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Introduction
A permutation π is said to be contained in a permutation σ, if some rows and
columns of the permutation matrix of σ can be removed to obtain the permutation
matrix of π, otherwise σ avoids π. A set of permutations closed under contain-
ment is called a permutation class, and it is a singleton class if, in addition, it
can be described as the set of all permutations avoiding a single permutation
π. Such a singleton class is denoted by Av(π). The study and enumeration of
pattern-avoiding permutations and permutation classes has now been an active
field for several decades. One of the important concepts studied in this field is
Wilf-equivalence. Two permutation classes are Wilf-equivalent, if for every posi-
tive integer n they contain the same number of permutations of length n.

The search for new Wilf-equivalent classes has led to the investigation of a
stronger kind of equivalence. Consider a Ferrers diagram whose every cell is filled
with a 0 or a 1 such that there is at most one 1 in every row and every column.
Such a filling of the Ferrers diagram is called sparse and it contains a permutation
σ, if some rows and columns of the Ferrers diagram can be removed to obtain the
permutation matrix of σ, otherwise it avoids σ. We then say that two singleton
classes Av(π) and Av(σ) are shape-Wilf-equivalent if for every Ferrers diagram the
number of sparse fillings avoiding π is the same as the number of sparse fillings
avoiding σ. The most notable example of shape-Wilf-equivalence was found by
Backelin, West and Xin [1], who have shown that for any k, the classes Av(12 · · · k)
and Av(k(k−1) · · · 21) are shape-Wilf-equvalent. Later, Krattenthaler [2] found a
nice and simpler bijective proof of this result, and his work, in return, was further
generalized by Rubey [3] who extended the bijection to more general diagrams.

In the present thesis, we prove two new results about 0-1-fillings of skew
diagrams, which are diagrams obtained as difference of two Ferrers diagrams one
of which contains the other. The thesis consists of three chapters. In the first
chapter, we introduce all of the necessary terminology and notation. In the second
chapter, we define a subclass of skew diagrams, the simple skew diagrams, and
make use of the approaches of Krattenthaler and Rubey to construct a bijection
between sparse fillings of a given simple skew diagram avoiding 12 · · · k and sparse
fillings avoiding k · · · 21. In the final chapter we generalise a result of Jeĺınek [4]
and show that for every skew diagram, there at least as many general fillings
avoiding 12 as there are fillings avoiding 21.
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1. Preliminaries

1.1 Polyominoes
A cell is a unit square whose vertices lie on lattice points of the Z2 plane. We then
define a polyomino as a finite set of cells. When referring to coordinates of a cell,
we will use the Z2 coordinates of its bottom left corner. A polyomino is convex
if for any two of its cells in the same row or column the polyomino also contains
every cell in between. Two columns of a polyomino are comparable if the set of
row coordinates of one column is contained in the set of row coordinates of the
other. We say that a polyomino is intersection-free if any two of its columns are
comparable. Note that this is equivalent to having any two of its rows comparable.
A moon polyomino is a convex, intersection-free polyomino. A polyomino is top-
justified if the top ends of all of its columns are in the same row and it is left-
justified if the left ends of all of its rows are in the same column. Similarly we
define a bottom-justified or a right-justified polyomino. A moon polyomino is a
Ferrers diagram if it is top-justified or bottom justified and in addition either
left-justified or right-justified.

(a) non-convex (b) convex, not
intersection-free

(c) moon polyomino (d) bottom-justified
moon polyomino

Figure 1.1: Examples of polyominoes

A NW Ferrers diagram (standing for northwest) is top-justified and left-
justified. A SE Ferrers diagram (standing for southeast) is bottom-justified and
right-justified. We can represent both kinds of Ferrers diagrams by sequences
of characters R (meaning a step right) and U (meaning step up), describing the
right-up border or the up-right border of NW Ferrers diagrams or SE Ferrers
diagrams respectively. For example, the NW Ferrers diagram in Figure 1.2(a)
is represented by the sequence RRURURRURUU and the SE Ferrers diagram
in Figure 1.2(b) is represented by the sequence URUUURRURR. We call the
sequences of characters R and U the R-U sequences and if a Ferrers diagram F
is represented by an R-U sequence w, we say that F is of type w.

Given a convex polyomino P , we define its height h(P ) as the number of its
nonempty rows. Similarly, we define its width w(P ) as the number of nonempty
columns of P .

Sometimes we will need to speak about the boundary of a convex polyomino,
considered as a closed convex subset of the plane. We call the boundary of a
convex polyomino P the border of P . If two adjacent sides of a cell of Z2 lie on
the border of P , the corner of the cell in which the two sides meet is a turn on the
border. A line along the border between two adjacent turns of M is a segment.
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(a) NW Ferrers diagram (b) SE Ferrers diagram

Figure 1.2: Examples of Ferrers diagrams

For example, the border of the polyomino in Figure 1.1(b) consists of 8 turns and
8 segments.

1.2 Partitions
A partition of length n is a finite weakly decreasing sequence of positive integers
λ = (λ1, λ2, . . . , λn). Each of the numbers λi is called a part of λ and the size
of λ is the sum of its parts. Such a partition λ also represents a NW Ferrers
diagram with column heights λ1, . . . , λn. For example, the diagram in Figure
1.2(a) is represented by a partition (5, 5, 4, 3, 3, 2). A partition µ = (µ1, . . . , µm)
is contained in λ = (λ1, . . . , λn) if m ≤ n and µi ≤ λi for 1 ≤ i ≤ m. The union of
partitions µ = (µ1, . . . , µm) and λ = (λ1, . . . , λn) is the partition ν = (ν1, . . . , νk)
such that k = max(m, n) and νi = max(µi, λi). Finally, the transpose of a
partition λ = (λ1, . . . , λn) is the partition λT = (λT

1 , . . . , λT
t ) such that t = λ1 and

λT
i is equal to the number of parts of λ greater than or equal to i. Notice that

transposing a partition is equivalent to reflecting the associated Ferrers diagram
over the y = x line.

1.3 Skew diagrams
A skew diagram is a NW Ferrers diagram with a smaller NW Ferrers diagram
cut out of its north-west corner. This is represented by a pair of partitions (λ, µ)
such that µ is contained in λ.

