
MASTER THESIS

Bc. Markéta Horeǰsová

Multistage nested distance in stochastic
optimization

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: Sebastiano Vitali, Ph.D.
Study programme: Mathematics

Study branch: Probability, Mathematical Statistics and
Econometrics

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

Prague, 6th May 2018 signature of the author

i

Title: Multistage nested distance in stochastic optimization

Author: Bc. Markéta Horeǰsová

Department: Department of Probability and Mathematical Statistics

Supervisor: Sebastiano Vitali, Ph.D., Department of Probability and Mathemat-
ical Statistics

Abstract: Multistage stochastic optimization is used to solve many real-life prob-
lems where decisions are taken at multiple times, e.g., portfolio selection prob-
lems. Such problems need the definition of stochastic processes, which are usually
approximated by scenario trees. The choice of the size of the scenario trees is the
result of a compromise between the best approximation and the possibilities of
the computer technology. Therefore, once a master scenario tree has been gen-
erated, it can be needed to reduce its dimension in order to make the problem
computationally tractable. In this thesis, we introduce several scenario reduction
algorithms and we compare them numerically for different types of master trees.
A simple portfolio selection problem is also solved within the study. The distance
from the initial scenario tree, the computational time, and the distance between
the optimal objective values and solutions are compared for all the scenario re-
duction algorithms. In particular, we adopt the nested distance to measure the
distance between two scenario trees.

Keywords: nested distance, multistage stochastic optimization, scenario tree re-
duction

ii

I would like to thank my supervisor, Dr. Vitali, for finding me an interesting
topic for my thesis, and for his guidance and advice.

iii

Contents

Introduction 2

1 Fundamentals 3
1.1 Multistage stochastic programs 3

1.1.1 Scenario based stochastic programs 4
1.2 Scenario trees . 4

1.2.1 Representation of a scenario tree 5
1.2.2 Nested distribution . 7

1.3 Nested distance . 8
1.3.1 Probability measures . 8
1.3.2 The Wasserstein distance 8
1.3.3 Multistage generalization 10
1.3.4 The nested distance for trees 11

2 Scenario reduction algorithms 14
2.1 Simple algorithms . 15

2.1.1 Nodal extraction . 15
2.1.2 Nodal extraction improved 16
2.1.3 Scenario extraction . 17

2.2 Advanced algorithms . 19
2.2.1 Single scenario reduction 19
2.2.2 The clustering algorithm 21
2.2.3 Subtrees merging . 24

2.3 Comparison of the algorithms . 27

3 Numerical study 29
3.1 Master tree generation . 29
3.2 Distance of the trees . 30

3.2.1 2,400 to 24 reduction . 30
3.2.2 10,000 to 100 reduction . 33

3.3 Portfolio selection problem . 36
3.4 Distance of the objective values 37

3.4.1 2,400 to 24 reduction . 37
3.4.2 10,000 to 100 reduction . 40

3.5 Distance of the solutions . 43
3.5.1 2,400 to 24 reduction . 43
3.5.2 10,000 to 100 reduction . 46

Conclusion 49

1

Introduction
In many real-life optimization problems the data are uncertain, e.g., they could

represent some future value such as price or demand, and decisions are made on
several time occasions, e.g., board meetings every week. To solve these problems
the theory of multistage stochastic optimization is used. Unlike single stage
stochastic optimization where only one decision is made, multistage stochastic
optimization considers that several decisions are to be made. It is assumed that
the data are random variables with known distribution. This distribution is
usually approximated by a discrete distribution represented by a scenario tree.

Since, in order to approximate the initial distribution as much as possible,
scenario trees can be rather huge, so much that solving the optimization problem
is beyond the computational capabilities, several scenario reduction algorithms
were proposed in the literature, e.g., [2], [4], or [7]. In this thesis we focus on
comparing different reducing algorithms. For this reason also a simple portfolio
selection problem ([3]) is solved. For each of the algorithms we measure the
distance between the initial tree (the master tree) and the reduced tree, the
time needed to generate the reduced tree, and the distances between the optimal
objective values and solutions. To measure the distance between two scenario
trees we use the nested distance from the theory of probability measures.

The first two chapters of this thesis are dedicated to the theory. The first
chapter summarizes the fundamentals of multistage stochastic problems and the
nested distance; the second chapter introduces various scenario reduction al-
gorithms and apply them on an example. All the algorithms are thoroughly
compared in the third chapter of this thesis.

It is expected that with more sophisticated scenario reduction algorithms the
quality of the reduction should be better than for simple algorithms. The aim of
this thesis is to observe how big is the improvement in relation to the increased
computational complexity and the time demand.

2

1. Fundamentals
In this chapter we summarize the basics of multistage stochastic optimization,
the theory of probability measures, and the nested distance. For more thorough
explanation see [7] or [3].

1.1 Multistage stochastic programs
In general, when we talk about a T -stage stochastic program we think of a
stochastic data process

ξ = (ξ1, . . . , ξT)
and a decision process

x = (x0, . . . , xT).
The realizations of ξ are usually called trajectories or scenarios. The probability
distribution of ξ will be denoted by P and its support by Ω. The sequence of
decisions and observations is then

x0, ξ1, x1, . . . , ξT , xT .

Information available during the stages is represented by a filtration F =
(F1, . . . , FT), where F t, t = 1, . . . , T, are σ-algebras and F s ⊂ F t ∀ 1 ≤ s ≤ t ≤
T. We assume that the decision process does not depend on future realizations of
ξ nor on future decisions. The past and the probability distribution of ξ, however,
are known. This assumption could be written as

xt ▹ F t ∀ t = 1, . . . , T,

and it is called the nonanticipativity constraint. It means that xt is F t-measurable
for every t.

Note that the time intervals do not need to be equidistant and the stages
can also correspond to steps in the decision process. Very often we also add a
deterministic observation ξ0 and a trivial σ-algebra F0 = {∅, Ω}. The notation
varies in the literature, e.g., the stage is indexed from 1 or the sequence of decisions
and observations is

x1, ξ1, x2, . . . , ξT −1, xT .

However, if we speak of T -stage stochastic programs, we mean programs in which
we make T decisions. Therefore, we disregard the decision xT in our notation.

Using the notation defined above, T -stage stochastic program could be written
in the form

min{Q(x, ξ) : x ∈ X, xt ▹ F t ∀ t = 0, . . . , T},

where Q(x, ξ) is a cost function and X is the set of constraints. A special case of
T -stage stochastic programs is a linear T -stage stochastic program with recourse,
which has the following form

min{c⊤
0 x0 + E ξ1 φ1(x0, ξ1) : A0x0 = b0, l0 ≤ x0 ≤ u0},

where for t = 1, . . . , T − 1 the function φt is defined by

3

φt(xt−1, ξt) = min{ct(ξt)⊤xt + E ξt+1 φt+1(xt, ξt+1) :
At(ξt)xt−1 + Btxt = bt(ξt), lt ≤ xt ≤ ut}

and

φT (xT −1, ξT) = min{cT (ξT)⊤xT :
AT (ξT)xT −1 + BT xT = bT (ξT), lT ≤ xT ≤ uT }.

1.1.1 Scenario based stochastic programs
Assume now that the probability distribution of ξ is finite and discrete, i.e.,
concentrated on a finite number of scenarios. A scenario is denoted by

ωs = (ωs
0, . . . , ωs

T).

Further, we assume a specific organization of data in the form of a scenario tree.
By ω̃kt , kt ∈ Kt, we denote all possible realizations of ξt, where Kt are disjoint
sets of indices, t = 0, . . . , T, by S we denote the total number of scenarios, which
is equal to the number of elements in KT , and by kt− we denote the index of the
unique ancestor of ω̃kt . The program then has the following form

min{c⊤
0 x0 +

∑
k1∈K1

pk1c⊤
k1xk1 + · · · +

∑
kT ∈KT

pkT
c⊤

kT
xkT

:

A0x0 = b0

Bk1x0 + Ak1xk1 = bk1 , k1 ∈ K1

Bk2xk2− + Ak2xk2 = bk2 , k2 ∈ K2
...

BkT
xkT − + AkT

xkT
= bkT

, kT ∈ KT

lkt ≤ xkt ≤ ukt , kt ∈ Kt, t = 0, . . . , T},

where pkt > 0 signify the path probabilities, ∑kt∈Kt
pkt = 1, t = 1, . . . , T. The

path probabilities may be obtained by stepwise multiplication of the marginal
probabilities pk1 by the related conditional probabilities πpτ ,pτ+1 .

Example. One of the typical examples of multistage stochastic programs is the
problem of a private investor. A private investor has some initial wealth, he wants
to maximize his expected return in some time by investing in assets, and he has
the possibility to reinvest his money during the time period. See [3] for more
details and additional examples.

1.2 Scenario trees
As was already mentioned above, scenario trees are a way of defining a multistage
stochastic optimization on finite probability spaces. The most relevant feature
of a tree is its topology. This way, trees could be viewed as equivalence classes
with respect to bijective mappings which preserve the precedence topology, i.e.,
the numbering and ordering of the nodes is irrelevant, any numbering or ordering
of the nodes generates the same tree. For this reason we can always take one
representative of a class and label its nodes.

4

1.2.1 Representation of a scenario tree
Suppose that the tree consists of N nodes {1, . . . , N}. The root node is the node 1.
For each node n we define its stage, which is its distance from the root, we denote
its direct successors (children) by n+, and for each node except for the root we
also denote its direct predecessor by n−. All nodes are divided into disjoint
node sets, which we denote by Kt, t = 0, . . . , T, according to the stages. In this
notation, K0 = {1} is the root, KT are the leaves, and Kt, t = 1, . . . , T − 1, are
the inner nodes.

If we look at the scenario trees as at special directed finite graphs, they carry
the probability valuations on the nodes (the unconditional probabilities) and arcs
(the conditional branching probabilities). It suffices to assign the unconditional
probabilities pn only to the leaf nodes, i.e., n ∈ KT , since for all inner nodes they
could be attained recursively by

pm =
∑

n∈m+
pn.

The conditional arc probabilities are then defined by

qn = πn,n− = pn

pn−
.

In the opposite direction, we can get the unconditional probabilities from the
conditional ones recursively by

pn = qn · pn−,

where, obviously, we set the root probabilities p1 = q1 = 1.
Apart from the information about the structure, each node could also carry

a vector of scenario values ξ(n) ∈ Rm.

Tree processes. A scenario tree could be equivalently described as a tree pro-
cess (νt, t = 0, . . . , T) with values in the state space Kt, t = 0, . . . , T, where Kt

are pairwise disjoint, K0 is a singleton, and it satisfies

σ(νt) = σ(ν0, . . . , νt) ∀t.

