the diffraction grating is in spectroscopy. There are three main advantages of
gratings against prisms. The first one is their planar structure and it means compact size. The second one
is that gratings can work in spectral regions, where no transparent glass exists with dispersion sufficient
enough. The third one is a possibility of their variability in shapes, unlike to prisms whose properties are
determined by the groove angle and material choice. The disadvantages are lack of diffraction efficiency
and resolution, and their efficiency depends on the polarization, as will be seen in the forthcoming
chapters.

However, although spectroscopy is the main area of application of diffraction gratings, it is not the
only one. There are application in astronomy, lasers, optical fibers, surface-plasmons grating detectors
and many others. And as mentioned in the introduction, nature uses gratings to do beautiful patterns
on animals, coronas or glittering stones.

1.2 Planar gratings

The aim of this work is to study the diffraction of light on relief planar gratings with a certain shape
(sinusoidal, triangular, etc.). These gratings are isotropic in one given direction and if the incident light
is in the plane perpendicular to this direction, the whole problem can be considered as planar. There
are various methods for modeling the optical response of planar gratings, e.g. integral and differential
methods, finite elements methods, etc.

The aim of this Thesis is to study two very popular methods — the RCWA (Rigorous Coupled-Wave
Analysis) and the C-Method. Both of them transform the system of partial differential equations in the
Fourier space in order to get the infinite-dimensional algebraic problem which is afterwards truncated,
and it gives a finite-dimensional system of linear equations.

The RCWA was developed in 1969, but it has underwent significant improvements over the past 60
years. Although it was primarily designed to model gratings with lamellar profile, later it was extended
to more general profiles using the so-called staircase approximation. The former T-matrix algorithm
used in this method turn out to be unstable for particular problems and therefore was replaced with
the S-matrix algorithm [5]. This extension is described in Section 3.5. But still the convergence of this
method was acceptable only for dielectric and shallow gratings and for gratings illuminated by X-ray.
Until 1998 it was not known whether this problem has its origin in physics or whether there are some
problems arising from the discretization.

The revolutionary work of G. Granet, M. Neviére, L. Li and E. Popov [6], [7], [8] revealed that the
reason is the incorrect formulation of the gratings equations and developed new formulation which uses
correct factorization and the derived algorithm converges much faster. A new formulation of the RCWA
for curved gratings, which uses the correct factorization rules, was introduced by I. Gushchin and A.
Tischenko in 2012, [9]. The detailed discussion of these problems and about the correct formulation of
the equations can be found in Sections 3.3.2, 3.5. The physical explanation for a poor convergence for
metallic gratings illuminated by p-polarized light is in the presence of surface plasmons. These particles
cause a high intensity of light on the grating surface, which in a combination with Gibbs effect and
an incorrect formulation of the equations does a significantly large error [10]. For the case of dielectic
gratings or metallic gratings illuminated by s-polarized light the intensity on the grating surface is low
and therefore the error is decreased, cf. Fig. 1.2, and see also [10].

The second method is the C-Method. It was developed by J. Chandezon et. al. in 1980, [11]. The
main idea is in a coordinate transformation, where the curved profile of the grating is straightened leading
to more complex equations, but with simple boundary conditions. Due to the risk of invoking Rayleigh
hypothesis the real eigenvalues of the approximation are replaced with real propagation orders. The final
solution of the problem is in matching the electric and magnetic fields on the (line) interface between the
substrate and superstrate of the grating. This methods is primarily focused on shallow gratings, which
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Figure 1.2: Diffraction on a staircase grating, s-polarization left, p-polarization right

can be highly conductive and coated (e.g. with a layer of some oxide). The description of this algorithm
can be found in Chapter 4. It has to be noted that the C-Method does not suffer from an incorrect
factorization or Gibbs phenomenon, unlike to the RCWA. On the other hands, it has a poor convergence
for deep gratings and is more complicated to implement.

After careful consideration we decided to add one section devoted to the formulation and existence
of weak solutions of grating equations. The weak formulation is a necessary step towards Finite Element
Method, which plays an essential role in a numerical solution of Maxwell equations. Unlike to Modal
Methods, for the FEM there are some rigorous results concerning the existence a uniqueness of solution
and error of approximate solution. But on the other hand, the FEM are difficult to implement. FEM
solvers are common part of commercial software (e.g. JCMsuite). More details can be found in Subsection
2.6.

At the end of this paragraph, let us shortly summarize the content of this Thesis. The Chapters 2
– 4 are reviewing known results about planar diffraction gratings. In particular, Chapter 2 is focused
on the analytical properties of diffraction gratings, with a special emphasis to rigorous mathematical
formulation of the whole problem. Chapter 3 is about the RCWA and its improvements from [9]. The
process of matching the interface conditions is different to the one from [9] and uses a modification the
Airy-like series algorithm introduced in [12], [13]. The subsequent Chapter is explaining the basics of the
C-Method. The methods described in Chapters 3, 4 were implemented in MATLAB, the correctness of
implementation was tested on trivial examples and tabular results from the respective papers. Afterwards
these implementations were used to model particular real systems and results were compared with the
experimental ones from [12]. All of this is summarized in Chapter 5. The last Chapter is devoted to the
discussion about obtained results and to the summary remarks.

1.3 Experimental techniques, Four-zone null ellipsometry

Having a periodic surface (grating) the main question at this point is what to measure and how to mea-
sure it. There are two basic sets of parameters — geometric and material. Among geometric parameters
there are thin film properties (layer thickness, interface roughness), critical dimensions (period, linewidth,
element profile) and others like line-width roughness, line-edge roughness, ... Among the material prop-
erties there are optical properties like refractive index, extinction coefficient, material anisotropy, and
magnetic properties.

The surface can be analyzed directly by methods like AFM, SEM, ... They measure the profile by
“touching” or “feeling” the surface with a mechanical probe. The probe is moved around the surface
and gathers the information about the sample. The main advantage of this technique is in providing
the direct image of the surface. On the other hand, the method is expensive, it can require further
modification of the sample, which will disable it for further usage, it is cumbersome — requires vacuum
or a mechanical contact with the sample and finally there are some fundamental physics barriers which
cannot be overcome, e.g. misalignment for the probe method.
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Another possibility is a use of optical techniques, which give the information about the sample by
solving the inverse problem — optical parameters are measured for the sample and its properties are
found by fitting then to a computer simulation. The time consuming computer simulation and fitting
process are one of the disadvantages of this method. Another disadvantage is that it cannot determine the
structure without approximate knowledge of it, and also a sensitivity to too many fitting parameters. In
contrast, there are no systematic errors caused by a mechanical contact, it has a higher precision (down
to 1 nm), it is sensitive to ultrathin features (native oxides, interlayer effects), it has a possibility of
monitor features beneath the surface, it is capable of determining line and edge roughness and there is
a possibility of a unique analysis of various material phenomena like e.g. nanocomposition.

Here we are going to briefly describe the experimental techniques for obtaining the so-called el-
lipsometric parameters, the algorithms for computer simulations will be extensively discussed in the
forthcoming Sections.

General setting of an experimental apparatus is depicted in Fig. 1.3. The lamp generates the light

Figure 1.3: General setting of the optical experiment [12]

flux, which goes through the input optics to became a plane wave with the amplitude Ai and polarization
ellipse χ(i) incident onto the sample. After impinging onto the planar 1D-periodic grating the light flux
is scattered into several modes — diffraction orders, which have both reflection and transmission modes.
The mode of interest (usually 0th mode of reflection of transmission goes through the output optics and
its intensity Ir or It respectively is measured by the detector. Sometimes the reflected and transmitted
zeroth-order mode are measured at the same time to get additional information. The ellipsometric
techniques measure the change of the polarization of the incident light, and therefore provide the ratio

χ
(r,t)
n /χ(i) of the complex χ-numbers.

Polarization of light The harmonic wave is considered to propagate in the z−direction and its electric
field intensity can be written as

E(r, t) =

(
Ax exp(iφx)
Ay exp(iφy)

)
exp(i(ωt− kzz)) = J exp(i(ωt− kzz)).
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The vector

J =

(
jx
jy

)
=

(
Ax exp(iφx)
Ay exp(iφy)

)
=

(
Ãx

Ãy exp(iδ)

)
,

where δ = ϕy − ϕx, is called Jones vector and it determines the polarization state of the light. The
transformation between polarization states is provided by the so-called Jones matrix. In two dimensions,
it is

P =

(
pxx pxy
pyx pyy

)
.

The polarization state of light which was initially in the state J0 and went through several optical devices
with polarization matrices P1, ...Pn (in this ordering) can be described by

Jn = PnPn−1 · · ·P2P1J0.

Spectroscopic ellipsometer The arrangement of spectroscopic ellipsometer is in Fig. 1.4.

Figure 1.4: Spectroscopic ellipsometer

The light from the source (lamp) goes through the collimator, followed by the polarizer. The polarized
light impinges onto the sample, the diffracted wave goes to the compensator, through the analyzer and
ends in the detector. The change of polarization in each component is described by the Jones matrix.
The (Jones) matrix of the linear polarizer is

P =

(
1 0
0 0

)
,

the matrix of the compensator is

P =

(
exp

(
i δ2
)

0
0 exp

(
−i δ2

)) ,
and finally the matrix of the sample in the basis of its spectral reflection is

P =

(
rs 0
0 rp

)
,

where rs, rp are the reflection coefficients, see also (2.27), below. Let α, β, γ, δ be the rotation angles of
the polarizer, compensator and analyzer respectively. The Jones vector of the beam outgoing from the
analyzer and incoming into the detector has in the basis composed of analyzer eigenvectors the form

Jout = PR(β − γ)C(δ)R(γ)SR(−α)Jin,
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where

R(ω) =

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
,

denotes the matrix of rotation by an angle ω, where J (i) = [1, 0]T is the Jones vector of polarized incident
beam in the basis of polarizer eigenmodes. The output intensity being detected is

I(0) = I(i)(J (0))†J (0) = I(i)L,

where

L =rs cos(α)[exp(iδ) cos(γ) cos(β − γ)− sin(γ) sin(β − γ)]+

+rp cos(α)[exp(iδ) cos(γ) cos(β − γ)− sin(γ) sin(β − γ)],
(1.1)

with α = α − π/2, β = β − π/2. The data analyzed in this Thesis comes from the method called
Four-zone null ellipsometry, the apparatus has compensator with δ = π/2 and γ(±) = ±π4 .

Four-zone null ellipsometry The null-ellipsometry is an experimental technique which gives the
ellipsometric ratio ρ = rs/rp by searching null-intensity positions of the polarizer and analyzer according
to fixed positions of the compensator, i.e. angles for which L = 0, then

ρ = − tan(α)
±1 + i tan(β ∓ π

4 )

1∓ i tan(β ∓ π
4 )

,

see (1.1). Rewriting it as ρ = tan Ψ exp(i∆) there can be found by a use of the identity exp(2iω) =
(1 + i tan(ω))/(1− i tan(ω)) that

tan Ψ exp(i∆) = tan(α) exp(2i(β − π

4
)),

tan Ψ exp(i∆) = − tan(α) exp(2i(β − π

4
)),

which corresponds to γ(+), γ(−) respectively. Each of these equations have two solutions — here comes
the name “Four-zone null ellipsometry”. To eliminate the measurement errors, the four angles are
measured and the ellipsometer parameters are calculated as the averages

Ψ =
1

4
(α1 − α2 + α3 − α4) ,

∆ =
1

2

(
β1 − β2 + β3 − β4

)
.

Data processing Once the simulated and measured diffraction efficiencies are known, the shape of
grating profile can be determined by solving the inverse problem. Let

cos(Ej) = Se,j · Sm,j ,

where

Se,j =

sin(2ψe,j) cos(∆e,j)
sin(2ψe,j) sin(∆e,j)

cos(2ψe,j)

 ,

and

Sm,j =

sin(2ψm,j) cos(∆m,j)
sin(2ψm,j) sin(∆m,j)

cos(2ψm,j)

 ,
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denote a vector of the j−th experimental and modelled ellipsometric values. The sum of squares of
differences

E2
LS =

M∑
j=1

E2
j ,

will be minimized, giving the desired fitted parameters. The averaged error is then

E =
1

M

M∑
j=1

Ej .
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Chapter 2

EM fields in a periodic medium

2.1 The Maxwell equations

In the forthcoming sections we will mostly follow the derivations in [12], [14] and [15].
The propagation of light in a medium is described by the Maxwell equations

curl E(r, t) = −µ0
∂H(r, t)

∂t
div (ε0

←→εr (r) ·E(r, t)) = 0,

curl H(r, t) = ε0
←→εr (r)

∂E(r, t)

∂t
div H(r, t) = 0,

(2.1)

where E is a vector of electric field, H is a vector of magnetic field, ←→εr (r) is a tensor of relative permit-
tivity, ε0 is permittivity of vacuum, µ0 is magnetic permeability of vacuum, r ∈ R3 is a vector of spatial
coordinates and t ∈ R is time. During this Thesis we will suppose that

←→εr (r) = εr(r)

1 0 0
0 1 0
0 0 1

 ,

i.e. the medium is isotropic. The electric and magnetic fields are considered to be in a form of harmonic
monochromatic waves and can be written as

E(r, t) = E0(r)e−iωt, H(r, t) = H0(r)e−iωt.

