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Abstract: We investigate possible usage of Errors-in-Variables estimator (EIV),
when estimating structural equations models (SEM). Structural equations mod-
elling provides framework for analysing complex relations among set of random
variables where for example the response variable in one equation plays role of
the predictor in another equation. First an overview of SEM and some common
covariance based estimators is provided. Special case of linear regression model is
investigated, showing that the covariance based estimators yield the same results
as ordinary least squares.

A compact review of EIV models follows, Errors-in-Variables models are re-
gression models where not only response but also predictors are assumed to be
measured with an error. Main contribution of this paper then lies in defining
modifications of the EIV estimator to fit in the SEM framework. General opti-
mization problem to estimate the parameters of structural equations model with
errors-in-variables si postulated. Several modifications of two stage least squares
are also proposed for future research.

Equation-wise Errors-in-Variables estimator is proposed to estimate the coeffi-
cients of structural equations model. The coefficients of every structural equation
are estimated separately using EIV estimator. Some theoretical conditions are
proposed under which this method yields consistent estimates of the parameters.
However the practical applications seem to be fairly limited due to difficulties with
meeting the previously mentioned conditions. Psychological study of sexual and
relationship satisfaction of women in young adulthood is used as an illustrative
example.

Keywords: structural equation modelling, simultaneous equation models, SEM,
LISREL, application in social sciences, Errors-in-Variables, total least squares
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Notation

x . . . 1
n

∑
xi

∥A∥F . . . Frobenius norm of the matrix A
M (A) . . . Column space of the matrix A

|A| . . . Determinant of the matrix A
X |= Y . . . X is independent of Y

I . . . Identity matrix of conformable dimension
a.s. . . . Almost surely
s.d. . . . Standard deviation

1st Qu. . . . First quartile
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Introduction
Linear regression is very useful tool when investigating association of one response
variable Y1 (for example sexual satisfaction in relationship) and a set of regressors
X (for example psychological characteristic, big five personality traits). Imagine
that we want to investigate such relation for more then one response variable (also
investigate Y2 relationship satisfaction). We could build two regression models
separately but that could lead to loss of possibly important information about
association of Y1 and Y2.

One maybe more suitable approach to such problem is via structural equi-
tation modelling (SEM). Using SEM one can investigate relation between Y1 and
Y2 trough structural coefficients while taking in account other variables that influ-
ence Y1 or Y2. In the first chapter introduction to structural equation modelling
is provided. General form of LISREL model is postulated and some special cases
are derived. So called observed variable model is the model on which is the main
focus of this paper. Then a brief overview of classical covariance based estima-
tion techniques follows and most commonly used two stage least squares (2SLS)
is also described. At the end of the first chapter similarity between ordinary
least squares (OSL) and covariance based estimators for linear regression model
is described.

Basic theory of Error-in-Variables model is described in the second chapter.
Error-in-variables model is linear regression model where covariates are assumed
to be measured with an error. That might be practically well applicable when
covariates are results of sociological or psychological questionnaire. We describe
Error-in-variable estimator (EIV) that is strongly consistent under some condi-
tions on the errors.

Finally the third chapter contains main contribution of this work. First we
discuss that direct usage of EIV for some special cases of structural equations
models might be sensible choice. Then we propose more complex modifications
of error-in-variable estimator to fit structural equation model.

General optimization problem for estimating observed variable model with
errors in variables is postulated. Lagrange function is defined but solution to this
problem is yet to be investigated.

Then equation-wise Error-in-Variables estimator is proposed. This method
estimates coefficients in every structural equation separately using EIV estimator.
Some theoretical conditions for this method to yield consistent estimator are
postulated. Practical difficulties with meeting this conditions are discussed.

In the last part several modifications of two stage least squares are proposed.
Possible simulation study is proposed in order to distinguish those methods worth
future attention.

The last chapter provides a numerical illustration of equation-wise Error-in-
Variables applied to practical example from psychology. Models proposed in the
original study of sexual and relationship satisfaction of women are reviewed and
compared to the results of newly proposed technique of equation-wise Error-in-
Variables.
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1. Structural equitation model

1.1 Motivation
Simple linear regression problem is widely used example when introducing struc-
tural equitation modelling (SEM). Consider following model:

y = α + γ x+ ζ. (1.1)

Where random variable y is the response, random variable x is the regressor,
(α, γ) = Γ are the regression coefficients and ζ is the random error uncorrelated
with x. Assume that we have (xi, yi), i = 1, . . . , N independent observations of
(x, y). We can estimate Γ using ordinary least squares (OLS), which means we
minimize S(α, γ) = ∑N

i=1(yi − α + γ xi)2 with respect to α and γ. Leading to
estimates (see [1] section 5.3):

γ̂ =
∑
xiyi − 1

N

∑
xi
∑
yi∑

x2
i − 1

N
(∑xi)2 =

ˆcov(x, y)
v̂ar(x)

, α̂ = y − γ̂ x . (1.2)

Another approach is to investigate correlation structure of observed variables
y and x. Let σyy (resp. σxx) stand for variance of y (resp. x), denote covariance
cov(x, y) = σxy and var(ζ) = ψ. Then we rewrite theoretical covariance matrix
as follows,

Cov
(
y

x

)
=
(
σyy σyx

σxy σxx

)
=
(
γ2σxx + ψ γσxx

γσxx σxx

)
= Σ (γ, σxx, ψ) . (1.3)

The idea of covariance based structural equations model (SEM) is to analyse how
close is such covariance matrix implied by the model to the empirical covariance
matrix S. In other words, to estimate parameters γ, σxx, ψ we find

minF
(
Σ
(
γ, σxx, ψ  

θ

)
,S
)
, (1.4)

where F is some suitable penalising function. One possible choice of the penalising
function is F (Σ(θ),S) = 1

2 (∥Σ(θ) − S∥F )2 = 1
2tr

{
(Σ(θ) − S)(Σ(θ) − S)⊤

}
which

is commonly referred as Unweighted Least Squares (ULS). For details see section
1.4. In this case of simple linear regression both methods leads to the same
estimate γ̂ which is shown at the Section 1.5.

Although some estimator of coefficients of structural equations models rely
on different rationale the idea of the second approach is easily generalizable for
more complex set of equations including more general relations among variables
which are the focus of this chapter. Response variable in some equation can play
role of the regressor in another equation. One can also include latent unobserved
variables etc.

x y
γ

ζ

Figure 1.1: Path diagram of the model (1.1).
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1.2 General Structural Equation Model
I this section we define General Structural Equation Model (SEM), also known as
LISREL (Linear Structural Relations). In the generic form the LISREL model is
set of random variables (bold symbols, see table 1.1) and linear relations among
them consisting of latent variable model:

η = Bη + Γξ + ζ , (1.5)

where there is one structural equation for each variable in random vector η. And
measurement model:

y = Λyη + ϵy (1.6)
x = Λxξ + ϵx . (1.7)

Let us have N observations of the variables y,x for which we will use notation:

Y =
(
y1 · · · yN

)⊤
X =

(
x1 · · · xN

)⊤
. (1.8)

Definition 1 (LISREL). Let data [X,Y] be independently sampled from distribu-
tion of generic random variables x,y and let (1.5), (1.6), (1.7) hold for random
variables ζ, ϵy, ϵx, η, ξ, y, x then we say that data satisfies LISREL if following
conditions hold

I1 E [ϵx] = E [ϵy] = 0; ϵx |= ϵy and both are independent of ξ,η, ζ.

I2 E [ζ] = 0 and ζ |= ξ.

N1 Each variable ϵx, ϵy, ζ has multivariate normal distribution.

N2 Variables ξ has multivariate normal distribution.
It is theoretically possible to relax some conditions and define even more

general LISREL model. Firstly the assumptions of normality N1 and N2 are not
needed in most parts of Chapter 3. However we will stick with this definition
unless explicitly stated otherwise. Note that we require the B to have zeros on
the diagonal.

Table 1.1: Description of the variables, coefficients and their properties.

Coefficients
Variable var Structural Loadings Variable description

ζ
m×1

Ψ structural errors

ϵy
p×1

Θy measurement errors in y

ϵx
q×1

Θx measurement errors in x

η
m×1

B
m×m

Λy
p×m

latent endogenous variables

ξ
n×1

Φ Γ
m×n

Λx
q×n

latent exogenous variables

y
p×1

indicators of latent endogenous variables

x
q×1

indicators of latent exogenous variables
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1.3 Model parameters

1.3.1 Implied covariance matrix – Definition
If we specify some LISREL model using above notation we can define theoretical
covariance matrix of observed variables, so called implied covariance matrix,
as a function of model parameters:

Σ(θ) = Σ(B,Γ,Λy,Λx,Φ,Ψ,Θy,Θx). (1.9)

When the assumptions I1 and I2 in Definition 1 hold we can rewrite the implied
covariance matrix (see [3, p. 235]):

Σ(θ) =
[
Σyy(θ) Σyx(θ)
Σxy(θ) Σxx(θ)

]
=[

Λy(I −B)−1(ΓΦΓ⊤ + Ψ) [(I −B)−1]⊤ Λ⊤
y + Θy Λy(I −B)−1ΓΦΛ⊤

x

ΛxΦΓ⊤ [(I −B)−1]⊤ Λ⊤
y ΛxΦΛ⊤

x + Θx

]
.