The tree process defined above induces a probability distribution P on KT .
Without loss of generality we may set the image space KT as the basic probability
space, i.e., Ω = KT . The filtration (F0, . . . , FT) then consists of the degenerated
sigma algebras F t := σ(νt).

Example. Example of a two-stage scenario tree representation is shown in Fig-
ure 1.1 on the following page. The conditional probabilities are included in
the graph, the unconditional could be easily calculated, e.g., P({ω1}) = p4 =
0.8 · 0.2 = 0.16, P({ω2}) = p5 = 0.8 · 0.3 = 0.24, etc.

As we can see, the tree consists of 8 nodes and has 5 scenarios. Each path of
the tree is represented by ωk, k = 1, . . . , 5. For instance, ω1 corresponds to the
path (1,2,4), or ω4 to the path (1,3,7). The node sets are as follows

K0 = {1},

5

K1 = {2, 3}, and
K2 = {4, 5, 6, 7, 8}.

Figure 1.2 shows the corresponding filtration (F0, F1, F2) induced by this tree
process. The filtration is defined by

F0 = σ({ω1, ω2, ω3, ω4, ω5}) = {∅, Ω},

F1 = σ({ω1, ω2, ω3}, {ω4, ω5}), and
F2 = σ({ω1}, {ω2}, {ω3}, {ω4}, {ω5}).

1

2

3

4 ω1

5 ω2

6 ω3

7 ω4

8 ω5

K0 K1 K2

0.8

0.2

0.2

0.3

0.5

0.4

0.6

Figure 1.1: An example of a tree structure

{ω1, ω2, ω3, ω4, ω5}

{ω1, ω2, ω3}

{ω4, ω5}

{ω1}

{ω2}

{ω3}

{ω4}

{ω5}

F0 F1 F2

0.8

0.2

0.2

0.3

0.5

0.4

0.6

Figure 1.2: Induced filtration

6

1.2.2 Nested distribution
Now we would like to connect the scenario process ξt, t = 0, . . . , T, to the tree
process defined in the preceding subsection. The usual approach is to choose
a standard representation of the values of the tree process as the conditional
distribution of the scenario process ξ. One can do this, since only the distribution
of the tree process matters. Naturally, we assume that the scenario process ξ is
adapted to the filtration F induced by the tree process, i.e., ξt▹F t, t = 0, . . . , T.

The structure (Ω, F , P, ξ) is called the value-and-information structure, where
the tree process represents the information structure in the decision process, and
the scenario process ξ, which is a function of the tree process ν, is the basis of
the decisions.

Let us assume that the scenario process ξ has values in Rm. Then we recurs-
ively define spaces:

X1 = Rm,

representing one fixed value at the root node ξ0,

X2 := Rm × P(X1),

representing the root value ξ0 ∈ Rm and the scenario distribution ξ1 ∈ P(X1) at
time 1 in one object, where P signifies all Borel probability measures on (Rm, d),
where d is some metric on Rm,

X3 := Rm × P(X2) = Rm × P(Rm × P(Rm)),

representing the initial root value ξ0, the distribution of ξ1, and the conditional
distribution of ξ2. We then iterate T times to finally get

XT := Rm × P(XT −1).

The probability distribution P on XT is called the nested distribution of depth T.

Example. Continuing the example of a tree process from the preceding section
(Figures 1.1 and 1.2), Figure 1.3 shows a nested distribution displayed by a tree.

1.0

2.0

0.5

2.5

2.2

1.8

1.2

0.1

0.8

0.2

0.2

0.3

0.5

0.4

0.6

Figure 1.3: A nested distribution displayed by a tree

7

1.3 Nested distance
Nowadays, in most applications we want to approximate some stochastic pro-
cess, e.g., to be able to solve some optimization problem. In order to know how
good or bad our approximation is, we measure the distance between the induced
probability measures. In other words, we have some distribution P on Rm, we
are approximating it by another distribution P′, which is usually simpler, and we
want to measure the distance between P and P′ .

1.3.1 Probability measures
There exists a lot of different distances between probability measures in the lit-
erature, see [9] and [10]. In stochastic optimization, the distance should extend
to general stochastic processes, measure distances between distributions, be in-
dependent of different underlying probability spaces, enable discrete approxima-
tions, and it should be possible to implement it.

Distance. Let P be a set of probability measures on Rm. A measure d defined
on P × P is called a distance if it satisfies:

1. (nonnegativity) for all P1, P2 ∈ P :

d(P1, P2) ≥ 0;

2. (symmetry) for all P1, P2 ∈ P :

d(P1, P2) = d(P2, P1);

3. (triangle inequality) for all P1, P2, P3 ∈ P :

d(P1, P2) ≤ d(P1, P3) + d(P3, P2);

4. (strictness) if d(P1, P2) = 0, then P1 = P2 .

If only conditions 1-3 are satisfied, then d is called a semi-distance.

1.3.2 The Wasserstein distance
A popular distance used in multistage stochastic optimization is the so-called
Wasserstein distance, which is a generalization of the Kantorovich distance (see
[7]).

Suppose we have two probability spaces (Ω, F , P) and (Ω′, F ′, P′), and ξ and
ξ′ are Rm-valued random variables on Ω and Ω′, respectively. Then we define an
inherited distance between the elements of Ω and Ω′ by

d(ω, ω′) := c(ω, ω′) = d(ξ(ω), ξ′(ω′)),

where c : Ω × Ω′ → R is a cost function and d some distance on Rm.

8

Distances between elements could be extended to the distance between prob-
abilities. We define the optimal transportation cost as

inf
π

∫∫
Ω×Ω′

c(ω, ω′)dπ(ω, ω′),

where π is a bivariate probability measure on Ω × Ω′ satisfying

π(A × Ω′) = P(A), π(Ω × B) = P′(B)

for all measurable sets A ∈ F and B ∈ F ′ . In other words, π is a bivariate
probability measure on Ω × Ω′ with P and P′ as marginals. The optimal measure
π∗ is called the optimal transportation plan.

Wasserstein distance. Now we can define the Wasserstein distance of order
r (r ≥ 1) as

dr(P, P′) :=
(

inf
π

∫∫
Ω×Ω′

d(ω, ω′)rdπ(ω, ω′)
) 1

r

,

where the infimum is taken over all joint probability measures π on Ω × Ω′ with
P and P′ as marginals.

Sufficient condition for the infimum to exist is that both measures P and P′

are tight, since the integrand is continuous (see [5]).
The Wasserstein distance satisfies several properties – it is monotone, convex,

bounded, and it controls all moments. See [7] for proofs and more details. We
can also use alternative distances as its basis.

Wasserstein distance in a discrete framework. It is quite common that
the considered measures are discrete measures with finite supports. For two
discrete measures P = ∑n

i=1 piδxi
and P′ = ∑n′

j=1 p′
jδx′

j
, where {x1, . . . , xn} and

{x′
1, . . . , x′

n′} are the corresponding finite supports, the Wasserstein distance is
equal to

min
π

∑
i,j

πi,j · dr
i,j

s.t.
n′∑

j=1
πi,j = pi, i = 1, . . . , n,

n∑
i=1

πi,j = p′
j, j = 1, . . . , n′,

πi,j ≥ 0,

where the matrix di,j = d(xi, x′
j) carries the distances between each pair (xi, x′

j).
The matrix πi,j corresponds to the bivariate probability measure

π =
∑
i,j

πi,j · δ(xi,x′
j).

It holds that πi,j ≥ 0 and ∑i

∑
j πi,j = 1.

9

1.3.3 Multistage generalization
So far we defined the Wasserstein distance only for problems with one stage.
In this subsection we extend it for stochastic processes (ξt, t = 0, . . . , T) and
(ξ′

t, t = 0, . . . , T) with stochastic bases (Ω, F = (F0, . . . , FT), P) and (Ω′, F ′ =
(F ′

0, . . . , F ′
T), P′).

Consider now a stochastic process

ξt : Ω → (Ξt, dt), t = 0, . . . , T,

or in the compound form

ξ : Ω → Ξ0 × · · · × ΞT

ω ↦→ (ξ0(ω), . . . , ξT (ω)),

where the spaces (Ξt, dt) do not need to be the same for every t = 1, . . . , T and
ξ0 is considered deterministic. If we take another process ξ′ with the same state
spaces Ξt, we can define the inherited distance analogously to the single-stage
one. For instance, the ℓ1 distance:

d(ω, ω′) :=
T∑

t=0
wt dt(ξt(ω), ξ′

t(ω′)), wt > 0 ∀t,

the ℓ2 distance:

d(ω, ω′) :=
(

T∑
t=0

wt dt(ξt(ω), ξ′
t(ω′))2

) 1
2

, wt > 0 ∀t,

or the ℓ∞ distance:

d(ω, ω′) := max
t=0,...,T

wt dt(ξt(ω), ξ′
t(ω′)), wt > 0 ∀t.

For any choice of d there is a cost function on Ω × Ω′ so that the Wasserstein
distance

dr(Pξ, Pξ′)
could be attained.

The main setback of the Wasserstein distance is that it does not take into
account the conditional probabilities; it only considers the final probabilities.
That is why an extension is made, which considers all σ-algebras included in the
filtration, not only the final one.

Definition. Let P = (Ω, (F t), P) and P′ = (Ω′, (F ′
t), P′) be two probability

spaces and d : Ω × Ω′ → R a distance defined on these spaces. We then define
the nested distance of order r (r ≥ 1) as the optimal value of the optimization
problem

min
π

(∫
d(ω, ω′)rdπ(ω, ω′)

) 1
r

s.t. π(A × Ω′| F t ⊗ F ′
t) = P(A| F t), A ∈ F t, t ∈ {1, . . . , T},

π(Ω × B| F t ⊗ F ′
t) = P′(B| F ′

t), B ∈ F ′
t, t ∈ {1, . . . , T},

(1.1)

10

where π is a bivariate probability measure from P(Ω × Ω′) defined on FT ⊗ F ′
T .

A feasible measure π is called a nested transport plan. We denote the optimal
value by

dr(P,P′).

Again, it could be proofed that the nested distance is both monotone and
convex and that it satisfies the triangle inequality. See [7] for more details.

1.3.4 The nested distance for trees
For trees, we can reformulate the problem 1.1 as

min
π

∑
i,j

πi,j · dr
i,j

s.t.
∑
j≻l

π(i, j|k, l) = P(i|k), ∀k ≺ i, l,

∑
i≻k

π(i, j|k, l) = P′(j|l), ∀l ≺ j, k,

πi,j ≥ 0, ∀i, j,∑
i,j

πi,j = 1,

where π = (πi,j) is a matrix on the leaf nodes i ∈ KT , j ∈ K′
T , k, l are arbitrary

nodes of the same stage t, the notation i ≻ k signifies that the node k is a
predecessor of the node i, and

π(i, j|k, l) = πi,j∑
i′≻k,j′≻l πi′,j′

are the conditional probabilities. Note that many constraints are linearly depend-
ent.