Here E0(r) and H0(r) are initial states of the system, which can also depend on ω. Now clearly

∂H(r, t)

∂t
= −iωH(r, t),

∂E(r, t)

∂t
= −iωE(r, t).

and the system (2.1) can be rewritten as

curl E0(r) = iµ0ωH0(r) div (ε0εr(r, ω) ·E0(r)) = 0,

curl H0(r) = −iε0εr(r)ωE0(r) div H0(r) = 0.
(2.2)

The permittivity function εr(r, ω) is in general a complex valued function which can depend on ω. The
Ampère circuital law can be rewritten as

curl H0(r) = −iω
(
ε(r, ω)− iσ(r, ω)

ω

)
E0(r),

where ε(r) is a real valued permittivity and σ is the conductivity of the medium [16]. It is possible to
redefine ε and σ so that εr is preserved:

ε→ ε+ ε′, σ → σ − ω

4πi
ε′.
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The processes behind ε, σ are distinguishable only in the DC case, where ε describes the “bound charges”,
which are bound to the equilibrium positions and are stretched to new equilibrium positions by DC
current, and σ describes the “free charges”, which can move freely over arbitrary distance in response
to DC field. In the case of AC field this distinctions blurs. At low frequencies ω � 1/τ , where τ is a
relaxation time, the distinction can still be preserved - the free charges velocities will respond in phase
with the field, while the bound charge velocities will respond out of phase with the field. At higher
frequencies the distinction between free and bound electrons disappears - the convention is to denote by
σ the response of electrons in partially filled bans and by ε the response of the electrons in completely
filled bands. The response of all electrons is summed up into the single dielectric constant

εr(r, ω) = ε(r, ω) +
iσ(r, ω)

ω
,

which allows to use the same notation for metals and insulators. More details can be found in most of
classical books about electrodynamics, e.g. [16], Appendix K or in [17], Section 2. In one example in
Section 5 the real part of the square root of ε will be the refractive index, the complex part will be the
extinction coefficient, see Fig 5.15.

For clarity we will drop the notation for the space variable r, denote the fields simply E and H and
also make a rescaling

r→ k0r, H→ cµ0H0, ∇ →
1

k0
∇, E→ 1

ε0
E, (2.3)

where c is the speed of light and k0 = 2π/λ is a wavenumber, with λ being the wavelength. Since
k0 = ω/c and ε0µ0 = c−2, the system (2.2) has after the rescaling the form

curl E = iH div (εr ·E) = 0,

curl H = −iεrE div H = 0.
(2.4)

The rigorous formulation of boundary conditions and of the space of solutions will be given in the Section
2.6. As stated in the introduction our interest will be structures periodic in a given direction.

Figure 2.1: 1D-grating

We will consider a planar grating made of a material with the relative permittivity εr. We let
(x, y, z) ∈ R3 denote the Cartesian coordinate system. The function εr is then supposed to be periodic
in certain two directions, and we let z denote the axis perpendicular to these directions and z0 the top
of grating profile, see Fig. 2.1. The non-scaled height of the grating is d = z0/k0.
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One of the most important type of a grating in this Thesis will be a relief grating, where the permit-
tivity is defined by

εr(r) =

{
εr,0 if (x, y, z) ∈ D+,
εr,2 if (x, y, z) ∈ D−,

with D+ and D− being the regions above and below grating and r denotes a vector of spatial coordinates.
Since the system is scaled to ε0 = 1, we will relabel εr,0, εr,2 to ε0, ε2, respectively. The grating profile
P is assumed to be a bounded function. The grating is illuminated from D+ by an incident wave

Ei = E0,i exp(iqir) = E0,i exp (in0(y sinϑi − z cosϑi)) ,

where qi = [0, n0 sin(ϑi),−n0 cos(ϑi)] is the wave vector, ϑi is the angle of incidence, n0 = c
√
ε0 is a

refractive index of ambient media in D+ and E0,i is a vector of polarization of the incident wave. If the
medium in D+ is the air, then n0 = 1. The coordinate system is chosen so that ϑi ∈ (0, π/2). This
incident wave induces diffracted waves Er (reflected) in D+ and Et (transmitted) wave in D−. The
diffracted fields must satisfy so-called radiation conditions:

Diffracted fields must remain bounded and propagate upwards in D+ as z →∞,

Diffracted fields must remain bounded and propagate downwards in D− as z → −∞,
(2.5)

and these two conditions are supplemented with so-called interface conditions:

(Ei|z→P+ + Er|z→P+)× n = Et|z→P− × n, for all x, y ∈ R,
(Hi|z→P+ + Hr|z→P+)× n = Ht|z→P− × n for all x, y ∈ R,

(2.6)

where n is a unit normal to the profile oriented towards region D+, and the limits z → P± means that
for fixed x the coordinate z converges to the grating profile in the respective domains. The conditions
(2.6) express the fact that on the grating profile the tangential component of the electric field and the
magnetic field strength must be continuous. This follows simply from the Faraday’s law. Let us note,
that it is true only under the assumption that the permittivities of the media are bounded. However, it
will be always valid in all studied systems herein.

In practical computations it can be in some cases, see Section 2.3 and the following, advantageous to
divide the problem into three regions — the region D0 above the grating top, the grating region D1 and
the substrate region D2, see Fig. 2.1. More precisely, the permittivity is defined by

εr(r) =

 ε0 if (x, y, z) ∈ D0,
εr,1 if (x, y, z) ∈ D1

ε2 if (x, y, z) ∈ D2,

The radiation conditions (2.5) are now supposed for the sets D0, D2, the interface conditions (2.6) must
be fulfilled on every interface. In some cases it is convenient to divide the area D1 even in more layers.
Such procedure will be discussed in Sections 2.5, 3.5. For simplicity we relabel ε1 := εr,1.

2.2 One-dimensional isotropic gratings

This Thesis is focused on 1D gratings. The permittivity function is invariant in one given direction, we
let denote it as x. The function εr satisfies

εr(x, y, z) = εr(y, z) for all (x, y, z) ∈ R3 (εr is indepdent of x) (2.7)

εr(x, y + Λ0, z) = εr(x, y, z) for all (x, y, z) ∈ R3 (εr is periodic in y)

here Λ0 denotes the periodicity of the grating. More precisely, if Λ is the period of the grating in the
non-scaled coordinates, in the scaled coordinates the length of the period is Λ0 = Λk0 = 2πΛ/λ, see
(2.3).
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Due to (2.7) the electric and magnetic fields E and H are independent of x. Keeping in mind that
E = E(y, z), H = H(y, z) the equations (2.4) have the form

curl E =

(
∂Ez
∂y
− ∂Ey

∂z
,
∂Ex
∂z

,−∂Ex
∂y

)
= i(Hx, Hy, Hz),

curl H =

(
∂Hz

∂y
− ∂Hy

∂z
,
∂Hx

∂z
,−∂Hx

∂y

)
= iεr(Ex, Ey, Ez).

(2.8)

The vector normal to the profile is now n = (0, ny, nz) and the interface conditions (2.6) reduces to

Ei,x|z→P+ + Er,x|z→P+ = Et,x|z→P−, (2.9)

Ei,y|z→P+nz − Ei,z|z→P+ny + Er,y|z→P+nz − Er,z|z→P+ny = Et,y|z→P−nz − Et,z|z→P−ny, (2.10)

Hi,x|z→P+ +Hr,x|z→P+ = Ht,x|z→P−, (2.11)

Hi,y|z→P+nz −Hi,z|z→P+ny +Hr,y|z→P+nz −Hr,z|z→P+ny = Ht,y|z→P−nz −Ht,z|z→P−ny, (2.12)

The equations (2.8) together with (2.9)–(2.12) can be separated into two independent sets. We split the
vector E as

E = (Ex, 0, 0) + (0, Ey, Ez) = Eŝ + Ep̂,

and the vector H then must be splitted as

H = (0, Hy, Hz) + (Hx, 0, 0) = Hŝ + Hp̂.

The field having E = (Ex, 0, 0) is called TE-polarized (also s-polarized), the field with H = (Hx, 0, 0) is
called TM-polarized (also p-polarized). The shortcut TE means “Transverse Electric”, the vector of po-
larization of electric wave is perpendicular to the direction of wave propagation. The shortcut TM means
“Transverse Magnetic”, expressing that the vector of polarization of magnetic wave is perpendicular to
direction of wave propagation.

TE polarization The equations for TE polarization have the form

∂Ex
∂z

= iHy, (2.13)

∂Ex
∂y

= −iHz, (2.14)

∂Hz

∂y
− ∂Hy

∂z
= −iεrEx, (2.15)

and with the interface conditions (2.9), (2.12). Formal putting of (2.13) and (2.14) into (2.15) gives one
second-order equation

−∆Ex = εrEx, (2.16)

with interface conditions

Er,x|z→P+ − Et,x|z→P− = −Ei,x|z→P+ = −E0,ix exp(in0(y sin(ϑi)− z cos(ϑi)))|z→P+,

n · ∇Er,x
∣∣∣
z→P+

− n · ∇Et,x
∣∣∣
z→P−

= −n · ∇Ei,x
∣∣∣
z→P+

=

= −iE0,ixn · qi exp(in0(y sin(ϑi)− z cos(ϑi)))
∣∣∣
z→P+

(2.17)

and the radiation conditions (2.5).

12



TM polarization The equations for TM polarization are

∂Hx

∂z
= −iεrEy, (2.18)

∂Hx

∂y
= iεrEz, (2.19)

∂Ez
∂y
− ∂Ey

∂z
= iHx, (2.20)

with the interface conditions (2.11), (2.10). The similar procedure for TM-polarized system formally
yields

−div

(
1

εr
∇Hx

)
= Hx (2.21)

with the radiation condition (2.5) and with the interface conditions

Hr,x|z→P+ −Ht,x|z→P− = −Hi,x|z→P+ = −H0,x exp(in0(y sin(ϑi)− z cos(ϑi)))
∣∣∣
z→P+

1

ε0
n · ∇Hr,x

∣∣∣
z→P+

− 1

ε2
n · ∇Ht,x

∣∣∣
z→P−

= − 1

ε0
n · ∇Hi,x

∣∣∣
z→P−

=

= −iH0,xn · qi exp(in0(y sin(ϑi)− z cos(ϑi)))
∣∣∣
z→P+

,

(2.22)

where H0 can be found from the field of the incident electric wave as

H0 = qi ×E0,i.

If there are more interfaces, the condition (2.22) must be considered for every interface separately.
The general system is now described as a superposition of TE and TM polarized states (s- and

p-polarized states respectively), see Remark on general polarization on pg. 17.

2.3 The Rayleigh expansion and pseudoperiodicity

It can be useful to divide the whole problem into three regions in z as (−∞, 0), (0, z0), (z0,∞). In these
three regions the relative permittivity is

εr(y, z) =

 ε0 if z > z0,
ε1(y, z) if z ∈ (0, z0)
ε2 if z < 0

In such a case, it is necessary to consider four interface conditions (one pair for each interface):

(Ei|z→z0+ + Er|z→z0+)× n = (E+|z→z0− + E−|z→z0−)× n

(Hi|z→z0+ + Hr|z→z0−)× n = (H+|z→z0− + H−|z→z0−)× n

(E+|z→0+ + E−|z→0+)× n = Et|z→0− × n

(H+|z→0+ + H−|z→0+)× n = Ht|z→0− × n,

(2.23)

for all y ∈ R, cf. (2.6).

TE polarization The periodicity of grating induces a translation symmetry of the electric and mag-
netic field in the substrate and superstrate media, which can be described as

Er(x, y + Λ0, z) = Er(x, y, z) exp[iq0Λ0] for all x, y ∈ R, z > z0

Et(x, y + Λ0, z) = Et(x, y, z) exp[iq0Λ0] for all x, y ∈ R, z < 0,
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where q0 = n0 sin(ϑi), z0 is a top of the grating and 0 is its bottom. The nonzero component of Er,Et

Erx(x, y, z) exp(−iq0y), Etx(x, y, z) exp(−iq0y),

are periodic and can be written in a form of Fourier series

Erx(y, z) exp(−iq0y) =

∞∑
m=−∞

Emrx(z) exp (imqy) ,

Etx(y, z) exp(−iq0y) =

∞∑
m=−∞

Emtx(z) exp (imqy) ,

with q = λ/Λ = 2π/Λ0 (λ denotes the wavelength of the incident wave). Now

Erx(x, y, z) =

∞∑
m=−∞

Emrx(z) exp (iqmy) ,

Etx(x, y, z) =

∞∑
m=−∞

Emtx(z) exp (iqmy) ,

where qm := n0 sin(ϑi)+mq. The function εr is constant in half-planes z > z0 and z < 0. This formulae,
used in (2.16) yields two ODE’s:

∞∑
m=−∞

(
d2Emrx(z)

dz2
+ (ε0 − q2

m)Erx(z)

)
exp(iqmy) = 0, for z > z0, y ∈ R,

∞∑
m=−∞

(
d2Emtx(z)

dz2
+ (ε2 − q2

m)Etx(z)

)
exp (iqmy) = 0 for z < 0, y ∈ R,

which splits into an infinite system of ODE’s

d2Emrx(z)

dz2
+ s2

r,mE
m
rx(z) = 0 for z > z0,

d2Emtx(z)

dz2
+ s2

t,mE
m
tx(z) = 0 for z < 0,

where sr,m = ± c
√
ε0 − q2

m, st,m = ± c
√
ε2 − q2

m. The coefficients st,m are chosen in a way that Re(st,m)+
Im(st,m) > 0, similarly for sr,m. The fields are then

Erx(x, y, z) =

∞∑
m=−∞

Amrx exp (iqmy + isr,mz) +Bmrx exp (iqmy − isr,mz) = 0, z > z0

Etx(x, y, z) =

∞∑
m=−∞

Amtx exp (iqmy − ist,m) +Bmtx exp (iqmy + ist,m) = 0, z < 0,

where Amrx, A
m
tx, B

m
rx, B

m
tx are constants. Due to the radiation condition the downward propagation of the

reflected waves and upward propagation of the transmitted waves must be excluded, i.e. Bmrx = 0, Bmtx = 0
for all m ∈ Z, and hence, the final form of the fields outside the grating region is

Ei(y, z) = Ai exp(iq0y − isi,0z) = Ai exp(in0(sin(ϑi)y − cos(ϑi)z))

Er(y, z) =

∞∑
m=−∞

Am
r exp (iqmy + isr,mz) , for all y ∈ R, z > z0

Et(y, z) =

∞∑
m=−∞

Am
t exp (iqmy − ist,m) for all y ∈ R, z < 0,
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where only x-components of the vectors are nonzero. It remains to describe a wave propagation in the
grating region D1. The Rayleigh expansion is not possible here, but it is possible to treat it via Floquet
theorem — which treats the fields via pseudo-Fourier series in a similar way as the Rayleigh series in
previous derivations. Let z1 ∈ (0, z0) be arbitrary fixed. Due to the periodicity of the grating, the electric
field is again periodic here, which mathematically stated means that

E(y + Λ0, z1) = E(y, z1) exp[iq0Λ0].

