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Preface

The present habilitation thesis contributes to the theory of distribution function estimation

with the emphasis on copulas. The thesis summarises the achievements of the following five

papers:

[1] Omelka, M., Gijbels, I., and Veraverbeke, N. (2009). Improved kernel estimation of

copulas: weak convergence and goodness-of-fit testing. Annals of Statistics, Vol. 37,

3023–3058.

[2] Gijbels, I., Veraverbeke, N., and Omelka, M. (2011). Conditional copulas, associa-

tion measures and their applications, Computational Statistics and Data Analysis, 55,

1919–1932.

[3] Veraverbeke, N., Omelka, M., and Gijbels, I. (2011). Estimation of a conditional

copula and association measures, Scandinavian Journal of Statistics, Vol. 38, 766–

780.

[4] Gijbels, I., Omelka, M., and Veraverbeke, N. (2015). Estimation of a Copula when

a Covariate Affects only Marginal Distributions, Scandinavian Journal of Statistics,

Vol. 42, 1109–1126.

[5] Veraverbeke, N., Gijbels, I. and Omelka, M. (2014) Pre-adjusted nonparametric esti-

mation of a conditional distribution function. Journal of the Royal Statistical Society:

Series B, Vol. 76, 399–438.

These papers were written by Marek Omelka in collaboration with Irène Gijbels (KU Leu-

ven) and Noël Veraverbeke (Hasselt University).

Paper [1] concerns kernel estimation of copulas. In this paper it is proposed to use a

bandwidth shrinking factor in order to control the corner bias problem of the existing kernel

estimators of copulas. It is also shown that this corner bias problem can be circumvented

by a transformation approach. Details can be found in Chapter 2.

Paper [2] introduces nonparametric estimation of copulas and corresponding condi-

tional measures of association based on copulas. The theoretical properties of the suggested

estimators are investigated in paper [3]. The content of both papers is summarized in

Chapter 3.

Paper [4] proposes a nonparametric estimator of a copula under the pairwise simplifying

assumption and investigate its asymptotic properties. The derived theoretical results can

be found in Chapter 4.

Finally, in paper [5] the authors combine nonparametric estimation together with the

idea of a working model that does not have to hold exactly. They show that transforming

v
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the response observations so that they are ‘less’ dependent on the covariate usually results in

an estimator of a conditional distribution function with considerably better bias properties

than the standard nonparametric estimator. For details see Chapter 5.

The thesis contains the introduction to the problem and formulation of the main the-

oretical results proved in the papers. Some comments on further results and extensions

are also included. Please note, that the notation in the thesis is unified and therefore it

need not be the same as in the published versions of manuscripts which are attached to the

thesis.



Chapter 1
Introduction

Dependence modelling (or at least measuring) is one of the most common tasks when

analysing data. The tests of independence based on Pearson’s and/or Spearman’s corre-

lation coefficient can be found almost in all textbooks of statistics. But researchers are

often not satisfied by just rejecting the independence. They want to know how the depen-

dence can be described. Additionally, in some applications it is already well understood

that the variables are not independent (e.g. loss variables in insurance or daily maximum

temperatures at different locations) and the task is to find a suitable model for the joint

distribution.

1.1 Introducing a copula function

The copulas became very popular in the last twenty years in dependence modelling. The

reason is that using copulas in applications enable to separate the modelling of marginals

from modelling of dependence structure. The formal definition is as follows.

Consider a random vector Y = (Y1, . . . , Yd)
T with joint cumulative distribution func-

tion H and marginal distribution functions F1, . . . , Fd. According to Sklar’s theorem (see

e.g. Nelsen, 2006) there exists a d-variate function C such that

(1.1) H(y1, . . . , yd) = C
(
F1(y1), . . . , Fd(yd)

)
.

The function C is called a copula. If the marginal distribution functions F1, . . . , Fd are

continuous, then the function C is unique and

C(u1, . . . , ud) = H
(
F−1

1 (u1), . . . , F−1
d (ud)),

where, for j = 1, . . . , d, F−1
j (u) = inf

{
y : Fj(y) ≥ u

}
, with u ∈ [0, 1], is the quantile function

of Fj . The copula C ‘couples’ the joint distribution function H to its univariate marginals,

capturing as such the dependence structure between the components of Y = (Y1, . . . , Yd)
T.

The copula function can be also viewed as a distribution function of the transformed

variables (
U1, . . . , Ud

)T
=
(
F1(Y1), . . . , Fd(Yd)

)T
.

For simplicity of the presentation, we will restrict to the case d = 2 in what follows.

1



2 CHAPTER 1. INTRODUCTION

In practice we usually do not know the marginal distributions F1 and F2 and so the

variables
(
U1, U2

)T
are not observable. Thus one needs to work with the vectors of pseudo-

observations (see e.g. (Û1i, Û2i)
T in (2.1)) that are not independent. This makes the theo-

retical investigation of estimators of copulas more challenging.

Methods for estimation of copulas usually depend on how much we are willing to assume

about the joint distribution function H. In Chapter 2 we concentrate on nonparametric

estimation of copulas. Having a nonparametric estimator is important of its known when one

does not want to make any parametric assumption. But it is also important in parametric

inference for model checking.

In Chapter 2 we introduce an empirical copula function and then we focus on contribu-

tion of Omelka et al. (2009) to kernel estimation of copula functions. It is well known that

kernel (smooth) estimators of distribution functions can have better finite sample proper-

ties than the standard empirical estimators (see e.g. Reiss, 1981). The problem of a copula

function is that its support is a unit square and thus one needs to tackle near borders bias

problems of kernel estimators. Omelka et al. (2009) noticed that the standard approaches

to this problem, i.e. using local linear kernels (as suggested in Chen and Huang, 2007)

or mirror-reflection methods, do not work sufficiently well for many of the commonly used

families of copulas. That is why Omelka et al. (2009) introduced ‘a bandwidth shrinking

function’ b (see Chapters 2.2.1 and 2.2.2). Further they showed that alternatively the prob-

lem can be circumvented by using a transformation estimator (see Chapter 2.2.3). Finally,

they proved that all the suggested estimators have the same (first-order) asymptotic proper-

ties as an empirical copula function (see Theorem 2.2) but usually have better finite sample

properties (see simulations in Omelka et al., 2009).

1.2 A conditional copula function

Suppose now that instead of just a random vector (Y1, Y2)T (as in the previous section)

now we observe a three-dimensional vector (Y1, Y2, X)T and our main interest is in the

relationship of (Y1, Y2)T when X is taken into account.

To adjust for the influence of the variable X, the most straightforward way is to use a

partial correlation coefficient (either Pearson’s or a rank based one) of (Y1, Y2)T given X.

But outside the trivariate normal distribution it might be difficult to construct an appro-

priate partial correlation coefficient. Further, using partial correlation coefficient may not

answer all scientific questions. For instance it seems to be natural to compare the relation-

ship of (Y1, Y2)T for different values of X.

Let us illustrate this with an example. Suppose we have data on life expectancies at

birth (‘average lengths of lives’) at different countries and the interest is in the relationship

of the life expectancies of males (Y1) and females (Y2). Then a natural question is whether

this relationship is different in poor and rich countries. Let us take e.g. gross domestic

product (GDP) per capita (X) as a proxy for the economic welfare of a country. Then,

mathematically speaking, the question is about the relationship of (Y1, Y2)T conditionally

upon the given value of the covariate X = x and whether this relationship depends on the

value of x.
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Patton (2006) introduced a very general concept of studying the dependence structure

of Y1 and Y2 when X is taken into consideration. To describe this, denote the joint and

marginal distribution functions of (Y1, Y2)T, conditionally upon X = x, as

Hx(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2 |X = x),

(1.2) F1x(y1) = P(Y1 ≤ y1 |X = x), F2x(y2) = P(Y2 ≤ y2 |X = x).

If F1x and F2x are continuous, then using Sklar’s theorem (see e.g. Nelsen, 2006) analogously

as in (1.1) there exists a unique copula Cx such that

(1.3) Hx(y1, y2) = Cx
(
F1x(y1), F2x(y2)

)
.

From equation (1.3) we see that the conditional copula Cx fully describes the conditional

dependence structure of (Y1, Y2)T given X = x and it depends in a general way on the

covariate value x.

In Chapter 3 we present the contribution of Gijbels et al. (2011) and Veraverbeke et al.

(2011) to the nonparametric estimation of conditional copulas when X is a univariate co-

variate. The main theoretical result is the weak convergence of the empirical copula process

(see Theorems 3.1 and 3.2) which is proved in Veraverbeke et al. (2011). These results also

show that it is useful to adjust the response observations (Y1 and Y2) for the effect of the

covariate X on their margins. This is also illustrated in the simulation study in Gijbels

et al. (2011). To the best of our knowledge Gijbels et al. (2011) and Veraverbeke et al.

(2011) are the first two papers where nonparametric estimators of conditional copulas were

suggested and investigated.

The generalization when the covariate is a multivariate vector or even of a functional

type can be found in Gijbels et al. (2012).

1.3 The conditional copula does not depend on the value of
the covariate

Suppose we are in the situation of the previous section. Sometimes, it seems reasonable

to assume that the covariate X affects only the marginal distributions of Y1 and Y2, but

it does not affect the conditional dependence structure so that the conditional copula Cx

does not depend on x. Denote this copula simply as C. Then the general model for the

conditional joint distribution function Hx given by (1.3) simplifies to

(1.4) Hx(y1, y2) = C
(
F1x(y1), F2x(y2)

)
.

This is also called the simplified pair-copula construction in the recent literature, see e.g.

Hobæk Haff et al. (2010), Acar et al. (2012) and Stöber et al. (2013).

To the best of our knowledge Gijbels et al. (2015b) were the first who considered nonpara-

metric estimation of the copula function C in this setting. Their contribution is presented

in Chapter 4. The main theoretical result is that if some information about the influence

of the covariate on margins is available then one can often get the same asymptotic distri-

bution of the estimator of C as when the covariate X is not present. See Theorems 4.4 a

and 4.6. These generalise the results for empirical copulas.
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1.4 Conditional distribution function

When estimating a conditional copula one needs to estimate conditional distribution func-

tions F1x and F2x introduced in (1.2). If there is no further information about the effect

of the covariate on the marginal conditional distributions then a general nonparametric

estimator is needed. Simulations reveal that a good nonparametric estimator can improve

the finite sample properties of conditional copulas.

To simplify the notation let Fx stand for the conditional distribution function of Y given

X = x. Veraverbeke et al. (2014) suggested pre-adjusting original observations (Y ) in order

to improve in particular bias properties of a nonparameric estimator of Fx. The crucial

point is that the model assumed for pre-adjusting does not have to hold ‘exactly’. This

contribution is presented in Chapter 5. Although the idea of pre-adjusting is not completely

novel, Veraverbeke et al. (2014) were the first to investigate pre-adjusting in detail in the

context of conditional distribution function estimation. Among others Veraverbeke et al.

(2014) showed that when pre-adjusting non-parametrically through location and scale, then

the asymptotic variance of the nonparametric estimator of Fx stays the same while the

asymptotic bias can be reduced substantially (see Theorem 5.1).



Chapter 2
Nonparametric copula estimation

In this chapter we introduce an empirical copula function. Then we describe the contribution

of Omelka et al. (2009) to nonparametric kernel estimation of copula functions and formulate

the main results proved in that paper.