Let S be a skew diagram and let C be one of its columns. We define the
operation of deleting the column C from S as removing the cells of C and shifting
all cells of S right of C one cell to the left. Similarly we define the operation of
deleting a row R from S as removing the cells of R from S and shifting all cells of
S below R one cell upward. A skew diagram S is a subdiagram of a skew diagram
T or is contained in T if S can be created from T by deleting some rows and
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Figure 1.3: The skew diagram ((4, 4, 3, 3, 1), (2, 1))

columns. If S is not containted in T , we say that T avoids S. Note that both
the class of skew diagrams and the class of Ferrers diagrams are closed under the
operations of deleting a row or a column, i.e. deleting a row or a column from a
skew diagram always results in a skew diagram and in addition, if the diagram is
a Ferrers diagram, it remains a Ferrers diagram.

(a) (b)

Figure 1.4: Deleting a column from a skew diagram

A skew diagram is clearly bounded by two paths leading from its lower left
and to its upper right corner and consisting only of steps up and to the right. We
shall call them the upper border and the lower border of the diagram.

For convenience, we will only consider connected skew diagrams, which satisfy
the additional condition that their upper and lower borders only meet in the lower
left and the upper right corner and nowhere in between. All of the presented
results about connected skew diagrams can be extended to general skew diagrams
without any effort.

1.4 Fillings of polyominoes
The main theme of this thesis is filling cells of polyominoes with integers and
then counting fillings having certain properties. A 0-1-filling of a polyomino is
an assignment of either a 0 or a 1 to each cell of the polyomino. A sparse filling
is a 0-1-filling, such that there is at most one 1 in each row and in each column.
In figures, we will often represent 0’s in such fillings by empty cells and 1’s by
crosses. In addition, if a subset of a polyomino contains only 0’s, we shall say
that it is empty, otherwise it is nonempty.

Let P be a polyomino filled with a 0-1-filling and let c1, c2, . . . , cl be l of its
cells filled with a 1. These cells form a NE-chain (pronounced ”northeast chain”)
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(a) A sparse filling

×
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×
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(b) A non-sparse filling

Figure 1.5: Examples of 0-1-fillings

×

×

×

(a) A SE-chain of length 3

×

×

×

×

(b) Not a NE-chain of length 4

Figure 1.6: Examples of chains in a polyomino with a 0-1-filling

of length l in P if for 1 < i ≤ l each ci is strictly northeast of ci−1 and the smallest
rectangle containing all l cells is entirely contained in P . Similarly the cells form
a SE-chain (pronounced ”southeast chain”) of length l, if for 1 < i ≤ l each ci is
strictly southeast of ci−1 and again the smallest rectangle containing all the cells is
entirely contained in P . We then say that P contains a NE-chain (or SE-chain)
of length l if there is at least one occurence of such a chain in P . Otherwise we say
that P avoids a NE-chain (or SE-chain) of length l. For example, in Figure 1.6(a)
the smallest rectangle containing the three nonzero entries are contained in the
polyomino, so the 1’s do form a SE-chain of length 3. However, in Figure 1.6(b)
the northwest corner of the smallest rectangle containing the four nonempty cells
is not a part of the polyomino, so this is not a NE-chain of length 4. However
both the lower three 1’s and the upper three 1’s form a NE-chain of length 3.

In the following chapter we deal with sparse fillings of skew diagrams avoiding
long NE-chains and SE-chains. To describe the sets of fillings in question easily,
we will use the notation introduced by Rubey [3].

Definition 1.1 ([3, Definition 5.2]). Let P be a moon polyomino or a connected
skew diagram, l a positive integer and r, c sequences of 0’s and 1’s of lengths
h(P ) and w(P ) respectively. Then FNE(P, l, r, c) is the set of all sparse fillings
of P such that

• there is a 1 in the i-th row of P if and only if ri = 1,
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• there is a 1 in the i-th column of P if and only if ci = 1,

• the length of the longest NE-chain in the filling is equal to l.

Similarly we define FSE(P, l, r, c) as the set of all sparse fillings of P with
the length of the longest SE-chain equal to l and having 1’s exactly in the rows
and columns prescribed by r and c. Note that since we are dealing with sparse
fillings, the number of nonempty rows and columns prescribed by r and c must
be the same for any fillings to exist.
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2. A bijection between fillings of
special skew diagrams

2.1 Main result
Let Sforb be the forbidden skew diagram ((3, 3, 2), (1)).

Figure 2.1: Sforb

Lemma 2.1. A skew diagram S avoids Sforb if and only if for every cell c of S
at least one of the following conditions is satisfied:

• either the set of cells of S to the left and above c (including the cells in the
same row or column as c) forms a rectangle, or

• the set of cells of S to the right and below of c (including the cells in the
same row or column as c) forms a rectangle.

Proof. If S does contain Sforb, then the cell that represents the middle cell of an
occurence of Sforb violates both conditions. On the other hand, if a cell c of S
violates both conditions, we find an occurence of Sforb in S with this cell as its
middle cell. Let A be the maximal rectangle contained in S which has c as its
northeast corner and let B be the maximal rectangle contained in S which has
c as its southwest corner. Then the 7 cells in the corners of these two rectangles
form an occurence of Sforb.

We can now formulate the main result of this chapter.

Theorem 2.2. Let S be a skew diagram avoiding Sforb, let l ≥ 1 be an integer
and let r and c be sequences of 0’s and 1’s of lengths w(S) and h(S) respectively.
Then there is a bijection between the sets FNE(S, l, r, c) and FSE(S, l, r, c).

To prove this theorem, we will utilize other known bijection theorems on
Ferrers diagrams and moon polyominoes described in sections 2.3 and 2.4, but
first, we will prove a useful equivalent characterization of skew diagrams avoiding
Sforb.

2.2 Simple skew diagrams
Let S be a skew diagram and let a vertical line leading between two adjacent
columns of S divide it into two skew diagrams S1 and S2. Then we say that
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S is a vertical concatenation of S1 and S2 and we write S = S1|vS2. Similarly
we define horizontal concatenation and write T = T1|hT2. Note that there are
mutiple ways how to concatenate two skew diagrams.