Using Floquet Theorem the electric field can be written as

E(y, z1) = e(y, z1) exp(iq0y),

with e(y, z1) being periodic in y with the periodicity Λ0. Therefore e(y, z1) can be expanded into the
Fourier series

e(y, z1) =

∞∑
n=−∞

en(z1) exp(inqy),

and the entire field is then

E(y, z) =

∞∑
n=−∞

en(z) exp(iqny),

with qn = q0 + nq. In the same way we can expand the magnetic fields. The permittivity function ε1 is
periodic in y for any fixed z1 ∈ (0, z0) and can be expanded into a Fourier series

ε1(y, z) =

∞∑
m=−∞

ε̂m(z)eimqy, z ∈ (0, z0), y ∈ R.

For TE polarization the vector e = (ex, 0, 0) and

Ex(y, z) =

∞∑
n=−∞

ex,n(z) exp(iqny).

For simplicity we drop the index x. Inserting this expansion of Ex and ε1 into (2.16) gives[
d2

dy2
+

d2

dz2

] ∞∑
n=−∞

en(z) exp(iqny) = −

( ∞∑
m=−∞

ε̂m exp(imqy)

)( ∞∑
n=−∞

en(z) exp(iqny)

)
,

and the use of Laurent rule for a multiplication of two series( ∞∑
m=−∞

fm

)( ∞∑
n=−∞

gn

)
=

∞∑
m=−∞

∞∑
n=−∞

fn−mgm,

gives a system[
d2

dy2
+

d2

dz2

] ∞∑
n=−∞

en(z) exp(iqny) = −
∞∑

m=−∞

∞∑
n=−∞

en(z)ε̂n−m(z) exp(iqmy).

The exponential functions are linearly independent which leads to a system of coupled ODE’s

d2en(z)

dz2
= q2

nen(z)−
∞∑

m=−∞
ε̂n−m(z)em(z) =

(
diag(q)2e(z)− [[ε1]] e(z)

)
n
, (2.24)
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where ([[ε1]])mn := εm−n(z) is a Toeplitz matrix of Fourier coefficients of ε1. If ε1 is independent of z,
then [[ε1]] is a constant matrix and has a form

[[ε1]] =



ε̂0 ε̂−1 ε̂−2 ε̂−3 · · ·

ε̂1 ε̂0 ε̂−1 ε̂−2
. . .

ε̂2 ε̂1 ε̂0 ε̂−1
. . .

ε̂3 ε̂2 ε̂1 ε̂0
. . .

...
. . .

. . .
. . .

. . .


.

As there are four sets of constants Amrx, A
m
tx, A

m
+ , A

m
− to determine, this second order ODE must be

complemented with four initial (interface) conditions derived from (2.23), see also (2.17).

TM polarization Similarly the TM polarization can be treated using Rayleigh expansion and Floquet
Theorem. Above and below the grating region the similar procedure as for TE polarization leads to series

Hi(y, z) = Ai exp(in0(sin(ϑi)y − cos(ϑi)z)) = Ai exp(iq0y − is0,iz)

Hr(y, z) =

∞∑
m=−∞

Am
r exp (i(qmy − sr,mz)) , for all y ∈ R, z > z0

Ht(y, z) =

∞∑
m=−∞

Am
t exp (i(qmy − st,mz)) , for all y ∈ R, z < 0.

and thence, for the TM polarized field H = (Hx, 0, 0) the nonzero components are

Hix(x, y, z) = Aix,0 exp(i(q0y − si,0z)), z > z0

Hrx(x, y, z) =

∞∑
m=−∞

Amrx(z) exp (iqmy) , z > z0

Htx(x, y, z) =

∞∑
m=−∞

Amtx(z) exp (iqmy) , z < 0.

The expansion in the grating region is more complex. Let ε1 be independent of z. Similar procedure as
for TE case gives that the field Hx in the grating region can be expressed as

Hx(y, z) =

∞∑
m=−∞

hm(z) exp(iqmy).

The equation (2.21) can be rewritten as

∂2
zHx − ε1∂y

(
1

ε1
∂yHx

)
= ε1Hx.

and putting the Fourier series of ε1 and Hx and using the Laurent rule leads to

dhk(z)

dz2
=

∞∑
n=−∞

[[ε1]]kn

( ∞∑
m=−∞

([[
1

ε1

]]
nm

)
qmqnhm(z)− δmnhm(z)

)
. (2.25)

This equation must be supplemented with the four respective initial (interface) conditions. It will be seen
later that although this formulation is correct, the simple truncation is without further modifications
inconvenient as a numerical method.
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General polarization A general polarization state can be expressed as a superposition of TM and
TE polarized states:

Ei = Ei,ŝ + Ei,p̂ = Ei,sx + Ei,p(y cos(ϑi) + z sin(ϑi)),

Am
r = Am

r,ŝ + Am
r,p̂ = Amr,sx +Amr,p(−y cos(ϑi)− z sin(ϑi)),

Am
t = Am

t,ŝ + Am
t,p̂ = Amt,sx +Amt,p(y cos(ϑi) + z sin(ϑi)),

for all m ∈ Z and similarly for the magnetic fields

Hi = Hi,ŝ + Hi,p̂ = Hi,sx +Hi,p(y cos(ϑi) + z sin(ϑi)),

Am
r = Am

r,ŝ + Am
r,p̂ = Amr,sx +Amr,p(−y cos(ϑi)− z sin(ϑi)),

Am
t = Am

t,ŝ + Am
t,p̂ = Amt,sx +Amt,p(y cos(ϑi) + z sin(ϑi)),

for all m ∈ Z.

2.4 Energy balance

The energy conservation is used to get quantities of the grating problem which can be measured ex-
perimentally. The energy of the incident wave must be the same as the energy of the reflected and
transmitted waves. The intensity is a size of Poynting vector and the energy balance can be expressed
as an equality between the z-propagating orders∑

m∈U0

sr,m|Amrx|2 +
∑
m∈U2

ε0

ε2
st,m|Amtx|2 = |si,0|2,

where U0, U2 contains the indices of z-propagating orders in the respective domains. Dividing by |si,0|2
leads to an energy balance ∑

m∈U0

sr,m
|Amrx|2

|si,0|2
+
∑
m∈U2

st,m
ε0

ε2

|Amtx|2

|si,0|2
= 1.

The diffraction efficiencies are then defined by

r0,m =
|Amrx|2

|si,0|2
s0,m, m ∈ U0

t2,m =
ε0

ε2

|Amtx|2

|si,0|2
s2,m, m ∈ U2.

(2.26)

Of a special interest will be the zeroth diffraction order. The generalized amplitude reflection and
transmission coefficients

rm :=
Amrx
Aix

,

tm :=
Amtx
Aix

(2.27)

are found for both polarizations and the ellipsometry parameters can be calculated as

ρ(m)
r =

rpm
rsm

= tanψ(r) exp(i∆(r)),

ρ
(m)
t =

tpm
tsm

= tanψ(t) exp(i∆(t)),
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where s, p denotes the polarization of the incident wave (TE and TM respectively). Of a special interest
are the zeroth orders from which the ellipsometry parameters can be obtained via the formula

ψ = arctan(|ρ(0)
r |),

δ = Arg(ρ(0)
r ).

These ellipsometry parameters can be measured experimentally, the experimental techniques are ex-
plained in Section 1.3.

2.5 Multilayered gratings and staircase approximation

The grating region or substrate can be composed of more layers. The technique to solve these systems
is to solve equations of light propagation in each layer separately, and then join them by a use of the
interface conditions. More precisely, the system which consists of N layers with the non-intersecting
profiles Pk splits into

−∆Ex = εr,jEx, j = 0, ..., N + 1 (2.28)

where

εr =


εr,0 = ε0 if (y, z) ∈ superstrate,
εr,1 if (y, z) ∈ 1st layer,
. . . ,
εr,N if (y, z) ∈ N th layer,
εr,N+1 = ε2 if (y, z) ∈ substrate.

(2.29)

To avoid the presence of too much indices in the expression it will be made a relabeling E ≡ Ex. The
interface conditions are

Ei|z→P0+ + Er|z→P0+ = E+,1|z→P0− + E−,1|z→P0− ,

E+,k|z→Pk+ + E−,k|z→Pk+ = E+,k+1|z→Pk− + E−,k+1|z→Pk− for k = 1, ..., N − 1

E+,N |z→PN+
+ E−,N |z→PN+

= Et|z→PN− ,

n · (∇Ei +∇Er)
∣∣∣
z→P0+

= n · (∇E+,1 +∇E−,1)
∣∣∣
z→P0−

n · (∇E+,k +∇E−,k)
∣∣∣
z→Pk+

= n · (∇E+,k+1 +∇E−,k+1)
∣∣∣
z→Pk−

for k = 1, ..., N − 1

n · (∇E+,N +∇E−,N )
∣∣∣
z→PN+

= n · ∇Et
∣∣∣
z→PN−

,

(2.30)

where + and − index denotes the incoming and outgoing fields w.r.t. to the boundary and a number
in the index determines the permittivity (layer). For a system consisting of N parallel layers having the
interfaces in the planes z0 > z1 > ... > zN+1 = 0, which will be the case of the FMM, the permittivity
and the interface conditions can be formulated as follows:

εr =


ε0 = 1 if z > z0,
εr,1 if z1 < z < z0,
. . . ,
εr,N if 0 < z < zN ,
εr,N+1 = ε2 if z < 0.

(2.31)

The interface conditions for such problem are derived from (2.30) by putting Pi := zi, i = 0, ..., N .
The equations in the case of TM polarization are

∂2
zHx − εr∂y

(
1

εr
∂yHx

)
= εrHx.
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where εr is given by (2.29). The interface conditions are

Hr|z→P0+
+Hi|z→P0+

= H+,1|z→P0− +H−,1|z→P0− ,

H+,k|z→Pk+ +H−,k|z→Pk+ = H+,k+1|z→Pk− +H−,k+1|z→Pk− for k = 1, ...N − 1

H+,N |z→PN+
+H−,N |z→PN+

= Ht|z→PN− ,

n · 1

ε0
(∇Hi +∇Hr)

∣∣∣
z→P0+

= n · 1

εr,1
(∇H1,+ +∇H1,−)

∣∣∣
z→P0−

n · 1

εr,k
(∇H+,k +∇H−,k)

∣∣∣
z→Pk+

= n · 1

εr,k+1
(∇H+,k+1 +∇H−,k+1)

∣∣∣
z→Pk−

for k = 1, ...N − 1

n · 1

εr,N
(∇H+,N +∇H−,N )

∣∣∣
z→PN+

=
1

ε2
∇Ht

∣∣∣∣∣
PN−

.

(2.32)

on every interface. Especially, the permittivity for the problem with N parallel interfaces in the planes
z0 > z1 > ... > zN+1 = 0 is (2.31) and the interface conditions are derived from (2.32) by a simple
substitution Pk := zk, k = 0, ..., N .

This approach can also be used to treat curved gratings, e.g. sinusoidal or triangular via Fourier
Modal Method using a so-called staircase approximation. The grating region is divided into several
layers, each respective to the shape of grating, see Fig. 2.2 and the technique for multilayered grating is
applied on this system.

Figure 2.2: Staircase approximation

The equations for grating region in TE and TM polarization can be derived in the same way as (2.24),
(2.25). This derived numerical scheme will be called the Lalanne–Morris technique (LMT). However,
without further modifications it cannot be truncated, because then it does not converge to a sinusoidal
grating as N → ∞, see [18], Chapter VI 5.3, [19]. The formulation which truncation converges to the
exact result was developed in [9] and will be described in Section 3.5. Another way how to treat sinusoidal
or in general gratings with C0,1 profile is in use of Coordinate transformation method, which will be
discussed in Chapter 4.

2.6 Variational formulation, well-posedness and the FEM

The RCWA and the C-Method are not the only approximation technique which can be used to solve the
grating problem. Often used method is also the Finite Element Method (FEM), which will be shortly
described here, because much more rigorous results are known for this problem. The two most important
problems are related with the well-posedness. The first one is the direct problem:

Given the grating geometry and incident field, solution of the Maxwell equation predicts the

behavior of the outgoing fields.

The second problem is related to the inverse problem:

Given the incident field and outgoing fields, the grating profile is uniquely determined.
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These two problems were an interest of several papers and books, e.g. [20], [21], [22]. Here we will shortly
review the results given in [20] and [22], Chapter 6.

Direct problem The case of TE polarization will be discussed first. Since the existence and uniqueness
will be dependent on the angular frequency ω of the light, it is necessary to go back to the non-scaled
problem, which is a Helmholtz equation

4Ex + k2Ex = 0 in R2, (2.33)

where k2 = µεrω
2. This equation is supplemented with the radiation conditions and the assumption

of periodicity of εr. The last assumption induces the pseudo-periodicity of the solution. We let denote
k0 = µε0εr,0ω

2, k2 = µε0εr,2ω
2 and suppose that Im(k0) ≥ 0, Im(k2) ≥ 0. If Ex is a pseudo-periodic

solution of (2.33), then the function Eα := exp(−iαy)Ex, with α := 2π/Λ, is periodic in y and it is a
solution of the problem

(∆α + k2)Eα := (∆ + 2iα∂y − |α|2)Ex = 0.

The function Eα is periodic in y and can be expanded to the Fourier series

Eα =

∞∑
m=−∞

em(z) exp(iαmy).

In the domains D0 and D2 the function Eα can be represented by the Rayleigh series

Eα|D0
=

∞∑
m=−∞

Ar,m exp[i(αmy + β0,mz)],

Eα|D2
=

∞∑
m=−∞

At,m exp[i(αmy − β2,mz)],

(2.34)

where αm, βm are non-scaled equivalents of qm, sm from previous sections. It can be found that

em(z) = em(d) exp[iβ0,n(z − d)], for m 6= 0, z ≥ d,
e0(z) = em(d) exp[iβ0,m(z − d)] + exp(−iβ0z), for z ≥ d,
em(z) = em(0) exp[−iβ2,nz] for z ≤ 0.