For simplicity of the presentation we restrict to the case d = 2, and consider an indepen-

dent and identically distributed sample (Y11, Y21)T, . . . , (Y1n, Y2n)T of a bivariate random

vector (Y1, Y2)T with joint distribution function H and marginal distribution functions F1

and F2.

2.1 Empirical copula

Nonparametric estimation of copulas goes back to Deheuvels (1979) who proposed the

following empirical copula estimator

(2.1) Cn(u1, u2) =
1

n

n∑
i=1

I
{
Û1i ≤ u1, Û2i ≤ u2

}
, with Û1i = F1n(Y1i), Û2i = F2n(Y2i),

where F1n and F2n are the empirical cumulative distribution functions of the marginals, and

where I{A} denotes the indicator of a set A. This estimator is asymptotically equivalent

(up to a term O(n−1)) with the estimator based directly on Sklar’s Theorem given by

(2.2) Cn(u1, u2) = Hn

(
F−1

1n (u1), F−1
2n (u2)

)
,

with Hn the empirical joint distribution function. Weak convergence studies of the empirical

copula estimator can be found in Gänssler and Stute (1987), Fermanian et al. (2004),

Tsukahara (2005) and Segers (2012). The limiting distribution is a two-dimensional pinned

C-Brownian sheet on [0, 1]2 which is described in Theorem 2.1.

2.2 Nonparametric kernel estimators of a copula

It is well known that kernel estimators of distribution functions are not only visually ap-

pealing but they can have a lower mean squared error. That is why people become soon

5



6 CHAPTER 2. NONPARAMETRIC COPULA ESTIMATION

interested if kernel estimation can improve also the finite sample properties of copulas esti-

mators.

To the best of our knowledge, the first estimator of a smoothed version of the empir-

ical copula can be found in Fermanian et al. (2004). Their proposal is a straightforward

modification of (2.2). Let k(t1, t2) be a given bivariate kernel density function and bn is a

bandwidth sequence tending to zero with n. Then the kernel estimator of a copula function

is defined as

(2.3) Ĉ(SE)
n (u1, u2) = Ĥn

(
F̂−1

1n (u1), F̂−1
2n (u2)

)
,

where the quantities Ĥn, F̂1n and F̂2n are given by

Ĥn(y1, y2) =
1

n

n∑
i=1

Kn(y1 − Y1i, y2 − Y2i),

F̂1n(y1) = Ĥn(y1,+∞), F̂2n(y2) = Ĥn(+∞, y2),

,(2.4)

with

Kn(y1, y2) = K
( y1
bn
, y2bn
)
, K(y1, y2) =

∫ y1

−∞

∫ y2

−∞
k(t1, t2) dt1 dt2.

Fermanian et al. (2004) proved weak convergence of this estimator.

2.2.1 Local linear kernel estimator and its modification

A different approach to kernel estimation of copulas was introduced in Chen and Huang

(2007). Their starting point is formula (2.1). In the first stage they estimate marginals by

(2.5) F̂1n(y1) =
1

n

n∑
i=1

K
(y1−Y1i

bn1

)
, F̂2n(y2) =

1

n

n∑
i=1

K
(y2−Y2i

bn2

)
,

withK the integral of a symmetric bounded kernel function k supported on [−1, 1]. With the

help of F̂1n and F̂2n they construct pseudo-observations Û1i = F̂1n(Y1i) and Û2i = F̂2n(Y2i).

In the second stage
(
Û1i, Û2i

)
are used to estimate the copula function C. To prevent for

boundary bias, Chen and Huang (2007) suggested using a local linear version of the kernel k

given by

ku,h(y) =
k(y){a2(u, h)− a1(u, h) y}
a0(u, h)a2(u, h)− a2

1(u, h)
I{u−1

h < y < u
h},

where

al(u, h) =

∫ u
h

u−1
h

tlk(t) dt for l = 0, 1, 2.

Finally the Local Linear type estimator of the copula is given by

(2.6) Ĉ(LL)
n (u1, u2) =

1

n

n∑
i=1

Ku1,hn

(
u1−Û1i
hn

)
Ku2,hn

(
u2−Û2i
hn

)
,

where Ku,h(y) =
∫ y
−∞ ku,h(t) dt. Chen and Huang (2007) derived expressions for asymptotic

bias, variance and mean squared error for this estimator and showed that a proper choice of

the second stage smoothing constants h = hn may considerably decrease variance, as well
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as mean squared error of the copula estimate. Moreover their Monte Carlo experiments

showed that the estimator Ĉ
(LL)
n is quite insensitive to the choice of the constants b1n and

b2n used for smoothing the marginals in the first stage. Variance considerations provided by

the authors even showed that it is reasonable to take b1n and b2n as small as possible. Note

that strong undersmoothing in the first stage, recommended in Chen and Huang (2007),

results in using the pseudo-observations

(2.7)
(
Û1i, Û2i

)T
=
(2nF1n(Y1i)−1

2n , 2nF2n(Y2i)−1
2n

)T
,

which is asymptotically equivalent to the mostly-used pseudo-observations

(2.8)
(
Û1i, Û2i

)T
= n

n+1

(
F1n(Y1i), F2n(Y2i)

)T
.

The theoretical inconvenience of the estimator (2.6) is that for many common families

of copulas (e.g. Clayton, Gumbel, normal, Student) the bias of the estimator at some of the

corners of the unit square is only of order O(hn). As the optimal bandwidth for distribution

function estimation is of order O(n−1/3), this violates the n1/2-order weak convergence on

the whole [0, 1]2.

The problem is caused by unboundedness of second order partial derivatives of many

copula families. Although parametric models with unbounded densities are rather rare in

‘standard’ parametric models, copula families with unbounded densities are quite common.

As a benchmark we can take the normal bivariate density which is usually supposed to be

a well-behaved model. But the resulting normal copula density is unbounded.

To overcome this difficulty Omelka et al. (2009) proposed a method of shrinking the

bandwidth when coming close to the borders of the unit square. The proposed method is

based on the observation that when calculating the bias of the estimator (2.6) one has to

deal with terms of the form h2C(1,1)(u1, u2), h2C(1,2)(u1, u2) and h2C(2,2)(u1, u2), where

C(1,1)(u1, u2), C(1,2)(u1, u2) and C(2,2)(u1, u2) are the second order partial derivatives of C,

that is C(1,1)(u1, u2) = ∂2C(u1, u2)/∂u2
1 and similarly for C(1,2)(u1, u2), C(2,2)(u1, u2). A

closer inspection of the common copula families shows that

(2.9) C(i,j)(u1, u2) = O

(
1√

ui(1−ui)uj(1−uj)

)
, i, j ∈ {1, 2}.

This is shown Omelka et al. (2009, Appendix D) for Clayton, Gumbel, normal and Student

copulas. Thus in order to keep the bias bounded Omelka et al. (2009) suggested an improved

‘Shrinked’ version of (2.6) given by

(2.10) Ĉ(LLS)
n (u1, u2) =

1

n

n∑
i=1

Ku1,hn

(
u1−Û1i
b(u1)hn

)
Ku2,hn

(
u2−Û2i
b(u2)hn

)
,

with b(w) = min(
√
w,
√

1− w). A straightforward adaptation of the result of Chen and

Huang (2007) gives that for ‘the central part of the unit square’, i.e. for (u1/b(u1), u2/b(u2)) ∈
[hn, 1− hn]2 (and no smoothing of the marginals in the first stage)

bias
{
Ĉ(LLS)
n (u1, u2)

}
=

σ2
K
2 h2

n

{
b2(u1)C(1,1)(u1, u2) + b2(u2)C(2,2)(u1, u2)

}
+ o(h2

n),
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var
{
Ĉ(LLS)
n (u1, u2)

}
= 1

n var
{
I{U1 ≤ u1, U2 ≤ u2} − C(1)(u1, u2)I{U1 ≤ u1} − C(2)(u1, u2)I{U2 ≤ u2}

}
− hn aK

n

[
b(u1)C(1)(u1, u2)

(
1− C(1)(u1, u2)

)
+ b(u2)C(2)(u1, u2)

(
1− C(2)(u1, u2)

)]
+ o(hnn ),

with σ2
K =

∫ 1
−1 t

2k(t) dt, aK = 2
∫ 1
−1 t k(t)K(t) dt and b(·) as defined in (2.10). Taking

b(w) = 1 gives back the bias and variance expressions for Ĉ
(LL)
n in Chen and Huang (2007)

(in case of no smoothing at the first stage).

2.2.2 Mirror-reflection kernel estimator

Another version of a kernel estimator for the copula might be obtained by integration of

the estimator of the density of the copula introduced and studied in Gijbels and Miel-

niczuk (1990). This estimator deals with the boundary problem by the technique known

as mirror-reflection. If a multiplicative kernel k(y1, y2) = k(y1) k(y2) is used, then the

Mirror-Reflection estimate of the copula has a simple form

(2.11) Ĉ(MR)
n (u1, u2) =

1

n

n∑
i=1

9∑
`=1

[
K
(
u1−Û(`)

1i
hn

)
−K

(
−Û(`)

1i
hn

)] [
K
(
u2−Û(`)

2i
hn

)
−K

(
−Û(`)

2i
hn

)]
,

where {(Û (`)
1i , Û

(`)
2i ), i = 1, . . . , n, ` = 1, . . . , 9} = {(±Û1i,±Û2i), (±Û1i, 2 − Û2i), (2 −

Û1i,±Û2i), (2− Û1i, 2− Û2i), i = 1, . . . , n}.
The mirror-type estimator (2.11) faces the same ‘corner bias’ problem as the local linear

estimator (2.6). To prevent this problem Omelka et al. (2009) introduced ‘shrinking’ the

bandwidth similarly as in (2.10) and proposed

Ĉ(MRS)
n (u1, u2) =

1

n

n∑
i=1

9∑
`=1

[
K
(
u1−Û(`)

1i
b(u1)hn

)
−K

(
−Û(`)

1i
b(u1)hn

)] [
K
(
u2−Û(`)

2i
b(u2)hn

)
−K

(
−Û(`)

2i
b(u2)hn

)]
.

2.2.3 Transformation estimator

The unboundedness of the densities of many copula families brings us back to Sklar’s the-

orem in (1.1) and to the estimator (2.3) proposed in Fermanian et al. (2004).

To control the bias of this estimator in order to achieve weak convergence, we need the

boundedness of the second order partial derivatives of the original joint distribution H. As

the bivariate normal benchmark example shows, this condition may be considerably weaker

than the requirement of the bounded second order derivatives of the underlying copula C.

A possible methodological objection to the estimator Ĉ
(SE)
n , defined in (2.3), may be its

dependence on the marginal distributions. This is confirmed by Monte-Carlo simulations

which show that for a given copula the success of this estimator depends on the marginals

crucially.

As the copula function is invariant to increasing transformations of the margins, it is pos-

sible to transform the original data to Y ′1i = T1(Y1i) and Y ′2i = T2(Y2i), where T1 and T2 are
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increasing functions, and then use (Y ′1i, Y
′

2i) instead of the original observations (Y1i, Y2i) in

the estimator Ĉ
(SE)
n . The aim of the transformation is to simplify the kernel estimation of the

joint distribution. As the direct choice of functions T1, T2 is difficult, we propose the follow-

ing procedure. Let us first construct the uniform pseudo-observations Û
(E)
1i = n

n+1 F1n(Y1i)

and Û
(E)
2i = n

n+1 F2n(Y2i). Then for a given distribution function Φ put Ŝ1i = Φ−1(Û
(E)
1i ) and

Ŝ2i = Φ−1(Û
(E)
2i ). Finally use these transformed pseudo-observations (Ŝ1i, Ŝ2i) instead of

the original observations (Y1i, Y2i) in the estimator (2.4) of the joint distribution function.