(1.10)

Now when the implied covariance is defined we remind the definition of the em-
pirical covariance matrix S which we are going to compare with the Σ(θ).

S∗ = 1
N

[Y,X]⊤
(
IN − 1

N
1N1⊤

N  
H

)
[Y,X] ; S = N

N − 1S∗ (1.11)

Note that for large samples the difference between S and S∗ becomes negligible.

1.3.2 Special cases
As convenient it can be to have general results applicable for all possible settings
in some cases simplification provides better intuitive insight. There are some
special cases of LISREL models (and therefore special structures of implied co-
variance matrix) that are particularly useful. We state special cases in form of
definitions for easier referencing.

Definition 2 (Observed variables model with error in variables). We say that
particular LISREL model si observed variable model (possibly with errors in vari-
ables) if Λy,Λx are identity matrices.

If the variables are measured without error (i.e. ϵy, ϵx are absent) then we get
y = η and x = ξ, which can be called as observed variable model without errors
in variables or commonly just observed variable model. It is straight forward to
show that for observed variables model it holds that:

Σ(θ) =
[
(I −B)−1(ΓΦΓ⊤ + Ψ) [(I −B)−1]⊤ + Θy (I −B)−1ΓΦ

ΦΓ⊤ [(I −B)−1]⊤ Φ + Θx

]
. (1.12)

We will mainly focus on observed variables models even though models with latent
unobserved variables (see further) are very popular in social science. Observed
variables models can bee further distinguished based on structure of matrix B,
respectively B∗ = I −B.
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Definition 3. Let us call an observed variables model without errors in variables:

1. Recursive if B∗ is lower-triangular and Ψ is diagonal.

2. Block recursive if B∗ is block lower-triangular and Ψ is block diagonal.

3. Nonrecursive if model is neither recursive nor partially recursive.

We finish off this section with obvious definition of measurement model. Con-
firmatory factor analysis model is the most known example of the measurement
model (see [8, Section 1.4] ).

Definition 4. (Measurement model) We say that particular LISREL model is
measurement model if the latent variable model is absent.

Focus on observed variables model

Even though we provide an overview of the methods usable for general LISREL
model the main contribution of this paper is made regarding observed variables
model with errors in variables. To that end it is convenient to develop following
notation. We say that observations [X,Y] follow observed variable SEM if

Y − εy = (Y − εy)β + (X − εx)Γ + Ξ , (1.13)

where some columns of error terms ε and some elements of matrices β = B⊤,
Γ = Γ⊤ can be restricted according to specific model in hand. Note that β is
always restricted to have zeros on the diagonal. This notation will be further
extended and modified according to our needs in Chapter 3.

For now just note that the role of the error variables ζ and ϵy is sometime
somehow indistinguishable when analysing observed variable model. More pre-
cisely assume y − ϵy = η and x = ξ plug it in (1.5) and assume B = 0. Then we
get

y − ϵy = Γx + ζ,

where the role of the measurement error ϵy and equation (structural) error ζ
is clearly undistinguishable. More generally we encounter same problem when
separating measurement error in endogenous variable yj and equation error in
j-th structural equation. If we rewrite model in so called reduced form

Y − εy = (X − εx)Γ(I − β)−1 + Ξ(I − β)−1, (1.14)

then distinguishing errors in equations and errors in endogenous variables be-
comes even more complicated. Later on we will discuss when is it possible to
merge errors in equations and errors in variables.

Last note about our specific needs is made regrading categorical variables.
Unfortunately covariance based estimators that are proposed later bring some
complications when categorical variables are involved (see [3, p. 433–446] ) and
we did not have enough space to address such problem.

7



1.4 Parameter estimation

1.4.1 Introduction
There exist several estimation procedures. As we already mentioned some com-
mon procedures are based on solving optimization problem

min
θ
F (Σ(θ),S) ,

where F is some suitable penalising function. However for some models other
techniques as OLS or two stage least square (2SLS) are commonly used.

Before we try to estimate the parameters we should investigate if it is even
possible to uniquely estimate the parameters. Such problem is in context of
structural equation modelling is commonly refered as identification problem. We
will include this topic in form of reference to [4, Section 4.3] and [3, Chapter 4,
Section Identification].

1.4.2 Covariance based estimators
Generalized least squares (GLS, ULS)

This technique was mentioned in the beginning of this chapter. It is very straight
forward and intuitive to define penalizing function to be minimized as

FGLSW
(Σ(θ),S) = 1

2 tr
{[(

Σ(θ) − S
)
W−1

] [(
Σ(θ) − S

)
W−1

]⊤}
. (1.15)

As we know from properties of Frobenius norm, this approach takes as core of
penalizing function sum of scaled squared differences of elements of implied and
observed covariance matrices. One specific choice W = S leads to generalized
least squares:

FGLS (Σ(θ),S) = 1
2 tr

{[
Σ(θ)S−1 − I

] [
Σ(θ)S−1 − I

]⊤}
(1.16)

and W = I leads to unweighted least squares:

FULS (Σ(θ),S) = 1
2 tr

{[
Σ(θ) − S

][
Σ(θ) − S

]⊤}
. (1.17)

Maximum likelihood (ML)

This method is based on assumptions of multivariate normality N1 and N2. Some
authors [3] define

FML (Σ(θ),S) = log |Σ(θ)| + tr
{
SΣ−1(θ)

}
− log |S| − (p+ q) (1.18)

to be minimized while others [4] use directly log-likelihood function which is to
be maximized (or one can minimize minus the log-likelihood):

l (Σ(θ),S) = −N(p+ q)
2 log(2π) − N

2
[
log |Σ(θ)| + tr

{
S∗Σ−1(θ)

}]
. (1.19)

The difference between 1.18 and 1.19 vanishes for large samples, discussion is
provided at [3, p. 131–135]. The maximum likelihood method was proposed
quite early in [9].
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Properties

The above methods are in the literature usually described as optimization prob-
lems with few attention to constrains that are imposed on some elements of the
implied covariance matrix. One should of course take in account nonnegativity
of variance elements.

Under some distributional conditions (N1, N2) one could apply asymptotic
theory of maximal likelihood to investigate asymptotic properties of the maxi-
mum likelihood estimator. However we now only discuss some distribution free
properties of covariance based estimators. They arise straight forward from prop-
erties of covariance. The estimates are not affected by scaling whole data by
a constant or shifting them. One can also change the order of the variables be-
cause reordering columns and rows of implied covariance matrix and empirical
covariance matrix does not affect either FGLS nor FML

1.4.3 Two stage least squares (2SLS)
Unlike previous methods two stage least squares is limited information instrumen-
tal variable technique. Limited information because we estimate each structural
equation separately. We define 2SLS in context of observed variables model. The
2SLS is one of the most practically used methods because of its simplicity [4].
The rationale of this method is that we replace variable Y by a variable Ŷ that
is highly correlated with Y and uncorrelated with the error term Ξ.

First formulation

For this method it is useful to partition matrix β on vectors of coefficients ac-
cording to specific model of relations among elements of y:

β =
[
β∗

1 , · · · , β∗
p

]
,

where the vector of coefficient β∗
i is coefficient from equation yj = β⊤

j yj + · · ·
with added zeros on corresponding positions so dim(β∗

i ) = p. We handle Γ in
similar manner. For observed data we also rewrite

Y = [Y1, · · · ,Yp] , X = [X1, · · · ,Xq]

and denote Y(j) matrix that contains columns corresponding to endogenous vari-
ables from right hand side of j-th structural equation and X(j) contains exogenous
variables from j-th structural equation (with additional intercept also included).
And now for every structural equation j = 1, . . . , p we have

Yj = Y(j)βj + X(j)γj + Ξj. (1.20)

At this moment we could jut try to apply simple OLS for every equation to esti-
mate parameters (βj, γj). That would however bring a problem. When estimating
nonrecursive model endogenous variables Y(j) might be correlated with the error
term. Instead first consider model:

Yj = X(j)Πj + ∆j

9



and estimate parameter Πj using OLS, note fitted values as Ŷ(j). Now let us
plugin Y(j) = Ŷ(j) + ∆̂j in right hand side of (1.20) and get

Yj = (Ŷ(j) + ∆̂j)βj + X(j)γj + Ξj (1.21)
Yj = Ŷ(j)βj + X(j)γj + (∆̂βj + Ξj)

Yj =
[
Ŷ(j),X(j)

] (βj

γj

)
+ Ξ∗

j (1.22)

and finally we can estimate [βj, γj] using OLS. In little different setup and under
some additional conditions [2] shows consistency of this method. Justification
of equivalence to the described method can be found in [4, p. 253–260]. It is
essential to argue about the structure of Ξ∗

j = (∆̂jβj + Ξj). Because fitted values
Ŷj and errors ∆̂j are uncorrelated (conditionally on X) and ∆̂j are uncorrelated
with exogenous variables X (as assumption of OLS in the first step) one can say
that Ξ∗

j is in the limit uncorrelated with [Ŷ(j),X] which justifies usage of OLS in
the second step.