(2.35)

The boundary conditions can be then constructed using (2.34) and (2.35):

∂Eα
∂n

∣∣∣∣∣
z=d

= T0(Eα)|z=d − iβ0 exp(−β0d),

∂Eα
∂n

∣∣∣∣∣
z=0

= T2(Eα)|z=0,

(2.36)

where

Tj(Eα) =

∞∑
m=−∞

iβj,mem(z) exp(−iαmy).

The grating problem can be then formulated as follows. Find Eα ∈ H1(D1) satisfying

∆αEα + k2Eα = 0
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and the boundary conditions (2.36). The weak formulation of the grating problem is

−
∫
D1

∇Eα · ∇φ+ 2iα

∫
D1

∂yEαφ−
∫
D1

|α|2Eαφ+

+

∫
{z=d}

T0(Eα)φ+

∫
{z=0}

T2(Eα)φ− 2iβ0

∫
{z=d}

exp(−iβ0d)φ = 0,

for all φ ∈ H1(D1).

(2.37)

The problem in TM polarization can be treated similarly. The elliptic equation is

∇α ·
[(

1

k2

)
∇αHα

]
+Hα = 0,

with ∇α := ∇ + i(α, 0). The boundary conditions can be derived similarly as for TE case. The weak
formulation in the case of TM polarization is

− 1

k2

∫
D1

∇Hα · ∇φ+

∫
D1

(
ω2 − α2

k2

)
Hαφ+ iα

∫
D1

1

k2

(
∂yHαφ

)
− iα

∫
D1

1

k2
Hα∂yφ+

+

∫
{z=d}

1

k2
0

T0(Hα)φ+

∫
{z=0}

1

k2
2

T2(Hα)φ− 2iβ0

∫
{z=d}

1

k2
2

exp(−iβ0d)φ = 0,

for all φ ∈ H1(D1).

(2.38)

As now the weak formulation of both problems is done, it is possible to discuss the results related to
it. The existence and uniqueness of the solution of both problems was discussed in [23] and [24]. The
results can be summarized as follows:

The diffraction problem has a unique solution up to a set of countable frequencies ωj,

|ωj |2 →∞.

It is necessary to emphasize the role of the frequency ω here. As the form of this results suggests, the
authors have rewritten the weak problem as an operator equation and then used the Fredholm theory.
The second result concerns a special case:

If Im ε0 > 0 or Im ε2 > 0, then the solution of the grating problem is unique.
This condition is clearly not satisfied for dielectric gratings. The smooth dependence on data was

proved in [23]. However, the continuous dependence on the grating profile was proved only for the case
of C1 smoothness. More precisely, there exists a constant C > 0 such that if f, g are two gratings profile
and Exf and Exg are respective solutions of the grating problem, then

‖Exf − Exg‖ ≤ C‖f − g‖C1 .

Analogously for TM polarization.
Since the existence results are based on a variational formulation of the problem, they are not ap-

plicable for a formulation used in Fourier Modal Methods. However, the approximations obtained by
the FMM were compared to the FEM ones (see e.g. [25], [26]) and a good coincidence in most standard
problems suggests that the FMM give a fair approximation of the solution of grating problem.

Finite element methods A solution of the grating problem can be approximated also by the use of
the Finite Element Method. It is based on the formulation (2.37) for TE polarization and (2.38) for TM
polarization. The general formulation is

aTE(Eα, φ) = (fTE , φ), aTM (Hα, φ) = (fTM , φ)
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where

aTE(Eα, φ) := −
∫
D1

∇Eα · ∇φ+ 2iα

∫
D1

∂yEαφ−
∫
D1

|α|2Eαφ+

∫
{z=d}

T0(Eα)φ+

∫
{z=0}

T2(Eα)φ,

(fTE , φ) := 2iβ0

∫
{z=z0}

exp(−iβ0d)φ,

aTM (Hα, φ) := − 1

k2

∫
D1

∇Hα · ∇φ+

∫
D1

(
ω2 − α2

k2

)
Hαφ+ iα

∫
D1

1

k2

(
∂yHαφ

)
− iα

∫
D1

1

k2
Hα∂yφ+

+

∫
{z=d}

1

k2
0

T0(Hα)φ+

∫
{z=0}

1

k2
2

T2(Hα)φ,

(fTM , φ) = 2iβ0

∫
{z=d}

exp(−iβ0d)φ

A finite-dimensional subspace of the space of solutions will be denoted as {Sh}h∈[0,1], typically piecewise
polynomials. The finite-dimensional approximation is found by solving

uh : aTE/TM (uh, φh) = (fTE/TM , φ
h) for all φh ∈ Sh. (2.39)

By choosing a basis {φ1, ...φk} of Sh the system can be written as a finite-dimensional algebraic problem.
Solving this algebraic problem gives the desired approximation uh. A vast number of convergence
properties are known for this method, we will mention only the most important ones. The first one
is for TE polarization:

There exists a constant h0 ∈ (0, 1] such that for any h, 0 < h < h0, the discretized problem (2.39)
attains a unique solution uh and

‖Eα − uh‖L2(Ω) ≤ Ch2.

The second one is for TM polarization:
Assume that the equation (2.39) has unique solution. Let f ∈ L2(Ω). For any given δ > 0 there

exists h1 = h1(δ) such such that for all 0 < h < h1,

‖Hα − uh‖H1 ≤ δ‖f‖L2(Ω).

Uniqueness of inverse problem The inverse problem can be formulated as follows:
Given the incident wave Ei = exp(iαy − iβz), with the angle of incidence −π/2 < ϑi < π/2 and the

diffracted fields Er,Et, determine the grating profile.
Much less is known here about the existence, uniqueness and stability, especially for TM case. In the

TE case the system is described by the equation

∆Ex + k2Ex = 0,

with the b.c. (2.36). In general, the inverse problem is underdetermined. Despite of this underdetermi-
nation, there are some uniqueness results. Let us assume that two profiles a1, a2 are sufficiently smooth,
and let us denote T := max{a1(y), a2(y)} −min{a1(y), a2(y)}.

Assume that E1(y, z0) = E2(y, z0). Suppose that one of the following conditions is true:

• k has a nonzero imaginary part

• k is real and T satisfies k2 < 2(T−2 + Λ−2).

Then a1(y) = a2(y).
If the first condition is true, than one have a global uniqueness results. However, if the second

condition is true, then the result is only local — i.e. two grating profiles are identical if and only if they
generate the same diffraction patterns and the area between them is “sufficiently small”.

Much more important problem is the stability result.

22



The Hausdorff distance between two domains D1, D2 will be defined by

d(D1, D2) = max{ρ(D1, D2), ρ(D2, D1)},

where

ρ(D1, D2) = sup
x∈D1

inf
y∈D2

|x− y|.

Let

D = {(y, z)|a(y) < z < z0}, and Dh = {(y, z)|a(y) + hσh(y)µ(y) < z < d},

for all h < h0, where h0 is a certain threshold and µ(y) is a normal to the profile P ≡ {z = a(y)}.
Assume that the profile ah(y) := a(y) +hσh(y)µ(y) is periodic with the period Λ and there exists C > 0
so that |σh(y)| ≤ C for all y ∈ R. Suppose

C1h ≤ d(D,Dh) < C2h for h sufficiently small.

Suppose Ex, Exh being solutions of the scattering problems with the profiles S, Sh respectively. Then

d(Dh, D) ≤ C‖uh|z=d − u|z=d‖H1/2 ,

where H1/2 is a fractional Sobolev space.
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Chapter 3

The Rigorous Coupled Wave
Analysis

The Rigorous Coupled Wave Analysis (RCWA) was constructed for rectangular gratings. For such
gratings, the system can be divided into three regions. The first is the superstrate medium, typically air
or vacuum, the third is a substrate medium and the one between them is a grating region, see Fig. 3.1. In
the grating region the relative permittivity is considered to be periodic and constant in z direction. The
problem is solved separately in each region and these solutions are joined together using the interface
conditions.

Figure 3.1: Rectangular grating — the checkerboard is a grating region with the permittivity εr

In the grating region the permittivity ε1 = εr is depending only on y and therefore the matrix [[ε1]]
is constant. The idea is to truncate the fields and approximate the solution of the infinite-dimensional
ODE systems (2.24), (2.25) by a solution of a linear algebraic system. The interface conditions will
be truncated as well in order to get a system of linear equations. Such systems can be solved easily
by a suitable software package (in this Thesis it will be MATLAB 2014b). The procedure for TE
polarization will be described in the first subsection, for TM polarization in the second subsection the
following subsection will be devoted to explaining the problems originating from the truncation and the
last section will contain a description of the algorithm modeling the optical response of curved gratings.
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Remark 1. Using the definition of Fourier series it can be found that the function ε1 from the Fig. 3.1
can be written as

ε1 =

∞∑
n=−∞

i

2πn
(exp(−iπwn)− exp(iπwn)) (εr,1 − ε0) exp(inqy), (3.1)

where w is a fill factor, that means the ratio

w =
Λ1 − Λ0

Λ
.

3.1 Matrix formulation of problem in TE polarization

According to Rayleigh Theorem the total fields in the upper and lower semi-infinite regions can be written
as

Ex(y, z) = Eix(y, z) + Erx(y, z) = Ai exp(iq0y − isi,0z) +

∞∑
m=−∞

Amrx exp(iqmy + isr,mz), z > z0

Ex(y, z) = Etx(y, z) =

∞∑
m=−∞

Amtx exp(iqmy − ist,mz), z < 0,

and in the grating region the field is

E1x(y, z) =

∞∑
n=−∞

en(z) exp(iqny),

where en(z) is a solution of (2.24).
The system (2.24) is a linear system of ODE’s and therefore it is convenient to make an Ansatz

en(z) := e
(s)
n exp[isz]. It leads to an infinite-dimensional algebraic eigenvalue problem(

[[ε1]]− q2
)
e(s) = s2e(s), (3.2)

where q2 = diag(q2
m). The key step here is the truncation of the fields. By cutting the Rayleigh expansion

of the fields from m1 in the lower index and m2 in the upper index, i.e.

Ex(y, z) = Ai exp(iq0y − isi,0z) +

m2∑
m=m1

Amrx exp(iqmy + isr,mz), z > z0

Etx(y, z) =

m2∑
m=m1

Amtx exp(iqmy − ist,mz), z < 0,

E1x(y, z) =

m2∑
m=m1

em(z) exp(iqmy), z ∈ (0, z0),

εr(y) =

m2∑
m=m1

εme
imqy,

the equation (3.2) is reduced to a finite-dimensional eigenvalue problem

Cννν = µννν,

with C =
(
[[ε]]− q2

)
[m1,m2]

being a truncation of [[ε]] − q2, µ ∈ R and ννν = (em1
, ...em2

) ∈ RM , where

M := m2 −m1 + 1 is a total number of indices. Such eigenvalue equation has M complex solutions µj .
The propagation numbers are the complex square roots of µj :

s±j = ± c
√
µj ,
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where the plus sign corresponds to upward modes and minus sign corresponds to downward modes. Since
s−j = −s+

j it is convenient to drop the superscript and relabel sj := s+
j , then s−j = −sj . By introducing

a matrix diagonalizer G = [νννm1
, ..., νννm2

] and a diagonal matrix µµµ = diag(µm1
, ...µm2

) the matrix C can
be written as

C = GµµµG−1.

The so-called propagation matrices are defined by

P+
z = Pz = G exp(isz)G−1,

P−z = P−1
z = G exp(−isz)G−1,

(3.3)

where s = diag(sm1 , ...sm2). These matrices determine a transformation of the electric and magnetic
field between planes with different z coordinate. The general solution of the equations in the grating
region can be written as

e1x(z) =
(

exp(i
√
Cz)A+ + exp(−i

√
Cz)A−

)
,

with the vectors A+,A− which should be determined from the interface conditions. As can be seen
from the form of the solution the field in the grating region is composed of two fields — upward and
downward. The magnetic field intensity is found from the equation (2.13) as

H1y,m(y, z) = −i∂Ex
∂z

=
(√

C exp(i
√
Cz)A+ −

√
C exp(−i

√
Cz)A−

)
exp(iqmy).

The matrix
√
C is called “admittance matrix”, is denoted as Y1 and can be computed from

Y1 :=
√
C = GsG−1. (3.4)

Theoretically it could happen that the matrix C is not diagonalizable, in such a case it is necessary to
replace the diagonal matrix µµµ with the Jordan matrix. However, we did not hit this situation in our
computations so far.

The final solution of the grating problem is made by matching the boundaries.

Matching the boundaries — infinitely deep grating Let the interface be in the line z = 0, and
the grating region be in half-plane z ≤ 0. Such system can describe a grating with the depth significantly
larger than the period. The vector of Fourier coefficients of the electric field of the incident wave is

Ai = [· · · , 0, Ai, 0, · · · ],

where the coefficient Ai is precisely at the (m2 − m1)/2 position of the M -sized column vector. We
introduce vectors

I = Ai,

r = Ar = [Am1
rx , ..., A

−1
rx , A

0
rx, A

1
rx, ..., A

m2
rx ],

t = At = [Am1
tx ..., A

−1
tx , A

0
tx, A

1
tx, ..., A

m2
tx ].

There is only one interface and with the conditions

Eix|z→0+ + Erx|z→0+ = Etx|z→0−,

Hiy|z→0+ +Hry|z→0+ = Htx|z→0−,

which in the matrix form is

I + r = t,

(−Y0)I + Y0r = (−Y1)t,
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where Y0 = diag(sr). The reflection matrices and transmission matrices defined by a relation

r = R̂01I, t = T01I

can be directly computed as

R̂01 = (Y0 + Y1)−1(Y0 − Y1).

and

T01 = 1 + R̂01 = 2(Y0 + Y1)−1Y0.

Once the vectors r, t are known, the diffraction efficiencies can be found from (2.26).