As we know the marginals to be given by the function Φ, the suggested estimator has in

the case of multiplicative kernel the following simple formula

Ĉ(T)
n (u1, u2) =

1

n

n∑
i=1

K

(
Φ−1(u1)−Φ−1

(
Û

(E)
1i

)
hn

)
K

(
Φ−1(u2)−Φ−1

(
Û

(E)
2i

)
hn

)
.

The advantage of this estimator is that it is not affected by the marginal distributions.

Further bias calculations show that if we choose Φ, such that Φ′(x)2

Φ(x) is bounded, we take

care of the ‘corner bias problem’ which is present if we try to estimate the joint distribution

of pseudo-observations directly. The above condition is satisfied e.g. for Φ the normal

cumulative distribution function.

2.2.4 Main results

The main theoretical contribution of Omelka et al. (2009) is the weak convergence of the

kernel estimators Ĉ
(LL)
n , Ĉ

(LLS)
n , Ĉ

(MR)
n , Ĉ

(MRS)
n and Ĉ

(T)
n .

For notational convenience, denote F̂1n and F̂2n the estimates of the marginals which

are used to construct pseudo-observations, i.e. Û1i = F̂1n(Y1i) and Û2i = F̂2n(Y2i). For

the weak convergence results these functions need to be asymptotically equivalent to the

empirical cumulative distribution functions F1n, F2n, i.e.

(2.12) sup
x∈R

∣∣F̂1n(x)− F1n(x)
∣∣ = op

(
1√
n

)
, sup

y∈R

∣∣F̂2n(y)− F2n(y)
∣∣ = op

(
1√
n

)
,

which further implies the standard weak convergence of the processes
√
n
(
F̂jn−F

)
(j = 1, 2)

to particular Brownian bridges. For technical reasons we will also suppose that the functions

F̂1n and F̂2n are nondecreasing, which excludes higher order kernels (taking negative values)

for the estimation of the marginals.

It is easy to see that (2.12) is satisfied if we define pseudo-observations as as in (2.7) or

in a way given in (2.8).

If one decides for kernel smoothing of the marginals given in (2.5), then it is well known

(see e.g. Lemma 7 Fermanian et al., 2004) that assumption (2.12) is met if there exists

α > 0 and a sequence bn such that for j = 1, 2, uniformly in x,

Fj(x+ bn) = Fj(x) + bn fj(x) + o(b1+α
n ) with

√
n b1+α

n → 0.

Let C(LL)
n , C(LLS)

n , C(MR)
n , C(MRS)

n , C(T)
n be suitably normalized empirical copula processes

on [0, 1]2, i.e. for (u1, u2) ∈ [0, 1]2

C(·)
n (u1, u2) =

√
n
[
C(·)
n (u1, u2)− C(u1, u2)

]
.
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Theorem 2.1. Suppose that H has continuous marginal distribution functions and that

the underlying copula function C has bounded second order partial derivatives on [0, 1]2.

If hn = O(n−1/3) and (2.12) is satisfied, then the (kernel) copula processes C(LL)
n , C(MR)

n

converge weakly to the Gaussian process GC in `∞([0, 1]2) having representation

(2.13) GC(u1, u2) = BC(u1, u2)− C(1)(u1, u2)BC(u1, 1)− C(2)(u1, u2)BC(1, u2),

where C(1) and C(2) denote the first order partial derivatives of C, and BC is a two-

dimensional pinned C-Brownian sheet on [0, 1]2, i.e. it is a centered Gaussian process

with covariance function

E [BC(u1, u2)BC(u′1, u
′
2)] = C(u1 ∧ u′1, u2 ∧ u′2)− C(u1, u2)C(u′1, u

′
2).

While Theorem 2.1 requires boundedness of the second order partial derivatives of the

copula C, the weak convergence result of Fermanian et al. (2004) for the estimator C(SE)
n

given by (2.3) requires boundedness of the second order derivatives of the original joint dis-

tribution function H. This may or may not be more stringent depending on the marginals.

Unfortunately, Theorem 2.1 excludes many commonly-used families of copulas. In the next

theorem the assumption of boundedness of the second order partial derivatives of C is re-

quired only for each inner point of [0, 1]2. In Appendix D of Omelka et al. (2009) it is

verified that this assumption is met or commonly-used copulas such as Clayton, Gumbel,

normal and Student copulas. Further note this this also allows that the first order partial

derivatives do not have to be continuous on [0, 1]2. In Omelka et al. (2009) it is proved that

it sufficient to assume

(2.14) C(1), C(2) are continuous in [0, 1]2\
{

(0, 0), (0, 1), (1, 0), (1, 1)
}
.

Theorem 2.2. Suppose that H has continuous marginal distribution functions. Further

suppose that (2.14) holds and the second order partial derivatives are bounded in each point

of (0, 1)2 and satisfies (2.9). If hn = O(n−1/3) and (2.12) is satisfied, then the (kernel)

copula processes C(LLS)
n and C(MRS)

n converge weakly to the Gaussian process GC in `∞([0, 1]2)

given in Theorem 2.1.

Moreover, if the functions Φ′ and Φ′(x)2

Φ(x) are bounded then the above statement holds also

for the process C(T)
n .

Segers (2012) proved that for the weak convergence of empirical copula the assumption

(2.14) can be further weakened to

(2.15) C(j), is continuous in
{

(u1, u2) ∈ [0, 1]2 : 0 < uj < 1
}
, j = 1, 2.

By checking the proof of Omelka et al. (2009) one can conclude that (2.15) would be sufficient

also for Theorem 2.2. Note that assumption (2.15) is necessary so that the limiting process

GC given by (2.13) exists and has continuous trajectories. To overcome this difficulty the

empirical process has to be studied in a different space than the space of bounded functions

equipped with the uniform norm, see Bücher et al. (2014).



Chapter 3
Nonparametric conditional copula
estimation (general case)

In this chapter empirical estimators of a conditional copula function suggested in Gijbels

et al. (2011) are introduced. The main theoretical results proved in Veraverbeke et al.

(2011) are formulated. Finally, conditional measures of association based on conditional

copulas are shortly discussed.

3.1 Estimating the conditional copula

To estimate the conditional copula Cx it is convenient to invert Sklar’s theorem in (1.3)

which enables to express Cx as

(3.1) Cx(u1, u2) = Hx

(
F−1

1x (u1), F−1
2x (u2)

)
, (u1, u2) ∈ [0, 1]2,

where F−1
1x (u) = inf{y : F1x(y) ≥ u} is the conditional quantile function of Y1 given X = x

and F−1
2x is the conditional quantile function of Y2 given X = x.

Now suppose that we observe independent identically distributed three-dimensional vec-

tors (Y11, Y21, X1)T, . . . , (Y1n, Y2n, Xn)T. Based on the sample of observations the empirical

estimator for Hx(y1, y2) is given by:

Ĥx(y1, y2) =
n∑
i=1

wni(x, hn) I{Y1i ≤ y1, Y2i ≤ y2},

where {wni(x, hn)} is a sequence of weights that smooth over the covariate space (see Sec-

tion 3.2.2) and hn > 0 is a bandwidth tending to zero as the sample size increases. Here

I{A} denotes the indicator of an event A. Inspired by (3.1) Gijbels et al. (2011) suggested

the following straightforward estimator of the conditional copula function

Ĉx(u1, u2) = Ĥx

(
F̂−1

1x (u1), F̂−1
2x (u2)

)
=

n∑
i=1

wni(x, hn) I
{
Y1i ≤ F̂−1

1x (u1), Y2i ≤ F̂−1
2x (u2)

}
,(3.2)

where F̂1x and F̂2x are corresponding marginal distribution functions of Ĥx.

11
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Although the copula estimator Ĉx given by (3.2) seems very natural, since it mimics the

structure of the true copula Cx given in (3.1), a closer inspection of the estimator points

to some potential pitfalls of it. For instance suppose that Y1 and Y2 are conditionally inde-

pendent given X = z, but that their marginal conditional distributions are stochastically

increasing with z. Then, intuitively speaking, larger values of Y1 will occur together with

larger values of Y2 purely because of the same trend in the covariate z creating an artificial

dependence. This results in a bias of the estimator of the conditional copula given by (3.2).

Note that the possible bias described in the previous paragraph is due to the fact that

the covariate affects the marginal distributions of Y1 and Y2. Theoretically this bias could be

eliminated by removing the effect of the covariates on the marginals. Recall that the copula

function is invariant to increasing transformations. Thus if one knew F1z, F2z (for each z

from the support of X) it would be advisable to base the estimator Ĉx on the observations

{(U1i, U2i)
T, i = 1, . . . , n} where

(3.3) (U1i, U2i)
T =

(
F1Xi(Y1i), F2Xi(Y2i)

)T
,

whose marginal distributions are uniform (for each i = 1, . . . , n).

Unfortunately, we usually do not know the theoretical conditional marginal distribution

functions (F1z, F2z), but we can estimate them in the same way as we estimate F1x and

F2x, that is

F̂1z(y) =

n∑
j=1

wnj(z, g1n) I{Y1j ≤ y},

F̂2z(y) =

n∑
j=1

wnj(z, g2n) I{Y2j ≤ y},
(3.4)

where g1 = {g1n} ↘ 0 and g2 = {g2n} ↘ 0. Note that other estimators for the conditional

distributions functions F1z and F2z can be used. See Chapter 5.

This leads to the following procedure. First, transform the original observations to

reduce the effect of the covariate by

(3.5) (Ũ1i, Ũ2i)
T =

(
F̂1Xi(Y1i), F̂2Xi(Y2i)

)T
, i = 1, . . . , n.

Second, use the transformed observations (Ũ1i, Ũ2i)
T in a similar way as the original obser-

vations, and construct

(3.6) C̃x(u1, u2) = G̃x

(
G̃−1

1x (u1), G̃−1
2x (u2)

)
,

where

G̃x(u1, u2) =

n∑
i=1

wni(x, hn) I
{
Ũ1i ≤ u1, Ũ2i ≤ u2

}
,

and G̃1x and G̃2x are its corresponding marginals.
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3.2 Theoretical results for conditional copula estimators

The aim of this section is to derive he asymptotic properties of the following (empirical

copula) processes

C(E)
xn (u1, u2) =

√
nhn

(
Ĉx(u1, u2)− Cx(u1, u2)

)
, (0 ≤ u1, u2 ≤ 1),(3.7)

C̃(E)
xn (u1, u2) =

√
nhn

(
C̃x(u1, u2)− Cx(u1, u2)

)
, (0 ≤ u1, u2 ≤ 1).(3.8)

All the theoretical results provided in this section are for a fixed but arbitrary value

of x, and are uniform with respect to u1 and u2.

3.2.1 Regularity conditions

Let us denote bn = max{hn, g1n, g2n}, I(n)
x = {i : wni(x, bn) 6= 0} and

J (n)
x =

[
min
i∈I(n)x

Xi, max
i∈I(n)x

Xi

]
.

Let an stand for a sequence of positive constants such that (nan)→∞ and an = O(n−1/5).

The following is a listing of assumptions on the system of weights {wni; i = 1, . . . , n} in

random design. The conditions for a fixed design, may be derived easily by replacing Xi by

xi and omitting the symbol P in the subscript of oP and OP terms.