Since we can replace the conditions

π(A × Ω′| F t ⊗ F ′
t) = P(A| F t), ∀A ∈ FT

in 1.1 by
π(A × Ω′| F t ⊗ F ′

t) = P(A| F t), ∀A ∈ F t+1

(see [7], Lemma 2.43), the problem could be again rewritten considering the
conditional probabilities only at subsequent stages.

Algorithm. For two tree processes the nested distance can be computed by
the backward iteration. First, we compute the distance between the scenarios of
the first tree and the scenarios of the second one, i.e., for each pair of leaf nodes
i ∈ KT and j ∈ K′

T we compute

d
r
T (i, j) := d((ξi0 , ξi1 , . . . , ξi), (ξ′

j0 , ξ′
j1 , . . . , ξ′

j))r,

where (i0, . . . , iT −1) and (j0, . . . , jT −1) are the predecessors of the leaves i and j,
respectively.

11

Then for t = T − 1 down to 0 and all combinations of k ∈ Kt and l ∈ K′
t we

solve the following linear problem

d
r
t (k, l) := min

π

∑
m∈k+,n∈l+

π(m, n|k, l) · dr
t+1(m, n)

s.t.
∑

n∈l+
π(m, n|k, l) = qm ∀m ∈ k+,

∑
m∈k+

π(m, n|k, l) = q′
n ∀n ∈ l+,

π(m, n|k, l) ≥ 0,

where k+ are the direct successors (children) of the node k and qk are the condi-
tional probabilities.

The nested distance between the trees is the distance between the subtrees at
the level 0, i.e., at their roots,

dr(P,P′) = d
r
0(1, 1).

The optimal transport plan at the leaf nodes i ∈ KT and j ∈ K′
T is the product

π(i, j) := π1(i1, j1|i0, j0) · · · πT −1(i, j|iT −1, jT −1),

where πt is the optimal transport plan at the stage t.

Example. We will compute the nested distance between the two trees which
are depicted in Figure 1.4 below.

1.0
1.5

0.5

2.0

1.0

3.0

0.0

tree 1

1.0

2.0

0.5

3.0

1.0

1.0

0.0

tree 2

0.5

0.5

1/3

1/3

1/3

1

0.6

0.4

0.5

0.5

0.9

0.1

Figure 1.4: The trees considered in the example

We start with computing the distances between the leaf nodes. If we use the
ℓ1 distance, we get:

d
1
2 =

⎛⎜⎜⎜⎝
1.5 1.5 2.0 3.0
2.5 0.5 1.0 2.0
0.5 2.5 3.0 4.0
4.5 2.5 1.0 0

⎞⎟⎟⎟⎠ .

Now we solve the optimization problem for each combination of the nodes of the
stage 1. We get:

d
1
1 =

(
0.833 2.100
3.500 0.900

)
.

12

We continue with the stage 0, i.e., the roots. We solve the optimization problem,
and finally we get the nested distance between the tree 1 and the tree 2

d
1
0(1, 1) = d1(P,P′) = 1.1267.

Obviously, the nested distance can be computed between trees which have
different branching, different number of scenarios, or different number of nodes.
However, both trees need to have the same number of stages.

13

2. Scenario reduction algorithms
As was mentioned earlier, in many situations we have a stochastic process rep-
resented by a huge tree, and we would like to reduce (approximate) the tree by
a smaller (simpler) one, which we can use to solve some optimization problems.
There are many scenario reduction algorithms in the literature; in this chapter
we describe the most frequently used.

In the first section, we introduce algorithms which are based on a random
extraction of nodes, and which do not consider the nodal values at all. Such
algorithms, we call them simple in this thesis, are easy to implement and fast,
but the quality of the result is uncertain. For that reason we introduce other
algorithms, we call them advanced, in the second section of this chapter. These
algorithms use different techniques based on the distances between the scenarios,
the nodes, or the subtrees to merge the closest pair or to eliminate the furthest
one. They are, naturally, more computationally demanding than the simple al-
gorithms, but we expect a better approximation of the initial tree. We dedicate
Chapter 3 of this thesis to study how much better is the approximation of the ad-
vanced algorithms compared to the simple algorithms in relation to the increase
in the computational complexity.

Since it is best to show the algorithms on an example, we consider the following
master tree:

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

Figure 2.1: The master tree considered throughout Chapter 2

14

As we can see, it is a regular two-stage tree with branching 3-3 and it has
nine equiprobable scenarios and thirteen nodes. In the following subsections we
assume that we want to reduce it to a tree with four scenarios using alternative
reduction algorithms.

2.1 Simple algorithms
We begin with the algorithms that do not consider the nodal values and are
purely based on a random extraction of nodes. These algorithms do not compute
any distances. They usually simply define an uniform distribution on the nodal
labels (or, if the nodes are not equiprobable, they define a discrete probability
distribution with the nodes being its support and the nodal probabilities the
probabilities) and randomly select from the nodes. Therefore, they are very easy
to implement and one can get a reduced tree in less than a second. Obviously, all
of these algorithms are not deterministic, i.e., if run multiple times, they produce
different reduced trees.

2.1.1 Nodal extraction
The first algorithm we propose is to simply choose the required tree structure,
then at each stage define a discrete distribution on the nodes of that stage of the
master tree, and randomly select from them.

Example. Consider the master tree defined at the beginning of this section
(Figure 2.1). We would like to reduce it to a tree with four scenarios and regular
branching 2-2. We divide the node labels according to the stages. We get the
following sets

K0 = {1},

K1 = {2, 3, 4}, and
K2 = {5, . . . , 13}.

The desired number of nodes at each stage is 1, 2, and 4. We take the root
node, and then randomly select 2 nodes from K1 and 4 nodes from K2 . In this
particular case we chose the nodes 4 and 3 from the stage 1, and the nodes 7, 8,
11 and 5 from the stage 2.

Note that the order of the nodes is important, since we connect the nodes
to the nodes of the previous stage according to that order, i.e., in our case we
connect the nodes 4 and 3 with the root (we set the root as the parent of the
nodes 4 and 3), the nodes 7 and 8 with the node 4, and the nodes 11 and 5 with
the node 3. The reduced tree is in Figure 2.2 below.

15

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1.0
1

0.8
4

1.5
3

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/2

1/2

(a) Master tree (b) Step 1

1.0
1

0.8
4

1.5
3

2.4
7

2.6
8

1.5
11

3.0
5

1/2

1/2
1/2

1/2

1/2

1/2

(c) Step 2

Figure 2.2: A reduced tree using the nodal extraction

2.1.2 Nodal extraction improved
One way to improve the algorithm described in the previous part (the nodal
extraction) is to select nodes only from the children of the already selected nodes
from the previous stage instead of selecting from all the nodes from the stage.
This approach seems to be a bit smarter as it somehow preserves the original
parent-child relations.

Example. Let us start from the master tree 2.1 again. We want to reduce it to a
tree with 4 scenarios regularly branched 2-2. We take the root and randomly select
2 of its children 1+ = {2, 3, 4}. In this particular case we get the nodes 3 and 4.
Then we take the node 3 and randomly select from its children 3+ = {8, 9, 10}.
We do the same with the node 4. We get the nodes 9, 10 and 11, 13. The reduced
tree is in Figure 2.3.

16

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/2

1/2

1/3

1/3

1/3

1/3

1/3

1/3

(a) Master tree (b) Step 1

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/2

1/2

1/2

1/2

1/2

1/2

1.0
1

1.5
3

0.8
4

2.0
9

1.1
10

1.5
11

0.5
13

1/2

1/2
1/2

1/2

1/2

1/2

(c) Step 2 (d) A reduced tree

Figure 2.3: A reduced tree using the improved nodal extraction

2.1.3 Scenario extraction
We might not want to determine any specific structure for the reduced tree. In
that case we can simply randomly select the desired number of scenarios. We
define a discrete distribution on the leaf nodes and randomly select the number
of leaf nodes according to the number of scenarios we want. The reduced tree
then contains the whole paths to the selected leaf nodes. We set the probabilities
of the leaves so that the former ratios are preserved, but they sum up to 1. For
example, if we select three leaf nodes with probabilities 0.2, 0.1 and 0.3, the new
probabilities would be 1/3, 1/6 and 1/2. The probabilities of the remaining nodes
are computed recursively as the sum of the probabilities of their children.

By this approach, the reduced tree is generally larger than the trees generated
by the two algorithms described earlier. The reason is that, especially when
reducing from very large trees, many nodes have only one child.

17

Example. Let us consider the master tree 2.1. We take the leaf nodes of the
master tree (labeled {5, . . . , 13}) and randomly select 4 of them. In this particular
case we selected the nodes 5, 7, 10, and 12. We preserve the whole paths to the
leaf nodes, i.e., all the nodes 2, 3, and 4. Since we have equiprobable nodes, we
set the probabilities of the new leaf nodes equally to 1/4. Then we compute the
probabilities of their parents – the node 2 has the probability 1/2, the nodes 3
and 4 have equally the probability 1/4. We compute the conditional probabilities
from the absolute ones in the way that was shown in Subsection 1.2.1 to finally
get the reduced tree, which is shown in Figure 2.4.

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

(a) Master tree (b) Step 1

1.0
1

2.0
2

0.8
4

1.5
3

3.0
5

2.4
7

1.1
11

0.8
12

1/4

1/4

1/2

1

1

1/2

1/2

(c) A reduced tree

Figure 2.4: A reduced tree using the scenario extraction

18

2.2 Advanced algorithms
Since the algorithms described in the preceding section do not use the information
about the values of the nodes, it is natural to suspect that the reduced trees
obtained by these methods might not be very close to the original tree. For
that reason, we would like to think of a way how to use that information and
the information about the tree structure in a cleverer way. In this section, we
introduce three different approaches to the problem.

2.2.1 Single scenario reduction
The single scenario reduction, as the name suggests, reduces the master tree
scenario by scenario. The idea is to iterate the procedure until the desired number
of scenarios is reached. This method is in detail described in [2]. The outline of
its general version is described at the end of this subsection.

First, we measure the distances between all scenarios. We get a matrix with
the elements

di,j = d((ξi0 , . . . , ξiT
), (ξj0 , . . . , ξjT

)), i ̸= j,

where (i0, . . . , iT) and (j0, . . . , jT) are the paths of the scenario i and j, respect-
ively.