Matching the boundaries — grating with the finite depth There are two interfaces which will
be used to determine the unknown constants An+, An−, Atx, Arx. We introduce vectors

I = exp(−isi,0z0)Ai,

r = exp(isrz0)Ar = exp(isrz0)[Am1
rx , ..., A

−1
rx , A

0
rx, A

1
rx, ..., A

m2
rx ],

t = At = [Am1
tx ..., A

−1
tx , A

0
tx, A

1
tx, ..., A

m2
tx ].

The shift in z is here for a better numerical behavior, the field above grating region is then

Ex(y, z) = I0 exp(iq0y − is0(z − z0)) +

m2∑
m=m1

rm exp(iqmy + isr,m(z − z0)) z > z0.

At the interface z = z0 the argument of the exponential function is independent of sr,m, which ensures
good numerical behavior even when there are some sr,m with a large negative complex part. The upward
and downward fields are

E+
1x(y, z) =

m2∑
n=m1

m2∑
m=m1

(
exp(i

√
Cz)

)
nm

Am+ exp(iqny) =

m2∑
n=m1

m2∑
m=m1

(
P+
z

)
nm

Am+ exp(iqny),

E−1x(y, z) =

m2∑
n=m1

m2∑
m=m1

(
exp(−i

√
C(z − z0))

)
nm

Am− exp(iqny) =

m2∑
n=m1

m2∑
m=m1

(
P−(z−z0)

)
nm

Am− exp(iqny).

Again, the shift at E−1x is due to a better numerical behavior. Let us also define admittance matrices
Y0 = diag(sr,m) and Y1 = Gs+G−1 = −Gs−G−1, Y2 = diag(s2). Now the interface condition on the
first interface is

Eix|z→z0+ + Erx|z→z0+ = E+
1x|z→z0− + E−1x|z→z0−,

which after the truncation and writing into the matrix form is

I + r = P+
z0A+ + A−.

Since ∂nEx = ∂zEx = iHy, the second equation is for the Hy field

Hiy|z→z0+ +Hry|z→z0+ = H+
1y|z→z0− +H−1y|z→z0−,

which in the matrix form is

Y0(I− r) = Y1(P+
z0A+ −A−).
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The interface conditions on the second interface are

E+
1x|z→0+ + E−1x|z→0+ = Etx|z→0,

H+
1x|z→0+ +H−1x|z→0+ = Htx|z→0,

and corresponding matrix form is

A+ + P+
z0A− = t

Y1(A+ − P+
z0A−) = Y2t,

where Y2 = diag(st). We used the identity P+
z0 = P−−z0 . Let us recall the all fields are supposed to be

truncated. In sum the matrix form of the interface conditions is

I + r = P+
z0A+ + A−.

Y0(I− r) = Y1(P+
z0A+ −A−),

A+ + P+
z0A− = t,

Y1(A+ − P+
z0A−) = Y2t.

Figure 3.2: Diffraction between two interfaces

These equations can be solved to obtain

r =
(
R̂01 + T10P+

z0R̂12P+
z0(1−Q)−1T01

)
I,

t = T12P+
z0(1−Q)−1T01I,

(3.5)

where

R̂ij = (Yi + Yj)−1(Yi − Yj)

Tij = 1 + R̂ij ,

Q = R̂10P+
z0R̂12P+

z0 .

(3.6)

3.2 Matrix formulation of problem in TM polarization

Assuming the dependence H
(s)
x (y, z) = h

(s)
x (y) exp[isz] and making the procedure similar to TE polar-

ization leads to an algebraic equation

∑
m

[[ε1]]nm
∑
p

(
δmp − qmqp

[[
1

ε1

]]
mp

)
hp = s2hn, (3.7)
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where hn are components of h
(s)
x in the Fourier basis. Again, the fields will be truncated from m1 to m2,

which produces the finite-dimensional eigenvalue problem. To find the remaining constants, the interface
condition will be used. Unfortunately, the equation (3.7) exhibits a poor convergence as m→∞. Up to
1996 it was not known, whether this is a consequence of physical properties of the system or the problem
is in mathematics. G. Granet & B. Guizal proposed in [8] to make a different factorization, namely to

substitute [[ε1]] by [[1/ε1]]
−1

and [[1/ε1]] by [[ε1]]−1. This substantially improved the convergence. The
rigorous explanation appeared in [6] and will be described in the forthcoming subsection. After the
correct factorization the system is in the form

m2∑
m=m1

[[
1

ε1

]]−1

nm

m2∑
p=m1

(
δmp − qm [[ε1]]

−1
mp qp

)
hp = s2hn. (3.8)

By defining the matrix C := [[1/ε1]]
−1

(1− q [[ε1]]
−1

q) the equation (3.8) is rewritten simply as

Cννν = µννν.

This eigenvalue problem has M complex solutions µj , j = {m1, · · · ,m2} and corresponding M eigenvec-
tors. The propagation modes are s±j := ± c

√
µj .

Matching the boundaries — infinitely deep grating The continuity condition on the first inter-
face is

Hix|z→z0+ +Hrx|z→z0+ = Htx|z→0.

which in the Fourier space is

I + r = t,

and for E field it is

Eiy|z→z0+ + Ery|z→z0+ = Ety|z→0,

which in the Fourier space is

Ẑ0(I− r) = Ẑ1t.

Procedure similar to TE case gives

R̂01 =
(
Ẑ0 + Ẑ1

)−1 (
Ẑ0 − Ẑ1

)
, T01 = 2

(
Ẑ0 + Ẑ1

)−1

Ẑ0,

where

Ẑ0 =

[[
1

ε0

]]
G diag(sr)G−1, Ẑ1 =

[[
1

ε1

]]
G diag(s)G−1. (3.9)

Matching the boundaries — grating with the finite depth The interface conditions for the first
interface are

Hix|z→z0+ +Hrx|z→z0+ = H+
1x|z→z0− +H−1x|z→z0−,

Eiy|z→z0+ + Ery|z→z0+ = E+
1y|z→z0− + E−1y|z→z0−,

which in the Fourier space is

I + r = P+
z0A+ + A−,

Ẑ0(I− r) = Ẑ1(P+
z0A+ −A−),
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where P+
z0 = exp(i

√
Cz0) = G exp(isz0)G−1. The interface conditions on the second interface are

H+
1x|z→0+ +H−1x|z→0+ = Htx|z→0,

E+
1y|z→0+ + E−1y|z→0+ = Ety|z→0,

and the matrix form is

A+ + P+
z0A− = t,

Ẑ1(A+ − P+
z0A−) = Ẑ2t,

where Ẑ2 = [[1/ε2]]G diag(st)G−1. The vectors r, t can obtained from (3.5), where now

R̂ij =
(
Ẑi + Ẑj

)−1 (
Ẑi − Ẑj

)
,

Tij = 2
(
Ẑi + Ẑj

)−1

Ẑi, i, j ∈ {1, 2}.
(3.10)

3.2.1 Staircase approximation

The main idea of the staircase approximation used to model curved gratings was already described in
Section 2.5. The grating region is sliced into N layers, each with the width zk/N , k = 1, ...N . In every
slice the permittivity function is constant in z and staircase-like in y, see Fig. 2.2 and 3.1. The matrix
[[ε1]] is constructed from the expansion (3.1). The fill factor in a given point yk is found from the relation
yk = w(zk), where w is the inverse function of the profile and zk is a given nodal point, for equidistant
points it is zk = (2k − 1)/(2N)z0, with k = 1, ...N .

The equation describing propagation in each slice is (3.2) for TE polarization and (3.8) for TM

polarization. The propagation matrix Pj and the impedance and admittance matrices Yi or Ẑi for each
slice can be found from (3.3) and (3.4) for TE polarization, (3.9) for TM polarization. The reflection
and transmission matrices on each interface are found from (3.6) for TE and (3.10) for TM polarization.
Finally, the reflection matrix is found by the iteration using the Airy-like reflection series [12]

R̂0,j+1 = R̂0,j + Tj,0PjR̂j,j+1Pj(1−Qj)−1T0,j ,

R̂j+1,0 = R̂j+1,j + Tj,j+1PjR̂j,0Pj(1− Q̃j)−1Tj+1,j ,

T0,j+1 = Tj,j+1Pj(1−Qj)T0,j ,

Tj+1,0 = Tj,0Pj(1− Q̃j)Tj+1,j .

where

Qj = R̂j,0PjR̂j,j+1Pj , Q̃j = R̂j,j+1PjR̂j,0Pj

Using the identities r = R̂0,N+1I, t = T0,N+1I it is possible to calculate the diffraction efficiencies from
(2.26).

3.3 Discretization and convergence

This subsection is devoted to a discussion about issues connected with the truncation. The main questions
which arise from the truncation are the following — whether the truncation of the matrices is correct,
whether the eigenvalues of the truncated matrix converge to the eigenvalues of the original problem
and whether the truncated interface conditions converge to the infinite-dimensional ones. And finally,
whether there arise other problems resulting from the discretization. The first two questions will be
partially answered, but the others are open so far. A lack of rigorous results regarding the rate of
convergence of discretized equations is still a crucial problem of the RCWA and the C-Method.

Let us remind that C := [[ε1]] − diag(q)2. The first question is if the eigenvalues of the truncated
equation converge as the truncation numbers go to infinity.
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3.3.1 Convergence of eigenvalues

Theorem 1 (Poincare–von Koch). For the determinant of the matrix A = (aij) and all of its minors to
be absolutely convergent, it is sufficient that ∑

i,k

|aik| <∞.

This theorem is applicable for volume gratings, where ε̂n ≤ O(1/n2). Unfortunately, it is insufficient
for surface-relief grating, because εn ≤ O(1/n). Here it is necessary to find a better alternative.

Let us suppose that the matrix elements aik are functions of a parameter τ in a domain T in the
complex plane.

Theorem 2 (von Koch (1892)). For the determinant of A(τ) and all of its minors to be absolutely and
uniformly convergent in a domain T , it is sufficient that there exists a sequence of nonzero numbers,
{xi}, such that ∑

i,k

∣∣∣∣ai,k(τ)
xi
xk

∣∣∣∣
is uniformly convergent in T . If the above condition is satisfied, the determinant remains absolutely and
uniformly convergent when a row or a column of A(τ) is replaced by a sequence of bounded numbers.

But there is much more in the von Koch work. He showed that many results of classical linear
algebra remain unchanged. For instance, Laplace expansion, Cramer’s rule and necessary and sufficient
condition for a homogeneous system to have a nonzero solution is the zero determinant. This theorem
can be directly applied to the grating problem in TE polarization. The eigenvalue equation is (3.2),
which can be in the Fourier space rewritten as∑

m

(
δmn +

ε̃n−m
ε̂0 − q2

n − s

)
Ezm = 0, (3.11)

where ε̃n−m = ε̂m−n if n 6= m, ε̃0 = 0 and ε̂0 is a zero coefficient in the Fourier series expansion of ε1

and there is also assumed s 6= ε̂0 − q2
n. According to [6], the eigenvalues and eigenvectors of truncated

equation (3.11) converge to eigenvalues and eigenvectors of the full problem (3.2). The convergence is
not uniform, and this non-uniformity probably plays an important role in the overall convergence of the
RCWA and the C-Method.

Unfortunately, there is not a rigorous proof of this statement for the case of TM polarization, i.e. for
the equation (3.7), but in particular problems a good coincidence with physical measurement and the
approximations obtained by a use of FEM suggest the convergence of this method.

The intuitive possibility how to truncate the system is to take N ∈ N and truncate m = −M, ...,M .
The approximation obtained from such truncated system are not accurate enough when the incident
angle is near grazing. Therefore it is necessary to do it in a different way. The correct truncation is
m = −m1, ...,m2, where m1 = −[q0Λ0]− [M/2], m2 = −[q0Λ0] + [M/2] and M is an order of truncation.
In most cases, this reduces to a standard bounds m1 = −m2 = M/2, but if the incidence angle is large,
then m1 is different from −m2.

3.3.2 Li factorization rules

In 1996 published Li the paper [6], where he derived the rules for a convergence of a product of two
Fourier series. This paper has significantly influenced the development of the RCWA. In this chapter we
will post his three factorization theorems and explain theirs meaning in more details.

Definition 1. We let P denote the set of 2π-periodic real valued functions which are square integrable
and piecewise C2-continuous. The set of abscissae of discontinuities of f is defined by

Uf := {xi|f(xi+) 6= f(xi−), xi ∈ [0, 2π]}.
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Let f, g ∈ P, and Uf,g = Uf ∩ Ug. The functions f, g have complementary discontinuities if and only
if h(x) := f(x)g(x) is continuous in all points x ∈ Uf,g. Otherwise we say that f, g have concurrent
discontinuities.

Definition 2. The Fourier series of h = fg with 2M + 1 harmonics is

h(M)(x) :=

M∑
n=−M

h(n) exp(inx),

with the Fourier coefficients

h(n) :=

∞∑
m=−∞

fn−mgm.

Let us remind the product rule, which says that the value of function h at a point x ∈ [0, 2π] can be
written as

h(x) =

∞∑
n=−∞

hn exp(inx) = f(x)g(x) =

∞∑
n=−∞

h(n) exp(inx) =

∞∑
n=−∞

fn−mgm exp(inx),

where hn are Fourier coefficients of h.

Theorem 3. Let f, g ∈ P, h = fg and f and g have no concurrent discontinuities. Then the truncated
Laurent Fourier series h(M)(x) converges, i.e.

lim
M→∞

h(M)(x) = h(x).

Theorem 4. Let f, g ∈ P, h = fg. Let discontinuities of f and g be complementary. Additionally let
f(x) 6= 0 for all x ∈ [0, 2π). If f satisfies either one of the following conditions

• Re(1/f) does not change sign in [0, 2π) and infx∈[0,2π)|Re(1/f(x))| > 0,

• Im(1/f) does not change sign in [0, 2π) and infx∈[0,2π)|Im(1/f(x))| > 0,

then the truncated Inverse Fourier series h̃(M) converges, i.e.

lim
M→∞

h̃(M)(x) = lim
M→∞

M∑
m=−M

M∑
n=−M

1

f̃n−m
gm exp(inx) = h(x),

where f̃m are the Fourier coefficients of the function f−1.

Let xi ∈ Uf,g. We denote f̂i := f(xi + 0)− f(xi − 0).