Second formulation

New compact description of this method is provided. Assume that data follow
observed variable model y = By + Γx + ζ. We rewrite model for N observations
as

Y = Yβ + XΓ + Ξ. (1.23)
All exogenous variables are taken as instruments in the way that in the first step
we consider linear model:

Y = XΠ + ∆,
where parameter Π is estimated using OLS. More importantly we take fitted
values Ŷ and rewrite observations as Y = Ŷ + ∆̂, what is now plugged in right
hand side of (1.23) and rewritten as

Y = (Ŷ + ∆̂)β + XΓ + Ξ
Y = Ŷβ + XΓ + (∆̂β + Ξ) (1.24)

and in the second step estimate [β,Γ] using constrained OLS (see [10] section
6.3). Constraints are simply setting some parameters to zero according to speci-
fied model. As was mentioned before, the matrix β should always have zeros on
the diagonal.

It might seem unnecessary to even state the second formulation when the first
approach gives simple algorithm for estimating 2SLS. However for our future
purpose (Section 3.3.3) the first approach would not suffice hence the second
compact formulation.

1.4.4 Other methods
Let us mention some other estimation techniques. Starting with the least absolute
deviation (LAD) as relatively new technique proposed at [22], being based on

FLAD (Σ(θ),S) = 1⊤
h |σ(θ) − s| (1.25)

10



where σ(θ) (respective s) is vectorized lower triangular part of Σ(θ) (respective
S) and the 1⊤

h is vector of ones of suitable dimension.
There have been developed techniques as three stage least squares 3SLS [24]

and some authors [12] discuss Bayesian approach to SEM. Other more recent
methods are discussed in [13]. Diversity of proposed methods for estimating
SEM seems to be quite large. It is likely result of SEM being class of models
rather than one specific type of model.

1.5 Comparison to OLS regression
It is straight forward to see that model (1.1) presented as motivation example
is an observed variable LISREL model. We will show that covariance based
approach to linear regression problem gives the same result as OLS.
Theorem 1. Assume standard linear regression model y = Γx∗ + ζ. If there
is the intercept included in the model i.e. x⊤

∗ = (1,x⊤), then OLS estimate of
non-intercept part of Γ is the same as the covariance based SEM estimate using
FGLS or FML.

Proof. First investigate implied covariance matrix, note that second column and
row are by definition filled wit zeros, because of the intercept.

Σ(θ) =
[
ΓΦΓ⊤ + Ψ ΓΦ

ΦΓ⊤ Φ

]

Take the OLS estimate Γ̂⊤ = (X⊤X)−1X⊤Y. Note that linear regression does not
restrict covariance structure among regressors so we can estimate:

Φ̂ols = 1
N − 1X

⊤HX ,

where H is the centring matrix. Now plug the parameters estimated via OLS in
implied covariance matrix. Starting with:

Φ̂olsΓ̂⊤ = 1
N − 1X

⊤HX(X⊤X)−1X⊤Y.

Note that it can be rewritten as estimate of covariances between y and elements
of x∗. Now we use property of liner regression model that SST = SSe + SSR

(see Theorem 9) to handle ΓΦΓ⊤ + Ψ. The Ψ is straight forward, by definition it
holds Ψ̂ols = SSe. When plugging OLS estimates in the ΓΦΓ⊤, we get

Γ̂Φ̂olsΓ̂⊤ = 1
N − 1 Y⊤X(X⊤X)−1X⊤  

Ŷ⊤

HX(X⊤X)−1X⊤Y  
Ŷ

= SSR

Therefore Γ̂Φ̂olsΓ̂⊤ + Ψ̂ols equals to empirical variance of y. Now it is clear that
Σ(θ̂ols) = S therefore FGLS is zero and because it is nonnegative we found its
minimum. Similar reasoning hold for FML.

□

This result is not very surprising and to some readers it might seem obvious.
However some authors [7] place not negligible importance (especially for educa-
tional purposes) on viewing linear regression as structural equation modelling.
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2. Error-in-Variables Model,
Total least squares

2.1 Motivation
Let us return to simple linear regression once more. But this time we assume
that regressor x is measured with an error. In other words our model is:

y = α + γ ξ + ϵy , x = ξ + ϵx. (2.1)

Note the similarity with structural equations modelling. The first part can be
seen as latent variable model and the second part as measurement model. Let
us have data X,Y consisting of N independent observations of random variables
(x, y). Note that the first column of X = [1,X] is the intercept which is unlike x
assumed to be without any error. The idea is to minimize errors in both variables
y, x. More precisely:

min
[εx,εy ]∈RN×2,α,γ

∥[εx, εy]∥F substitute to Y − εy = (X − [0, εx])
(
α

γ

)

Such estimation technique is called total least squares. We further develop this
idea in more general setup of partial Errors-in-Variables model. One can also
incorporate non-random intercept and categorical variables in such model.

2.2 Partial Errors-in-Variables Model

2.2.1 Definition
We start with definition of error-in-variable estimator in setting where all regres-
sors are subject to an error. Let the data [X,Y] consist of independent observa-
tions of the random variables y ∈ Rp and x ∈ Rq. We define:

Definition 5 (EIV model). We say that data [X,Y] follow errors-in-variables
(EIV) model if

Y = Zβ + εy and X = Z + εx, (2.2)
where β is matrix of regression coefficients, X and Y are observed random vari-
ables and Z is full rank matrix of unknown constants.

Definition 6 (EIV estimator). Suppose that ∥·∥ is an unitary invariant matrix
norm. Consider optimization problem:

min
β∈Rn, [εx,εy ]∈RN×(q+p)

∥[εx, εy]∥ s.t. Y − εy = (X − εx)β. (2.3)

If there exists a solution {β̂, [ε̂x, ε̂y]} to (2.3) then any β̂, satisfying

Y − ε̂y = (X − ε̂x)β̂

is called an errors-in-variables estimator (EIV estimator). If (2.3) has no solu-
tion then the estimator is a fixed matrix.

12



As is shown at [14] it is generally possible to use any unitary invariant matrix
norm and still arrive to the same results as when using Frobenius norm ∥·∥F .
We will mostly use Frobenius norm ∥·∥F unless explicitly stated otherwise. Next
theorem provides solution to errors-in-variables problem.

Theorem 2 (EIV solution). To solve errors-in-variables problem first compute
singular value decomposition (SVD) of the data matrix:

[X,Y] =
[
U11, U12  

U1

, U2
] [Σ

0

]
V ⊤ = U1ΣV ⊤,

where
V =

[
V11 V12
V21 V22

]
, V11 ∈ Rq×q, V22 ∈ Rp×p, V12 ∈ Rq×p

and analogously

Σ =
[
Σ1 0
0 Σ2

]
, Σ1 ∈ Rq×q, Σ2 ∈ Rp×p.

If V22 is nonsingular, then errors-in-variables estimator is

β̂ = −V12V
−1

22

and fitted values are

[X̂, Ŷ] = [X − ε̂x,Y − ε̂y] = U11Σ1[V ⊤
11 , V

⊤
21 ].

Proof. This estimation procedure is nicely summarized and justified for example
in [20] as Algorithm 1.

□
Now we assume that some regressors are measured precisely. Comprehensive
summary of following method is provided at [15]. Let us denote X = [W,X] so
we have separated regressors subjected to an error in X and regressors measured
without any error W. Partial errors-in-variables model is:

Definition 7 (PEIV model). We say that data [X,Y] follow partial error-in-
variable (PEIV) model if

Y = Wα + Zβ + εy and X = Z + εx. (2.4)

Definition 8 (PEIV estimator). Suppose that ∥·∥ is an unitary invariant matrix
norm. Consider optimization problem:

min
β∈Rn, [εx,εy ]∈RN×(q+p)

∥[εx, εy]∥ s.t. Y − εy = [W,X − εx]
(

α

β

)
. (2.5)

If there exists a solution {(α̂, β̂), [ε̂x, ε̂y]} to (2.5) then any (α̂, β̂) satisfying

Y − ε̂y = [W,X − ε̂x]
(

α̂

β̂

)

is called a partial errors-in-variables estimator (PEIV estimator). If (2.5) has
no solution then the estimator is a fixed matrix.