We say that S is a simple skew diagram if it can be written as

S = F1|vG1|hF2|v · · · |hFn|vGn,

where all Fi are NW Ferrers diagrams, all Gi are SE Ferrers diagrams and
all Fi and Gi are nonempty with the possible exception of Gn. We call this
representation of S the simple representation.

F1

G1

F2

Figure 2.2: A simple skew skew diagram

The key lemma follows.

Lemma 2.3. A skew diagram is simple if and only if it does not contain Sforb.

Proof. In a simple skew diagram S every cell is in either a NW Ferrers subdiagram
or a SE Ferrers subdiagram and thus satisfies at least one of the conditions of
Lemma 2.1. Therefore S avoids Sforb.

We now prove that every skew diagram avoiding Sforb is simple by induction
on the number of turns on the upper border of a skew diagram. If there is only
one turn on the upper border of a skew diagram, then it is necessarily a NW
Ferrers diagram and there is nothing to prove. Let S be a skew diagram whose
upper border has at least two turns.

Let u1 and r1 be the first two segments of the upper border of S, starting from
the lower left corner, with u1 going up and r1 going to the right. Together with
the corresponding part of the lower border they bound a NW Ferrers diagram F
which can be separated by a vertical line v from the rest of S, as we can see in
Figure 2.3.

Next, consider the cell c attached to the upper right corner of F as indicated
in Figure 2.3. Since S avoids Sforb and the upper right corner of c is a turn of the
border of S, we get by Lemma 2.1 that the part of S to the left and below of c
must form a rectangle, bounded from below by the lower border segment r2 and
from the right by the lower border segment u2. These two segments of the lower
border, together with the corresponding part of the upper border of S bound a
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SE Ferrers diagram G, which can again be separated from the rest of S by a
horizontal line h.

Finally, let S ′ be the part of S above the line h. Then S ′ is a skew diagram
which definitely has fewer turns on its upper border than S, so the induction
applies and we get that S ′ can be written as

S ′ = F1|vG1|hF2|v · · · |hFn|vGn,

where F1, . . . , Fn are nonempty NW Ferrers diagrams and G1, . . . , Gn are SE
Ferrers diagrams. Together with the constructed diagrams F and G we get that

S = F |vG|hF1|vG1|hF2|v · · · |hFn|vGn,

and thus S is simple.

u1

r1

v

r2

u2

h

c

F

G

Figure 2.3

2.3 The bijection on Ferrers diagrams
Krattenthaler [2] proved Theorem 2.2 for the special case of Ferrers diagrams
using the growth diagram construction developed by Britz and Fomin [5]. We
briefly introduce growth diagrams and reformulate the results of this approach in
our setting. For convenience, we will describe the construction for NW Ferrers
diagrams only, however, the modification for SE diagrams is obvious and we shall
use it without stating it properly.

Let F be a Ferrers diagram filled with a sparse filling. We will inductively
label every corner of every cell of F by a partition, obtaining a growth diagram.
We start by labeling the corners on the left and upper borders by the empty
partition ∅. If a cell already has all corners except the lower-right corner labeled
by partitions λ, µ, and ν as in Figure 2.4, we construct the remaining partition
ρ by the following forward local rules:
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ν

λ µ

ρ

Figure 2.4: A cell of a growth diagram

×

×

×

∅

∅

∅

∅

∅

1

1

1

∅

∅

2

2

1

∅

∅

21

11

1

∅

11

1

∅

Figure 2.5: An example of a growth diagram

(F1) If the cell does not contain a 1 and λ = µ = ν, then ρ = λ.

(F2) If the cell does not contain a 1 and µ ̸= ν, then ρ = µ ∪ ν.

(F3) If the cell does not contain a 1, λ ⊊ µ = ν and λ and µ differ in their i-th
part, then we obtain ρ by increasing the i + 1-th part of µ by 1.

(F4) If the cell contains a 1, then necessarily λ = ν = µ and we obtain ρ by
increasing the first part of λ by 1.

Note that the equality of partitions in (F4) is implied by the fact that there is
no 1 in the row of cells to the left or in the column of cells above the considered
cell.

Let w = w1w2 · · · wk be an R-U sequence. An oscillating tableau of type w and
shape ∅/∅ is a sequence of partitions (λ0, λ1, . . . , λk) with the following properties:

• λ0 = λk = ∅

• For 1 ≤ i ≤ k, the sizes of λi−1 and λi differ by at most 1.

• If wi = R, then λi−1 ⊆ λi.

• If wi = U , then λi−1 ⊇ λi.

Remarkably, both the filling and the entire growth diagram of a Ferrers dia-
gram of type w can be reconstructed from the sequence of partitions labeling the
corners of its south-east border, which clearly is an oscillating tableau of type w
and shape ∅/∅. For more details we refer the reader to [2, Section 2]. The main
consequence of this construction is the following theorem.
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Theorem 2.4 ([2, Theorem 1]). Let F be a NW Ferrers diagram of type w =
w1w2 . . . wk. The mapping, which to each sparse filling of F assigns the oscillating
tableau (∅ = λ0, λ1, . . . , λk = ∅) constructed as shown above, is a bijection between
the set of all sparse fillings of F and the set of all oscillating tableaux of type w
and shape ∅/∅. In addition, this mapping has the following properties:

• λi−1 ⊊ λi if and only if there is a 1 in the column above the corners labeled
by λi−1 and λi.

• λi ⊊ λi−1 if and only if there is a 1 in the row to the left of the corners
labeled by λi−1 and λi.

For example, the filling of the Ferrers diagram in Figure 2.5 is mapped to the
oscillating tableau (∅, 1, 2, 2, 21, 11, 11, 1, ∅).

The very useful fact about growth diagrams is that the lengths of both longest
NE-chains and SE-chains in a Ferrers diagram can be deduced from partitions
labeling the corners.