Next, for each scenario i we define

D(i) = pi · min
j ̸=i

di,j,

where pi are the scenario probabilities. We eliminate the scenario for which D(i)
is the lowest. If arg min D(i) contains more than one element, we can either ran-
domly choose the scenario to eliminate (which would lead to a non-deterministic
solution) or we could simply eliminate the first one (which would lead to a de-
terministic solution).

Lastly, we find the scenario which was the closest to the eliminated one and
increase its probability by the probability of the eliminated one, e.g., if the elim-
inated scenario is the scenario i∗, we find

j∗ = arg min
j ̸=i∗

di∗,j

and set pj∗ = pj∗ + pi∗ .
We repeat this procedure with the new tree until we have the desired number

of scenarios.

Example. We consider the master tree 2.1. We measure the scenario distances
and get

d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 0.5 0.6 0.9 1.5 2.4 2.7 3.4 3.7
0.5 − 0.1 0.6 1.0 1.9 2.2 2.9 3.2
0.6 0.1 − 0.7 0.9 1.8 2.1 2.8 3.1
0.9 0.6 0.7 − 0.6 1.5 1.8 2.5 2.8
1.5 1.0 0.9 0.6 − 0.9 1.2 1.9 2.2
2.4 1.9 1.8 1.5 0.9 − 1.1 1.0 1.3
2.7 2.2 2.1 1.8 1.2 1.1 − 0.7 1.0
3.4 2.9 2.8 2.5 1.9 1.0 0.7 − 0.3
3.7 3.2 3.1 2.8 2.2 1.3 1.0 0.3 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

19

Then we compute the D and get

D = 1
9 · (0.5, 0.1, 0.1, 0.6, 0.6, 0.9, 0.7, 0.3, 0.3).

D is the lowest at two scenarios – the scenarios 2 and 3 represented by the paths
(1,2,6) and (1,2,7). We eliminate the first one, i.e., the scenario 2. Then we
find the closest scenario, which in this case is the scenario 3, and increase its
probability to p3 = p3 + p2 = 2

9 .
We recalculate the D for the reduced tree:

D = 1
9 · (0.6, 2 · 0.6, 0.6, 0.6, 0.9, 0.7, 0.3, 0.3).

The arg min D again contains two scenarios. We eliminate the first one, i.e., the
one represented by the path (1,4,12), and readjust the probabilities. We iterate
until we get the final tree (Figure 2.5).

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

2/3

1/3

1/3

1/3

1/3

1/3

1/3

(a) Master tree (b) Step 1

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

2/3

1/3

1/3

1/3

1/3

2/3

1.0
1

2.0
2

0.8
4

1.5
3

2.4
7

2.0
9

1.5
11

0.5
13

1/3

1/3

1/3

1

1/3

2/3

1

(c) Step 2 (d) Step 5 - the reduced tree

Figure 2.5: The reduced tree using the single scenario reduction

20

Generalization. We can generalize this method to a multiple scenario reduc-
tion. Suppose we want to eliminate k scenarios. We define

DJ =
∑
i∈J

pi min
j /∈J

di,j,

where pi is the probability of the scenario i, di,j is the distance between the
scenarios i and j, and J ⊂ {1, . . . , S}, #J = k, where S is the total number of
scenarios. We eliminate the k scenarios from

J∗ = arg min{DJ : J ∈ {1, . . . , S}, #J = k}.

As in the single scenario reduction, we redistribute the probabilities to the non-
eliminated ones. We iterate until the desired number of scenarios is reached. In
each iteration, k could be different.

The apparent disadvantage of this method is that it is quiet huge and labor-
ious. It is practically impossible to apply it on larger trees. Aside from this,
it uses absolute probabilities only and does not consider the tree structure. As
well as in the case of the scenario extraction described in Subsection 2.1.3, the
reduced tree contains many nodes with only one child.

2.2.2 The clustering algorithm
In this part we introduce an algorithm based on clustering. Clustering is a way
of grouping n points to s < n groups, which are named clusters. There are many
possible ways of clustering described in the literature (see [4]), however, in this
thesis we consider the following version. We start with each point being a cluster
itself. Then we repeatedly join the two nearest clusters into one until we get
the target number of clusters. The distance between clusters is defined as the
maximum distance between the points of one cluster to the points of the other,
i.e., if we have two clusters, say A and B, A consisting of points {a1, . . . , ak}, B
of {b1, . . . , bl}, where k and l are positive integers, then the distance between A
and B is

d(A, B) = max{d(ai, bj) : i ∈ {1, . . . , k}, j ∈ {1, . . . , l}}, (2.1)

where d(ai, bj) is some distance between points, e.g., the ℓ1 distance, or the ℓ2

distance.
Alternatively, we could represent each cluster by its centroid and compute

the cluster distances as the distances between their centroids. Or, instead of
centroids, we could use the points which have the smallest average distance to
the other points of the cluster, or the smallest maximum distance to the other
points of the cluster, etc.

Now, we need to apply it to a tree. The idea is to determine the target
structure of the reduced tree, and then proceed stage after stage. The algorithm
is described below.

Algorithm. We choose the final (regular) structure of the reduced tree. When
this is settled, we set K∗

0 := K0 . Then for t = 0 to T − 1 and for each node n
from K∗

t we cluster its children into the predetermined number of groups. As the

21

representative of each group we take the group’s median, and we store its label
in K∗

t+1 . Its probability is equal to the sum of the probabilities of all members of
the group, its children are all children of all members of the group.

The reduced tree is represented by the nodes in K∗
t , t = 0, . . . , T. It has the

required structure, but its scenarios do not need to be equiprobable. This is the
consequence of the fact that the clusters usually do not have the same number of
points and the probability is taken as the sum of the probabilities of the points
in the cluster.

Example. Let us start with the master tree 2.1. We would like to reduce it to a
tree with regular branching 2-2. We follow the algorithm and set K∗

0 := K0 = {1}.
We take its children {2, 3, 4} and compute the ℓ1 distances between each pair to
get the matrix

d =

⎛⎜⎝
2 3 4

2 − 0.5 1.2
3 0.5 − 0.7
4 1.2 0.7 −

⎞⎟⎠.

The closest nodes are the nodes 2 and 3, so we join them into one cluster. We
have 2 clusters {2, 3} and {4}, which is the number of clusters we wanted. For
the first cluster we take the median (= 1.75), label it 2∗, and store it in K∗

1 along
with 4. The node 4 has the same probability as before, the probability of the
node 2∗ is p2 + p3 = 2

3 .
We move to the next stage. We take the children of the node 2∗ (the nodes

{5, . . . , 10}) and compute the distances between each pair. We get

d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 6 7 8 9 10

5 − 0.5 0.6 0.4 1.0 1.9
6 0.5 − 0.1 0.1 0.5 1.4
7 0.6 0.1 − 0.2 0.4 1.3
8 0.4 0.1 0.2 − 0.6 1.5
9 1.0 0.5 0.4 0.6 − 0.9
10 1.9 1.4 1.3 1.5 0.9 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The closest are the nodes 6, 7 and 6, 8. We join the first pair into one cluster
{6, 7} and recalculate the distances. We get

d =

⎛⎜⎜⎜⎜⎜⎜⎝

5 6,7 8 9 10

5 − 0.6 0.4 1.0 1.9
6,7 0.6 − 0.2 0.5 1.4
8 0.4 0.2 − 0.6 1.5
9 1.0 0.5 0.6 − 0.9
10 1.9 1.4 1.5 0.9 −

⎞⎟⎟⎟⎟⎟⎟⎠.

We join the group {6, 7} with the node 8 into one. The recalculated distances
then are

d =

⎛⎜⎜⎜⎝
5 6,7,8 9 10

5 − 0.6 1.0 1.9
6,7,8 0.6 − 0.6 1.5
9 1.0 0.6 − 0.9
10 1.9 1.5 0.9 −

⎞⎟⎟⎟⎠.

22

We add the node 5 into the big group. The distances are

d =

⎛⎜⎝
5,6,7,8 9 10

5,6,7,8 − 1.0 1.9
9 1.0 − 0.9
10 1.9 0.9 −

⎞⎟⎠.

Now we join the nodes 9 and 10 into one group. Finally, we have two clusters.
The group medians are 2.55 and 1.55. We store them under the labels 5∗ and 9∗

into K∗
2 . Their conditional probabilities are 2

3 and 1
3 .

We do the same with the other node of K∗
1. We get two points (1.5 and 0.65)

labeled 11 and 12∗, which have the conditional probabilities 1
3 and 2

3 . The final
reduced tree is in Figure 2.6.

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1.00
1

1.75
2∗

0.80
4

3.00
5

2.50
6

2.40
7

2.60
8

2.00
9

1.10
10

1.50
11

0.80
12

0.50
13

2/3

1/3

1/6

1/6

1/6

1/6

1/6

1/6

1/3

1/3

1/3

(a) Master tree (b) Step 1

1.0
1

1.75
2∗

0.80
4

2.55
5∗

1.55
9∗

1.50
11

0.80
12

0.50
13

2/3

1/3 1/3

1/3

1/3

2/3

1/3

1.0
1

1.75
2∗

0.80
4

2.55
5∗

1.55
9∗

1.50
11

0.65
12∗

2/3

1/3
1/3

2/3

2/3

1/3

(c) Step 2 (d) Step 3 - the reduced tree

Figure 2.6: The reduced tree using the clustering algorithm

23

2.2.3 Subtrees merging
One may go one step further and use the nested distance between subtrees instead
of the distance between points as the basis of the reduction. The algorithm which
we will now describe is, along with its improvements, presented in [7].

We start with computing the nested distances between all non-degenerate
subtrees which have the same parent. Then we merge the closest pair into one
using the following algorithm.

Merging. Suppose we have two subtrees with distributions P1 and P2, which
we want to merge into a new tree. The value at the new root is the mean value
of the two old roots. For the successors, consider the optimal transport plan
between P1 and P2, and sort it in descending order, i.e., if the roots are i0 and
j0, respectively, then we get

πi1,j1 ≥ πi2,j2 ≥ · · · ,

where i1, i2, . . . ∈ i0+, j1, j2, . . . ∈ j0+. Then we take the smallest m such that
m∑

k=1
πik,jk

≥ p,

where p is a chosen reducing parameter, p ∈ (0, 1]. The smaller the p, the bigger
the reduction.

We have m points (i1, j1), . . . , (im, jm). We set their values as the mean values
of the corresponding values of the original two trees, i.e., if the values of the first
tree are represented by ξ and the values of the second by ξ′, we take 1

2(ξik
+

ξ′
jk

), k = 1, . . . , m. Their probabilities are

pk = πik,jk∑m
l=1 πil,jl

, k = 1, . . . , m,

so that it holds ∑m
k=1 pk = 1. Now we proceed recursively by merging the points

(i1, j1), . . . , (im, jm), i.e., by merging the subtrees which have the nodes ik and jk,
k = 1, . . . , m, as their roots. When the leaf level is reached, only the mean value
is taken.