(W1) max
1≤i≤n

|wni(x, hn)| = oP

(
1√
nhn

)
, (W2)

n∑
i=1

wni(x, hn)− 1 = oP

(
1√
nhn

)
,

(W3)
n∑
i=1

wni(x, hn)(Xi−x) = OP

(
1√
nhn

)
, (W4)

n∑
i=1

wni(x, hn)(Xi−x)2 = OP

(
1√
nhn

)
,

(W5)

n∑
i=1

w2
ni(x, hn) = OP

(
1

nhn

)
, (W6)

(
max
i∈I(n)x

Xi − min
i∈I(n)x

Xi

)
= oP (1),

(W7)
n∑
i=1

|wni(x, hn)| = OP (1), (W8) sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

wni(z, gjn)− 1

∣∣∣∣∣ = oP
(
g2
jn

)
,

sup
z∈J(n)

x

n∑
i=1

[wni(z, gjn)]2 = OP

(
1

n gjn

)
,(W9)

sup
z∈J(n)

x

n∑
i=1

[w′ni(z, gjn)]2 = OP

(
1

n g3jn

)
,(W10)

∃C<∞ P

[
sup
z∈J(n)

x

max
1≤i≤n

|wni(z, hn) I{|Xi − z| > C hn}| > 0

]
= o(1),(W11)

∃DK<∞ ∀an sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

wni(z, an)(Xi − z)− a2
nDK

∣∣∣∣∣ = oP
(
a2
n

)
,(W12)
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∃EK<∞ ∀an sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

wni(z, an)(Xi − z)2 − a2
nEK

∣∣∣∣∣ = oP
(
a2
n

)
,(W13)

where w′ni(z, gjn) denotes the derivative with respect to z.

Conditions (W7)–(W13) make a finer control on the behaviour of the weights not only

at the point x but also in a (shrinking) neighbourhood of this point. This better control is

needed to justify that the transformation (3.5) is ‘painless’. Nevertheless, as argued in the

next section, these conditions hold under usual regularity conditions on the distribution of

the covariate X.

Further, we require the conditional copula Cz and the conditional marginals F1z and F2z

to satisfy:

(R1) The functions Ḣz

(
F−1

1x (u1), F−1
2x (u2)

)
and Ḧz

(
F−1

1x (u1), F−1
2x (u2)

)
are uniformly con-

tinuous in (z, u1, u2), where z takes value in a neighbourhood of x.

(R2) The first order partial derivatives C
(1)
x , C

(2)
x with respect to u1 and u2 respectively

are continuous on [0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}

(R̃1) Ċz(u1, u2) = ∂
∂zCz(u1, u2), C̈z(u1, u2) = ∂2

∂z2
Cz(u1, u2) exist and are continuous as

functions of (z, u1, u2), where z takes value in a neighbourhood of x;

(R̃2) The functions C
(1)
z (u1, u2) and C

(2)
z (u1, u2) are uniformly continuous in (z, u1, u2) ∈

U(x) ×
(
[0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}

)
, where U(x) is a neighbourhood of the

point x.

(R̃3) For j = 1, 2: Fjz
(
F−1
jz (u)

)
, Ḟjz

(
F−1
jz (u)

)
, F̈jz

(
F−1
jz (u)

)
are continuous as functions of

(z, u) for z in a neighbourhood of x, where Ḟjz(y) = ∂
∂z Fjz(y), F̈jz(y) = ∂2

∂z2
Fjz(y).

Similarly as noted at the end of Section 2.2.4 thanks to the results of Segers (2012) the

set
(
[0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}

)
in assumptions (R2) and (R̃2) can be for C

(j)
x and

C
(j)
z reduced to

{
(u1, u2) ∈ [0, 1]2 : 0 < uj < 1

}
.

3.2.2 Some common choices of weights

As the list of conditions on the weights given in Section 3.2.1 might be rather discouraging

in particular for readers who are less interested in technical details, we comment on several

commonly used weight schemes.

Assume for concreteness that a kernel density function k has support [−1, 1] and is

symmetric and continuously differentiable. Further suppose that hn ∼ n−1/5 and g1n ∼
g2n ∼ n−1/5.

It can be shown that for Nadaraya-Watson weights (see Nadaraya, 1964; Watson, 1964),

which are defined as

wni(x, hn) =
k
(
Xi−x
hn

)∑n
j=1 k

(Xj−x
hn

) , i = 1, . . . , n,

assumptions (W1)–(W13) hold, provided
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(F1) fX = F ′X is continuous and positive at the point x,

(F2) f ′X = F ′′X is continuous in a neighbourhood of the point x,

where FX is the (marginal) distribution function of the covariate X.

Another system of weights, very commonly employed, is a local linear [LL] system of

weights (see e.g. p. 20 of Fan and Gijbels, 1996), which is given by

(3.9) wni(x, hn) =
1

nhn
k
(
Xi−x
hn

)(
Sn,2 − Xi−x

hn
Sn,1

)
Sn,0 Sn,2 − S2

n,1

, i = 1, . . . , n,

where

Sn,j =
1

nhn

n∑
i=1

(
Xi−x
hn

)j
k
(
Xi−x
hn

)
, j = 0, 1, 2.

and k is a kernel, a symmetric probability density function, with support [−1, 1].

The nice thing about LL weights is that thanks to
∑n

i=1wni(x, hn)(Xi − x) = 0, it is

sufficient to assume only (F1).

In a fixed regular design case (see e.g. Müller, 1987), there exists an absolutely continuous

distribution function FX (with associated density fX) such that xi = F−1
X

(
i

n+1

)
. In this

case the design points are ordered, that is x1 ≤ x2 . . . ≤ xn. In this setting Gasser-Müller

[GM] weights (see Gasser and Müller, 1979) are quite popular. Consider fixed, but arbitrary

values x0 < x1 and xn+1 > xn. Then GM weights are defined as

wni(x, hn) = 1
hn

∫ si+1

si

k
(
z−x
hn

)
dz, where si = (xi + xi−1)/2, i = 1, . . . , n.

In a fixed regular design case, we conjecture that to verify (W1)–(W13) it is sufficient to

assume that the design density satisfies (F1).

3.2.3 The process C(E)
xn given by (3.7)

Suppose

(3.10) hn = O(n−1/5), n hn →∞.

Note that (3.10) allows for hn ∼ n−1/5, which is often the optimal rate for bandwidths in

nonparametric problems.

Theorem 3.1. Assume (3.10), (R1)–(R2) and (W1)–(W6). Then it holds uniformly in

(u1, u2) ∈ [0, 1]2

C(E)
xn (u1, u2) =

√
nhn

n∑
i=1

wni(x, hn) ξi(u1, u2) + oP (1),

where

(3.11) ξi(u1, u2) = I
{
Y1i ≤ F−1

1x (u1), Y2i ≤ F−1
2x (u2)

}
− Cx(u1, u2)

− C(1)
x (u1, u2)

[
I{Y1i ≤ F−1

1x (u1)} − u1

]
− C(2)

x (u1, u2)
[
I{Y2i ≤ F−1

2x (u2)} − u2

]
.
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Define a process Zxn =
√
nhn

∑n
i=1wni(x, hn) ξi, where ξi’s are given in (3.11). As

(W5) holds, typically there exists a finite positive constant V such that

nhn

n∑
i=1

w2
ni(x, hn) = V 2 + oP (1).

Then for all 0 ≤ u1, u2, v1, v2 ≤ 1

(3.12) cov
(
Zxn(u1, u2), Zxn(v1, v2)

)
−−−→
n→∞

V 2 cov
(
ξx(u1, u2), ξx(v1, v2)

)
,

where

ξx(u1, u2) = I
{
F1x(Y1x) ≤ u1, F2x(Y2x) ≤ u2

}
− Cx(u1, u2)

− C(1)
x (u1, u2)

[
I{F1x(Y1x) ≤ u1} − u1

]
− C(2)

x (u1, u2)
[
I{F2x(Y2x) ≤ u2} − u2

]
.

Thus with the help of (3.12) it is straightforward to verify the finite dimensional convergence

of the process
{
Zxn(u1, u2), (u1, u2) ∈ [0, 1]2

}
. As the asymptotic tightness of this process is

(in a more general setting) verified in Step 1 of the proof of Theorem 3.1 given in Veraverbeke

et al. (2011), one can deduce that Zxn converges weakly to a Gaussian process Zx.

Further suppose that there exists H such that (nh5
n) → H2, with H ≥ 0. Typically

hn ∼ n−1/5 so that H > 0. In that case, using Taylor expansion and assumption (R1) we

can approximate the expectation of the limiting process Zx and find out that (uniformly

in (u1, u2))

EZxn(u1, u2) = H
[
DK Ċx(u1, u2) + EK

2 Bx(u1, u2)
]

+ o(1),

with DK and EK being constants depending on the chosen system of weights {wni} and on

the type of the design (see (W12) and (W13) in Section 3.2.2) and

Bx(u1, u2) = Ḧx

(
F−1

1x (u1), F−1
2x (u2)

)
− C(1)

x (u1, u2) F̈1x

(
F−1

1x (u1)
)
− C(2)

x (u1, u2) F̈2x

(
F−1

2x (u2)
)

= C̈x(u1, u2) + 2 Ċ(1)
x (u1, u2) Ḟ1x

(
F−1

1x (u1)
)

+ 2 Ċ(2)
x (u1, u2) Ḟ2x

(
F−1

2x (u2)
)

+ C(1,1)
x (u1, u2)

[
Ḟ1x

(
F−1

1x (u1)
)]2

+ C(2,2)
x (u1, u2)

[
Ḟ2x

(
F−1

2x (u2)
)]2

(3.13)

+ 2C(1,2)
x (u1, u2) Ḟ1x

(
F−1

1x (u1)
)
Ḟ2x

(
F−1

2x (u2)
)
,

where a dot indicates a derivative with respect to the covariate x, e.g. Ḟz(u1) = ∂
∂zFz(u1),

C̈z(u1, u2) = ∂2

∂z2
Cz(u1, u2); the symbol (i) indicates a derivative with respect to ui, e.g.

C
(i,j)
x (u1, u2) = ∂2Cx(u1,u2)

∂ui∂uj
; and Ċ

(i)
z (u1, u2) = ∂2Cz(u1,u2)

∂z ∂ui
, which is a mixture of the above

notational rules.

Corollary 3.1. If (3.12), (nh5
n) → H2, (W12), (W13) and the assumptions of Theo-

rem 3.1 hold, then the process C(E)
xn converges in distribution to a Gaussian process Zx,

which can be written as

Zx(u1, u2) = V
{
Wx(u1, u2)− C(1)

x (u1, u2)Wx(u1, 1)− C(2)
x (u1, u2)Wx(1, u2)

}
+Rx(u1, u2),

where Wx is a bivariate Brownian bridge on [0, 1]2 with covariance function

(3.14) E [Wx(u1, u2)Wx(v1, v2)] = Cx(u1 ∧ v1, u2 ∧ v2)− Cx(u1, u2)Cx(v1, v2).
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and

(3.15) Rx(u1, u2) = H
[
DK Ċx(u1, u2) + EK

2 Bx(u1, u2)
]
.

Proof. The proof follows from Theorem 3.1 and the reasoning given above.

The constants V , DK and EK in general also depend on x, but for simplicity this is not

made explicit in the notations.

It should be mentioned that to prove Corollary 3.1 it is only needed that assump-

tions (W12) and (W13) hold without supremum (for z = x) and for an = hn.