Theorem 2.5 ([2, Theorem 2]). Let F be a Ferrers diagram with a sparse filling
and a growth diagram constructed accordingly and let λ = (λ1, . . . , λk) be a par-
tition labeling the southwest corner of a cell c. Let R be the maximal rectangle
contained in F with the cell c in its southwest corner. Then the longest NE-chain
contained in R has length k and the longest SE-chain contained in R has length
λ1.

Using growth diagrams and the theorems above it is now easy to prove The-
orem 2.2 for Ferrers diagrams.

Theorem 2.6 ([2, Theorem 3]). Let F be a Ferrers diagram and l ≥ 1 an integer.
Let r and c be sequences of 0’s and 1’s of length w(F ) and h(F ) respectively. Then
there is a bijection between the sets FNE(F, l, r, c) and FSE(F, l, r, c).

Proof. For given sequences r and c let F ′ be the diagram obtained from F by
deleting the rows with a 0 entry in r and columns with a 0 entry in c. Since the
deleted rows and columns are always empty in the considered fillings, it is enough
to construct a bijection between the sets FNE(F ′, l, 1, 1) and FSE(F ′, l, 1, 1)
where 1 is a sequence of only 1’s and this bijection is trivially extended to the
sets in question.

Choose a filling of F ′ from FNE(F ′, l, 1, 1). The Theorem 2.4 assigns to this
filling an oscillating tableau (∅ = λ0, λ1, . . . , λk = ∅) and by Theorem 2.5 every
partition λi has at most l parts with equality occuring at least once. Now consider
the oscillating tableau (∅ = (λ0)T , (λ1)T , . . . , (λk)T = ∅) obtained by transposing
every partition of the original tableau. We use the Theorem 2.4 again to assign
a sparse filling of F ′ to the transposed tableau. Since the transposition does not
change the size of a partition, it is true that (λi−1)T and (λi)T differ by 1 in size
for each 1 ≤ i ≤ k and therefore the obtained filling of F ′ contains a 1 in each
row and each column. In addition, each (λi)T satisfies (λi)T

1 ≤ l with equality
occuring at least once and so by Theorem 2.5 the length of the longest SE-chain
in F ′ is equal to l. Therefore, the obtained filling is in FSE(F ′, l, 1, 1).
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2.4 A bijection on moon polyominoes
In his work, Rubey [3] proves more general bijective results about fillings of
moon polyominoes. In particular, he shows that permuting the columns of a
moon polyomino in any way such that it remains a moon polyomino does not
change the number of 0-1 fillings having a fixed length of the longest NE-chain
and prescribed number of 1’s in each row. Here we formulate a part of his results
which will be useful in our efforts.

Given a finite sequence s = (s1, s2, . . . , sn) and a permutation σ of length
n, we denote by σs the sequence (sσ(1), sσ(2), . . . , sσ(n)). In addition, given a
moon polyomino M and a permutation π of length w(M), we denote by σM the
polyomino created by permuting the columns of M according to π. We will also
need a stronger version of Definition 1.1.

Definition 2.7 ([3, Definition 5.2]). Let M be a moon polyomino, r, c se-
quences of 0’s and 1’s of lengths h(M) and w(M) respectively and Λ a mapping
which assigns to every maximal rectangle R in M a positive integer Λ(R). Then
FNE(M, Λ, r, c) is the set of all sparse fillings of P such that

• there is a 1 in the i-th row of P if and only if ri = 1,

• there is a 1 in the i-th column of P if and only if ci = 1,

• for every maximal rectangle R the length of the longest NE-chain in the
filling of R is equal to Λ(R).

Note that in a moon polyomino, every maximal rectangle is uniquely deter-
mined by its height and width. Indeed, consider two maximal rectangles of the
same height in a moon polyomino M . Since the columns of the two rectangles
are comparable, they must in fact span the same rows, and since M is convex,
they must be contained in each other and thus be identical.

Theorem 2.8 ([3, Theorem 5.3]). Let M be a moon polyomino and R be a
maximal rectangle in M such that the column of M containing the leftmost column
C of R has the same height as C. Let σ be the permutation of columns of M
which moves the column C to the right end of R and shifts the other columns
intersecting R one spot to the left. Then the sets of maximal rectangles of M and
σM coincide and for any Λ, r and c there is a bijective map which maps every
filling in FNE(M, Λ, r, c) to a filling in FNE(σM, Λ, r, σc).

Of course, since the mapping described by the theorem is bijective, the inverse
mapping is also a bijection and therefore we may transform moon polyominoes
by moving the rightmost column of a maximal rectangle instead of the leftmost.
Furthermore, due to symmetry we can also use this result for moving rows instead
of columns.

We follow up by using the theorem above to prove a bijection between sparse
fillings of Ferrers diagrams which satisfy two different sets of additional con-
straints along with having the length of the longest NE-chain equal to l ≥ 1.
Consider a NW Ferrers diagram F with at least n longest columns and at least
m longest rows and let A be the rectangle consisting of the n leftmost columns of F
and let B be the rectangle consisting of top m rows of F . Let a = (a1, a2, . . . , an)
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C

(a) M

C

(b) σM

Figure 2.6: The operation described by Theorem 2.8

and b = (b1, b2, . . . , bm) be two weakly increasing sequences of nonnegative inte-
gers satisfying an ≤ l and bm ≤ l. Given any sequences r and c as in Definition
1.1, we define the following sets of sparse fillings of F :

• FNE
in (F, l, r, c, a, b) is the set of all fillings from FNE(M, l, r, c) satisfying

for every 1 ≤ i ≤ n that the length of the longest NE-chain inside the
rectangle consisting of i rightmost columns of A is equal to ai and for every
1 ≤ j ≤ m and the length of the longest NE-chain inside the rectangle
consisting of j bottom rows of B is equal to bj,

• FNE
out (F, l, r, c, a, b) is the set of all fillings from FNE(M, l, r, c) satisfying for

every 1 ≤ i ≤ n that the length of the longest NE-chain inside the rectangle
consisting of i leftmost columns of A is equal to ai and for every 1 ≤ j ≤ m
the length of the longest NE-chain inside the rectangle consisting of j top
rows of B is equal to bj.