13



To estimate coefficients in PEIV model, we firs define projection matrix to
space orthogonal to M (W) i.e. to space M (W)⊥:

R = I − W
(
W⊤W

)−1
W⊤

and apply it on (2.4) which leads to

RY = RZ + Rεy and RX = RZ + Rεx , (2.6)

now we apply EIV estimator (Theorem 2) on this transformed model. Once the
estimate β̂ is found, we subtract Xβ̂ from the observations and estimate another
model:

Y − Xβ̂ = Wα + ε̃y, (2.7)

where we use OLS to estimate the parameter α resulting in:

α̂ =
(
W⊤W

)−1
W⊤

(
Y − Xβ̂

)
.

2.2.2 Example
As an illustrative example we investigate association of two variables x and y
where both variables are subjected to an error. It may not be clear which one, we
should consider as the response variable and which one as the regrresor, especially
when both variables are measured by psychological questionnaire.

One could of course consider correlation analysis, but that is not focus of
this paper. Let us compare 4 models. First consider y = α + βx and estimate
parameter using OLS, then x = α+β∗y and again use OLS, then inverse estimated

4
5

6
7

8
9

10
Y

OLS

α̂=5.191,  β
^

=0.796

DLS

α̂=3.362,  β
^

=1.814

-2 0 2 4 6

4
5

6
7

8
9

10

X1

Y

EIV

α̂=5.935,  β
^

=0.541

-2 0 2 4 6
X1

PEIV

α̂=4.255,  β
^

=1.317

Figure 2.1: Comparison of OLS, DLS, EIV, PEIV, estimators. The true values
of the parameters are α = 4, β = 1.3.
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coefficient. This method can be called data least squares (DLS). Then we use
errors-in-variables model and finally (in this case most suitable model) partial
errors-in-variables model.

At the figure 2.1 we can see that PEIV estimation seems to perform relatively
well in this case. On the other hand EIV model with random intercept does not
seem to perform well. We should be careful when deciding which regressors are
assumed to be measured with an error. It does not make much sense to consider
error in the intercept.

Advantage of EIV when analysing sociological or psychological study is that
the variables are treated symmetrically. We get the same regression line regardless
of the role of the variables, unlike when using OLS. This is to some extend
advantageous but also imposes restrictive assumptions to meet in order to get
consistent estimator.

2.3 Properties of EIV estimator
We note some of the properties of EIV estimator starting with strong consistency.
To that end we firstly specify more precisely the error structure. We will impose
fairly strong assumptions on our data.

Let rows of the data [X,Y, εx, εy] be independent identically distributed with
generic distribution of random variables1 [y⊤,x⊤, ϵ⊤

x , ϵ
⊤
y ]. In the following theo-

rem we impose additional assumption on error variables [ϵx, ϵy].
Theorem 3 (Strong consistency of EIV estimator). Let data [X,Y] of size N
follow errors-in-variables model. If following hold

A1 The errors have zero mean and are homoscedastic i.e.

var
(

ϵx

ϵy

)
= σ2Ip+q .

A2 The limN→∞
1
N

Z⊤Z exists and is positive definite.
Then EIV estimator proposed in Theorem 2 is strongly consistent estimator of
the true parameter β.

lim
N→∞

β̂N = β a.s.

Proof. See [6] Lemma 3.3.
□

We will not proceed much further with statistical properties of EIV as main
focus of this paper lies elsewhere. For a summary of statistical properties one can
see [23] Chapter 8. Conditions for consistency of PEIV can be split. Let (2.6)
fulfil the conditions of Theorem 3 and let (2.7) with the true value of β fulfil the
conditions for strong consistency of OLS (see Theorem 8).

Now we address other properties. The following theorems 4 and 5 show that
the estimates are not affected by scaling whole data by a constant or changing
the order of the variables. This properties are similar as covariance based SEM
estimators. Let us denote applying the EIV estimator on the data by EIV ([X,Y]).

1Note difference between ε and ϵ
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Theorem 4 (scale invariance). EIV estimator is scale invariant i.e. for all a > 0,
it holds that

EIV ([X,Y]) = EIV (a[X,Y]).

Proof. Straightforward generalization of [14] Theorem 3 (i).
□

Theorem 5 (interchange equivariance). EIV estimator is interchange equivariant
i.e. for any permutation π and its permutation matrix Pπ it holds

EIV ([X,Y]P̃π) = Pπ−1EIV ([X,Y]), where P̃π =
[
Pπ 0
0 I

]
.

Proof. Straightforward generalization of [14] Theorem 3 (ii).
□

Theorem 6 (direction equivariance). EIV estimator is direction equivariant i.e.
for any diagonal matrix D which has only ±1 on diagonal it holds

EIV ([X,Y]D̃) = −DEIV ([X,Y]), where D̃ =
[
D 0
0 I

]
.

Proof. Straightforward generalization of [14] Theorem 3 (iii).
□

Theorem 7 (rotation equivariance). EIV estimator is rotation equivariant i.e.
for any rotation matrix R it holds

EIV ([X,Y]R̃) = R⊤ EIV ([X,Y]), where R̃ =
[
R 0
0 I

]
.

Proof. Straightforward generalization of [14] Theorem 3 (iv).
□

Remark. Note that estimating linear model with multivariate response using stan-
dard OLS without any restrictions on parameters is equivalent to estimating uni-
variate response model for each response variable separately. Such equivalence
does not hold when using TLS.
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2.4 Euler–Lagrange solution to constrained EIV
problem

Let us again consider errors-in-variables problem (2.2). There is another method
(see for example [20]) for estimating coefficients of such model. It is based on
solving optimization problem 2.3 using Lagrange function:

L(εy, εx,Λ⊤,β) = tr
{
εyε⊤

y

}
+tr

{
εxε⊤

x

}
+2tr

{
Λ⊤ [Y − εy − (X − εx)β]

}
. (2.8)

One can also quite easily modify the Lagrange function to include constraint
Gβ = W , see for example [25]. Modified Lagrange function is then

L(εy, εx,Λ⊤,β) =
tr
{
εyε⊤

y

}
+ tr

{
εxε⊤

x

}
+ 2tr

{
Λ⊤

2 [Y − εy − (X − εx)β]
}

+ 2tr
{
Λ⊤

2 (W −Gβ)
}
.

Constrained problem is important because, as was already said, we can not simply
partition matrix of coefficients on vectors as we could do with linear regression.
It is discussed in [21] Remark 2.

Partial error in variable model could be treated as in previous the chapter by
projecting out the exact variables or one could formulate

L(εy, εx,Λ⊤,β) = tr
{
εyε⊤

y

}
+ tr

{
εxε⊤

x

}
+

2tr
{
Λ⊤

2 [Y − εy − [W,X − εx]β]
}

+ 2tr
{
Λ⊤

2 (W −Gβ)
}
.

Once the Lagrange function is defined we need to solve the necessary optimal-
ity conditions, meaning we set all partial derivatives of the Lagrange function to
zero and solve resulting system. In case of (2.8) we get partial derivatives:

1
2
∂L
∂εy

= εy − Λ (2.9)

1
2
∂L
∂εx

= εx + Λβ⊤ (2.10)

1
2
∂L
∂Λ = Y − εy − Xβ + εxβ (2.11)

1
2
∂L
∂β

= (−X⊤ + ε⊤
x )Λ (2.12)

Now it remains to solve corresponding nonlinear system of equations. For that
one can use Algorithm 2 or Algorithm 3 [20].
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3. Errors-in-Variables in context
of structural equations model

3.1 Motivation
As was mentioned before the model (2.1) can be viewed as structural equations
model with the latent variable model:

y − ϵy  
η

= α + γξ + ζ (3.1)

and the measurement model:

y = η + ϵy

x = ξ + ϵx .
(3.2)

For simplicity of notation the measurement model for intercept was left out as
it is constant 1 ”measured” without any error and does not influence rest of the
covariance structure. Variances of the variables ξ, ϵy, ϵx, ζ are:

var(ξ) = ϕ, var(ϵy) = ϑϵy , var(ϵx) = ϑϵx , var(ζ) = ψ

and coefficients are: B = 0 , Γ = (γ) , Λx = I1 , Λy = I1. One can write the
implied covariance matrix in the following form:

Σ(θ) =
[

(γ2ϕ+ ψ) + ϑϵy ϕγ
ϕγ ϕ+ ϑϵx

]
. (3.3)

Using covariance based SEM approach to estimate parameters of such model bears
some complications. We have just 3 non-degenerated covariances of the observed
variables and 5 parameters to estimate. Even if we consider ψ + ϑϵy = ψ∗ as one
parameter we still have one more parameter to estimate than we have sample
covariances.

One possible solution of the identification problem is based on using some
complementary information about measurement error, for more details see [18].
Or one could use EIV estimator instead. In this chapter we will try to utilize EIV
estimator even for more complex SEM. Brief discussion of some modifications of
the covariance based estimation is also provided.