The algorithm stops if the reduced tree is small enough. Otherwise, we recal-
culate the nested distances and merge the closest pair.

The reduction of the original tree strongly depends on the choice of the re-
ducing parameter p, which could be a problem, especially if we are aiming for a
tree with a specific number of scenarios.

Example. Let us have the master tree 2.1. We compute the nested distances
of order one. For the stage 1 we get

d1 =

⎛⎜⎝
2 3 4

2 − 1.233 2.900
3 1.233 − 1.667
4 2.900 1.667 −

⎞⎟⎠.

24

So, we merge the subtrees with the nodes 2 and 3 as roots. We set their mean value
as a new node 2*, and for their children we look at the optimal transportation
plan, which is

π =

⎛⎜⎝
5 6 7

8 1/3 0 0
9 0 1/6 1/6
10 0 1/6 1/6

⎞⎟⎠.

We sort π in descending order. Then it depends on the choice of p. For p = 1
we would have to merge all the points (5,8), (6,9), (6,10), (7,9), and (7,10). For
p = 0.5 it suffices to merge only two points. Say we choose p = 0.5 and merge the
points (5,8) and (7,10). We take their means and set them as new nodes labeled
5* and 7*, which we connect to the node 2* as its children. Their conditional
probabilities are 1

3 · 1
2 = 2

3 and 1
6 · 1

2 = 1
3 .

Now we have five scenarios, which is still too much, so we have to recompute
the nested distances. Since we have only one possibility left, we merge the sub-
trees with the nodes 2* and 4 as roots. For their children we again follow the
transportation plan

π =

⎛⎜⎝
5∗ 7∗

11 2/9 1/9
12 2/9 1/9
13 2/9 1/9

⎞⎟⎠
and merge the points (5*,11), (5*,12), and (5*,13) to finally get the reduced tree
in Figure 2.7. However, this tree has only three scenarios, since 2 scenarios were
removed in the last iteration for p = 0.5.

1.0
1

2.0
2

1.5
3

0.8
4

3.0
5

2.5
6

2.4
7

2.6
8

2.0
9

1.1
10

1.5
11

0.8
12

0.5
13

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1.00
1

1.75
2∗

0.80
4

3.00
5

2.50
6

2.40
7

2.60
8

2.00
9

1.10
10

1.50
11

0.80
12

0.50
13

2/3

1/3

1/3

1/3

1/3

(a) Master tree (b) Step 1

25

1.0
1

1.75
2∗

0.80

4

2.80
5∗

1.75
7∗

1.50
11

0.80
12

0.50
13

2/3

1/3 1/3

1/3

1/3

2/3

1/3

1.000
1

1.275
2∗∗

2.150
5**

1.800
5*’

1.650
5”

1

1/3

1/3

1/3

(c) Step 2 (d) Step 3 - the reduced tree

Figure 2.7: The reduced tree using the subtrees merging algorithm

For the choice p = 1 we obtain a tree with 15 scenarios and no possible
subtrees to merge except for the degenerate ones (so the tree is actually larger
than the master tree), for the choice p = 0.8 we get a tree with 9 scenarios, and
for the choice p = 0.6 we get a tree with 5 scenarios. We see that even for this
simple example the choice of p is very important, since each choice of p leads to
a different solution.

If we allow the merging of the degenerate subtrees, i.e., the leaf nodes, we
arrive to the tree depicted in Figure 2.8. We see that it has the desired number
of scenarios.

1.0
1

2.000
2

0.800
4

1.500
3

2.725
5*

1.100
8*

2.300
10

1.075
11*

1/3

1/3

1/3
1/3

2/3

1

1

Figure 2.8: The reduced tree using the subtrees merging algorithm with allowed
degenerate subtrees for p=1

26

2.3 Comparison of the algorithms
Let us now compare the trees we obtained by applying the algorithms described
above.

The nested distances of order 1 between the reduced trees and the initial
master tree are in Table 2.1 along with the number of nodes at each stage of the
reduced trees.

Algorithm
The nested

distance
Number of nodes

per stage

Nodal extraction 1.097 1-2-4
Nodal extraction improved 0.908 1-2-4
Scenario extraction 0.561 1-3-4
Single scenario reduction 0.278 1-3-4
Clustering alg. 0.467 1-2-4
Subtrees merging 1.175 1-1-3
Subtrees merging with degener-
ate subtrees

0.300 1-3-4

Table 2.1: Comparison of the reduced trees

As we can see, the closest is the tree from the single scenario reduction,
the furthest is the tree from the subtrees merging without degenerate subtrees,
which has only three scenarios. Its second version, i.e., when the merging of the
degenerate subtrees is allowed, is the second best.

But these reductions were just illustrative, so the distances are not very indic-
ative. The algorithms are thoroughly compared in the next chapter, where more
realistic (larger) master trees were generated.

All reduced trees are shown in Figure 2.9.

27

1.0
1

0.8
4

1.5
3

2.4
7

2.6
8

1.5
11

3.0
5

1/2

1/2
1/2

1/2

1/2

1/2

1.0
1

1.5
3

0.8
4

2.0
9

1.1
10

1.5
11

0.5
13

1/2

1/2
1/2

1/2

1/2

1/2

1.0
1

2.0
2

0.8
4

1.5
3

3.0
5

2.4
7

1.1
11

0.8
12

1/4

1/4

1/2

1

1

1/2

1/2

(a) Nodal extraction (b) Nodal extraction im-
proved

(c) Scenario extraction

1.0
1

2.0
2

0.8
4

1.5
3

2.4
7

2.0
9

1.5
11

0.5
13

1/3

1/3

1/3

1

1/3

2/3

1

1.0
1

1.75
2∗

0.80
4

2.55
5∗

1.55
9∗

1.50
11

0.65
12∗

2/3

1/3
1/3

2/3

2/3

1/3

1.000
1

1.275
2∗∗

2.150
5**

1.800
5*’

1.650
5”

1

1/3

1/3

1/3

(d) Single scenario reduction (e) Clustering algorithm (f) Subtrees merging

1.0
1

2.000
2

0.800
4

1.500
3

2.725
5*

1.100
8*

2.300
10

1.075
11*

1/3

1/3

1/3
1/3

2/3

1

1

(g) Subtrees merging with
allowed degenerate trees

Figure 2.9: The final reduced trees from the example

28

3. Numerical study
In this chapter we apply the algorithms described in the preceding part to mas-
ter trees. Then we compute the nested distances between the reduced trees and
the master trees, and we compare the results. We also solve a simple portfolio
selection problem, so we are able to compare the distances between the optimal
objective values and solutions as well as the nested distances and the computa-
tional time.

Throughout the study, we used the nested distance of order one. We used the
ℓ1 norm to measure distances between points and scenarios, i.e.,

d((ξ0, . . . , ξT), (ξ′
0, . . . , ξ′

T)) =
T∑

t=0

N∑
i=1

⏐⏐⏐ξt,i − ξ′
t,i

⏐⏐⏐ ,
where T is the number of stages and N is the dimension of the values. In other
words, N is the number of assets considered.

The subtrees merging algorithm is used with the reducing parameter p set
to 0.5. Higher choices of p led to a significant increase in the number of nodes
of the tree, which led to a significant increase in the computational time of the
algorithm, and the algorithm eventually exceeded the time limit – one day.

3.1 Master tree generation
Based on real data, i.e., weekly returns of forty selected assets, we generated the
following four-stage master trees:

(a) regularly branched 10-10-6-4 with 2,400 equiprobable scenarios,

(b) regularly branched 25-10-10-4 with 10,000 equiprobable scenarios.
We successively consider the cases using the weekly returns of 1, 5, 10, and 20
assets; we refer to these cases as dimensions 1, 5, 10, and 20 throughout the whole
chapter, i.e., the dimension 1 means the case with 1-dimensional nodal values,
the dimension 5 refers to the case with 5-dimensional nodal values (the case with
5 assets), etc.

For both master trees, the algorithms are reducing with the same ratio 100
to 1, i.e., the master tree with 10,000 scenarios is reduced to 100 scenarios, the
master tree with 2,400 scenarios to 24.

We started by calculating the weekly returns of each asset over the last three
years, i.e., from the beginning of 2015 to the beginning of 2018. For each asset
we computed the sample mean and variance. We also computed the correlations
between the assets. Based on the required structure and the number of assets
(dimension of the nodal values) we then generated the master trees using the
Monte Carlo sampling method assuming that the weekly returns of the assets
distribute as a multivariate normal distribution.

Summary. To summarize the master trees:
• the number of stages: T = 4;
• the dimension of the nodal values (the number of assets): N = 1, 5, 10, 20;

29

• the number of nodes per stage:

(a) 1 - 10 - 100 - 600 - 2,400;
(b) 1 - 25 - 250 - 2,500 - 10,000;

• the target number of scenarios:

(a) 24;
(b) 100.

3.2 Distance of the trees
At first, we are going to compare the time needed to run each of the six algorithms
from the preceding chapter and the nested distances between the reduced trees
obtained by the algorithms and the master trees. All computation were done on
a computer with Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz processor and
8GB memory. The time is measured in seconds.

3.2.1 2,400 to 24 reduction
Figure 3.1 shows the nested distances between the reduced trees and the master
trees with 2,400 scenarios to the elapsed time of the algorithms, where we take
the log10 of the time for better readability of the time differences between the
algorithms.

As we can see, the simple algorithms generate a reduced tree in less than 0.1
second. The scenario extraction is slightly slower than the two nodal extractions,
but, compared to the nodal extractions, it is closer to the master tree for the
dimensions 5, 10, and 20 (i.e., to the master trees with 5-, 10-, and 20-dimensional
nodal values).

The clustering algorithm needs 2 to 3 seconds to reduce the master tree.
However, the reduced tree from this algorithm is the closest for all dimensions
but the dimension 5, where it is beaten by the single scenario reduction.

The single scenario reduction takes over 900 seconds (∼ 15 minutes) with
comparable results to the clustering method, except for the dimension one, where
it is significantly worse, but still usually better than the simple algorithms.

The subtrees merging algorithm is the slowest; it takes more than 19,500
seconds (∼ 3 hours and 30 minutes) with a result comparable to the simple
scenario extraction algorithm.

When we look at Table 3.1, which summarizes the nested distances, we see
that the nested distance increases with the dimension of the nodal values of the
master tree. Moreover, also the variance of the non-deterministic algorithms
increases with the dimension. We see, however, that the variance for the scenario
extraction is little smaller than for the nodal extractions.