3.2.4 The process C̃(E)
xn given by (3.8)

In the following we suppose that for j = 1, 2

(3.16)
√
nhn g

2
jn = O(1), hn

gjn
= O(1), n min(hn, g1n, g2n)→∞.

Note that (3.16) allows for the same rates of hn as in (3.10). Further, hn ∼ n−1/5 implies

that gjn ∼ n−1/5 for j = 1, 2 as well.

Theorem 3.2. Assume (3.16), (W1)–(W13) and (R̃1)–(R̃3), then uniformly in (u1, u2)

C̃(E)
xn (u1, u2) =

√
nhn

n∑
i=1

wni(x, hn) ξ̃i(u1, u2) + oP (1),

where

(3.17) ξ̃i(u1, u2) = I{U1i ≤ u1, U2i ≤ u2} − Cx(u1, u2)

− C(1)
x (u1, u2) [I{U1i ≤ u1} − u1]− C(2)

x (u1, u2) [I{U2i ≤ u2} − u2] ,

and (U1i, U2i)
T are given in (3.3).

Similarly as in Section 3.2.3 we can state the following corollary.

Corollary 3.2. If (3.12), (nh5
n)→ H2 and the assumptions of Theorem 3.2 hold, then the

process C̃(E)
xn converges in distribution to a Gaussian process Z̃x, which can be written as

Z̃x(u1, u2) = V
{
Wx(u1, u2)− C(1)

x (u1, u2)Wx(u1, 1)− C(2)
x (u1, u2)Wx(1, u2)

}
+ R̃x(u1, u2)

where Wx is a bivariate Brownian bridge on [0, 1]2 with covariance function (3.14) and

(3.18) R̃x(u1, u2) = H
[
DK Ċx(u1, u2) + EK

2 B̃x(u1, u2)
]
,

with B̃x(u1, u2) = C̈x(u1, u2).

Thus comparing the limiting processes Zx and Z̃x from Corollary 3.1 and 3.2 we see that

the only difference is in the bias terms. This difference is a consequence of different random

variables that are involved in the Bahadur representations of the processes
√
nhn (C̃x−Cx)

and
√
nhn (Ĉx − Cx). The original observations (Y1i, Y2i)

T in (3.11) are replaced by the
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Figure 3.1: Diagonals of the functions Bx and B̃x for ρ = 1 (a) and ρ = 7 (b).

unobserved (U1i, U2i)
T in (3.17). The key point is that the conditional marginal distributions

of (U1i, U2i)
T are uniform for each value of the covariate Xi and thus do not depend on the

values of the covariate, which results in a much simpler expression for the asymptotic bias

given in (3.18).

To be fair it should be stressed that there is no guarantee that the asymptotic bias

expression for the estimator C̃x given by (3.18) is always closer to zero than that for Ĉx

given in expression (3.15). Suppose for simplicity that DK = 0, which holds for example

for a local linear system of weights (see Section 3.2.2). Then Bx(u1, u2) of (3.15) may be

closer to zero than B̃x(u1, u2) if the additional terms in (3.13) turn out to be of opposite

signs of the first term C̈x(u1, u2). For example, suppose that the covariate is standard

normal distributed and we are interested in the point X = 1. The copula which joins the

margins (Y1, Y2) is taken to be a Frank copula with the parameter depending on the value

of the covariate X = z as θ(z) = 5 + ρ sin
( (z−1)π

6

)
. Further, the margins are taken to be

normal with unit variances and mean functions µ1(z) = µ2(z) = sin(z).

Consider two values of the parameter ρ. The case ρ = 1 represents a situation where the

conditional dependence structure is only very mildly affected by the value of the covariate.

The plot of the diagonals of the functions Bx and B̃x in Figure 3.1(a) clearly indicates that

in terms of bias the estimator C̃x is in this situation strongly preferable. This is further

confirmed by calculating L2([0, 1]2)-norms of the functions Bx and B̃x, which equal 0.014

and 0.001 respectively.

When ρ = 7 the conditional dependence structure is strongly influenced by the covariate.

Figure 3.1(b) shows that for this model it is not so easy to judge which estimator should be

preferred. At some points Bx is closer to zero and at other points it is the other way around.

The L2([0, 1]2)-norms of the functions Bx and B̃x now equal 0.011 and 0.012 indicating that

the estimator Ĉx might be slightly preferable if the interest is in estimation of the whole

copula function and the mean integrated squared error is taken as the criterion for the

quality of the estimate.

Our experience is that it is rather difficult to construct models where the estimator Ĉx
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is (more than slightly) preferable to C̃x. In such models, both conditional marginals as well

as the conditional dependence structure have to be strongly dependent on the value of the

covariate. Further it must be the case that by a ‘lucky coincidence’ the additional terms

in (3.13) help to reduce the effect of C̈x. As this is difficult to predict, one stays on the safe

side by using the estimator C̃x.

3.3 Some practical issues

3.3.1 Bandwidth selection

A crucial point of smoothing methods is the bandwidth selection. The proposed estima-

tor C̃x requires to choose three bandwidths – g1n, g2n (the ‘auxiliary’ bandwidths to remove

the effect of the covariate on the marginal distributions) and hn (the ‘main’ bandwidth to

estimate the conditional copula). Generally speaking choosing bandwidth for conditional

distribution estimation is more difficult than for instance in nonparametric regression as

one cannot simply compare response and its estimate.

For choosing hn Gijbels et al. (2011) suggested an iterative method by adopting the idea

of Gasser et al. (1991), which was further extended in Brockmann et al. (1993). Alterna-

tively, one can consider the cross-validation procedure suggested in Gijbels et al. (2017b).

For choosing gn1 and gn2 one can either modify the above methods or try make use of

the rules invented for nonparametric regression as for instance in Yu and Jones (1998).

Nevertheless, it should be said that the bandwidth choice is widely unexplored and all

the methods mentioned above should be considered only as ad-hoc suggestions to be able

to apply the suggested estimators to real data-sets.

3.3.2 Adjusting for the marginal effect of the covariate

Recall that the aim of the transformation (3.5) is to remove the effect of the covariate X

on the marginal distributions. For this reason nonparametric estimators of the conditional

distribution functions are used. Of course, if we can assume a parametric or a semipara-

metric model for the influence of the covariate on the marginals, then it is advisable to use

this model. Although it does not change asymptotic properties of the estimator, it may

stabilize the finite sample properties.

Thus general strategy for conditional copula estimation in not very large samples may

be as follows. First, check the scatterplots of the pairs (X,Y1)T and (X,Y2)T. If there

is no obvious pattern, then the estimator Ĉx may be used. If this is not the case, we

recommend to try to transform the variables Y1 and Y2 such that the influence of the

covariate on the conditional marginal distributions is suppressed. This might be done in

several ways. The transformation (3.5) is very general and in view of Theorem 3.2 it cannot

be improved if we aim at eliminating the effect of the covariate on the marginals. The price

we have to pay is that we have to specify two new bandwidths g1n and g2n. Fortunately, the

Monte Carlo simulation results of Gijbels et al. (2011) indicate that the rules for bandwidth

selection in nonparametric regression may be employed or if hn is already fixed then using
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g1n = g2n = hn for C̃x usually results in an estimator which is at least as good as Ĉx.

Alternatively, in small samples we may try to stabilize the estimator by specifying a

simple parametric model for the pairs (X,Y1)T and (X,Y2)T. For instance, suppose simple

linear regression models

(3.19) Y1i = α0 + α1Xi + ε1i, Y2i = β0 + β1Xi + ε2i,

where ε1i and ε2i are independent of Xi. Then it seems natural to replace the original ob-

servations (Y1i, Y2i)
T with the estimated residuals from models (3.19). As the estimators of

the unknown parameters converge at rate n−1/2, the estimator based on the estimated resid-

uals may be shown to be asymptotically equivalent with the one based on the unobserved

residuals (ε1i, ε2i)
T and thus the main effect of the covariate on the marginal distributions

is usually removed.

A further step towards the general transformation (3.5) may be to assume nonparametric

location-scale models

Y1i = m1(Xi) + σ1(Xi) ε1i, Y2i = m2(Xi) + σ1(Xi) ε2i, i = 1, . . . , n,

where ε1i, ε2i are independent of Xi and m1(·), m2(·), σ1(·), σ2(·) are unknown, but suffi-

ciently smooth functions. Let m̂1, . . . , σ̂2 be the corresponding nonparametric estimators.

Then estimator Ĉx can be based on the estimated residuals(
ε̂1i, ε̂2i

)T
=
(
Y1i−m̂1(Xi)
σ̂1(Xi)

, Y2i−m̂2(Xi)
σ̂2(Xi)

)T
, i = 1, . . . , n.

3.3.3 Inference

Note that the limiting distributions of nonparametric estimators of conditional copulas

suggested in Section 3.1 are rather involved.

Further, when choosing the optimal bandwidth then one cannot simply ignore the bias

of the estimator as the (asymptotic) bias is typically of the same order as the (asymptotic)

standard deviation of the estimator. Moreover, the bias involves second order derivatives

that are very difficult to estimate. One possible way how handle this problem is to ‘under-

smooth’, i.e. to choose a bandwidth that is of a smaller order than the optimal bandwidth

(typically such that nh5
n → 0 as n→∞). The price to pay is that a ‘suboptimal’ bandwidth

which results in a higher (asymptotic) mean squared error of the estimator. Moreover, in

applications it is almost impossible to specify the appropriate level of ‘undersmoothing’ that

would guarantee that the bias can be safely ignored.

That is why as an alternative inference procedure Omelka et al. (2013) suggested a

bootstrap approximation inspired by the resampling procedure introduced in Aerts et al.

(1994).

3.4 Conditional measures of association

In many situations we would like to quantify the degree of dependence by only one number.

In nonparametric statistics one uses a measure that does not depend on marginal distribu-

tions and thus can be expressed as a functional of a copula. With the help of conditional
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copulas it is straightforward to define conditional versions of these measures. We will il-

lustrate this for Kendall’s tau and Spearman’s rho that are probably the most widely used

nonparametric measures of associations.

3.4.1 Kendall’s tau

For random variables (Y1, Y2)T Kendall’s tau is defined as

τ = 2 P
(
(Y1 − Y ′1)(Y2 − Y ′2) > 0

)
− 1,

where (Y ′1 , Y
′

2)T is an independent copy of the random vector (Y1, Y2)T. It is well known (see

e.g. Nelsen, 2006) that if C is the copula for the vector (Y1, Y2)T, then τ may be expressed

as

τ = 4

∫∫
C(u1, u2) dC(u1, u2)− 1.

This leads immediately to an expression for the population version of the conditional

Kendall’s tau of (Y1, Y2)T given X = x

(3.20) τ(x) = 4

∫∫
Cx(u1, u2) dCx(u1, u2)− 1,

where Cx is the appropriate conditional copula. The interpretation of the conditional

Kendall’s tau is

τ(x) = 2 P
(
(Y1 − Y ′1)(Y2 − Y ′2) > 0 |X = X ′ = x

)
− 1,

where (Y ′1 , Y
′

2 , X
′)T is an independent copy of the random vector (Y1, Y2, X)T.

The most straightforward way to estimate the conditional Kendall’s tau is to replace

the unknown quantity Cx in (3.20) with the estimate Ĉx to get

(3.21) τ̂ In(x) = 4

∫∫
Ĉx(u1, u2) dĈx(u1, u2)− 1.