Similarly we define the sets FSE
in (F, l, r, c, a, b) and FSE

out (F, l, r, c, a, b) with
the constraints imposed the same way as above but on lengths of SE-chains
instead of NE-chains. We now show that the two described sets of fillings are
actually of the same size.

Lemma 2.9. Let F be a NW Ferrers diagram with the sequences a and b of
constraints on fillings as described above. Then there is a bijection between the
sets FNE

in (F, l, r, c, a, b) and FNE
out (F, l, r, c, a, b).

Proof. We start by modifying the diagram F by adding some new rows and
columns, adjusting r and c appropriately by assigning 0’s to the new rows and
columns, which will therefore always remain empty. The modification is as fol-
lows:

• for i iterating from n to 1, attach a new row of length i below the i rightmost
columns of A,

• for j iterating from m to 1, attach a new column of length j to the right of
the bottom j rows of B.
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F B

A

Figure 2.7: The moon polyomino M1 after modifying F

As a result of this modification we obtain a moon polyomino M1 (see Figure 2.7)
and sequences r1 and c1.

We continue by defining a family L of mappings assigning a positive integer
to every maximal rectangle of M1. A mapping Λ belongs to L if and only if the
following conditions are met:

(a) For 1 ≤ i ≤ n, let Ai be the unique maximal rectangle of width i in M1.
Then Λ(Ai) = ai.

(b) For 1 ≤ j ≤ m, let Bj be the unique maximal rectangle of height j in M1.
Then Λ(Bj) = bj,

(c) for any other maximal rectangle R it is true that Λ(R) ≤ l

(d) There is at least one maximal rectangle R such that Λ(R) = l.

Let F ′ be the set of fillings of M1 obtained as a union of F(M1, Λ, r1, c1) for
every Λ ∈ L. Then F ′ is the set of fillings of M1 in which the longest NE-chain
has length l and in addition for every 1 ≤ i ≤ n the longest NE-chain in the
rectangle Ai has length ai and for every 1 ≤ j ≤ m the longest NE-chain in
the rectangle Bj has length bj. But since the newly attached rows and columns
are always empty, the chains are always contained in the original diagram F and
therefore the set F ′ is in 1-to-1 correspondence with the set FNEin(F, l, r, c, a, b.

Next we perform the transformation described in Theorem 2.8 several times
to obtain a Ferrers diagram F1:

15



• for every i iterating from n to 1, move the leftmost column of Ai to the
rightmost end of the rectangle,

• for every j iterating from m to 1, move the top row of Bj to the bottom of
the rectangle.

This creates the Ferrers diagram F1 as illustrated by the Figure 2.8. Let σ be the
permutation of columns and π be the permutation of rows which created F1 from
M1. By Theorem 2.8 we get that for every Λ ∈ L there is a bijection between
FNE(M1, Λ, r1, c1) and FNE(F1, Λ, πr1, σc1). Let F ′′ be the set of fillings of F1
obtained as a union of FNE(F1, Λ, πr1, σc1) for every Λ ∈ L. Overall we obtain
a bijection between the sets F ′ and F ′′. Finally, notice that, similarly as the
fillings of F ′ correspond to the fillings of FNE

in (F, l, r, c, a, b), also the fillings of
F ′′ correspond to the fillings of FNE

out (F, l, r, c, a, b), which completes the proof.

F B

A

Figure 2.8: The Ferrers diagram F1 after applying Theorem 2.8

2.5 Proof of Theorem 2.2
We start by using the growth diagram construction of Section 2.3 to prove an
additional useful bijection between sets of constrained fillings described in Section
2.4.

16



Lemma 2.10. Let F be a NW Ferrers diagram with at least n longest columns
and at least m longest rows, l ≥ 1 an integer, r and c sequences prescribing
nonempty rows and columns of F , and a = (a1, . . . , an) and b = (b1, . . . , bm)
weakly increasing sequences of integers less than equal to l. Then there is a bijec-
tion between the sets FNE

out (F, l, r, c, a, b) and FSE
out (F, l, r, c, a, b).

Proof. Consider a filling of F from FNE
out (F, l, r, c, a, b) and build its growth dia-

gram, obtaining the corresponding oscillating tableau (λ0, λ1, . . . , λk). The con-
straints a together with Theorem 2.5 imply that for 1 ≤ i ≤ n the partition λi

has exactlyai parts. Similarly the constraints b imply that for 1 ≤ j ≤ m the
partition λk−j has exactly bj parts. Applying the transformation described in
Theorem 2.6 to the filling of F , we obtain a filling of FSE(F, l, r, c). In addition,
since the oscillating tableau corresponding to this new filling is obtained by trans-
posing the oscillating tableau for the original filling, we get for 1 ≤ i ≤ n that
(λi)T

1 = ai and so the longest SE-chain in the rectangle consisting of i leftmost
columns of F has length ai by Theorem 2.5. Similarly we get for 1 ≤ j ≤ m
that (λk−j)T

1 = bj and so the longest SE-chain in the rectangle consisting of top
j rows of F has length bj by Theorem 2.5. Therefore the obtained filling belongs
to FSE

out (F, l, r, c, a, b).

Finally we have all we need to prove the main result.

Proof of Theorem 2.2. Lemma 2.3 implies that it is enough to prove the theorem
for simple skew diagrams. Let

S = F1|vG1|hF2|v · · · |hFn|vGn

be the simple representation of S. The main idea of the proof is now to apply
Lemma 2.9 to individual Ferrers diagrams in the simple representation of S using
constraints constructed based on neighbouring diagrams.

Choose any filling from FNE(S, l, r, c). Consider the diagram Fi and let rFi

and cFi be the sequences describing which rows and columns of Fi currently
contain a 1. The current filling of Fi of course belongs to FNE(Fi, l, rFi , cFi). Let
n be the number of columns of Fi which are connected to a column of Gi−1 (if
it exists, otherwise set n to zero). Let m be the number of rows of Fi which are
connected to a row of Gi. We define the following rectangles:

• AGi−1 is the rectangle consisting of the n rightmost columns of Gi−1,

• AFi is the rectangle consisting of the n leftmost columns of Fi,

• BFi is the rectangle consisting of the top m rows of Fi,

• BGi is the rectangle consisting of the bottom m rows of Gi.