30

Nested distance
0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.00106 s0.00159 s

0.0274 s

 910 s

 1.97 s

 1.77e+04 s

1dim. nodes

Nested distance
0.7 0.8 0.9 1 1.1 1.2 1.3

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.00118 s0.00157 s

0.0276 s

 909 s

 2.46 s

 1.95e+04 s

5dim. nodes

Nested distance
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.00115 s0.00159 s

0.0273 s

 931 s

 2.9 s

 1.99e+04 s

10dim. nodes

Nested distance
3.5 4 4.5 5 5.5 6

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.00115 s0.00149 s

0.0271 s

 907 s

 2.55 s

 2.01e+04 s

20dim. nodes

Nodal extraction Nodal extr.impr. Scenario extraction
Single sc.red. Clustering alg. Subtrees merging

Figure 3.1: The nested distance of order 1 to the elapsed time for the 2,400
scenario master trees

31

The nested distance

Algorithm Min. Mean Max. SD

D
im

en
si

on
1

Nodal extraction 0.119 0.146 0.186 0.014
Nodal extraction improved 0.119 0.146 0.186 0.012
Scenario extraction 0.129 0.146 0.170 0.008
Single scenario reduction 0.126
Clustering alg. 0.099
Subtrees merging p = 0.5 0.138

D
im

en
si

on
5

Nodal extraction 0.972 1.054 1.213 0.042
Nodal extraction improved 0.932 1.045 1.202 0.047
Scenario extraction 0.808 0.900 0.992 0.030
Single scenario reduction 0.745
Clustering alg. 0.774
Subtrees merging p = 0.5 0.864

D
im

en
si

on
10

Nodal extraction 3.043 3.367 3.792 0.146
Nodal extraction improved 2.997 3.317 3.746 0.141
Scenario extraction 2.710 2.945 3.209 0.099
Single scenario reduction 2.488
Clustering alg. 2.372
Subtrees merging p = 0.5 2.969

D
im

en
si

on
20

Nodal extraction 4.655 5.111 5.830 0.224
Nodal extraction improved 4.604 5.011 5.677 0.208
Scenario extraction 4.010 4.406 4.785 0.155
Single scenario reduction 3.816
Clustering alg. 3.746
Subtrees merging p = 0.5 4.342

Table 3.1: The nested distance between the master trees with 2,400 scenarios and
the reduced trees

32

3.2.2 10,000 to 100 reduction
For 10,000 to 100 reduction we adjusted the subtrees merging algorithm by de-
termining the target number of nodes at each stage (in our case 5 for stage 1, 25
for stage 2, 50 for stage 3, and 100 for stage 4), and then started merging stage
1 until we reached the desired number of nodes at that stage. Then we moved
to stage 2, and so on. Otherwise, the algorithm would have run longer than a
week, which we think is a time period no one would want to wait. The resulted
reduced trees are still non-regular.

The results are shown in Figure 3.2; the nested distances are summarized in
Table 3.2.

By comparing it with the 2,400 to 24 reduction, the nodal extractions are
still very fast, but here the distinction between them is more apparent – the
improved nodal extraction generates trees which are slightly closer to the master
trees than the trees generated by the unimproved nodal extraction. The scenario
extraction takes little more than 0.2 seconds, and, except for the 1-dimensional
case, its trees are closer to the master trees than are the trees of the two nodal
extractions algorithms. Moreover, the variability of the nested distance for the
nodal extractions is twice as big as the variability of the nested distance for the
scenario extraction.

The clustering algorithm now takes 12 to 28 seconds, which is still a very
good time, and its trees are the closest. The single scenario reduction is the
slowest now; the time needed is 13 to 14.5 hours. For the dimensions 5 and 10
the results are comparable to the clustering algorithm, but it is not as good for
the other dimensions, and it is even worse than the simple scenario extraction in
the 20-dimensional case.

After the adjustment, the subtrees merging algorithm takes around 2.7 hours
for the 1-dimensional nodes, 4.5 hours for the 5- and 10-dimensional nodes, and
7.5 hours in the 20-dimensional case. Its results are between the improved nodal
extraction and the scenario extraction, which, when we look at the time needed,
is not good.

If we use a different choice of the reducing parameter p in the adjusted subtrees
merging algorithm, then even for the choice p = 0.6 the algorithm does not finish,
as, although it reduces the number of nodes at stage 1, it enlarges the number of
nodes at other stages so much that computing the nested distance between one
pair of subtrees takes more than 5 hours and the time needed grows with each
iteration of the algorithm. This would not happen in the original version of the
algorithm with allowed degenerate subtrees, but the time needed would be more
than a week.

The nested distances between the reduced trees and the master trees are
comparable for both reductions, i.e., we obtained similar results for the 2,400 to
24 reduction and for the 10,000 to 100 reduction. The computational time of the
algorithms, on the other hand, is higher for the 10,000 to 100 reduction.

33

Nested distance
0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.0028 s0.00481 s

0.238 s

 4.67e+04 s

 12.3 s

 1.34e+04 s

1dim. nodes

Nested distance
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.00439 s0.00697 s

0.247 s

 4.76e+04 s

 26.2 s

 1.57e+04 s

5dim. nodes

Nested distance
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.00296 s0.00465 s

0.236 s

 4.7e+04 s

 27.7 s

 1.58e+04 s

10dim. nodes

Nested distance
3.5 4 4.5 5 5.5

E
la

ps
ed

 ti
m

e
[lo

g
10

(s
)]

-4

-2

0

2

4

6

0.00339 s0.00461 s

0.235 s

 5.38e+04 s

 17 s

 2.69e+04 s

20dim. nodes

Nodal extraction Nodal extr.impr. Scenario extraction
Single sc.red. Clustering alg. Subtrees merging

Figure 3.2: The nested distance of order 1 to the elapsed time for the 10,000
scenario master trees

34

The nested distance

Algorithm Min. Mean Max. SD

D
im

en
si

on
1

Nodal extraction 0.111 0.124 0.143 0.006
Nodal extraction improved 0.111 0.122 0.150 0.006
Scenario extraction 0.119 0.132 0.144 0.004
Single scenario reduction 0.120
Clustering alg. 0.087
Subtrees merging p = 0.5 0.139

D
im

en
si

on
5

Nodal extraction 0.913 0.961 1.020 0.027
Nodal extraction improved 0.877 0.936 1.042 0.023
Scenario extraction 0.799 0.831 0.875 0.015
Single scenario reduction 0.706
Clustering alg. 0.706
Subtrees merging p = 0.5 0.875

D
im

en
si

on
10

Nodal extraction 2.969 3.134 3.364 0.091
Nodal extraction improved 2.875 3.044 3.411 0.092
Scenario extraction 2.599 2.716 2.841 0.045
Single scenario reduction 2.333
Clustering alg. 2.256
Subtrees merging p = 0.5 2.862

D
im

en
si

on
20

Nodal extraction 4.641 4.895 5.405 0.113
Nodal extraction improved 4.502 4.785 5.108 0.103
Scenario extraction 3.906 4.067 4.238 0.064
Single scenario reduction 4.230
Clustering alg. 3.552
Subtrees merging p = 0.5 4.549

Table 3.2: The nested distance between the master trees with 10,000 scenarios
and the reduced trees

35

3.3 Portfolio selection problem
Since we would like to have some other comparison between the scenario reduc-
tion algorithms described in Chapter 2 than just the nested distances and the
computational time, we formulate and solve a simple portfolio selection prob-
lem, which allows us to compare also the distances between the optimal objective
values and between the optimal solutions.

Formulation. Given the four-stage master trees, the initial wealth W0 = 100,
the number of assets N = 5, 10, and 20, the weekly returns ρ (ρi,k is the weekly
return of the asset i realized at node k from its ancestor k−), the scenario prob-
abilities pk4 , k4 ∈ K4, the diversification coefficient θ = 0.65, and the turnover
coefficient γ = 1, the problem is formulated as follows, where xk,i is the amount
of money invested in the asset i at the node k, Wk4 is the wealth at the end of the
investment horizon, and zkt,i represents how much the investment in the asset i
changes from kt− to kt,

max
x,W ,z

∑
k4∈K4

pk4Wk4

s.t.
N∑

i=1
xk0,i = W0,

N∑
i=1

(1 + ρi,kt)xkt−1,i −
N∑

i=1
xkt,i = 0 ∀kt−1 ∈ Kt−1, ∀kt ∈ kt−1+, t = 1, 2, 3,

N∑
i=1

(1 + ρi,k4)xk3,i = Wk4 ∀k3 ∈ K3, ∀k4 ∈ k3+,

xkt,i ≥ 0, ∀i ∈ {1, . . . , N}, ∀kt ∈ Kt, t = 0, 1, 2, 3,

γ ·
N∑

i=1
(1 + ρi,kt)xkt−1,i −

N∑
i=1

zkt,i ≥ 0 ∀kt−1 ∈ Kt−1, ∀kt ∈ kt−1+, t = 1, 2, 3,

(1 + ρi,kt)xkt−1,i − xkt,i + zkt,i ≥ 0 ∀i, ∀kt−1 ∈ Kt−1, ∀kt ∈ kt−1+, t = 1, 2, 3,

xkt,i − (1 + ρi,kt)xkt−1,i + zkt,i ≥ 0 ∀i, ∀kt−1 ∈ Kt−1, ∀kt ∈ kt−1+, t = 1, 2, 3,

θ · W0 − xk0,i ≥ 0, ∀i,

θ ·
N∑

i=1
(1 + ρi,kt)xkt−1,i − xkt,i ≥ 0, ∀i, ∀kt ∈ Kt, t = 1, 2, 3,

Wk4 ∈ R, ∀k4 ∈ K4 .

We are maximizing the average wealth with short-selling not allowed and an
upper bound on how much we can invest in one asset. The upper bound depends
on the wealth we have at that time and the diversification coefficient θ. For our
choice γ = 1 the variables z and the constraints which contain these variables
are omitted, i.e., portfolios can be completely changed at each stage.

This relatively simple problem had to be adjusted for the 10,000 scenario
master trees with 10- and 20-dimensional nodal values in order to be solvable
in the matlab implementation. The two next-to-last constraints, i.e., the upper
bounds on the amount of money invested in one asset, were merged into one; they
are of the form

θ · W0 − xkt,i ≥ 0, ∀i, ∀kt ∈ Kt, t = 0, 1, 2, 3.

36

After this adjustment, the upper bounds on the amount of wealth invested in
one asset are the same for all assets at all stages and nodes. This way we avoid
memory issues, which we face otherwise when trying to allocate the matrix of
constraints.