If there was no error in measurement of x the mentioned rewriting ψ+ϑϵy = ψ∗
would help to identify the problem. In such case one can not distinguish the error
in the variable ϵy and the error in the equation ζ.

3.2 Problems specification
In this chapter we address problem of errors in measurement and we will try
to find conditions under which the EIV estimator is sensible approach to SEM
model. We also propose estimation technique for the observed variables model
based on generalization of two stage least squares method. But first let us review
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the notation in convenient manner. Trough this whole chapter we consider the
observed variable model

y − ϵy = B(y − ϵy) + Γ(x − ϵx) + ζ. (3.4)

The observations of the endogenous variables are Y, observations of the exogenous
variables measured without any error are W and X are those with an error. The
model can be rewritten in terms of observations as

Y − εy = (Y − εy)β + [W,X − εx]
[
Γ1
Γ2

]
+ Ξ. (3.5)

Note that one can restrict some columns of εy to be zero if the variable is measured
without error. We will discuss this in more detail later on.

In some special cases it might seem appropriate to use EIV (or constrained
EIV) estimation directly. That is the case when we are not really interested in
relations among the endogenous variables i.e. the structure of β is not of interest
and therefore β is not included in the model. As was mentioned before estimating
model with multivariate response using OLS is the same as estimating multiple
models separately. Not so when using EIV estimator.

However when we consider structural equations modelling we are often spec-
ifying relations among endogenous variables more precisely and the coefficient β
is of main interest. That will be the focus of the following sections.

3.3 Modified estimation methods

3.3.1 Constrained total least squares
We try to modify and generalize the constrained EIV estimator [25, 21, 19] and
develop Lagrange function based approach for solving SEM problem. To that
end we define optimization problem in full generality:

min
εy ,εx,β,Γ,Ξ

tr
{
εyε⊤

y

}
+ tr

{
εxε⊤

x

}
+ tr

{
ΞΞ⊤

}
(3.6)

s.t.

[Y0,Yϵ − εy] = [Y0,Yϵ − εy]
[
β0
βϵ

]
+ Ξ; +[W,X − εx]

[
Γ1
Γ2

]
+ Ξ ;

Dβ = 0 ; GΓ = 0 .
(3.7)

Structure of constraint matrices D,G is determined by the assumed model. When
there is an error in observations of all endogenous variables the we can simplify

x

ξ

λ 1

η
γ

ε x y

λ 2

ε y

ζ

Figure 3.1: Path diagram of model (3.1)
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[Y0,Yϵ − εy] = Y − εy. Note that G can be partitioned on G1, G2 similarly as
corresponding Γ is partitioned on Γ1,Γ2. Now let us define Lagrange function:

L(εy, εx,Λ,Λ1,Λ2,β,Γ) = tr
{
εyε⊤

y

}
+ tr

{
εxε⊤

x

}
+ tr

{
ΞΞ⊤

}
+2 tr

{
Λ⊤
(
[Y0,Yϵ − εy] − [Y0,Yϵ − εy]β − [W,X − εx]Γ − Ξ

)}
+2 tr

{
Λ⊤

1 Dβ
}

+ 2 tr
{
Λ⊤

2 GΓ
}
.

We shall proceed by solving the necessary optimality conditions i.e. solving sys-
tem where we take all partial derivatives of Lagrange function to be zero (similarly
as in [25]). That procedure leads to complicated non-linear system of equations
that needs to be solved numerically.

Solving the system in full generality (or just determining existence of solution)
could be potentially very tedious therefore it seems convenient to consider some
simplification. For now we will leave this general approach opened to future
research.

First simplification, that one can propose, leaves the Ξ error in equation out
and assume that all endogenous variables are measured with an error. But note
that this approach may lead to wrong model specification, on the other hand may
be taken advantage of in some special cases in following section.

3.3.2 Equation-wise Error-in-Variable estimation
Observed variable model (3.5) can be rewritten in terms of p equations as in
(1.20). In following we will justify using method where we estimate for each j

Yj ≈ Y(j)βj + X(j)γj (3.8)

using PEIV estimator where Y(j) is considered to be measured with an error. We
start with an example. In the following example we assume that there are no
measurement errors in exogenous variables. Consider observed variable model in
the generic form as

y1 = β12y2 +γ11x1 +γ13x3 + ζ1

y2 = β21y1 + γ22x2 + ζ2
(3.9)

and denote observations of the exogenous variables by X = [1,X1,X2,X3] and
observations of the endogenous variables by Y = [Y1,Y2]. Besides previously
mentioned disadvantages of OLS, we can say that, if we estimate each equation
separately with 0LS, we are treating yj somehow differently based on if it is on
left hand or right hand side of the equation. To some extend one can see the
rationale of this method as fairly similar to 2SLS1. Recall the second step of the
two stage least squares. Plugging in fitted values from the first step to (1.20)
gives

Y1 = (Ŷ2 +D)β12 + Xjγj + Ξj . (3.10)

Now we can view the problem as error-in-variable model where Y2 − D = Ŷ2
plays role of the unobserved Z. We proceed using PEIV, where Y2 is considered
to be with an error, instead of plugging in the values from the first step.

1Indeed I got the idea while studying the two stage least squares.
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Figure 3.2: Path diagram of the model (3.9).

Let us investigate a modification of the model (3.9) before proceeding further.
One could say that it is preferable to assume that there are errors in measurements
of the endogenous variables and rewrite the model as

y1 − ϵ1 = β12(y2 − ϵ2) +γ11x1 +γ13x3 + ζ1

y2 − ϵ2  
y∗

2

= β21 (y1 − ϵ1)  
y∗

2

+ γ22x2 + ζ2. (3.11)

The model is visualized at Figure 3.2. This model provides more symmetrical view
of the endogenous variables regardless of their position. Note that the error terms
ζj and ϵj are somehow inseparable when estimating each equation separately.

The main idea becomes even clearer when we rewrite the model in terms of
the observations X and Y. As was mentioned, we assume that the observations
of the endogenous variables are affected by an error, so we write Yj = Y∗

j + εi

where Y∗
j are the true values. Let us rewrite the model (3.11) in the following

form

(Y1 − ε1) = (Y2 − ε2)β12 + [X1,X3]
(
γ11

γ13

)
+ Ξ1 (3.12)

(Y2 − ε2) = (Y1 − ε1)β21 + X2γ22 + Ξ2 . (3.13)

When estimating both (3.12) and (3.13) separately using PEIV we practically
merge the errors Ξj and εj in one ε̇j. However due to this fact and reciprocal na-
ture of relation between y1 and y2 we can not generally consider ϵ̇j, ϵj+(j mod 2) to
be uncorrelated. Yet with some extra effort we could overcome this complication
and describe conditions under which use of the PEIV estimator is appropriate.
Also note that the intercept was omitted until now for simplification of the no-
tation.

Justification of generalization of the equation-wise EIV for more complex mo-
dels is theoretically straightforward (One can easily include errors in exogenous
variables) yet practice may bear many difficulties with specifying correct relations
among the variables and meeting conditions imposed on the errors.
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Theorem 8 (Consistency). Assume that the data [X,Y] (consisting of N inde-
pendent observations) follow observed variable model with errors in endogenous
variables and without errors in equation (structural errors). Let j-th structural
equation be

Yj − εj = (Y(j) − ε(j))βj + X(j)Γj .

Assume there exist unobserved constants Z(j) such that Y(j) = Z(j) + εYj
. Denote

the projection matrix to M
(
X(j)

)⊥
by R and the generic random variable that

generates rows of the ε by ϵ. If the following holds

1. E [ϵj, ϵ(j)] = 0 and var[ϵj, ϵ(j)] = σ2I.

2. limN→∞
1
n
Z⊤RZ exists and is positive definite.

3. The transformed model Yj − Y(j)β = XjΓ + ε̃y fulfils the conditions of
Theorem 10 for OLS estimator of Γ to be strongly consistent.

Then PEIV estimator of the parameters β,Γ is strongly consistent i.e.

lim
N→∞

(
β̂

(N)
j

Γ̂(N)
j

)
=
(

βj

Γj

)
a.s.

Proof. It is enough to realize that the first two assumptions correspond to the
assumptions for strong consistency of EIV estimator in [6] Lemma 3.3 and corol-
lary 3.1. And the third condition assures consistency of Γ̂N

j .
□

Generalization of the previous theorem for models, where some exogenous vari-
ables are subjected to errors is straightforward. To make use of the previous the-
orem let us now rewrite the observed variable model in so called reduced form.
As was mentioned before the structural errors and the errors in the endogenous
variables might be merged in some special cases. We will formulate conditions
under which one can general observed variable model rewrite into the observed
variables model without the structural errors.