Although expression (3.21) is convenient for exploring asymptotic properties of the estima-

tor, in finite samples we have a slightly better experience with the formula

(3.22) τ̂n(x) =
4

1−Wn

n∑
i=1

n∑
j=1

wni(x, hn)wnj(x, hn) I{Y1i < Y1j , Y2i < Y2j} − 1,

where Wn =
∑n

i=1w
2
ni(x, hn). Note that (3.22) mimics the formula for (unconditional)

Kendall’s tau estimation

τ̂n =
4

n(n− 1)

n∑
i=1

n∑
j=1

I{Y1i < Y1j , Y2i < Y2j} − 1.

Further, to improve the bias properties of the estimator of conditional Kendall’s tau (τ̂n(x))

given by (3.22) it would be useful to replace the original observations (Y1i, Y2i)
T with the

observations already adjusted for the possible effect of the covariate on the margins as

discussed in Section 3.3.2.

As pointed out by Veraverbeke et al. (2011) the asymptotic normality of τ̂n(x) can be

derived by Theorem 3.1 (or Theorem 3.2) from the Hadamard differentiability of Kendall’s

tau that is proved therein. On the other we conjecture that investigating directly the

estimator τ̂n(x) would yield asymptotic normality under less restrictive assumptions.



22 CHAPTER 3. NONPARAMETRIC CONDITIONAL COPULA ESTIMATION (GENERAL CASE)

3.4.2 Spearman’s rho

As the unconditional version of Spearman’s rho may be expressed as

ρ = 12

∫∫
C(u1, u2) du1 du2 − 3

the population conditional version is thus given by

ρ(x) = 12

∫∫
Cx(u1, u2) du1 du2 − 3,

which may be estimated as

ρ̂n(x) = 12

∫∫
Ĉx(u1, u2) du1 du2 − 3 = 12

n∑
i=1

wni(x, hn)(1− Û1i)(1− Û2i)− 3.

For interpretations of the population (unconditional) Spearman’s rho see Nelsen (2006,

Chapter 5.1.2).

3.5 Partial and average measures of association

Sometimes it might be desirable to summarize the dependence of (Y1, Y2)T when X is taken

into account by one number. To do that one can use either partial measures of dependence

or average conditional measures of dependence.

Gijbels et al. (2015a) suggested that the partial measures of association can be con-

structed analogously as the conditional measures of dependence but with the conditional

copula replaced by the partial copula. This partial copula (C̄) can be viewed as the copula

of the random vector
(
U1, U2

)T
=
(
F1X(Y1), F2X(Y2)

)T
. In words, the partial copula is the

copula of the response vector (Y1, Y2)T adjusted for the effect of the covariate X on the

marginal distributions. Now for instance the partial Kendall’s tau is defined as

τ̄ = 4

∫∫
C̄(u1, u2) dC̄(u1, u2)− 1.

As an alternative to the partial measures one can use average conditional measures.

These are simply defined as the expectations of the corresponding conditional measures.

That is for instance average conditional Kendall’s tau is defined as

τA = E τ(X) =

∫
τ(x) dFX(x),

where FX is the distribution function of the covariate X. As discussed in Gijbels et al.

(2015a) average conditional measures are generally different from partial measures but they

coincide if the measure is a linear functional of a copula. Asymptotic properties of the

estimators of these measures of association are investigated in Gijbels et al. (2015a).



Chapter 4
Nonparametric conditional copula
estimation under simplifying
assumptions

As in Chapter 3 suppose the observations are independent identically distributed three-

dimensional vectors (Y11, Y21, X1)T, . . . , (Y1n, Y2n, Xn)T from (Y1, Y2, X)T with the joint dis-

tribution function H. But now the conditional copula Cx does not depend on the value of x

and thus the conditional distribution function Hx can be written as in (1.4).

Note, that if Y1 and Y2 were independent of X then one could simply use the empirical

copula estimator as introduced in (2.1). Thus the obvious idea is to replace the original

observations Y1i and Y2i in (2.1) with observations that are already adjusted for the effect of

the covariate X. Suppose for a moment that the conditional distribution functions F1x and

F2x are known. Then one can construct the ‘ideal’ observations (U1i, U2i)
T for estimating

copula C in (1.4) by (3.3). Thus an ‘oracle’ estimator of the copula function C would be

(4.1) C(or)
n (u1, u2) = Gn

(
G−1

1n (u1), G−1
2n (u2)

)
,

where

Gn(u1, u2) =
1

n

n∑
i=1

I{U1i ≤ u1, U2i ≤ u2},

and G1n and G2n are its corresponding marginals.

In case the conditional distribution functions F1x and F2x are unknown, we consider

estimates for them, denoted by F̂1x and F̂2x, and put(
Ũ1i, Ũ2i

)T
=
(
F̂1Xi(Y1i), F̂2Xi(Y2i)

)T
, i = 1, . . . , n,

for the corresponding estimates of the unobserved (U1i, U2i) given in (3.3).

Mimicking formula (4.1) we construct the estimator of the copula function C as

(4.2) C̃n(u1, u2) =
1

n

n∑
i=1

I
{
Ũ1i ≤ G̃−1

1n (u1), Ũ2i ≤ G̃−1
2n (u2)

}
,

where

G̃jn(u) =
1

n

n∑
i=1

I
{
Ũji ≤ u

}
, j = 1, 2.

23
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Note that in comparison to the estimator C̃xh given by (3.6) there is no need to use the

smoothing weights wni(x, hn) as the conditional copula Cx does not depend on x anymore.

In what follows we present the asymptotic properties of the estimator C̃n as derived in

Gijbels et al. (2015b). Generally speaking, the results depend on what can be assumed

about the dependence (on X) of the marginal distributions of Y1 and Y2. The more specific

knowledge we have about the dependence of the marginals onX, the stronger the established

result about C̃n (under milder assumptions on C).

4.1 Consistency and weak convergence of the general esti-
mator

The following theorem states that if both marginal distribution functions F1x and F2x allow

uniformly consistent estimation at rate rn (a sequence of nonnegative numbers tending

to zero with n), then the copula estimator C̃n is also uniformly consistent with that rate

(provided rn tends to zero not faster than 1/
√
n).

Theorem 4.1. Suppose that for j = 1, 2 (with RX the domain of X)

sup
x∈RX

sup
y∈R

∣∣F̂jx(y)− Fjx(y)
∣∣ = OP (rn), as n→∞.

Then

(4.3) sup
(u1,u2)∈[0,1]2

∣∣C̃n(u1, u2)− C(u1, u2)
∣∣ = OP

(
max

{
rn,

1√
n

})
, as n→∞.

To prove the weak convergence of the estimator C̃n(u1, u2) (as a process on [0, 1]2) one

needs to assume more about the behaviour of F̂jx(y).

First, we need to control the (random) set of functions on RX × R2

(4.4) Fn =
{

(x, y1, y2) 7→ I
{
y1 ≤ F̂−1

1x (u1), y2 ≤ F̂−1
2x (u2)

}
, u1, u2 ∈ [0, 1]

}
.

Second, we need a finer control of the rate of the process

(4.5) Yjx(u) = Fjx

(
F̂−1
jx

(
G̃−1
jn (u)

))
− u, u ∈ [0, 1],

with a special attention to u close to the endpoints of the unit interval. Roughly speaking,

the faster the convergence of Yjx to zero, the lesser smoothness of the copula function C is

required. Two possible modes of this interplay are given in the following assumptions.

General regularity assumptions

In what follows let εn = ε/
√
n and In = [εn, 1− εn].

(Yp) For each ε > 0, uniformly in x ∈ RX (the domain of X) and u ∈ In

Yjx(u) = r(u)OP
(

1√
n

)
, j = 1, 2,

where r : [0, 1]→ R is a bounded function such that

lim
u→0+

r(u) = 0 and lim
u→1−

r(u) = 0.
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(Yn) For each ε > 0, uniformly in x ∈ RX and u ∈ In

Yjx(u) =
√
u(1− u) oP (n−1/4), j = 1, 2.

(Cp) The first-order partial derivatives C(1) and C(2) of the copula function C exist and

for j = 1, 2, C(j) is continuous on the set {(u1, u2) ∈ [0, 1]2 : 0 < uj < 1}.

(Cn) The second-order partial derivatives o of the copula function C satisfies (2.9).

As already noted at the end of Section 2.2.4 assumption (Cp) is the weakest assumption

assumed so far to establish the weak convergence of the empirical copula process. The

assumption (Cn) is slightly more restrictive, but it is satisfied for commonly-used copulas,

see Omelka et al. (2009).

Theorem 4.2. Suppose that there exists a set of functions F on RX × [0, 1]2 that is PH-

Donsker (with PH the probability measure associated with the joint distribution function H)

and such that

lim
n→∞

P
(
Fn ⊂ F

)
= 1.

Further suppose that either (Yp) and (Cp) or (Yn) and (Cn) hold. Then

(4.6) sup
(u1,u2)∈[0,1]2

∣∣∣√n (C̃n(u1, u2)− C(or)
n (u1, u2)

)∣∣∣ = oP (1), as n→∞.

Theorem 4.2 together with the standard result on the weak convergence of the empirical

copula process
√
n
(
C

(or)
n − C

)
immediately implies the following corollary.

Corollary 4.1. Suppose the assumptions of Theorem 4.2 are satisfied. Then the process

C̃(E)
n (u1, u2) =

√
n
(
C̃n(u1, u2)− C(u1, u2)

)
, (0 ≤ u1, u2 ≤ 1),

converges in the space `∞
(
[0, 1]2

)
to a centred Gaussian process GC described in Theo-

rem 2.1.

4.2 Location-scale models for F1x and F2x

Often one is able to specify location-scale regression models for the influence of the covari-

ate X on the marginal distributions:

(4.7) Y1 = m1(X) + σ1(X) ε1, Y2 = m2(X) + σ2(X) ε2,

where m1,m2, σ1, σ2 are functions (either fully or partially known) and ε1 and ε2 are inde-

pendent of X with unknown distribution functions F1ε and F2ε.

Note that under this general location-scale model: for j = 1, 2

Fjx(yj) = Fjε

(
yj−mj(x)
σj(x)

)
and therefore Uji = FjXi(Yji) = Fjε

(
Yji−mj(Xi)
σj(Xi)

)
,

with Fjε(y) = P(εj ≤ y).
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Let m̂1, m̂2, σ̂1 and σ̂2 be estimates of respectively the functions m1, m2, σ1 and σ2.

Then, in this general setting

F̂jx(z) = F̂jε̂
( z−m̂j(x)

σ̂j(x)

)
,

where

(4.8) F̂jε̂(z) =
1

n

n∑
i=1

I
{
ε̂ji ≤ z

}
, with ε̂ji =

Yji−m̂j(Xi)
σ̂j(Xi)

.

The estimator (4.2) then equals

(4.9) C̃n(u1, u2) =
1

n

n∑
i=1

I
{
F̂1ε̂(ε̂1i) ≤ u1, F̂2ε̂(ε̂2i) ≤ u2

}
,

since
{
F̂jε̂(ε̂ji) ≤ uj

}
= {F̂jε̂(ε̂ji) ≤ G̃−1

jn (uj)
}
.