We define constraints a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bm) for fillings of
Fi as follows:

• if x is the length of the longest NE-chain contained in j rightmost columns
of AFi , set aj to x,

• if y is the length of the longest NE-chain contained in the bottom j rows
of BFi , set bj to y.
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From the way we defined a and b it is now clear that the filling of Fi be-
longs to FNE

in (Fi, l, rFi , cFi , a, b). We now use the bijective map of Lemma 2.9 to
transform the filling of Fi into a filling from FNE

out (Fi, l, rFi , cFi , a, b) and to this
filling we apply the bijective transformation of Lemma 2.10, obtaining a filling
from FSE

out (Fi, l, rFi , cFi , a, b).
This way we transform the filling of every Fi and every Gi in the simple

representation of S. The individual Ferrers diagrams now avoid SE-chains longer
than l, so it remains to prove that the fillings of rectangles connecting any two
neighbouring diagrams avoid them as well. Consider the diagrams Fi and Gi. Any
SE-chain longer than l in Fi|vGi would have to be contained in the rectangle R
consisting of the rectangles BFi and BGi . Let aFi and bFi be the constraints for
the filling of Fi as constructed above and let aGi and bGi be the same constraints
for the filling of Gi. Suppose for the sake of a contradiction that there is a SE-
chain of length l + 1 inside R and that k 1’s of the chain are contained in the
top j rows of BFi and the remaining l + 1 − k 1’s of the chain are contained
in the bottom m − j rows of BGi , thus k ≤ bFi

j and l + 1 − k ≤ bGi
m−j, giving

bFi
j + bGi

m−j ≥ l + 1. On the other hand bFi
j is the length of the longest NE-chain

contained in the bottom j rows of BFi in the original filling and bGi
m−j is the length

of the longest NE-chain contained in the top m − j rows of BGi in the original
filling and therefore bFi

j + bGi
m−j ≤ l and a contradiction is obtained. Therefore

the resulting filling of S belongs to FSE(S, l, r, c) and since it was obtained using
bijective transformations, the proof is finished.
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3. General 0-1-fillings avoiding a
chain of length 2
Given any skew diagram S, it is known that there are at least as many sparse
0-1-fillings of S avoiding an NE-chain of length 2 as there are sparse 0-1-fillings
of S avoiding an SE-chain of length 2. In this chapter, we will extend this result
to general 0-1-fillings.

Recall the skew diagram Sforb defined in the previous chapter. We denote by
Sforb(132) the diagram Sforb associated with a sparse 0-1-filling of a 132 pattern,
as shown in the Figure 3.1. We then say that a filling of a skew diagram S
contains Sforb(132) if we can obtain Sforb(132) by removing some columns and
rows of S and replacing some entries 1 by entries 0. Otherwise the filling of S
avoids Sforb(132).

×

×

×

Figure 3.1: Sforb(132)

The following theorem is a simple consequence of a known result due to Jeĺınek
[4, Lemmas 29 and 30].

Theorem 3.1. Let S be a skew diagram. Then the number of sparse 0-1-fillings
of S avoiding an NE-chain of length 2 and Sforb(132) is equal to the number of
sparse 0-1-fillings of S avoiding an SE-chain of length 2.

The goal of this chapter is to prove the following stronger claim.

Theorem 3.2. Let S be a skew diagram. Then there is a bijection between general
0-1-fillings of S avoiding a NE-chain of length 2 and Sforb(132) and general 0-
1-fillings of S avoiding a SE-chain of length 2.

Given a skew diagram S with a total of N cells, we assign labels c1, c2, . . . , cN

to every cell starting from the lower left corner, iterating over rows from the
bottom to the top of S and labeling cells in a row from left to right, as indicated
in Figure 3.2.

We associate with every cell c a three-part piecewise linear curve l(c) consisting
of the ray going from the upper-right corner of c to the left, the right border of
c and the ray going from the lower-right corner of c to the right. The curve l(ci)
of a cell ci of a skew diagram S clearly divides it into two parts, as illustrated in
Figure 3.2.

We continue by defining a special set of fillings for every cell of a skew diagram.
Let N be the number of cells of a skew diagram S and let i be an integer between
1 and N . We define the set Gi(S) as the set of all 0-1-fillings of S which satisfy
the following conditions:
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c1 c2

c3 c4 c5 c6

c7 c8 c9

c10 c11 c12

Figure 3.2: A skew diagram with cell labels and the curve l(c8)

(a) there is no occurence of a SE-chain of length 2 with both 1’s above l(ci),

(b) there is no occurence of a SE-chain of length 2 with the upper 1 above l(ci)
and the lower 1 below l(ci),

(c) there is no occurence of a SE-chain of length 2 with the upper 1 in the same
row as ci and the lower 1 strictly right of ci,

(d) there is no occurence of a NE-chain of length 2 entirely below l(ci),

(e) there is no occurence of Sforb(132) entirely below l(ci).

×
×

(a)

×

×

(b)

×
×

(c)

×
×

(d)

×

×
×

(e)

Figure 3.3: Forbidden patterns of G8(S)

Note that G1(S) is the set of all 0-1-fillings of S avoiding a SE-chain of length
2 and GN(S) is the set of all 0-1-fillings of S avoiding a NE-chain of length 2 and
Sforb(132). Therefore, to prove Theorem 3.2 it is enough to construct a chain
of bijections between consecutive sets Gi(S) and Gi+1(S), which is done by the
following lemma.

Lemma 3.3. Let S be a skew diagram with N cells and let 1 ≤ i < N . Then
there is a bijection between fillings in Gi(S) and Gi+1(S).