Y − εy = (X − εx)Γ(I − β)−1 + Ξ(I − β)−1 (3.14)
Y −

(
εy + Ξ(I − β)−1

)
  

ε̈y

= (X − εx)Γ(I − β)−1. (3.15)

Now we want the errors ε̈y = εy + Ξ(I − β)−1 and εx to fulfil the conditions
proposed in Theorem 8. Remind notation from Table 1.1 and write β∗ = I − β.
Now we propose conditions:

var(ϵx) =σ2Iq (♩)
var(ϵ̈y) =Θy + (β−1

∗ )⊤Ψβ−1
∗ = σ2Ip . (�)

If there are no errors in the exogenous variables then it is sufficient that the
condition (�) holds for the rewritten model to fulfil the conditions of Theorem 8.
More generally we need also (♩) to hold. On the other hand, if there are no errors
in endogenous variables, one can still rewrite the model using ϵ̈y = Ξ(I − β)−1

and then the condition (�) simplifies to (β−1
∗ )⊤Ψβ−1

∗ = σ2Ip.
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If we omit the coefficient β from the model, we get every structural equation
in form of errors-in-variables model. In that case the condition (�) is reduced to
Θy + Ψ = σ2I. When also (♩) holds for the same σ2 then one can say that the
conditions coincide with conditions imposed on the error structure of errors-in-
variables model in the previous chapter. However the condition is unnecessarily
strong when we estimate each structural equation separately. It would be enough
to require matrix var(ϵ̈y) to have σ2 on the diagonal.

We have shown that using PEIV to estimate coefficients in j-th structural
equation may under some rather restrictive assumptions yield consistent esti-
mates. Generalization when some exogenous variables are affected with error
was discussed.

It must be noted that the assumptions of Theorem 8 will not be in most cases
fulfilled in practice. Some techniques how to address general covariance structure
of the errors of EIV model might be found at Section 3.6.2. [23]. However the
solution of this problem is highly case specific. Therefore one can not claim that
using PEIV to estimate individual structural equations is generally consistent
technique.

3.3.3 Modification of two stage least squares
The idea is to modify 2SLS by replacing OLS estimation in both steps by PEIV
estimation in suitable way. In this case assume that the data follow observed
variable model with errors in variables. We propose several ways how to employ
the modifications. We will use following ≈ instead of = in the notation like this

Y ≈ XΓ + Ξ, (3.16)

to write down an error in variable model without specifying which variables are
with an error.

Modification 1

We proceed in similar manner as we did in the first equation wise procedure when
defining two stage least squares in section 1.4.3. In the first step we estimate
following model for:

Y(j) ≈ X(j)Πj + ∆j

for each j using partial error-in-variable estimator (PEIV), where some chosen
(according to the model in hand) variables are considered to be measured with
an error. Note fitted values as Ŷ(j). Now as with 2SLS plugin Y(j) = Ŷ(j) + ∆̂j

in right hand side of (1.20). This time we will proceed in the second step by
estimating

Yj ≈ Ŷ(j)βj + X(j)γ(j) (3.17)

using PEIV where Ŷ(j) is considered without any error2 and some chosen exoge-
nous variables are considered with an error.

2See discussion
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Modification 2

In this modification we take advantage of one interesting property of EIV esti-
mator. In the first step we consider errors-in-variables model with multivariate
response:

Y ≈ XΠ + ∆.

Denote fitted values by Ŷ. Now let us take corresponding columns of fitted
values Ŷ(j) and for each j, plug them in right hand side of (1.20) and get models
to estimate:

Yj ≈ Ŷ(j)β(j) + X(j)γ(j) (3.18)

as in Modification 1 use PEIV where Ŷ(j) is considered without an error and some
chosen exogenous variables are considered to be with an error.

Modification 3

This modification is very similar to Modification 2 but in the second step we use
constrained TLS estimator to estimate model

Y ≈ Ŷβ + XΓ (3.19)

with constraints according to given model.

Variants of modifications and discussion

All proposed modifications should be applied according to the specific problem in
hand because every modification requires a little bit different assumptions about
the model. All modifications can be further modified.

Firs straightforward modification arises when we can assume that the exoge-
nous variables are measured without any error. That should simplify our method
to 2SLS. For that reason we treat the fitted values of endogenous variables Ŷ in
the second step as variables without any error. There is a question if we should
always consider them to be without any error. Especially when combining with
further modifications.

The fact that, when we address fitted values in EIV model we also have
fitted values of the regressors X̂ generally different from X, is another thing to
consider. This fact could suggest pluging in also X̂ in second step of the modified
procedures.

This section is to be taken as proposition of some ideas for future research.
Some simulated examples seemed to be promising however no rigorous simula-
tion study was performed. Author suggests performing fairly large simulation
study to narrow set of possible modifications which should be then approached
theoretically.
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4. Application

4.1 Introduction
We apply some of the methods for estimating structural equations on modelling
relations among Relationship satisfaction (RS), Sexual satisfaction (SS) and other
psychological and sociological characteristics of women in young adulthood. Brief
introduction follows and deeper theoretical background (in Czech) can be found
in the original study [11].

We build on top of the previously mentioned study. Taking in account previous
result we have hypothesis that Sexual satisfaction is positively associated with
Relationship satisfaction.

For Sexual satisfaction they found positive association with Self esteem, Pas-
sion, Equality and Sexual intercourse frequency. Negative association with Con-
traception type hormonal. Other considered variables: Relationship type, Re-
lationship duration, Intimacy, Commitment were not proven to have significant
effect on Sexual satisfaction.

For Relationship satisfaction they found positive association with Relationship
type Dating, and Relationship type Living together, compared to Open relation-
ship. They also found positive association with Self esteem, Intimacy, Commit-
ment, Passion and Equality. Other considered variables: couple Heterogamy,
Sexual frequency, Extraversion, Openness, Conscientiousness and Neuroticism
were not proven to have significant effect.

To summarize. We have two endogenous variables SS and RS, we suppose
they have an association. For each of them we have set of exogenous variables
that we suppose to have an association with corresponding endogenous variable.
First we will replicate the results of the previous study with some minor changes.
Then we will model this relations as two structural equations.

The goal is to illustrate numerical differences among OLS, two stage least
squares and EIV estimator applied to practical example rather than performing
new statistical analysis of given problem. As convenient it is to know the true
coefficients when estimating an artificially simulated example, a real problem in
hand brings different framework to think in.

4.2 Methods
The data were collected using an online survey. We had access to cleaned data
that we used in almost the same format as in original study. Only transforma-
tion was performed on variables Sexual satisfaction, Relationship Satisfaction,
Intimacy, Commitment and Equality to eliminate Skewness. Transformation
function was

ft(x) = 4exp(x) − exp(1)
exp(5) − exp(1) + 1.

First of all marginal association of RS and SS was investigated using OLS and
EIV estimators. Association was investigated in both ways, changing the role of
regressor and response. For completeness we also replicated the models used in
the original study using standard linear regression.
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As was mentioned before we have two structural equations, one for each exoge-
nous variable. Note Sexual satisfaction as ys and Relationship satisfaction as yr.
Categorical covariates are parametrized using reference group pseudo contrast.
The structural equations are

ys − ϵ1 = βs(yr − ϵ2) +
∑
j∈J1

γ1jxj + ζ1 (4.1)

yr − ϵ2 = βr(ys − ϵ1) +
∑
j∈J2

γ2jxj + ζ2 , (4.2)

where xj are the exogenous variables (parametrized in case of the categorical
variables) and Ji is set of corresponding indexes. We label the coefficients β, γ
by the names of corresponding variables when displaying the estimated values.

We directly compare five possible estimators. Both structural equations were
estimated using: OLS while omitting the endogenous variable from covariates.
This is the same as in the previous study and we denote it by lm1. Then we use
just OLS and denote it by lm2. Two stage least squares (2SLS) estimator denote
by 2SLS. Denote by EIV1 the PEIV estimator while taking all but categorical
variables with an error, and denote by EIV2 taking only endogenous variables
with an error.

Majority of the computations was performed using software R [16]. The func-
tion for calculating 2SLS was taken from package [5]. The function for fitting
PEIV models is in Appendix A.2. We use this opportunity to point out other R
package for fitting structural equations models [17], that was also used for some
complementary calculations.

4.3 Results
Descriptive statistics

The data description is of course almost the same as in [11]. The data consist
of 290 Czech and Slovakian women in age 16–40 years. Mean age is 23.9 years
(s.d. = 3.4). Most women had university education (55.9 %) then 39 % of women
had high school education and only 5.1 % had lower than high school education.
Other characteristic of the data sample are very deeply described in the original
paper. We provide descriptive statistics juts for the variables that were used in
our models.

Descriptive statistics of the continuous variables are in Table 4.1 and descrip-
tive statistics of the categorical variables are in Table 4.2. All numerical variables
were scaled to interval [1, 5]. Most of the variables have mean around 3 ranging
from 2.43 (Equality) to 3.74 (Openness) and standard deviation (s.d.) around 0.7
ranging from 0.54 (Openness) to 1.13 (Commitment). The variables are unit-free.