Theorem 5. Let f, g ∈ P have concurrent discontinuities, h = fg. Then the truncated Laurent Fourier
series h(M)(x) has the following error behaviour

h(M)(x) = hM (x)−
∑

xi∈Uf,g

f̂iĝi
2π2

ΦM (x− xi)− o(1),

where o(1) uniformly tends to zero for M →∞ and

ΦM (x) :=

M∑
i=1

cos(nz)

n

∑
|m|>M

1

m− n
.

The function ΦM satisfies

lim
M→∞

=

{
0 if x 6= 0
π2

4 if x = 0.
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3.4 Application of Li factorization rules

The three above stated theorems allows us to divide the product of two periodic function into two groups:

1. A product of two functions with no concurrent discontinuities

2. A product of two functions with complementary discontinuities

3. A product of two functions with concurrent but non-complementary discontinuities

The first type is represented e.g. by the functions Ex and ε in TE polarization. Ex component of
the electric field is continuous, and ε is discontinuous, and the application of Theorem 3 yields that it is
possible to truncate the product of ε and Ex.

The second type is represented by Ey and ε. The product of these two functions is εEy := Dy, and
Dy is always continuous by Faraday’s Law.

The third type can be represented by ε(Ez + Ey). However, it seems that every product which is
relevant in grating problems can be decomposed into a sum of products which can be factorized by first
or second rule.

For illustrative purposes, let [ · ] denote a vector of the Fourier components of a function, and [[ · ]]
the Toeplitz matrix generated by this function. Then the first and second product can be written

[εEx] = [[ε]][Ex],

[εEy] =

[[
1

ε

]]−1

[Ey].

3.5 First order methods for TM polarization (the Normal Vec-
tor Method)

In the case of TM polarization and highly conducting grating it can be better or even necessary to avoid
the rewriting the Maxwell equations as a second-order equation (as it was done in Section 2.3) and solve
the problem (2.18), (2.19) as a first order equation. Suppose the form of the solution in the grating
region as

Hx =

∞∑
m=−∞

hm(z) exp(iqmy),

Ey =

∞∑
m=−∞

em(z) exp(iqmy).

Assuming em(z), hm(z) ∼ exp(isz) and substitution into (2.18)–(2.20) leads to

ishx = −idy, (3.12)

iqhx = idz, (3.13)

sey = iqez − ihx, (3.14)

where q = diag(qm) and dy/z = [[εr]]ey/z. The classical staircase approximation now leads to an infinite-
dimensional algebraic problem

s

(
ey
hx

)
=

(
0 1− q[[ε−1

r ]]q
[[εr]] 0

)(
ey
hx

)
.

This formulation is for gratings with non-staircase profile correct as long as the system is infinite-
dimensional. According to previous Section it is not possible to truncate this system, because we used
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Laurent rule for the components Dy,Dz, which in general are discontinuous. Hence, the equations must
be derived in a different way. We will follow the derivation of the eigenvalue problem from [9], [18], and
to match the interface condition we will use our own algorithm using the Airy-like series.

The basic idea is to rewrite the equations (3.12)–(3.14) using the tangent Et and normal Dn com-
ponents of the fields which are continuous according to Faraday’s law instead of the Ey, Ez or Dy, DZ

components, which in general can be discontinuous. Let φ(y) be the normal to the lamellar grating
boundary in the y − z plane. Then

En = Ey cos (φ(y))− Ez sin(φ(y))

Et = Ey sin(φ(y)) + Ez cos(φ(y)),

the symbol Et denotes the component of electric field tangent to the boundary, En the normal component.
Assume that the periodic function a(y) determining the profile is continuously differentiable. Then

cos(φ(y)) =
1√

1 + [a′(y)]2
=

∞∑
n=−∞

cm exp(iqmy),

sin(φ(y)) =
a′(y)√

1 + [a′(y)]2
=

∞∑
n=−∞

sm exp(iqmy).

The assumption of continuous differentiability can be relaxed to a continuity of sin(y), cos(y) at the
points y for which Ey,Ez are discontinuous, i.e. for the points on the grating surface. For more details
see Appendices in [7].

The factorization of Fourier components enm and etm of En,Et gives

(en)m =
∑
j

([[c]]mj(ey)j − [[s]]mj(ez)j) ,

(et)m =
∑
j

([[s]]mj(ey)j + [[c]]mj(ez)j) ,

where [[s]]mj , [[c]]mj are Toeplitz matrices of Fourier components of sin(φ(y)), cos(φ(y)). The components
dy,dz of the electric displacement are transformed similarly

(dy)m =
∑
j

([[c]]mj(dn)j + [[s]]mj(dt)j) ,

(dz)m =
∑
j

(−[[s]]mj(dn)j + [[c]]mj(dt)j) .

The fields Et and Dn are continuous, hence, it is possible to use the first and the second Li rule:

dt = [[εr]]et,

dn =

[[
1

εr

]]−1

en.

Using these expansions (3.12) can be rewritten as

ishx = −i([[c]]dn + [[s]]dt) = −i

(
[[c]]

[[
1

εr

]]−1

en + [[s]][[εr]]et

)
=

= −i

(
[[c]]

[[
1

εr

]]−1

([[c]]ey − [[s]]ez) + [[s]][[εr]]([[s]]ey + [[c]]ez)

)
,
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and similarly for (3.13). For clarity we introduce the matrices

[[A]] = [[c]]

[[
1

εr

]]−1

[[c]] + [[s]][[εr]][[s]]

[[B]] = [[s]][[εr]][[s]]− [[c]]

[[
1

εr

]]−1

[[c]]

[[C]] = [[c]][[εr]][[s]+ [[s]]

[[
1

εr

]]−1

[[c]]

[[F ]] = [[s]]

[[
1

εr

]]−1

[[s]] + [[c]][[εr]][[c]]

and write (3.12), (3.13) as

s(hx)m =
∑
j

([[A]]mj(ey)j + [[B]]mj(ez)j)

qm(hx)m =
∑
j

([[C]]mj(ey)j + [[F ]]mj(ez)j).

Insertion of (3.13) into (3.14) finally yields an eigenvalue problem which produces a system of eigenvalue
equations

M
(

ey
hx

)
= s

(
ey
hx

)
,

with the matrix

M =

(
−q2[[F ]]−1[[C]] 1− q2[[F ]]−1q2

[[A]]− [[B]][[F ]]−1[[C]] −[[B]][[F ]]−1q2

)
. (3.15)

This matrix can be now truncated to get a finite-dimensional eigenvalue problem. In the plane z = 0
the column vector f0 = [e0y,h0x] can be written as

f0 =

2nDim∑
j=0

g0jνννj = Gg0,

where G is a matrix composed of the eigenvectors of M. The propagation the z-direction is described by

f(z) =

2nDim∑
n=0

g0jνννj exp(isjz) = G exp(isz)G−1, (3.16)

where s = (s1, · · · , s2nDim) is a vector of eigenvalues. The unknown coefficients have to be determined
from the interface conditions. There are several ways how to treat this problem, the most popular are T-
or S-matrix algorithms. We use a generalization of the Airy-like series, which is based on the S-matrix
algorithm. The basic idea can be found e.g. in [13].

The equations in TE polarization remains unchanged and it is possible to solve the whole problem
using the second-order method described before.

3.5.1 Matching the boundaries and the Airy-like series

The first step is in computing the propagation matrices for every layer and reflection and transmission
matrices for every interface. The eigenvalues sn will be divided into two sets — s+, s−. The set s+
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contains the positive real eigenvalues and the complex eigenvalues with the positive imaginary part. The
set s− contains the negative real eigenvalues and the complex eigenvalues with the negative imaginary
part. Both sets have the same number of elements. The eigenvectors are divided into two sets ν+, ν− as
well. The positive propagation modes can be then expressed as(

e+
y

h+
x

)
=

(
G+
e G−e

G+
h G−h

)(
g+

0

)
,

where G±e and G±h are matrices generated from the eigenvectors respective to eigenvalues from s+, s−. It
can be proceed similarly for the negative modes g−. The propagation matrices in positive and negative
directions can be found using (3.16) as

P+
z = G+

h exp(is+z)(G+
h )−1, P−z = G−h exp(is−z)(G−h )−1.

Note the plus sign in the definition of P−z . The the impedance matrices are computed from

e+
y = G+

e g+ = G+
e (G+

h )−1h+
x = Ẑ+h+

x , e−y = G−e (G−h )−1h−x = Ẑ−h−x ,

i.e.

Ẑ+ = G+
e (G+

h )−1, Ẑ− = G−e (G−h )−1.

The reflection and transmission matrices on the interface between the environment i and i + 1 can be
found similarly as above. The continuity on the interface means

Hix +Hrx = Htx,

Eiy + Ery = Ety,

and in the Fourier space it is

I + r = t,

Ẑ−i I + Ẑ+
i r = Ẑ−i+1t,

and for the interface between i+ 1 and i it is

I + r = t,

Ẑ+
i+1I + Ẑ−i+1r = Ẑ+

i t,

yielding the result

R̂j,j+1 = (Ẑ−j+1 − Ẑ+
j )−1(Ẑ−j − Ẑ−j+1), Tj,j+1 = (Ẑ−j+1 − Ẑ+

j )−1(Ẑ−j − Ẑ+
j ),

R̂j+1,j = (Ẑ+
j − Ẑ−j+1)−1(Ẑ+

j+1 − Ẑ+
j ), Tj+1,j = (Ẑ+

j − Ẑ−j+1)−1(Ẑ+
j+1 − Ẑ−j+1).

It is easy to verify that for isotropic environment with Ẑ+ = −Ẑ− this reduces to (3.10). The reflection
matrix between the first and second interface will be found from the interface conditions

I + r = P+A+ + A−,

Ẑ−0 I + Ẑ+
0 r = Ẑ+

1 P
+A+ + Ẑ−1 A−,

A+ + P−A− = t,

Ẑ+
1 A+ + Ẑ−1 P

−A− = Ẑ−2 t,

with P+ := P±±z0 to make the formulae more clear. Using the third and the fourth equation it is possible
to find

A+ = R̂12P−A−.
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Inserting this into the first and the second equation, eliminating A− and expressing it in the form

I = R̂02r gives the result

R̂02 = R̂01 + T10P+R̂12P−(1− R̂10P+R̂12P−)−1T01.

The transmission matrix can be then found as

T02 = T12P−(1− R̂10P+R̂12P−)−1T01.

The upward matrices R̂20 and T20 are computed analogously. The reflection and transmission matrices
between layers 0 and J + 1, J ≥ 1 are found interatively using the Airy-like series:

R̂0,j+1 = R̂0,j + Tj,0P+
j R̂j,j+1P−j (1−Q+

j )−1T0,j ,

R̂j+1,0 = R̂j+1,j + Tj,j+1P−j R̂j,0P
+
j (1−Q−j )−1Tj+1,j ,

T0,j+1 = Tj,j+1P−j (1−Q+
j )−1T0,j ,

Tj+1,0 = Tj,0P+
j (1−Q−j )−1Tj+1,j ,

where

Q+
j = R̂j,0P+

j R̂j,j+1P−j ,

Q−j = R̂j,j+1P−j R̂j,0P
+
j .

Once the reflection and transmission matrices are known, diffraction efficiencies and ellipsometric param-
eters can be calculated using the definitions in Section 2.4. The described algorithm was implemented
in MATLAB.

Let us mention at the end of this Section that we will refer to this method as to the Normal Vector
Method (NVM).

Figure 3.3: Airy-like series
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Chapter 4

The C-Method

The coordinate transformation method, also the Chandezon method or abr. the C-Method is known since
1980. The basic idea is to make a coordinate transformation w.r.t. the shape of grating, and instead
of solving simple equations on a complex domain to solve two more complex equations on half-planes.
The procedure described in the paper [27] will be the primary source of this section, but we will also
give some comments, extensions, remarks and observations from [15]. During the description of this
method we will give some remarks related to a rescaling of the system at the beginning in order to show
numerical problems which arise in a non-scaled system.

Let x,y, z be an orthonormal base in R3 and (x, y, z) corresponding Cartesian coordinates, and let
the 2D surface be placed in yz plane, with grooves parallel to y direction. It represents 1D grating. This
surface separates two semi-infinite homogeneous and isotropic media with constant permittivities denoted
as ε0 and ε2. The grating profile P in Cartesian coordinates is determined by a function z = a(y), with
a being a differentiable function with the periodicity Λ. The translation coordinate system (x, y, z) is
related with the Cartesian coordinate system by

x = w, y = v, z = u+ a(v).

The inverse transformation is

w = x, v = y, u = z − a(y).

In the new coordinates the grating profile coincides with the u = 0 plane. Let us start from the system
with TM-polarized incident wave, which is described by the Helmholtz equation

∂

∂y

(
1

εr

∂Hx

∂y

)
+

∂

∂z

(
1

εr

∂Hx

∂z

)
+Hx = 0, for all (y, z) ∈ R2,

where εr = ε0 in {u > 0}, εr = ε2 in {u < 0} are relative permitivitties above and below the grating
respectively. Since εr is constant in each of the domains D±, it is possible to split this equation to these
sub-domains and write it as two separate equations(

∂2

∂y2
+

∂2

∂z2
+ ε0

)
Hx = 0, in D+(

∂2

∂y2
+

∂2

∂z2
+ ε2

)
Hx = 0, in D−,

(4.1)

joined with the interface conditions.
Let us place here the Fig. 2.1 once more, see Fig. 4.1. In the domains D0 and D2 the field can be written
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Figure 4.1: Grating

using Rayleigh expansions

H(1)
x = Ai exp[iq0y − isi,0z] +

∞∑
m=−∞

Amr exp(iqmy + isr,mz) +Bmr exp(iqmy − isr,mz)

H(2)
x =

∞∑
m=−∞

Amt exp(iqmy − ist,mz) +Bmt exp(iqmy + ist,mz),

where

qm = n0 sinϑ+mq, sr,m = (ε0 − q2
m)

1
2 , st,m = (ε2 − q2

m)
1
2 ,

Re[sr,m] + Im[sr,m] > 0, Re[st,m] + Im[st,m] > 0,

and q = λ/Λ and Amr , B
m
r , A

m
t , B

m
t , Ai are constant amplitudes. These amplitudes has to satisfy Bmr =

Bmt = 0 for all m ∈ Z in order to the field Hy be finite in ±∞ and propagating upwards in D0

and downwards in D2, as follows from the radiation conditions. The coefficients Amr , A
m
t has to be

determined from the interface condition in the plane v = 0. In the domain D1 the Rayleigh expansion
is not possible. It could happen that one of the sr/t,m is equal to zero, it means the corresponding
diffracted wave propagates parallel to the grating plane. The most simple solution is to change slightly
the angle of incidence.