Proof. First, consider the case where the cells ci and ci+1 are not in the same
row, i.e. ci+1 is the first cell of a new row and ci is the last cell of the previous
row. In this case we will show that the sets Gi(S) and Gi+1(S) are identical.
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Choose any filling of S from Gi(S). Suppose that the selected filling contains
an occurence of a pattern forbidden in Gi+1(S). Since l(ci) and l(ci+1) create
the same division of S into two parts except for the cell ci+1(S), the occurence
of a forbidden pattern must use the cell ci+1 filled with a 1, otherwise it would
also be forbidden in Gi(S). Since ci+1 starts a row, it cannot be used to break
the conditions (a), (b) or (d) of Gi+1(S). Also since the rest of the row starting
with ci+1 is above l(ci+1), the condition (e) cannot be broken either. Therefore
the supposed occurence of a forbidden pattern must break the condition (c) of
Gi+1(S). However, such an occurence would break the condition (b) of Gi(S),
which is a contradiction, and so the chosen filling is also in Gi+1(S).

Now choose any filling of S from Gi+1(S) and again suppose that it breaks at
least one condition of Gi(S). Using similar arguments as before we can show that
this must be the condition (b) and a 1 in the cell ci+1 is used as the upper 1 of
the SE-chain. Then this SE-chain breaks the condition (c) of Gi+1(S) and the
contradiction is reached again, showing that indeed Gi = Gi+1.

The second and more interesting case is when the cells ci and ci+1 are adjacent
cells in a row. We will divide each of the sets GiS and Gi+1(S) into two disjoint
parts and construct bijections between corresponding pairs. Let R be the row of
all cells strictly left of ci+1, let C be the column of all cells strictly below ci+1 and
let A be the rectangle consisting of all cells that are strictly below R and left of C.
Note that A, R, C and ci+1 form the rectangle M which is the maximal rectangle
contained in S with ci+1 as its northeast corner. Therefore, in any occurence of a
NE-chain with the upper 1 in the cell ci+1, the lower 1 is inside the rectangle A.

R

A C

ci+1

Figure 3.4: The maximal rectangle M with ci+1 in the northeast corner

We divide Gi(S) into two disjoint sets as follows:

• G1
i (S) contains the fillings in which there is either no 1 in ci+1 or no 1 inside

A,

• G2
i (S) contains the fillings with a 1 in ci+1 and at least one 1 inside A.
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We divide Gi+1(S) into five disjoint sets as follows:

• G1
i+1(S) contains the fillings in which there is either no 1 inside R or no 1

inside C,

• G2
i+1(S) contains the fillings in which both R and C are nonempty.

First of all we show that, similarly as in the first part of the proof, the sets
G1

i (S) and G1
i+1(S) in fact contain the same fillings, so we may use the identity map

between them. Choose a filling from G1
i (S). Clearly, if ci and ci+1 are adjacent

cells, a filling that satisfies the conditions of Gi(S) also satisfies the conditions
(a), (b) and (c) of Gi+1(S). The condition (d) can only be broken by a NE-chain
of length 2 with the upper 1 in the cell ci+1, but there is no 1 in that cell in
the fillings of G1

i (S). Finally, if there is an occurence of Sforb(132) in the filling
that breaks the condition (e) of Gi+1(S) but not of Gi(S), it must be the case
that the upper right corner of the occurence is the cell ci+1 and therefore there
is a 1 in R and a 1 in C and so the condition (c) of Gi(S) is broken. Therefore
the selected filling is in G1

i+1. By reverting the arguments we easily get also the
opposite inclusion and so G1

i (S) = G1
i+1(S).

For the fillings of G2
i (S) we perform the following transformation f into a

filling of G2
i+1(S):

1. Label all nonempty columns of A from left to right as C1, C2, . . . Ck.

2. If C is nonempty, then R is empty and we move the 1 from the cell ci+1 to
the cell of R above the column C1 and finish.

3. If C is empty, then replace the filling of C by the filling of Ck and for
1 ≤ j < k replace the filling of Cj+1 by the filling of Cj. Replace the filling
of C1 by all zeros.

4. If there is a 1 in the cell of R above the column C1, finish if k = 1 or move
the 1 from ci+1 to the cell of R above the column C2 if k > 1.

5. Finally if there is no 1 in the cell of R above the column C1, move the 1
from ci+1 to this cell.

We continue by showing that the result of the transformation f satisfies all
five conditions of Gi+1(S).

(a) Since we only modified entries below l(ci+1), the condition (a) is satisfied.

(b) The condition (b) could only be broken by an SE-chain with its lower 1
inside A or C, but the upper 1 of this chain would have formed an SE-chain
with the 1 originally in the cell ci+1, breaking the condition (a) of Gi(S).
Therefore, the condition (b) is satisfied.

(c) The condition (c) could only be broken by an SE-chain with its upper 1 in
R or ci+1, but the lower 1 of this chain together with the 1 originally in ci+1
would break the condition (b) of Gi(S).

(d) The condition (d) could be broken in one of the following ways:
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• There is a NE-chain with the upper 1 in R or ci+1 and lower 1 in A.
After the performed transformation all 1’s in R are stricly left of or right
above the column C1, and a 1 remains in ci+1 only if A ends up empty,
so this case cannot occur.

• There is a NE-chain with the upper 1 in A and lower 1 outside A.
In this case suppose that there is a NE-chain with the upper 1 being
the lowest 1 in the column Cj. The column Cj was nonempty also
before the transformation and it was either the same or it contained the
current filling of Cj+1, so the lowest 1 in Cj was not higher than after the
transformation, therefore there was a NE-chain to begin with, which is
a contradiction.

• There is a NE-chain with the upper 1 in C. If the filling of C has
not changed, the NE-chain was there before the transformation also.
Otherwise C now contains the filling of Ck. If the lower 1 of the NE-
chain is strictly left of the column Ck, it forms a NE-chain with a 1 in
Ck in the original filling. Otherwise it is below the rectangle A and so
it forms a NE-chain with the 1 in the cell ci+1 in the original filling.