In this location-scale model setting, the (random) set of functions on RX ×R2 (denoted

by Fn; see (4.4)), that enters in the mathematical derivations is

Fn =
{

(x, y1, y2) 7→ I
{
y1 ≤ z1 σ̂1(x) + m̂1(x), y2 ≤ z2 σ̂2(x) + m̂2(x)

}
, z1, z2 ∈ R

}
.

and the process Yjx(u) (see (4.5)) that is involved is given by

Yjx(u) = Fjx
(
F̂−1
jx (u)

)
− u = Fjε

(
F̂−1
jε̂

(u)σ̂j(x)+mj(x)−m̂j(x)

σj(x)

)
− u, u ∈ [0, 1].

See further Gijbels et al. (2015b, Appendix C).

In the sequel of this section we distinguish between parametric and nonparametric

location-scale models (for both marginals). Clearly, a possibility could also be to assume a

parametric location-scale model for one marginal component and a nonparametric one for

the other marginal component. It then suffices to combine the results of both parts below.

We do not elaborate on this further.

4.2.1 Parametric location-scale models for F1x and F2x

Assume now that the following parametric location-scale models hold:

(4.10) Y1 = m1(X,θ1) + σ1(X,θ1) ε1, Y2 = m2(X,θ2) + σ2(X,θ2) ε2,

where m1,m2, σ1, σ2 are (partially) known functions, up to unknown finite-dimensional

parameters θ1 and θ2. Finally ε1 and ε2 are as in (4.7).

Let θ̂1 and θ̂2 be estimates of the unknown parameters. Then, in this special setting:

F̂jx(z) = F̂jε̂

(
z−mj(x,θ̂j)
σj(x,θ̂j)

)
,

where

F̂jε̂(z) =
1

n

n∑
i=1

I
{
ε̂ji ≤ z

}
, with ε̂ji =

Yji−mj(Xi,θ̂j)
σj(Xi,θ̂j)

.

The estimator is then defined as in (4.9) and we denote this estimator as C̃
(P)
n .
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Remark. Note that if model (4.10) is not true then the estimator C̃
(P)
n does in general not

estimate the copula C of (U1, U2). In order to characterize what is being estimated suppose

that there exist θ∗1 and θ∗2 such that the estimates θ̂1 and θ̂2 converge in probability to the

corresponding quantities. Further put

Ya = (Y a
1 , Y

a
2 )T =

(
Y1−m1(X,θ∗1)
σ1(X,θ∗1) ,

Y2−m2(X,θ∗2)
σ2(X,θ∗2)

)T
,

Then C̃
(P)
n estimates the following copula

(4.11) CY
a
1 ,Y

a
2 (u1, u2) =

∫
C
(
F a1x
(
F−1
Y a1

(u1)
)
, F a2x

(
F−1
Y a2

(u2)
))
fX(x) dx,

where

F ajx(y) = P
(
Y a
j ≤ y |X = x

)
= Fjx

(
y σj(x,θ

∗
j ) +mj(x,θ

∗
j )
)
,

FY aj (y) = EXF
a
jX(y), and fX be the marginal density of X. Thus in general, if model (4.10)

does not hold then C̃
(P)
n is not a consistent estimator of C. On the other hand, if model (4.10)

is not too far from the reality, then one can expect that CY
a
1 ,Y

a
2 is close to C. As the bias

that results in estimating CY
a
1 ,Y

a
2 instead of C can be, for small and moderate samples,

negligible when compared to the variability of the estimator, it can be advantageous to use

model (4.10) to adjust for the effect of the covariate on the marginal distribution even if

this model does not hold. See also the simulation study in Gijbels et al. (2015b).

Regularity assumptions

(θ) The estimates θ̂1 and θ̂2 are
√
n-consistent.

(F1p) The functions fjε(y) (1 + y) are bounded, where fjε = F ′jε.

(F2p) The functions fjε
(
F−1
jε (u)

)
and fjε

(
F−1
jε (u)

)
F−1
jε (u) tend to zero when u → 0+ or

u→ 1−.

(mσp) The partial derivatives of the functions mj(x, ·) and σj(x, ·) with respect to their sec-

ond arguments are uniformly bounded as functions of both arguments at (RX , U(θj)),

where RX is the support of X and U(θj) is an open neighbourhood of θj . Moreover,

infx∈RX ,c∈U(θj) σj(x, c) > 0.

The following theorem establishes the rate of convergence of the estimator C̃
(P)
n .

Theorem 4.3. Suppose that assumptions (θ), (F1p) and (mσp) are satisfied. Then the

estimator C̃
(P)
n is

√
n-consistent, i.e. (4.3) holds with rn = 1/

√
n.

The next theorem establishes that under slightly stronger conditions (among which

assuming (F2p) instead of (F1p)) one can even show that the estimator C̃
(P)
n is asymp-

totically equivalent to the oracle estimator C
(or)
n .

Theorem 4.4. Statement (4.6) and the statement of Corollary 4.1 hold provided assump-

tions (Cp), (θ), (F2p) and (mσp) are satisfied.
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Remark. From the proof of Theorem 4.4 it follows that assumption (F2p) is needed to con-

trol the behaviour of the copula process C̃(E)
n close to the border of the unit square (more

precisely close to the possible points of discontinuity of the first order partial derivatives

of C). Note that (F2p) is not satisfied when the error distribution εj follows a distribution

whose density is not continuous (e.g. uniform, exponential distribution). For such distri-

butions one can prove the weak convergence of the process C̃(E)
n on the set that excludes

problematic points. More precisely if the functions gj(δ) = Fjε
(
y(1 + δ) + δ

)
are Lipschitz

for j = 1, 2 uniformly in y, then for every δ > 0

sup
(u1,u2)∈[0,1]2

∣∣C̃(E)
n (u1, u2)

∣∣ = OP (1), C̃(E)
n

∣∣
[δ,1−δ]2

d−−−→
n→∞

GC
∣∣
[δ,1−δ]2 ,

where
∣∣
[δ,1−δ]2 stands for the restriction of the process to Iδ = [δ, 1− δ]2. Such a result can

often be sufficient to derive an asymptotic distribution of various functionals of copulas as

e.g. Kendall’s tau or Spearman’s rho. For brevity we do not elaborate further on this.

4.2.2 Nonparametric location-scale models for F1x and F2x

In nonparametric location-scale models (4.7) the functions m1, m2, σ1 and σ2 are fully

unknown, and need to be estimated.

For simplicity of presentation we concentrate on local linear regression estimates of the

functions m(x) and σ2(x) defined as follows:

(4.12) m̂j(x) =
n∑
i=1

wni(x, gjn)Yji, σ̂j
2(x) =

n∑
i=1

wni(x, gjn)
(
Yji − m̂j(Xi)

)2
, j = 1, 2,

where gjn is a bandwidth sequence going to zero. The weights wni(x, gjn) in (4.12) are local

linear weights given by (3.9).

The estimated residuals of model (4.7) are given by ε̂ji in (4.8), with m̂j and σ̂j as

in (4.12). The copula function C is then estimated by (4.9). Denote this estimator as C̃
(NP)
n .

Remark. For simplicity of presentation the same bandwidth gjn is used in (4.12) for esti-

mation of the location mj as well as estimation of the scale σj . Different bandwidths for

location and scale estimation can be used provided that both satisfy the assumptions on

the bandwidths given below.

Regularity assumptions

(Bw) For j = 1, 2: gjn = o(1) and
n gjn
logn →∞.

(Bwn) For j = 1, 2 and for some δ > 0:
n g3+δjn

logn →∞ andn g5
jn → 0.

(F1n) The functions F1ε(y) and F2ε(y) are twice continuously differentiable and E ε4
j <∞.

(F2n) The functions fjε
(
F−1
jε (u)

)(
1 + F−1

jε (u)
)

are of order O(uδ(1 − u)δ) for some δ ≥ 1
4

and the functions f ′jε(y)(1 + y)2 are bounded.

(k) The kernel k is a symmetric and continuous function with support [−1, 1].
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(kn) The kernel k is twice continuously differentiable, symmetric with support [−1, 1] and

decreasing on [0, 1).

(X) The support RX of X is a non-empty finite interval (a, b) and infx∈RX fX(x) > 0.

(Xn) The support RX of X is a non-empty interval (a, b), infx∈RX fX(x) > 0 and fX(x) is

twice continuously differentiable in RX .

(mσ1) The second order derivatives of mj and σj are bounded on the interior of RX and

infx∈RX σj(x) > 0.

(mσ2) The functions mj and σj are three-times continuously differentiable on the interior

of RX and infx∈RX σj(x) > 0.

The following theorem states the rate of convergence of the estimator C̃
(NP)
n .

Theorem 4.5. Suppose that assumptions (Bwn), (F1p), (k), (mσ1) and (Xn) are

satisfied. Then the estimator C̃
(NP)
n satisfies (4.3) with

(4.13) rn = max
{
g2

1n, g
2
2n,
√

logn
n g1n

,
√

logn
n g2n

}
.

The next theorem establishes that under slightly stronger conditions one can improve

the rate rn to 1/
√
n and moreover show that the estimator C̃

(NP)
n is even asymptotically

equivalent to the oracle estimator C
(or)
n .

Theorem 4.6. Statement (4.6) and the statement of Corollary 4.1 hold provided assump-

tions (Cn), (Bwn), (F1n), (F2n), (kn), (mσ2) and (Xn) are satisfied.

Remark. Making use of the Hadamard differentiability of the ‘copula mapping’ Φ : G 7→
G(G−1

1 , G−1
2 ) proved in Theorem 2.4 of Bücher and Volgushev (2013) one can replace as-

sumptions (Cn) and (F2n) by the following assumption on the joint distribution func-

tion Fε of ε = (ε1, ε2)T.

(Fε) The second-order partial derivatives F
(1,1)
ε , F

(1,2)
ε and F

(2,2)
ε of the joint cumulative

distribution function Fε(y1, y2) = P(ε1 ≤ y1, ε2 ≤ y2), with F
(j,k)
ε (y1, y2) = ∂2Fε(y1,y2)

∂yj∂yk
,

satisfy

max
j,k∈{1,2}

sup
y1,y2∈R2

∣∣F (j,k)
ε (y1, y2)(1 + yj)(1 + yk)

∣∣ <∞.
Further the innovation density fjε (j = 1, 2) satisfies

lim
u→0+

(
1 + F−1

jε (u)
)
fjε
(
F−1
jε (u)

)
= 0 and lim

u→1−

(
1 + F−1

jε (u)
)
fjε
(
F−1
jε (u)

)
= 0.

This is generally less restrictive assumption as it allows for an interplay between the marginal

distributions F1ε and F2ε and the copula function C, i.e. the more it is assumed about F1ε

and F2ε, the less one can assume about C and vice versa. The proof would go analogously

as in Neumeyer et al. (2017).

Remark. Analogously as in the previous section, if model (4.7) does not hold, then the

estimator C̃
(NP)
n does in general not estimate the copula C but the copula CY

a
1 ,Y

a
2 given

by (4.11), where Y a
j =

Yj−mj(X)
σj(X) with mj(x) = E

[
Yj |X = x

]
and σ2

j (x) = var
[
Yj |X = x

]
.
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4.3 General nonparametric estimation of F1x and F2x

Sometimes, one has no idea about the influence of X on Y1 and Y2. Then one can construct

general nonparametric estimators of F1x and F2x for instance as in (3.4).

Regularity assumption

(F) The second derivatives, with respect to x, of the functions F1x(y) and F2x(y) are

bounded.

The following theorem follows directly from Theorem 4.1 and Lemma 4 in Appendix D

of Gijbels et al. (2015b).