There was 134 women using Hormonal Contraception and also 134 using
Nonhormonal Contraception, only 22 women were not using any Contraception.
Women in relationship type Dating and Living together were in similar propor-
tion and only 24 women were in Open relationship. Most women (217) had sexual
intercourse about 1-3 times a week. Also most frequent relationship duration was
25 months or longer.
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Table 4.1: Descriptive statistics for the continuous variables.
Min. 1st Qu. Median Mean 3rd Qu. Max. s.d.

Sexual sat. 1.20 2.30 2.79 2.80 3.44 4.51 0.71
Relationship sat. 1.09 2.48 3.33 3.32 4.26 5.00 1.12
Self esteem 1.53 3.13 3.53 3.60 4.03 5.00 0.67
Extraversion 1.58 2.92 3.42 3.38 3.83 4.92 0.64
Openness 1.77 3.46 3.77 3.74 4.08 4.92 0.54
Conscientiousness 1.25 2.92 3.33 3.35 3.92 4.92 0.74
Neuroticism 1.38 2.54 3.15 3.12 3.69 4.54 0.71
Intimacy 1.00 2.27 3.02 3.00 3.84 5.00 1.08
Commitment 1.00 2.13 3.02 2.99 3.84 5.00 1.13
Passion 1.05 2.11 2.65 2.79 3.46 5.00 0.99
Equality 1.01 1.91 2.30 2.43 2.85 5.00 0.79

Table 4.2: Descriptive statistics for the categorical variables.
Relationship type

Open 24
Dating 128
Living together 138

Sex frequency
Once a month max 31
1-3 per week 217
4+ per week 42

Contraception
None 22
Nonhormonal 134
Hormonal 134

Relationship duration
0-3 months 19
4-24 months 101
25+ months 170

Heterogamy
Heterogamous 116
Nonheterogamous 174
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Figure 4.1: Relation between Relationship satisfaction and Sexual satisfaction
estimated using OLS and PEIV.
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Comparison of estimation methods

First we compare OLS and PEIV estimates of association of Sexual and Rela-
tionship satisfaction (see Figure 4.1). We have estimated the coefficients of the
models

ys ≈ αs + βsyr

yr ≈ αr + βrys

using OLS and PEIV. The estimates were fairly similar for model with Sexual
satisfaction (ys) as the response. When Relationship satisfaction (yr) was taken
as the response then the difference was much larger. OLS estimate of βs was 0.759
and and PEIV was 2.39. Note that for the PEIV estimates of the coefficients β
it holds that β̂s = 1/β̂r.

Next we review the linear regression models used in the original study. One
can see the summary Tables 4.3 and 4.4 of the estimated coefficients. We can con-
firm the main findings of the original study. The study was focused on the effect of
the hormonal contraception method. The whole categorical variable Contracep-
tion type was significant (p-val=0.047) predictor of Sexual satisfaction. Results
are consistent with original study i.e. women using Nonhormonal Contraception
method had sexual satisfaction on average higher that women using Hormonal
Contraception.

In the following step we applied mentioned estimators on models where the
exogenous variables were the same as in the original study. In the Table 4.5
one can see comparison of five different sets of estimates of the coefficients of
the structural equation for Sexual satisfaction. One can see that estimates are
not dramatically varying depending on chosen method. It is worth noting that
negative estimates of the effect of Relationship satisfaction on Sexual satisfaction
yielded by 2SLS and EIV1 does not make much sense.

The Table 4.6 provides estimates of the coefficients of the structural equation
for Relationship satisfaction. In this case the differences among the estimates
were much more noticeable. Especially EIV1 and EIV2 gave opposite results and
both gave rather nonsensible estimates of βs, namely −4.32 and 12.06.

Finally we left out the variables that were not significant in the original linear
regression models. Test on the submodel with omitted covariates was also per-
formed and was not significant. The same comparison of the reduced models as
before was performed.

In the Table 4.7 one can see that all estimators but EIV1 gave very similar and
quite sensible results when estimating structural equation for Sexual satisfaction.
On the other hand there were still quite contradictory results of EIV1 and EIV2
when estimating structural equation for Relationship satisfaction, see Table 4.8.

Because the variables Passion and Equality seemed to have relatively strong
association with Sexual satisfaction we tried to remove them from structural
equation for Relationship satisfaction to avoid possible multicolinearity problem.
This time all methods gave more or less sensible results as one can see in the
following Table 4.9.
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Table 4.3: Summary table of the model from the original study with Sexual
satisfaction as the response.

γ s.d. t-val p-val
Contraception, ref. is None whole factor p-val: 0.047
Nonhormonal 0.00 0.12 0.03 0.977
Hormonal -0.15 0.12 -1.24 0.216
Relationship type, ref. is Open whole factor p-val: 0.210
Dating -0.11 0.13 -0.84 0.401
Living together 0.00 0.14 0.02 0.987
Relationship duration, ref. is 0-3 months whole factor p-val: 0.627
4-24 months 0.11 0.13 0.89 0.376
25+ months 0.08 0.14 0.56 0.579
Sex frequency, ref. is Once a month max whole factor p-val: 0.141
1-3 per week 0.20 0.10 1.92 0.055
4+ per week 0.23 0.13 1.74 0.083
Self esteem 0.19 0.05 4.17 0.000
Intimacy -0.01 0.04 -0.18 0.858
Commitment 0.01 0.04 0.24 0.810
Passion 0.34 0.04 8.68 0.000
Equality 0.25 0.04 6.24 0.000

Table 4.4: Summary table of the model from the original study with Relationship
satisfaction as the response.

γ s.d. t-val p-val
Heterogamy, ref. is Heterogamous whole factor p-val: 0.108
Nonheterogamous 0.13 0.08 1.61 0.108
Relationship type, ref. is Open whole factor p-val: 0.000
Dating 0.80 0.17 4.79 0.000
Living together 0.80 0.18 4.42 0.000
Sex frequency, ref. is Once a month max whole factor p-val: 0.523
1-3 per week 0.15 0.14 1.04 0.298
4+ per week 0.19 0.18 1.08 0.282
Self esteem 0.23 0.08 2.73 0.007
Extraversion -0.04 0.07 -0.60 0.546
Openness 0.07 0.08 0.78 0.439
Conscientiousness 0.05 0.06 0.90 0.367
Neuroticism -0.04 0.08 -0.50 0.620
Intimacy 0.26 0.05 4.94 0.000
Commitment 0.22 0.05 4.56 0.000
Passion 0.28 0.06 4.99 0.000
Equality 0.19 0.05 3.52 0.001
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Table 4.5: Comparison of the point estimates of the coefficients in the structural
equation for Sexual satisfaction.

lm1 lm2 2SLS EIV1 EIV2
Relationship sat. – 0.04 -0.10 -0.13 0.08
Contraception, ref. is None
Nonhormonal 0.00 0.01 0.00 -0.05 0.01
Hormonal -0.15 -0.15 -0.14 -0.20 -0.15
Relationship type, ref. is Open
Dating -0.11 -0.14 -0.02 0.12 -0.17
Living together 0.00 -0.03 0.09 0.27 -0.07
Relationship duration, ref. is 0-3 months
4-24 months 0.11 0.11 0.13 0.14 0.11
25+ months 0.08 0.07 0.08 0.20 0.07
Sex frequency, ref. is Once a month max
1-3 per week 0.20 0.19 0.21 0.09 0.19
4+ per week 0.23 0.22 0.24 0.01 0.21
Self esteem 0.19 0.18 0.22 0.40 0.17
Intimacy -0.01 -0.02 0.02 -0.11 -0.03
Commitment 0.01 0.00 0.03 -0.01 -0.01
Passion 0.34 0.33 0.37 0.57 0.32
Equality 0.25 0.24 0.27 0.35 0.24

Table 4.6: Comparison of the point estimates of the coefficients in the structural
equation for Relationship satisfaction.

lm1 lm2 2SLS EIV1 EIV2
Sexual sat. – 0.07 -0.12 -4.32 12.06
Heterogamy, ref. is Heterogamous
Nonheterogamous 0.13 0.13 0.13 -0.30 0.45
Relationship type, ref. is Open
Dating 0.80 0.81 0.79 1.33 1.99
Living together 0.80 0.80 0.80 3.91 0.48
Sex frequency, ref. is Once a month max
1-3 per week 0.15 0.13 0.17 -0.83 -2.29
4+ per week 0.19 0.17 0.22 -2.29 -2.62
Self esteem 0.23 0.22 0.24 5.20 -0.95
Extraversion -0.04 -0.05 -0.03 -4.20 -1.19
Openness 0.07 0.07 0.06 -6.18 0.46
Conscientiousness 0.05 0.05 0.06 0.73 -0.17
Neuroticism -0.04 -0.03 -0.05 -0.95 0.89
Intimacy 0.26 0.26 0.26 -1.23 0.29
Commitment 0.22 0.22 0.22 -0.10 0.20
Passion 0.28 0.25 0.32 5.03 -3.82
Equality 0.19 0.18 0.22 1.08 -2.80
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Table 4.7: Comparison of the point estimates of the coefficients in the reduced
structural equation for Sexual satisfaction.