(e) If the condition (e) is broken, the occurence of Sforb(132) must have its upper
SE-chain contained in M and the lower 1 is outside of M strictly southwest
of it. Let u, v be the two cells inside M and let w be the cell outside M
as illustrated in Figure 3.5. Let B be the maximal rectangle contained in
S with the cell w as its southwest corner. S Since there is a 1 in the cell
w, all entries in the intersection of M and B are zero both before and after
the transformation of the filling. The cell u is strictly above the rectangle
B and the cell v is strictly right of the rectangle B. Now we observe an
important property of the described transformation: any row or column of
M was nonempty before the transformation if and only if it is nonempty
after the transformation. This is obvious for rows because we shift nonzero
entries only in the horizontal direction. If the column C1 is empty after the
transformation, then the cell of R right above C1 always contains a 1. If
the column C is nonempty after the transformation, either it was nonempty
before the transformation or there was a 1 in ci+1 before the transformation.
For other columns the discussion is straightforward. We can use this property
to deduce that there was a 1 in the same column of M as u and a 1 in the
same row of M as v before the transformation. Since these have to be outside
the rectangle B, they form an occurence of Sforb(132) together with the cell w
in the original filling and a contradiction is reached. Therefore the condition
(e) of Gi+1(S) could not have been broken by the transformation either.
We have shown that the transformation f indeed transforms a filling of G2

i (S)
into a filling of G2

i+1(S). Next we describe the transformation g transforms a
filling of G2

i+1(S) into a filling of G2
i (S). Note that g simply reverts the steps of

the transformation f .

1. If there is exactly one entry 1 in R and the column of A below this entry is
nonempty, move this entry to ci+1 and finish.

2. Otherwise there are either at least two 1’s in R or the column below the
single entry 1 is empty. In both cases we can choose the rightmost empty
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B

∅

×u

×v

×w

ci+1

M

Figure 3.5: An occurence of Sforb(132) in the cells u, v and w

column of A such that there is a 1 in R above it. We call this column C1.
Label all nonempty columns of A from left to right as C2, C3, . . . , Ck.

3. For each 1 ≤ j < k copy the filling of Cj+1 to Cj, copy the filling of C to
Ck and replace the filling of C by all zeros.

4. If k = 1 finish. If k > 2 and there is a 1 in R above C2, this is the rightmost
1 in R, move it to ci+1 and finish.

5. Finally if the entry 1 in R above C1 is the rightmost 1 in R, move this 1 to
ci+1.

Next we choose any filling from Gi+1(S) \ G1
i+1(S), transform it using the

described transformation g and show that it satisfies all five conditions for the
fillings of Gi(S).

(a) The condition (a) could only be broken by a SE-chain with the lower 1 in
the cell ci+1, but then there is a SE-chain present in the original filling with
the same upper 1 and the lower 1 in the column C violating the condition
(b) of Gi+1(S), which is not possible.

(b) All 1’s that were moved in the transformation were moved to the left except
the 1 in the cell ci+1 which is above l(ci). Therefore if the condition (b) is
broken after the transformation, it must be broken in the original filling as
well.

(c) The condition (c) could only be broken by a SE-chain with the upper 1 in
R and the lower 1 in C, since otherwise it would have been in the original
filling. But after the transformation, either R or C is empty.
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(d) Suppose that after the transformation there is a NE-chain below l(ci). Then
due to the properties of the transformation one of them is inside of M , and
the other is outside of M . Label the cell with the 1 inside M as v and the
cell outside of M as u. Again we will make use of the fact that emptiness and
nonemptiness of rows and columns of M is preserved by the transformation.
If the column of S in which lies u intersects M , then the cell in the column of
M in which lies v which was nonempty in the original filling creates a NE-
chain with u. Similarly if the row of S in which lies u intersects M , then the
cell in the row of M in which lies v which was nonempty in the original filling
creates a NE-chain with u. Therefore assume that neither the column or the
row in which lies u intersect M , thus u lies strictly southwest of M . Consider
the maximal rectangle B contained in S with u for its southwest corner.
Clearly the intersection of M and B was empty before the transformation
and it contains at least the 1 in the cell u now. Let z be the cell in the
same column of M as v which was nonempty before the transformation and
let w be the cell in the same row of M as v which was nonempty before the
transformation. Then both z and w must lie outside of B and therefore they
form an occurence of Sforb(132) together with u in the original filling.

B

∅

×z

×v ×w

×u

ci+1

M

Figure 3.6: An occurence of Sforb(132) in the cells u, w and z

(e) The condition (e) can be verified easily using the same approach as in the
discussion of the map f .

Overall we have shown that f maps G2
i (S) into G2

i+1(S) and that g maps
G2

i+1(S) into G2
i (S). In addition, since the transformations are carefully con-

structed so that one performs the exact opposite of the other, we get that fg = id
and gf = id, which implies that g = f−1 and f is the bijection we were looking
for.
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Proof of Theorem 3.2. Let N be the number of cells of S. From Lemma 3.3 we
immediately get that there is a bijection between the fillings of G1(S) and GN(S).
As discussed above, G1(S) is exactly the set of fillings avoiding a SE-chain of
length 2 and GN(S) is exactly the set of fillings avoiding Sforb(132) and a NE-
chain of length 2, which completes the proof.
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Conclusion
Skew diagrams lack some of the important properties of moon polyominoes (e.g.
comparability) which makes the fillings of skew diagrams behave in more com-
plicated ways and thus not as much progress has been made in the past years
regarding fillings of skew diagrams. The aim of the present thesis is to extend the
current knowledge of skew diagrams and perhaps find new approaches to proving
facts about them.

This thesis presents two original results which were the product of the research
conducted during author’s master studies. In the first half of the thesis, we deal
with sparse fillings of skew diagrams and attempt to prove results similar to what
is known about sparse fillings of Ferrers diagrams. Theorem 2.2 is a partial result
and an initial step towards proving a more general hypothesis, which could be
used to prove new enumerative results about singleton classes, similar to the work
of Backelin, West and Xin [1].

Hypothesis. Given any skew diagram S and an integer l ≥ 1, the number of
sparse fillings of S avoiding a NE-chain of length l is greater or equal to the
number of sparse fillings of S avoiding a SE-chain of length l.

We have shown that for many skew diagrams, the inequality holds, even with
equality. The author hopes that this work will be useful in the future attempts
to prove the general result.

In the second half of the thesis some progress was made considering general
0-1-fillings of skew diagrams instead of just sparse fillings. The proof of Theorem
3.2 is a direct generalisation of Theorem 3.1 and introduces an interesting iterative
proof method which might also find its use elsewhere in the field.
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