3.4 Distance of the objective values
In this section, the nested distance to the distance between the optimal objective
values is compared. The distance between the optimal objective values is meas-
ured using the ℓ1 norm, i.e., for two optimal objective values obj∗

1 and obj∗
2 the

distance is
d(obj∗

1 , obj∗
2) = |obj∗

1 − obj∗
2 | .

The objective value represents the average wealth after the investment, where we
started with the initial wealth W0 = 100.

3.4.1 2,400 to 24 reduction
The nested distance to the distance of the optimal objective values is shown in
Figure 3.3; Table 3.3 summarizes the distances between the optimal objective
values.

We can see that the optimal objective values of the reduced trees from the
advanced algorithms are very close to the optimal objective values of the master
trees. For the simple algorithms, on the other hand, it is very diverse with some
optimal objective values very close and some very far from the optimal objective
values of the master trees.

The optimal objective values from the scenario extraction never get close
to the optimal objective values of the master trees, i.e., the minimum distance
between them is much higher compared to the other algorithms. Moreover, also
the average distance of the optimal objective values is higher for the scenario
extraction than for the other algorithms; the variance of the distance and the
maximum, however, are smaller for the scenario extraction than they are for the
other two simple algorithms – both nodal extractions.

There is an apparent trend that the bigger the nested distance, the bigger
the variance of the optimal objective distance. The variance also increases with
the increase in the nodal dimension. The standard deviation is about 3 for the
scenario extraction and about 5 for the nodal extractions in the 5-dimensional
case. It increases to 12 for the scenario extraction and to about 15 for the nodal
extractions in the 10-dimensional case, and it is 14 for the scenario extraction
and over 24 for the nodal extractions in the 20-dimensional case. As well as the
variance, also the average distance of the objectives increases with the increase
in the dimension, which was expected.

What is not shown in the figure nor the table, is the fact that the optimal
objective values are always higher than the optimal objective values of the master
trees when using the reduced trees from the simple algorithms and the single
scenario reduction. However, they are always lower for the clustering algorithm,
and it varies for the subtrees merging algorithm.

37

Nested distance
0.7 0.8 0.9 1 1.1 1.2 1.3

D
is

ta
nc

e
of

 th
e

ob
je

ct
iv

e

0

5

10

15

20

25

30
5dim. nodes

Nested distance
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

D
is

ta
nc

e
of

 th
e

ob
je

ct
iv

e

0

20

40

60

80

100

120
10dim. nodes

Nested distance
3.5 4 4.5 5 5.5 6

D
is

ta
nc

e
of

 th
e

ob
je

ct
iv

e

0

20

40

60

80

100

120

140
20dim. nodes

Nodal extraction Nodal extr.impr. Scenario extraction
Single sc.red. Clustering alg. Subtrees merging

Figure 3.3: The distance between the optimal objective values for the 2,400 scen-
ario master trees

38

The distance of the objectives

Algorithm Min. Mean Max. SD

D
im

en
si

on
5

Nodal extraction 0.064 8.771 22.300 4.825
Nodal extraction improved 0.050 9.695 26.226 4.899
Scenario extraction 1.481 10.014 16.974 2.824
Single scenario reduction 5.967
Clustering alg. 1.934
Subtrees merging p = 0.5 0.168

D
im

en
si

on
10

Nodal extraction 0.031 27.798 103.546 16.919
Nodal extraction improved 0.718 25.943 86.962 17.130
Scenario extraction 11.046 35.752 72.096 11.878
Single scenario reduction 16.684
Clustering alg. 15.542
Subtrees merging p = 0.5 13.718

D
im

en
si

on
20

Nodal extraction 1.051 33.212 137.916 22.229
Nodal extraction improved 0.399 37.890 115.704 22.431
Scenario extraction 16.906 43.734 77.371 14.033
Single scenario reduction 33.801
Clustering alg. 6.895
Subtrees merging p = 0.5 21.363

Table 3.3: The distance between the objective values for the master trees with
2,400 scenarios

39

3.4.2 10,000 to 100 reduction
In Figure 3.4 and Table 3.4 is the distance between the optimal objective values
for the master trees with 10,000 scenarios. Let us recall that the portfolio selection
problem was adjusted for the dimensions 10 and 20, so the upper bound on the
amount of money invested in one asset is for each asset, node, and stage the same
constant, which is 65 % of the initial wealth W0 = 100, i.e., the upper bound is
equal to 65.

We see that the minimum distance between the optimal objective values is far
from zero for the scenario extraction as it is in the case of the 2,400 to 24 reduction,
but now it is more apparent. The average distance is again the highest for the
scenario extraction; nevertheless, the variance and the maximum are still lower for
the scenario extraction than for the nodal extractions. The standard deviations
of the nodal extractions are even twice as high as the standard deviation of the
scenario extraction, which is bigger difference than in the case of 2,400 to 24
reduction, where it is in the ratio 3:5.

Though the improved nodal extraction is closer (in the sense of the nested dis-
tance) to the master trees than the unimproved nodal extraction, the distances
between the optimal objective values are about the same. Nevertheless, in gen-
eral, it holds that the maximum distance between the optimal objective values
decreases with the decrease in the nested distance.

The distance between the optimal objective values tends to increase with the
increase in the dimension of the nodal values, however, the distinction between
the 10-dimensional and 20-dimensional case is not as evident as in the 2,400 to
24 reduction; the results for these two dimensions in the 10,000 to 100 reduction
are the same, more or less.

The optimal objective values for the advanced algorithms are relatively close
to the optimal objective values of the master trees. However, the subtrees mer-
ging algorithm has slightly better results than the single scenario reduction and
the clustering algorithm, for which the distances between the optimal objective
values are practically the same although their nested distances are not (with the
exception of the dimension 5).

Compared to the 2,400 to 24 reduction, the distances between the optimal
objective values are lower for the 10,000 to 100 reduction for all dimensions. The
difference is especially noticeable in the cases with 10- and 20-dimensional nodal
values.

As it is in the case of the 2,400 to 24 reduction, the optimal objective values
for the simple algorithms (the nodal extractions and the scenario extraction) and
the single scenario reduction are always higher than the optimal objective values
of the master trees, they are always lower for the clustering algorithm, and it
varies for the subtrees merging algorithm.

40

Nested distance
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

D
is

ta
nc

e
of

 th
e

ob
je

ct
iv

e

0

2

4

6

8

10

12

14

16
5dim. nodes

Nested distance
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

D
is

ta
nc

e
of

 th
e

ob
je

ct
iv

e

0

10

20

30

40

50

60
10dim. nodes

Nested distance
3.5 4 4.5 5 5.5

D
is

ta
nc

e
of

 th
e

ob
je

ct
iv

e

0

10

20

30

40

50

60
20dim. nodes

Nodal extraction Nodal extr.impr. Scenario extraction
Single sc.red. Clustering alg. Subtrees merging

Figure 3.4: The distance between the optimal objective values for the 10,000
scenario master trees

41

The distance of the objectives

Algorithm Min. Mean Max. SD

D
im

en
si

on
5

Nodal extraction 0.739 6.494 13.224 2.623
Nodal extraction improved 1.107 6.157 15.609 2.618
Scenario extraction 6.611 8.645 12.416 1.231
Single scenario reduction 4.444
Clustering alg. 4.295
Subtrees merging p = 0.5 1.647

D
im

en
si

on
10

Nodal extraction 0.985 19.370 50.223 11.017
Nodal extraction improved 1.718 19.218 48.727 10.055
Scenario extraction 17.667 26.986 37.188 3.657
Single scenario reduction 12.762
Clustering alg. 13.482
Subtrees merging p = 0.5 12.731

D
im

en
si

on
20

Nodal extraction 3.823 21.171 53.981 8.954
Nodal extraction improved 6.663 22.984 58.459 8.857
Scenario extraction 15.957 29.741 43.936 4.743
Single scenario reduction 13.625
Clustering alg. 15.812
Subtrees merging p = 0.5 6.570

Table 3.4: The distance between the objective values of the master trees with
10,000 scenarios

42

3.5 Distance of the solutions
By the distance between the optimal solutions we mean the ℓ1 distance between
the first decisions. That is, if x1

1 and x2
1 are two optimal solutions (decisions at

the stage 0), the distance between them is then

d(x1
1, x2

1) =
N∑

i=1

⏐⏐⏐x1
1,i − x2

1,i

⏐⏐⏐ ,
where N is the dimension of the nodes, i.e., the number of assets, and x1

1,i and x2
1,i,

respectively, is the optimal amount of the initial wealth that should be invested
in the asset i at time 0.

For our initial wealth 100, the distance’s range is from 0 to 200, i.e., two
completely different solutions have the distance equal to 200.

3.5.1 2,400 to 24 reduction
The distance between the optimal solutions to the nested distance is shown for
all algorithms in Figure 3.5; the distance between the optimal solutions is sum-
marized in Table 3.5.

We see that the distance between the optimal solutions tends to increase
with the increase in the nodal dimension, i.e., for the dimension 20 almost every
optimal solution is completely different from the optimal solution of the master
tree, and there are only very few which are the same. For the dimension 5, on
the other hand, a quarter of the optimal solutions from the nodal extractions
and two thirds of the optimal solutions from the scenario extraction are the same
as the optimal solution of the master tree, and only ten percent of the optimal
solutions from the nodal extractions are completely different from the optimal
solution of the master tree. There is a domination of the completely different
optimal solutions in the case of the master with 10-dimensional nodal values, but
not as great as for the dimension 20.

If we look at the dimension 5 (the top graph of Figure 3.5), we can see that for
lower nested distances the solution distances are also, on average, lower than for
the trees with higher nested distances. This is not so apparent for the other two
dimensions (10 and 20), since there is a global increase in the distances between
the optimal solutions.

When we compare the simple algorithms, the optimal solutions of the trees
from the scenario extraction are clearly closer to the optimal solutions of the mas-
ter trees than are the optimal solutions of the trees from the other two algorithms
(the nodal extractions). This could be expected, since the scenario extraction
tends to keep more nodes from the early stages than the nodal extractions.