After the change of variables v = y, u = z − a(y) the equations (4.1) changes to

∂2Hx

∂v2
− 2ȧ

∂2Hx

∂v∂u
− ä ∂Hx

∂u
+ (1 + ȧ2)

∂2Hx

∂u2
+ ε0Hx = 0,

∂2Hx

∂v2
− 2ȧ

∂2Hx

∂v∂u
− ä ∂Hx

∂u
+ (1 + ȧ2)

∂2Hx

∂u2
+ ε2Hx = 0,

with ȧ = ∂a/∂v. The interface conditions are

lim
u→0+

Hx(v, u) = lim
u→0−

Hx(v, u), lim
v→0−

(Ey + ȧEz)(v, u) = lim
v→0+

(Ey + ȧEz)(v, u), for all u, v ∈ R. (4.2)

By defining H ′x := −i∂Hx/∂u and using the identity

2ȧ
∂2

∂v∂u
+ ä

∂

∂u
=

(
∂

∂v
ȧ+ ȧ

∂

∂v

)
∂

∂u
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these two second-order PDE’s can be rewritten as a system of two first-order PDE’s:ε0 +
∂2

∂v2
0

0 1

(Hx

H ′x

)
=

1

i

i
(
∂

∂v
ȧ+ ȧ

∂

∂v

)
1 + ȧ2

1 0

 ∂

∂u

(
Hx

H ′x

)
. (4.3)

ε2 +
∂2

∂v2
0

0 1

(Hx

H ′x

)
=

1

i

i
(
∂

∂v
ȧ+ ȧ

∂

∂v

)
1 + ȧ2

1 0

 ∂

∂u

(
Hx

H ′x

)
. (4.4)

This systems (4.3), (4.4) will be solved by a use of Fourier Methods. Since a is periodic, it can be
expanded to a Fourier series

a(y) =

∞∑
m=−∞

ame
iqmy.

The equation (4.1) is not directly dependent on u, hence, we can assume an exponential dependence
exp(iρu) of Hy in u. As now we have a problem with a straight boundary, the modes of the propagation
in the v direction are dependent on exp(iqmy) and the derivatives are

∂

∂v
→ iq,

∂

∂u
→ iρ.

By introducing a vector F = (Hx,H
′
x) of the Fourier components of Hx, H

′
x and the matrix

(ȧ)mn = ȧm−n =
q

2π

∫ 2π
q

0

ȧ(t) exp (−i(m− n)qt) dt, (4.5)

the systems (4.3), (4.4) can be rewritten in the Fourier space as two equations with infinite-dimensional
matrix equations [

(ε0 + q2) 0
0 1

]
F+ = ρ+

[
−(q · ȧ + ȧ · q) (1 + ȧ · ȧ)

1 0

]
F+,[

(ε2 + q2) 0
0 1

]
F− = ρ−

[
−(q · ȧ + ȧ · q) (1 + ȧ · ȧ)

1 0

]
F−,

which after simple modifications leads to two eigenvalue problems

1

ρ+
F+ =

[
−
(
s2
r

)−1
(q · ȧ + ȧ · q) −

(
s2
r

)−1
(1 + ȧ · ȧ)

1 0

]
F+,

1

ρ−
F− =

[
−
(
s2
t

)−1
(q · ȧ + ȧ · q) −

(
s2
t

)−1
(1 + ȧ · ȧ)

1 0

]
F−,

(4.6)

where q = diag(qm), st = diag(st,m), sr = diag(sr,m). These eigenvalue equations can be solved
numerically after a proper truncation, giving the eigenvalues ρ+, ρ−.

Remark 2. The non-scaled formula for ȧ is

ȧ =
1

Λ

∫ Λ

0

ȧ(t) exp

(
i(m− n)

2π

Λ
t

)
dt.
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The argument in the exponential is of an order 107, which is improper for numerical computations. The
scaling can be done by making a substitution ξ → 2πt/λ in the integral in (4.5). The matrix ȧ has then
the components

ȧmn =
qk0

2π

∫ 2π
q

0

da (ξ)

dξ
exp(iq(m− n)ξ)dξ,

which, with the abuse of notation a(ξ) ≡ k0a(ξ), is the formula (4.5).

Due to the radiation conditions, all real eigenvalues with negative real part and all eigenvalues with
negative imaginary part has to be discarded in the domain D+ (more precisely, the amplitude correspond-
ing to this mode will be put zero). All real eigenvalues with positive real part and all eigenvalues with
positive imaginary part has to be discarded in the domain D−. Let us also remind that the eigenvalues
of the infinite-dimensional eigenvalue equation are sr,m, st,m, because the transformation of coordinates
cannot change the eigenvalues. However, it is not possible to replace the eigenvalues of truncated prob-
lem with its Rayleigh counterparts sr/t,m, it could happen that truncated solutions will not converge to
the solutions of the original problem [27]. In practice, the real eigenvalues are replaced by their Rayleigh
counterparts sr/t,m, where m runs over real positive eigenvalues ρ+. Hence, the function Hx can be
written in the domain D+ as a series

H+
x = Ai exp[iq0y − isi,0z] +

∑
n∈U+

Anr exp[iqny + isr,nz] +
∑
m

exp(iqmy)
∑
l∈V +

F+
ml exp(iρ+

l u)C+
l ,

where the first term represents the incident wave, the second contains the Rayleigh waves and the third
one represents the diffracted waves. In the domain D− the series is

H−x =
∑
n∈U−

Ant exp[iqny + ist,nz] +
∑
m

exp(iqmy)
∑
l∈V −

F−ml exp(iρ−l u)C−l .

Here Anr , A
n
t , C±l are the unknown diffraction amplitudes, which will be determined from the interface

conditions (4.2), F±ml are the elements of the Hx part of the l-th eigenvectors respective to ρ±l and U±, V ±

denote the sets of indices for the propagating and the evanescent orders in domains D±. More precisely,
the sets U+, U− contains the positive and negative real modes from sr/t respectively. The sets V ± are
complements to U±. The problems regarding the convergence of eigenvalues are discussed in [28].

To use the boundary conditions, it is convenient to reformulate this field in terms of u and y, since
then the boundary lies in the plane u = 0. The procedure will be shown on the incident wave, the
remaining terms are analogous. Using the coordinate z = v + a(u) and expanding exp(a(y)) into the
Fourier series give

Ai exp[iq0y − isi,0z] = Ai exp [iq0y − isi,0u]

∞∑
m=−∞

(Lm[−si,0] exp (iqmy)) =

= Ai

∞∑
m=−∞

Lm [−si,0] exp[iqm] exp[−isi,0u],

where Lm[−si,0] are coefficients of the Fourier series of exp(a(y)), i.e.

Lm[−si,0] =
q

2π

∫ 2π
q

0

exp [−isi,0a(t)− iqmt] dt.

By defining the function

Lm[−γ] =
q

2π

∫ 2π
q

0

exp [−iγa(t)− iqmt] dt.

41



and making the analogous steps for other terms in H±x it is possible to rewrite H±x as

H+
x =

∑
m

exp(iqmy)×

×

(
AiLm[−si,0] exp(−isi,0u) +

∑
n∈U+

Lm−n[sr,n] exp(isr,nu)Anr +
∑
l∈V +

F+
ml exp(iρ+

l u)C+
l

)
,

H−x =
∑
m

exp(iqmy)

 ∑
k∈U−

Lm−n[st,k] exp(−ist,ku)Akt +
∑
p∈V −

F−mp exp(iρ−p u)C−p

 .

Remark 3. Let us make again a remark related to a scaling properties. The non-scaled version of Lm
is

Lm (γ) =
1

Λ

∫ Λ

0

exp[iγa(t)− 2π

Λ
imt]dt.

This definition of Lm is useless for numerical computations. The function a(y) − imy has for low m
typically size about 10−7 and from numerical point of view this Lm(γ) balances between zero and ±Inf.
This problem does not appear in the rescaled system.

The fields in D+ and D− must be equal at the boundary u = 0 therefore the coefficients of the
Fourier series of H±x must be equal when u = 0, which leads to the equations

AiLm[−si,0] +
∑
n∈U+

Lm−n[sr,n]Anr +
∑
l∈V +

F+
mlC

+
l =

∑
n∈U−

Ant Lm−n[−st,n] +
∑
l∈V −

F−mlC
−
l .

The matrix formulation of this system is

(
FR+
mn , F

+
ml,−F

R−
mk ,−F−mp

)
Anr
C+
l

Akt
C−p

 = −FR,inm0 ,

where

FR+
mn = Lm−n[sr,n], −FR−mk = Lm−k[−st,k], FR,inm0 = AiLm[−si,0].

After truncation to N orders this system has N equations for 2N variables. The second set of N
equations in constructed from matching the tangential components of the electric fields. Here t = z+ ȧy
and consequently

Et = Ey + ȧEz.

It follows from the Maxwell equations that

Ez =
1

iεk

∂Hx

∂y
, Ey = − 1

iεk

∂Hx

∂z
, k = 0, 2,

which is expressed in the u, v coordinate system as

Et ≡ G(u, v) =
1

iεk

[
ȧ
∂Hx

∂v
− (1 + ȧ2)

∂Hx

∂u

]
.

The continuity of the tangential components of the electric fields then means

lim
u→0+

1

ε0

[
ȧ
∂Hx

∂v
− (1 + ȧ2)

∂Hx

∂u

]
= lim
u→0−

1

ε2

[
ȧ
∂Hx

∂v
− (1 + ȧ2)

∂Hx

∂u

]
,
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Matching the coefficients of the tangential components of the electric fields yields the system

(
GR+
mn, G

+
ml,−G

R−
mk ,−G−mp

)
Anr
C+
l

Akt
C−p

 = −GR,inm0 ,

where

GR+
mn =

1

ε0

∑
l

[(ȧ)m−lql − (1 + a · a)mlsr,n]Ll−n[+sr,n],

GR−mk =
1

ε2

∑
l

[(ȧ)m−lql + (1 + a · a)mlst,k]Ll−k[−st,k],

GR,inm0 =
1

ε0

∑
l

[(ȧ)m−lql + (1 + a · a)mlsi,0]Ll[−si,0],

G+
mn =

1

ε0

∑
l

[
(ȧ)m−lql − (1 + a · a)mlρ

+
n

]
F+
ln,

G−mp =
1

ε2

∑
l

[
(ȧ)m−lql − (1 + a · a)mlρ

−
p

]
F−lp .

This altoghether will produce after the truncation a system of 2N equations for 2N unknowns

(
FR+
mn , F

+
ml,−F

R−
mk ,−F−mp

GR+
mn, G

+
ml,−G

R−
mk ,−G−mp

)
Anr
C+
l

Ant
C−p

 = −
(
FR,inm0

GR,inm0

)
, (4.7)

which has to be solved. The diffraction efficiencies can be calculated as

ηrn =
sr,n
si,0
|Arn|2,

for the reflected orders and

ηtn =
ε2st,n
ε0si,0

|Atn|2,

for the transmitted orders, where n ∈ U± for the respective directions.

Remark to truncation As was advertised, the key step in the C-method is a truncation of the infinite-
dimensional system to a certain order. In numerical computations the truncation interval [m1,m2] is
chosen so that

m1 = −
[α0

K

]
− N − 1

2
, m2 = −

[α0

K

]
+
N − 1

2
,

with N being an order of truncation. This gives a better convergence in general. The eigenvalue problems
(4.6) has then the size 2N ×2N and produces two sets of 2N eigenvalues (one for each medium). The N
eigenvalues from each set will be discarded. The remaining N eigenvalues in each set is then divided into
two sets — one contains the real eigenvalues, the second one the eigenvalues with nontrivial imaginary
part. The real eigenvalues are replaced by their Rayleigh counterparts. It is not possible to say generally
how many eigenvalues will contains the set U±, V ±, we know only that U+ ∪ V +, U− ∪ V − contains
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both N eigenvalues. Therefore the sum

H+
x =

∑
m

exp(iqmy)×

×

(
AiLm[−si,0] exp(−isi,0u) +

∑
n∈U+

Lm−n[sr,n] exp(isr,nu)Anr +
∑
l∈V +

F+
ml exp(iρ+

l u)C+
l

)
,

will contain 2N terms, similarly for H−x and electric components. The number of reflected and trans-
mitted propagation orders corresponds to a number of elements of the sets U+ and U− respectively.
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Chapter 5

Implementation and comparison of
the described methods

5.1 Testing the implementation of the C-Method

The C-method was implemented on a basis of the paper [27]. The implementation was tested at first on
a simple reference problem of a diffraction on a line interface. The exact solution is known as the Fresnel
equations. The results will be demonstrated on two particular examples. The first one has n1 = n2, i.e.
it is a simple propagation of light, the second one has parameters n1 = 1, n2 = 2.65, the incident angle
is 15◦.

The diffraction efficiencies computed from the Fresnel equations for the case n2 = 1 were ηt0 = 1
and zero others. The reflection amplitude was ηr0 = 0.1937 for the case n2 = 2.65, the transmission
amplitude was ηt0 = 0.8063, others were equal to zero (TM polarization). The results obtained from our
implementation perfectly corresponds to the analytical results computed by using the Fresnel equations.
The transmitted wave propagated under the angle 5◦36′. It is possible to make a conclusion that our
implementation gives correct results for simple cases. The amplitudes of waves for two particular cases
can be seen on the following two figures.