lm1 lm2 2SLS EIV1 EIV2

Relationship sat. – 0.04 0.03 -0.11 0.05
Contraception, ref. is None
Nonhormonal 0.01 0.01 0.01 -0.02 0.01
Hormonal -0.15 -0.16 -0.16 -0.17 -0.16
Self esteem 0.21 0.20 0.20 0.39 0.19
Passion 0.36 0.34 0.34 0.49 0.33
Equality 0.27 0.26 0.26 0.35 0.25

Table 4.8: Comparison of the point estimates of the coefficients in the reduced
structural equation for Relationship satisfaction.

lm1 lm2 2SLS EIV1 EIV2

Sexual sat. – 0.07 0.01 -6.44 11.53
Relationship type, ref. is Open
Dating 0.88 0.89 0.88 1.11 1.81
Living together 0.89 0.89 0.89 2.29 0.18
Self esteem 0.27 0.26 0.27 2.67 -1.94
Intimacy 0.27 0.27 0.27 -0.47 0.28
Commitment 0.22 0.22 0.22 0.00 0.23
Passion 0.28 0.26 0.28 3.66 -3.92
Equality 0.21 0.19 0.21 2.28 -2.86

Table 4.9: Comparison of the point estimates of the coefficients in the reduced
and modified structural equation for Relationship satisfaction.

lm1 lm2 2SLS EIV1 EIV2

Sexual sat. – 0.35 0.71 1.39 1.63
Relationship type, ref. is Open
Dating 0.75 0.84 0.93 0.99 1.16
Living together 0.65 0.74 0.83 0.85 1.06
Self esteem 0.29 0.21 0.14 -0.07 -0.05
Intimacy 0.41 0.35 0.28 0.21 0.11
Commitment 0.30 0.26 0.23 0.19 0.13
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4.4 Application conclusion
We have compared only the point estimates because we have not developed ap-
propriate theory to compare interval estimates. Comparing only the point esti-
mates could potentially lead to serious misinterpretations. But as the point of
this chapter author consider only illustration of some proposed techniques rather
than statical modelling of given practical example.

One possibly fatal misspecification of the model is that only Sexual satisfaction
and Relationship satisfaction were taken as the endogenous variables. The model
might be more complicated. For example there might be more reciprocal paths
among the considered variables. One must also note that the variable choice for
the reduced models based on their significance in the original linear regression
model is questionable in context of structural equations model. Also note that one
could also choose different categorizations of categorical variables. One should
contact an expert on Psychology and social science and discuss possibly better
specification of the model to address given practical problem in more refined
manner.

In conclusion the EIV estimator yielded quite sensible estimates of coefficients
from the structural equation for Sexual satisfaction. On the other hand for the
coefficients from the structural equation for Relationship satisfaction the EIV
estimator provided contradicting results based on what other exogenous variables
were considered to be with an error.
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Conclusion
Fundamentals of structural equations modelling and Error-in-Variables models
are summarized in the first two chapters. While summarizing structural equa-
tions models we had used the opportunity to shown that the covariance based
generalized least squares estimator (GLS) and maximal likelihood estimator (ML)
yield the same estimate as standard OLS regression when estimating standard lin-
ear model. In the rest of this thesis our focus was tuned towards observed variable
model with errors in variables. Then main result are in the third chapter.

General optimization problem to estimate the parameters of observed variable
structural equations model with errors-in-variables si postulated. Several possible
modifications of two stage least squares are also proposed for future research.

Other proposed method equation-wise EIV is based on using EIV estimator
to estimate each structural equation in the model separately. If the model is
imposed with some very restrictive conditions then the method yields strongly
consistent estimates of the coefficients. The conditions are described in Theorem
8. The theorem can be loosely translated in the way, that if there are not any
errors in equations (structural errors) and the errors in the endogenous variables
has zero mean, are uncorrelated and have common variance, then equation-wise
EIV is consistent. Proposition of some conditions under which one can rewrite
more general model to suit the conditions of Theorem 8 follows. However the
conditions might be practically difficult to meet in practice.

In the last chapter practical illustration of the equation-wise EIV method
is given. The illustrative example investigate Relationship satisfaction, Sexual
satisfaction and other psychological and sociological characteristic of women in
young adulthood. The results were quite ambiguous.

According to our research the topic of possible usage of Errors-in-Variables
estimator for estimating coefficients of structural equations model is barely ad-
dressed in the literature. As we have not found many relevant sources we tried to
layout some fundamentals to build on in the future research. For that reason we
placed more focus on the ideas and their presentation rather than on the technical
aspects that are of course no less important. The author feels that some sections
(for example Section 3.3.1) needs more attention and further development. On
the other hand the author hopes that this thesis will be thought provoking and
one could hopefully view that as the main contribution of this work.
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[10] Komárek, A. NMSA407 linear regression course notes. http:
//msekce.karlin.mff.cuni.cz/˜komarek/vyuka/2017_18/nmsa407/
2017-NMSA407-notes.pdf#page=100. Accessed: 2018-03-12, Last updated:
2017-12-20.
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A. Appendix

A.1 Additional theorems and definitions
Note that Frobenius norm is ∥A∥F =

√∑m
i=1

∑n
j=1 |aij|2 =

√
tr {AA⊤}.

Definition 9 (Unitary matrix). A square matrix A is called unitary

A⊤A = AA⊤ = I

Definition 10 (Unitary invariant matrix norm). A matrix norm ∥·∥ is unitary
invariant if

∥UAV ∥ = ∥A∥

for all A ∈ Rn×p and all unitary matrices U, V .

Theorem 9 (Break down of SST ). Let Y = Xβ + σ2IN and let 1N ∈ M (X)
then

N∑
i=1

(Yi − Ȳ )2

  
SST

=
N∑

i=1
(Yi − Ŷi)2

  
SSe

+
N∑

i=1
(Ŷi − Ȳ )2

  
SSR

.

Proof. See [10] Theorem 5.3.
□

Theorem 10 (Strong consistency of OLS). Let following hold

LS1 The data [X,Y] consist of iid realizations of generic random vector (X,Y).
And there exist β unknown parameters such that Y = E [Y|X] = X⊤β.

LS2 E |Xj, Xl| < ∞ and E [XX⊤] is positive definite matrix.

LS3 E (var[Y|X]XjXl) < ∞.

Then
lim

n→∞
β̂n = β a.s.

Proof. See [10] Theorem 14.2.
□
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A.2 Code used for computing PEIV estimator
PEIV<-function(formula,fixed=.˜1, data, ex=1, values=TRUE){
m<-model.matrix(formula,data)
namesorder<-colnames(m)
noerror<-colnames(model.matrix(update(formula,fixed),data))
Y<-as.matrix( model.response(model.frame(formula,data)))
if(is.null(noerror)){
X<-m
M<-cbind(X,Y)
rm(m)

}else
{
X<-m[,!(colnames(m) %in% noerror),drop=FALSE]
W<-m[,noerror, drop=FALSE]
rm(m)
M<-cbind(lm.fit(W,X)$residuals,lm.fit(W,Y)$residuals)

}
SVD<-svd(M)
V<-SVD$v
mm<-dim(X)[2]
dd<-dim(Y)[2]
vv<-mm+dd
SG1<-diag(SVD$d)[1:mm,1:mm]
U11<-SVD$u[,1:mm, drop=FALSE]

V11<-V[1:mm,1:mm, drop=FALSE ]
V12<-V[1:mm,(mm+1):vv ,drop=FALSE ]
V21<-V[(mm+1):vv,1:mm ,drop=FALSE ]
V22<-V[(mm+1):vv,(mm+1):vv, drop=FALSE ]

beta<- -V12 %*% solve(V22)
rownames(beta)<-colnames(X)

alpha<-NULL
if(!is.null(noerror)){alpha<- as.matrix(lm.fit(W,Y- X%*%beta)$coeff) }
coeff<-rbind(alpha, beta)

if(values){ AY<-U11%*%SG1%*% cbind(t(V11),t(V21) )
colnames(AY)<-colnames(M)
if(ex[1]==0){
RET<-list(coeff= coeff, Xhat = AY[,(1:mm),drop=FALSE],
Yhat= AY[,(1:mm), drop=FALSE]%*%coeff)

}
else{
RET<-list(coeff= coeff[namesorder,],
Xhat = cbind(W, lm.fit(W,X)$fitted+ AY[,(1:mm), drop=FALSE] ),
Yhat= cbind(W, lm.fit(W,X)$fitted+AY[,(1:mm), drop=FALSE])%*%coeff)}}

else{ RET<-list(coeff= coeff[namesorder,], Xhat = NULL, Yhat=NULL) }
return( RET )
}
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