43

Nested distance
0.7 0.8 0.9 1 1.1 1.2 1.3

D
is

ta
nc

e
of

 th
e

so
lu

tio
n

0

50

100

150

200

250
5dim. nodes

Nested distance
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

D
is

ta
nc

e
of

 th
e

so
lu

tio
n

0

50

100

150

200

250
10dim. nodes

Nested distance
3.5 4 4.5 5 5.5 6

D
is

ta
nc

e
of

 th
e

so
lu

tio
n

0

50

100

150

200

250
20dim. nodes

Nodal extraction Nodal extr.impr. Scenario extraction
Single sc.red. Clustering alg. Subtrees merging

Figure 3.5: The distance between the optimal solutions for the 2,400 scenario
master trees

44

The solution distance

Algorithm 0 60 70 130 200

D
im

en
si

on
5

Nodal extraction 25 % 4 % 22 % 43 % 5 %
Nodal extraction improved 25 % 2 % 23 % 41 % 9 %
Scenario extraction 58 % 11 % 5 % 26 % 0 %
Single scenario reduction 100 % 0 % 0 % 0 % 0 %
Clustering alg. 100 % 0 % 0 % 0 % 0 %
Subtrees merging p = 0.5 0 % 100 % 0 % 0 % 0 %

D
im

en
si

on
10

Nodal extraction 1 % 0 % 11 % 24 % 64 %
Nodal extraction improved 2 % 1 % 7 % 20 % 70 %
Scenario extraction 33 % 5 % 13 % 27 % 22 %
Single scenario reduction 0 % 0 % 0 % 100 % 0 %
Clustering alg. 0 % 0 % 0 % 0 % 100 %
Subtrees merging p = 0.5 0 % 0 % 0 % 100 % 0 %

D
im

en
si

on
20

Nodal extraction 0 % 0 % 11 % 25 % 64 %
Nodal extraction improved 0 % 0 % 9 % 22 % 69 %
Scenario extraction 11 % 5 % 11 % 33 % 40 %
Single scenario reduction 0 % 0 % 0 % 0 % 100 %
Clustering alg. 0 % 0 % 0 % 0 % 100 %
Subtrees merging p = 0.5 0 % 0 % 0 % 0 % 100 %

Table 3.5: Frequency of the solution distance for the master trees with 2,400
scenarios

45

3.5.2 10,000 to 100 reduction
Figure 3.6 shows the distance between the optimal solutions to the nested distance
for the 10,000 scenarios master trees with 5-, 10-, and 20-dimensional nodal values.
The frequencies of the distance between the optimal solutions are summarized in
Table 3.6.

As for the dimension 5 in the case of 2,400 to 24 reduction, also in the case
of 10,000 to 100 reduction we see that (on average) the distance of the optimal
solutions decreases with the decrease in the nested distance. Unlike the case of
the 2,400 to 24 reduction, in the case of the 10,000 to 100 reduction this is true
for all dimensions, not just the dimension 5.

Unlike the 2,400 to 24 reduction, where there is an apparent increase in the
distance between the optimal solutions with the increase in the dimension of the
nodal values of the master trees, we do not see any noticeable increase in the case
of the 10,000 to 100 reduction, on the contrary, there is an apparent decrease in
the distance between the optimal solutions with the increase of the dimension
of the nodal values of the master trees. More precisely, almost every optimal
solution from the scenario extraction is the same as the optimal solution of the
master tree with 20-dimensional nodal values, while only less than half of the
optimal solutions is the same in the case of the master tree with 5-dimensional
nodal values.

The reason why the optimal solutions from the scenario extraction are so close
to the optimal solutions of the master trees is that the reduced trees from the
scenario extraction keep most of the nodes from the first stage, whereas the other
algorithms do not.

The distances between the optimal solutions are similar for both nodal ex-
tractions. Only a few optimal solutions from the nodal extractions are the same
as the optimal solutions of the master trees; the majority of the optimal solutions
from the nodal extractions has at least a part which is common with the optimal
solution of the master tree.

We see that lot of optimal solutions, especially in the dimension 10, have a
different distance from the optimal solution of the master tree than 0, 60, 70,
130, and 200. This is the consequence of the fact that these solutions do not have
the upper bound constraint active, which the other optimal solutions do, i.e., in
most optimal solutions we should invest in only two assets in the first investment
– 65 in one and 35 in another.

Usually, the distance 60 corresponds to the situation where both optimal
solutions invest in the same two assets, but the amount is switched, i.e., one
optimal solution invests in the first common asset 65 and 35 in the other, the
second optimal solution invests 35 in the first common asset and 65 in the other,
the distances 70 and 130 correspond to the situation where both optimal solution
invest in one common asset and one different; in the case of 60 the common asset
is the major one, and it is the minor one in the case of 130.

46

Nested distance
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

D
is

ta
nc

e
of

 th
e

so
lu

tio
n

0

50

100

150

200

250
5dim. nodes

Nested distance
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

D
is

ta
nc

e
of

 th
e

so
lu

tio
n

0

50

100

150

200

250
10dim. nodes

Nested distance
3.5 4 4.5 5 5.5

D
is

ta
nc

e
of

 th
e

so
lu

tio
n

0

50

100

150

200

250
20dim. nodes

Nodal extraction Nodal extr.impr. Scenario extraction
Single sc.red. Clustering alg. Subtrees merging

Figure 3.6: The distance between the optimal solutions for the 10,000 scenario
master trees

47

The solution distance

Algorithm 0 60 70 130 200

D
im

en
si

on
5

Nodal extraction 8 % 11 % 14 % 45 % 22 %
Nodal extraction improved 4 % 15 % 17 % 28 % 36 %
Scenario extraction 45 % 15 % 38 % 2 % 0 %
Single scenario reduction 100 % 0 % 0 % 0 % 0 %
Clustering alg. 0 % 0 % 100 % 0 % 0 %
Subtrees merging p = 0.5 0 % 0 % 100 % 0 % 0 %

D
im

en
si

on
10

Nodal extraction 7 % 0 % 48 % 26 % 14 %
Nodal extraction improved 5 % 1 % 50 % 30 % 10 %
Scenario extraction 85 % 1 % 2 % 0 % 0 %
Single scenario reduction 100 % 0 % 0 % 0 % 0 %
Clustering alg. 100 % 0 % 0 % 0 % 0 %
Subtrees merging p = 0.5 0 % 0 % 0 % 100 % 0 %

D
im

en
si

on
20

Nodal extraction 6 % 0 % 47 % 18 % 26 %
Nodal extraction improved 3 % 0 % 39 % 17 % 41 %
Scenario extraction 98 % 1 % 1 % 0 % 0 %
Single scenario reduction 100 % 0 % 0 % 0 % 0 %
Clustering alg. 0 % 0 % 100 % 0 % 0 %
Subtrees merging p = 0.5 0 % 0 % 100 % 0 % 0 %

Table 3.6: Frequency of the solution distance for the master trees with 10,000
scenarios

48

Conclusion
In this thesis, we introduced several scenario reduction algorithms for scenario
trees, and then we applied these algorithms on two types of master trees – one with
10,000 scenarios, the other with 2,400 scenarios. We compared the computational
time of the algorithms and the nested distance between the master trees and
the reduced trees. We also solved a simple portfolio selection problem with the
master trees and the reduced trees and compared the optimal objective values
and solutions.

The algorithm which uses clustering of nodal values with predetermined target
structure seems to be the most suitable, since it produces a tree which is very
close to the master tree in all the nested distance and the optimal objective value
and solution in relatively short time (under 30 seconds for the 10,000 scenario
master trees).

The single scenario reduction led to trees with comparable results to the clus-
tering algorithm, but it takes much more time (around 14 hours for the 10,000
scenario master trees), which speaks in favor of the clustering algorithm. The
generalization of this algorithm is impossible to apply on large trees for its com-
putational demands.

All the simple algorithms generate a reduced tree within a second, but it
depends on luck how far from the initial tree it is. It was shown that the resulted
trees are many times very distant from the master tree and so is the optimal
objective value and the optimal solution.

Concerning the subtrees merging algorithm, which is based on the nested
distance, which we used as the measure between the master trees and the reduced
trees, one would expect that the resulting tree would be the closest. However, it
was not. The result strongly depends on the choice of the reducing parameter p,
which, if chosen too high, might lead to a tree which is even bigger than the master
tree, if chosen too small, we lose too much information and the approximation
is not good enough. Nevertheless, despite its distance from the master tree,
the optimal objective values and the optimal solutions are close to the optimal
objective values and the optimal solutions of the master trees. There exists
an improvement of this algorithm in the literature ([7]), which is even more
computationally demanding, and therefore was not considered in this thesis.

All in all, we recommend the clustering algorithm for its good results.

49

Bibliography
[1] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.

Springer-Verlag, 1997.
[2] J. Dupačová, N. Gröwe-Kuska and W. Römisch. “Scenario reduction in

stochastic programming”. In: Mathematical Programming 95 (2003), 493–
511.

[3] J. Dupačová, J. Hurt and J. Štěpán. Stochastic Modeling in Economocis
and Finance. Kluwer Academic Publishers, 2002.

[4] J. Leskovec. Clustering. url: https://web.stanford.edu/class/cs246/
slides/05-clustering.pdf.

[5] K. Parthasarathy and R. Kalyanapuram. Probability Measures on Metric
Spaces. Academic press, New York, 1972.

[6] G. Ch. Pflug and A. Pichler. “A Distance for Multistage Stochastic Optim-
ization Models”. In: SIAM Journal on Optimization 22.1 (2012), 1–23.

[7] G. Ch. Pflug and A. Pichler. Multistage Stochastic Optimization. Springer
Series in Operations Research and Financial Engineering, 2014.

[8] W. B. Powell. “Clearing the Jungle of Stochastic Optimization”. In: Informs
TutORials (2014).

[9] S. T. Rachev. Probability Metrics and the Stability of Stochastic Models.
Wiley, Chichester, 1991.

[10] S. T. Rachev, S. V. Stoyanov and F. J. Fabozzi. A Probability Metrics
Approach to Financial Risk Measures. Wiley, London, 2011.

[11] A. Shapiro, D. Dentcheva and A. Ruszczyński. Lectures on Stochastic Pro-
gramming. Modeling and Theory. SIAM and Mathemacital Programming
Society, 2009.

[12] A. V. Timonina. “Multi-stage stochastic optimization: the distance between
stochastic scenario processes”. In: Computational Management Science 12.1
(2015), 171–195.

50

https://web.stanford.edu/class/cs246/slides/05-clustering.pdf
https://web.stanford.edu/class/cs246/slides/05-clustering.pdf

	Introduction
	Fundamentals
	Multistage stochastic programs
	Scenario based stochastic programs

	Scenario trees
	Representation of a scenario tree
	Nested distribution

	Nested distance
	Probability measures
	The Wasserstein distance
	Multistage generalization
	The nested distance for trees

	Scenario reduction algorithms
	Simple algorithms
	Nodal extraction
	Nodal extraction improved
	Scenario extraction

	Advanced algorithms
	Single scenario reduction
	The clustering algorithm
	Subtrees merging

	Comparison of the algorithms

	Numerical study
	Master tree generation
	Distance of the trees
	2,400 to 24 reduction
	10,000 to 100 reduction

	Portfolio selection problem
	Distance of the objective values
	2,400 to 24 reduction
	10,000 to 100 reduction

	Distance of the solutions
	2,400 to 24 reduction
	10,000 to 100 reduction

	Conclusion