Figure 5.1: Propagation of light (right) and bending of light (left)

The second set of tests was made on the reference examples from the paper [27]. The first one was
the diffraction of light with the wavelength λ incident under the angle 15◦ on an asymmetrical shallow
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Order TE TM TE from [27] TM from [27]
ηr−2 0.3025e-2 0.4823e-2 0.3025e-2 0.4823e-2
ηr−1 0.2770 0.3466 0.2770 0.3466
ηr0 0.4363 0.3062 0.4363 0.3062
ηr1 0.1508 0.1902 0.1508 0.1902

Table 5.1: Results for a grating with asymmetrical profile.

Order TE TM TE from [27] TM from [27]
ηr−2 0.2994e-2 0.5962e-3 0.2982e-2 0.5882e-3
ηr−1 0.6392e-3 0.1005e-2 0.6300e-3 0.9762e-3
ηr0 0.1969e-2 0.1887e-3 0.1963e-2 0.1847e-3
ηr1 0.1254e-2 0.9483e-3 0.1252e-2 0.9344-e3
ηt−3 0.5272e-1 0.1237e-2 0.5274e-1 0.1219e-2
ηt−2 0.1348 0.1324 0.1347 0.1320
ηt−1 0.1281 0.1712 0.1280 0.1710
ηt0 0.1585 0.1134 0.1586 0.1138
ηt1 0.4457 0.5314 0.4457 0.5317
ηt2 0.7337e-1 0.4723e-1 0.7337e-1 0.4726e-1

Table 5.2: Results for a grating with asymmetrical profile.

grating with the profile

z = a(y) := 0.1d sin
(π
d
y
)

+ 0.2d cos

(
2π

d
y − 5π

9

)
,

and with n1 = 1, n2 = 1 + 5i, d = λ, the truncation numbers were m1 = −6, m2 = 4. The results are
written in the Tab. 5.1. They perfectly corresponds to those from [27].

The second grating had a sinusoidal profile

a(y) := d cos
(π
d
y
)
,

the refractive indices were n1 = 1, n2 = 1.5 and the truncation numbers were m1 = −28, m2 = 26
and the depth was d = λ. The results are summarized in the Tab. 5.2. It is possible to see a slight
difference in the diffraction efficiencies to those from [27], which is probably due to differences in numerical
implementation (the paper was published in 1999). The diffraction orders with a small amplitude differ
most, but the relative error is small. The intensity plot can be found in Fig. 5.2

These results will be later compared with the results obtained by a use of the LMT and the NVM.

Convergence of the C-Method The convergence of the C-Method was tested on two examples
introduced above. The computation was started with a certain order and quit when MATLAB reported
the singularity of the system (4.7). The first tested case was a shallow grating with the asymmetrical
profile and s-/p- polarized incident light having the wavelength λ = 300 nm. The solver worked up to
the order 80, the system (4.7) became numerically singular for larger truncation orders. The diffraction
efficiencies stabilized rapidly around certain values for the truncation numbers N ≥ 6. To qualitatively
measure the oscillations, we defined an error

Er :=

1∑
N=−2

(
ηrN − ηrref,N
ηrref,N

)2

,
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Figure 5.2: Intensity plots for sinusoidal grating with a various refractive index and incident light polar-
ization

where ηrref,N is a reference value found as the mean value of diffraction efficiencies for truncation number
between 20 and 60. The graph of error can be found in Fig. 5.3. The results are very stable w.r.t.
truncation order, and the the maximal difference between the largest and lowest value for truncation
numbers between 15 and 80 is of an order 10−25. The graph of computation time is in Fig. 5.4.

The second tested case was the sinusoidal grating, with d = Λ = 600 nm, λ = 300 nm. The error was
defined here as

Er :=

1∑
N=−2

(
ηrN − ηrref,N
ηrref,N

)2

+

2∑
N=−3

(
ηtN − ηtref,N
ηtref,N

)2

.

The reference solution was found again as a mean value of results for truncation numbers from N = 15
to N = 25. The graph in Fig. 5.5 shows the dependence of error on the truncation number, it is possible
to see much larger oscillations than in previous case. The convergence here is good as well, but the
numerical errors are present already for the truncation number 30. Significant increases are observed for
the highest truncation number in s- and p-polarization, despite the fact that MATLAB did not report
any problem. The main problem here is very fast decay of coefficients of Lm fields. In general, the
C-method is considered to be ineffective for deep gratings, the main reason is the slow convergence of
eigenvalues of truncated equation to Rayleigh eigenvalues [29]. The eigenvalues in our implementation
were compared with the ones in [29], giving a perfect agreement.

5.2 Testing the implementation of the LMT and the NVM

The implementation of the LMT was done by Dr. Antoš (supervisor of this Thesis) and is already
debugged. The NVM implementation was made by the author of this Thesis. The both codes were at
first tested on simple examples of line interface, giving a perfect correspondence.

After that we used more complex situations. The first example was grating with the refractive index
n2 = 1.5, second grating had the refractive index n2 = 1+5i. Since the LMT implementation is not using
the correct factorization rules, there can be expected a poor convergence for dense optical environment
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Figure 5.3: Error in s- and p- polarization for the C-Method (shallow grating)

Figure 5.4: Computation time w.r.t. number of modes for the C-Method. The shallow grating is on the
left, the sinusoidal on the right.

in TM polarization, and even poorer convergence for strongly conductive gratings. On the other hands,
the convergence for shallow gratings will be not much affected by the incorrect factorization, because
En ≈ Ex, Et ≈ Ez. For this reason we decided to skip the shallow grating as a test example and use
the deep sinusoidal grating with n2 = 1 + 5i as an example to demonstrate the benefits of the NVM.
The question of convergence of these systems is in fact a two-dimensional problem, because it depends
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Figure 5.5: Error in s- and p- polarization (sinusoidal grating)

on the number of modes and on the number of slices. Therefore the results are plot in two-dimensional
graph. The essential step is a suitable definition of discretization error. The definition of error is again
adopted from the paper [7]:

Er :=

1∑
N=−2

(
ηrN − ηrref,N
ηrref,N

)2

,

where ηrref is a reference diffraction efficiency vector for reflected orders and the summation numbers
corresponds to the propagating diffraction orders. Similarly the error for transmission orders is defined
by

Et :=

2∑
N=−3

(
ηtN − ηtref,N
ηtref,N

)2

.

Due to a lack of rigorous results and explicit examples the error was related to the results computed
from the C-Method and from the NVM with a twice number of modes and slices (double-step method).

The logarithm of error w.r.t. number of slices and the number of modes for sinusoidal grating with
n2 = 1.5 is plotted in Fig. 5.7. There are six plots in this figure. The label Ns on axis x means
the number of slices. The label Nm means the truncation number. The shortcut DS means that the
reference solution was computed with the double-step method. More precisely, the error here is related
to the reference solution obtained by a use of the NVM with the number of modes Nm = 60 and the
number of slices Ns = 150. The shortcut C-M means C-Method and the error in this plot is related to
the reference solution obtained by a use of the C-Method. It can be seen that the NVM is a slightly
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more precise, but the difference against the LMT is not large. The Fig 5.8 contains a plot with the error
Et. Again, values obtained by the NVM are slightly more accurate than the LMT, but the difference is
not large. The Fig. 5.9 contains plots for highly conductive sinusoidal grating with n2 = 1 + 5i. The
error levels of s-polarization and NVM are good and comparable to previous values. However, the results
obtained by the LMT are very inaccurate and the convergence is very poor (see the positive sign of the
logarithm of the error). The LMT is not a good choice for this case. The reference solution for the
DS-error was obtained by a choice of parameters Nm = 100, Ns = 300.

The plot of the intensity of fields looks similar for the LMT method and the C-method, cf. Fig. 5.2,
5.6, but the LMT one was obtained for Nm = 200, Ns = 100. The subroutine for plotting the intensity
obtained from NVM was unfortunately not yet finished.

Figure 5.6: Intensity plots for sinusoidal grating with a various refractive index and incident light polar-
ization
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Figure 5.7: Error Er (reflected orders) plotted w.r.t. number of slices and number of modes. Sinusoidal
grating with n2 = 1.5 and Λ = d
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Figure 5.8: Error Et (transmitted orders) plotted w.r.t. number of slices and number of modes. Sinusoidal
grating with n2 = 1.5 and Λ = d
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Figure 5.9: Error Er (reflected orders) plotted w.r.t. number of slices and number of modes. Sinusoidal
grating with n2 = 1 + 5i and Λ = d
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Figure 5.10: Ellipsometric parameter ψ for the shallow grating with the sinusoidal-triangular profile and
n2 = 1.52 (polymer grating) from [30]

5.3 Comparison with the experimental results

Polymer grating At last, the implementation of the C-Method was compared to experimental results
from literature. As a model served two gratings — one with a wavy profile which is a combination of
sinusoidal and rectangular profile [30] and one which is made from nickel and has a sinusoidal profile.
The ratio between the period and the depth of the grating is for the polymer grating more than ten
and for nickel grating more than five therefore both gratings are shallow. For this reason the numerical
effects described in previous Sections does not play an essential role here.

The first case was a shallow grating with a period Λ = 9365 nm and depth d = 620 nm made of
a polymer with the refractive index equal to n2 = 1.52 on the glass substrate with almost the same
refractive index. The incident angles were ϑ = 55◦ and ϑ = 57.5◦.

a(y) =


(1− σ)

d

2

(
1− cos

(
2πy

Λ

))
+

2σdy

Λ
, y ∈

[
0, Λ

2

]

(1− σ)
d

2

(
1− cos

(
2πy

Λ

))
−

2σdy

Λ
, y ∈

[
Λ
2 ,Λ

]
.

The parameter σ determines the combination between sinusoidal and triangular profile. More precisely,
if σ = 1, the profile is triangular, if σ = 0, profile is sinusoidal. The fitting of the profile function to the
profile scanned by AFM yielded the value σ = 0.6.

The ellipsometric parameter ψ from [30] (with a use of the LMT) is in Fig. 5.11, the same result
computed with a use of our C-Method implementation is in Fig. 5.10. It can be seen that the position of
the peaks is almost the same, but the peak for the angle ϑi = 55◦ is much larger than measured one. Also
the peaks are narrower than the measured ones. The main reason for this is in the difference between
the refractive index of polymer and glass. Although the difference is small, it causes a back-reflections
which were included in the model from [30] but not in our model, see Fig. 5.12.
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Figure 5.12: Back-reflections on polymer grating (left) and grating profile from AFM (right) [12].

Figure 5.13: Profile of a Nickel grating: AFM (scaled to width 200.4 nm) vs. fit

Nickel grating The second case was a nickel grating with the refractive index from Fig. 5.15 and a
profile of the form

z(y) =
d

2

[
1− cos

(
(π − h2)

2y

Λ
+ h2

(
2y

Λ

)2
)]

, y ∈
[
−Λ

2
,

Λ

2

]
.

The refractive index was measured on a thin layer of nickel put beside the grating. The AFM yielded the
period Λ = 917 nm and the depth d = 180 nm. The parameter h2 determines the shape of the profile.
For h2 = 0 the profile is sinusoidal, and for h2 = π the profile is sinusoidal with a quadratic argument.
The period is usually determined precisely, but the depth is often inaccurate. Dr. Antoš found by fitting
that the depth and h2 should be d = 200.4 nm and h2 = 1.0834, the ellipsometric parameters are in
Fig. 5.14. We took this as a reference parameters and computed the ψ,∆ with the C-Method, see Fig.
5.16–5.18 and NVM, see Fig. 5.19–5.21. The modeled curves for ψ, ∆ fit well to the experimental ones,
despite the fact that our model did not count with the thin NiO2 layer on the surface of the grating. The
reasonable step to further improve the results would be to extend our implementation of the C-Method
and the NVM also for the cases of coated gratings, using the procedure described in [15], Chapter 8.4,
12.5. Figure 5.13 gives a comparison between measured (AFM) and fitted profile.
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Chapter 6

Conclusion

The main goals of this Thesis were in principle satisfied. The theoretical introduction was written in
the first part of this Thesis. The short excursion to history, motivation, experimental setting and fitting
process were written in Chapter 1. The basic concepts of the theory of periodic nanostructures, namely
the Maxwell equations, radiation and interface conditions, the Rayleigh series, the energy conservation
and the staircase approximation were described in Sections 2.1–2.4. Also the results concerning the
uniqueness and existence of solutions and the FEM were shortly mentioned in Section 2.6. The Chapter 3
was devoted to the numerical method called RCWA. The main concepts of truncating the equations,
matching the interface conditions and using the radiation conditions were described in Sections 3.1, 3.2.
The problems regarding the truncation of the system to a finite dimension were introduced in Section 3.3,
and the revolutionary work of Li [6] was shortly summarized. Afterwards the modified scheme from [9]
was shortly described and our own modification of matching the interface conditions on the pseudo-
interfaces using the Airy-like series was developed. The Chapter 4 contains the description of C-Method
based on [27] together with some remarks related to a scaling of the system.

The hearth of this Thesis is the Chapter 5. The C-Method was implemented in MATLAB using the
manual from the paper [27]. The existing implementation of the LMT method was afterwards tested
against the MATLAB implementation of the C-method and a modified implementation of the LMT using
the factorization rules (NVM) and the Airy-like series. The C-method proved to give more accurate
results for diffraction gratings made of a highly conducting material, but the results for deep gratings
were not satisfactory. The next step would be to extend this new implementation to coated gratings,
but for time reasons it was skipped. The LMT scheme proved to be insufficient in modeling the optical
response of deep metallic gratings. On the other hands, the Normal Vector Method supplemented with
our modification of Airy-like series was tested on two sinusoidal gratings confirming the fast convergence
even for metallic grating, which is in agreement with the results in the paper [9], [7]. All of this was
broadly discussed in Sections 5.1,5.2. Also it would be good to supplement the implementation of the
NVM with the subroutine for plotting the intensity of the fields and verify that the results corresponds
to the Fig. 5.6, 5.2.

Finally, the implementation of the C-Method and NVM were compared to experimental measurements
provided by the supervisor giving a good match in the ellipsometric parameters ψ and ∆. The results
and graphs together with related comments were written in Section 5.3.
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