Theorem 4.7. Suppose that assumptions (Bw), (F), (k) and (X) are satisfied, then

Theorem 4.1 holds with rn given in (4.13).

It is worth noting that the best possible rate, from this theorem, is rn =
( logn

n

)2/5
obtained by taking g1n = g2n = O

(( logn
n

)1/5)
.

Note that in this general setting Gijbels et al. (2015b) were not able to establish the

asymptotic equivalence (4.6) of the estimator C̃n with the oracle estimator C
(or)
n . This was

proved later by Portier and Segers (2015) where the authors consider smooth versions of

the estimates of the conditional distribution functions Fjx.

4.4 Further extensions and discussion

The question of interest is what happens if the pairwise simplifying assumption (1.4) does

not hold and the conditional copula function Cx still depends on x. This is discussed Gijbels

et al. (2015a). The authors of that paper show that (provided that the margins are properly

adjusted for the effect of the covariate) the estimator C̃n given by (4.2) estimates the partial

copula which coincides with the average conditional copula and is given by

C̄(u1, u2) =

∫
Cx(u1, u2) dFX(x).

Further in Gijbels et al. (2015a) it is shown that if the margins follows a parametric or

nonparametric location scale model as in Sections 4.2.1 and 4.2.2 then the estimator C̃n

is still
√
n-consistent of the partial copula C̄. But in contrast to Theorems 4.4 and 4.6

the effect of using estimates F̂jx instead of the true Fjx does not diminish and affects the

limiting distribution.

As the pairwise simplifying assumption (1.4) is crucial in applications, it is of interest

to have a test of the null hypothesis that the conditional copula does not depend on the

covariate. A semiparametric approach can be found in Acar et al. (2013). Nevertheless, this

approach needs that the copula family is well specified. To circumvent this problem Gijbels

et al. (2017b) introduced a purely nonparametric test based on the conditional Kendall’s

tau (see Section 3.4.1). Later, Gijbels et al. (2017a) suggested a semiparametric test which

works even if the copula family is misspecified.



4.4. FURTHER EXTENSIONS AND DISCUSSION 31

Another question of interest is whether the asymptotic equivalence of the estimator

C̃n with the oracle estimator C
(or)
n holds also in more complicated settings than just for

independent and identically distributed random variables. A generalization to time series

settings is considered in Neumeyer et al. (2017).
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Chapter 5
Nonparametric conditional distribution
function estimation

Suppose we observe independent identically distributed vectors (X1, Y1)T, . . . , (Xn, Yn)T

from (X,Y )T with the cumulative distribution function F (x, y). For various research ques-

tions it is necessary to estimate the conditional distribution function of Y given X = x

Fx(y) = P(Y ≤ y |X = x), y ∈ R.

Note the estimator of the conditional distribution function is also necessary in conditional

copula estimation as discussed in previous chapters.

When estimating Fx a crucial information is whether one can make any assumption

about the effect of the covariate X on the response Y . In parametric approaches one assumes

that Y given X = x follows a given distribution Fx(y,θ) known only up to the unknown

parameter θ. A possible semiparametric approach would be to assume the location-scale

model as in (4.10). Another alternative would be to use a nonparametric location-scale

model

(5.1) Y = m(X) + σ(X) ε,

wherem and σ are unknown (smooth) functions and ε is independent ofX, with an unknown

distribution. If an analyst is not willing to make any assumption about the relationship

of X and Y , then he/she is usually advised to use a fully nonparametric estimator of Fx(y),

for instance a weighted empirical distribution function

(5.2) F̂x(y) =
n∑
i=1

wni(x, hn) I{Yi ≤ y},

where {wni(x, hn)} is a sequence of weights (e.g. Nadaraya-Watson weights, local linear

weights, . . . ) and hn > 0 is a bandwidth sequence tending to zero as the sample size

increases.

Often, it seems evident that a given model explains an important part of the variability

of the observed data, but at the same time one is not willing to assume that the model

33
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completely describes the data generation process. In the following we propose a more gen-

eral approach to improve the nonparametric estimator (5.2) of the conditional distribution

function Fx, that is not relying on a specific model structure but is only inspired by it.

To illustrate the proposed estimation method consider a simple linear regression model

(5.3) Yi = θ0 + θ1Xi + εi, i = 1, . . . , n,

where ε1, . . . , εn are identically independently distributed. Suppose that θ1 is large. Let Fε

be the distribution function of the error term ε. Then the conditional distribution function

of Y given X = x is

Fx(y) = Fε(y − θ0 − θ1x)

and the bias of the standard nonparametric estimator F̂x in (5.2) is for local linear weights

proportional to

h2
n F̈x(y) = h2

n F
′′
ε (y − θ0 − θ1x) θ2

1,

where a dot indicates a derivative with respect to the covariate x, i.e. Ḟx(y) = ∂
∂xFx(y)

and the symbol
′

indicates a derivative with respect to y, i.e. F ′ε(y) = ∂
∂yFε(y). See Hall

et al. (1999) for a study on methods of estimation of a conditional distribution function, and

Van Keilegom and Veraverbeke (1997) for theoretical results on a conditional distribution

function estimator in a fixed design (see the Appendix of that paper). See also Section 5.1.

As the variance of F̂x is proportional to 1
nhn

, a large sample size is needed so that both

variance and bias are sufficiently small and F̂x is a reasonable estimate of Fx. Of course, if

one is sure that model (5.3) holds, then Fx could be estimated simply by F̂ε
(
y− θ̂0 − θ̂1x

)
,

where θ̂0, θ̂1 are consistent estimators of the parameters θ0, θ1 and F̂ε is the empirical

distribution function of the residuals ε̂i = Yi − θ̂0 − θ̂1Xi. Often it cannot be assumed that

model (5.3) explains the effect of the covariate X completely, but it is reasonable to assume

that it captures an important part of this effect. This brings one to the idea of constructing

an estimator of Fx that is pre-adjusted by the linear model. This estimator is defined as

F̂ ax (y) =

n∑
i=1

wni(x, hn) I
{
ε̂i ≤ y − θ̂0 − θ̂1x

}
.

As will be seen later this pre-adjusted nonparametric estimator of the conditional distribu-

tion function Fx can work considerably better than the ‘standard’ nonparametric estimator

F̂x given by (5.2), provided that the linear model (5.3) explains an important part of the

effect of X on Y .

The above considerations lead to the idea of pre-adjusting the responses for ‘obvious’

effects of the covariate. Pre-adjusted estimators can, in general, be constructed as fol-

lows. Let G(x, y) be a function such that the distribution of the transformed observations

Y a
i = G(Xi, Yi) does not depend (or depends less) on Xi. Let Ĝn be an estimate of this

transformation. The pre-adjusted estimator, in general, is given by

(5.4) F̂ ax (y) =

n∑
i=1

wni(x, hn) I
{
Ĝn(Xi, Yi) ≤ Ĝn(x, y)

}
.

In this paper we concentrate in particular on pre-adjusting by location and scale, inspired

by the nonparametric model (5.1), that is Ĝn(x, y) = y−m̂n(x)
σ̂n(x) , where m̂n and σ̂n are for



5.1. ESTIMATING CONDITIONAL DISTRIBUTION FUNCTION BY NONPARAMETRIC
PRE-ADJUSTMENT 35

instance local linear estimators of the conditional mean m and variance σ2

(5.5) m(x) = E [Y
∣∣X = x], σ2(x) = E [Y 2

∣∣X = x]−m2(x).

We will show (both theoretically as well as via simulations) that the suggested estimator F̂ ax
has better properties than the standard estimator F̂x given by (5.2) provided that the pre-

adjusting can be supported by an underlying model. Of course other ways of standardizing

the original observations are possible, e.g. using estimators for a median type of location

quantity.

Note that the idea of pre-adjusting presented above is not entirely novel. Van Keile-

gom and Akritas (1999) used a nonparametric location-scale model to estimate Fx in case

of censoring, but their method assumes that model (5.1) describes the effect of X on Y

completely. In our approach we only assume the existence of the first and second order

conditional moments, without imposing a regression model. To the best of our knowledge

the idea of simply using a standardization by nonparametric location and scale estimates

has been little investigated in the statistical literature. In a working paper by Hansen

(2004), the idea of pre-adjusting by means of a nonparametric location estimator (that is

σ(x) ≡ const.) is used to estimate the conditional density function.

5.1 Estimating conditional distribution function by nonpara-
metric pre-adjustment

In this section the suggested estimator is described in more detail and its asymptotic prop-

erties are discussed.

The key idea is to transform the observations Yi into Y a
i = G(Xi, Yi) such that the

distribution of the Y a
i depends considerably less on the Xi than the original Yi. Obviously

there are various manners to try to achieve this goal, and for the ease of presentation we

focus on the particular standardization

(5.6) Y a
i =

Yi −m(Xi)

σ(Xi)
,

with m(·) and σ2(·) the conditional mean and variance functions (see (5.5)), that are as-

sumed to exist.

Let m̂n and σ̂n be estimates of the functions m and σ in (5.5) and define

(5.7) Ŷ a
i =

Yi − m̂n(Xi)

σ̂n(Xi)
, i = 1, . . . , n.

This leads to the estimator

(5.8) F̂ ax (y) =

n∑
i=1

wni(x, hn) I
{
Yi − m̂n(Xi)

σ̂n(Xi)
≤ y − m̂n(x)

σ̂n(x)

}
.

For ease of presentation, we will concentrate on local linear regression estimates:

(5.9) m̂n(t) =

n∑
i=1

wni(t, g1n)Yi, σ̂2
n(t) =

n∑
i=1

wni(t, g2n)
(
Yi − m̂n(Xi)

)2
,
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where g1n, g2n are bandwidth sequences going to zero.

The weights wni(t, g1n), wni(t, g2n) in (5.9), as well as the weights wni(x, hn) in (5.8), are

local linear weights given by (3.9). Different kernel functions can be chosen in wni(t, g1n),

wni(t, g2n) in (5.9) and in wni(x, hn) given in (3.9). Moreover other weighting schemes than

the local linear weighting scheme can be considered.

Note that only existence of the first and second conditional moment functions (m and

σ) is required, as well as convergence in probability of the nonparametric estimates m̂n

and σ̂n in a neighbourhood of the point of interest x (see the assumptions below). So, the

location-scale model (5.1) does not need to hold.

In the ideal situation that one knows the location and scale functions m and σ, one

would use the oracle estimator of Fx based on the ‘observations’ Y a
i in (5.6):

(5.10) F̃ ax (y) =
n∑
i=1

wni(x, hn) I
{
Y a
i ≤

y−m(x)
σ(x)

}
.

In other words, this is a kind of ‘asymptotic version’ of the estimator F̂ ax (y) that is based

on (5.6) instead of on (5.7).

The main theoretical result in this paper (Theorem 1) tells us that the estimator F̂ ax (y)

in (5.8) is close to the oracle estimator (5.10), in the sense that the supremum distance

between the two estimators tends to zero fast. To prove this result we need to impose some

regularity conditions.

A first set of conditions is

(k’) The kernel k is a continuously differentiable function with support [−1, 1].

(Bw’) hn = O(n−1/5), hn
g1n
→ 0 and hn

g2n
→ 0.

(F1’) The density fX of X is finite, positive and twice continuously differentiable in a

neighbourhood of x.

(F2’) There exists a neighbourhood Ux of the point x such that the conditional distribution

function Ft(y) viewed as a function of (t, y) has uniformly continuous second order

partial derivatives for (t, y) ∈ Ux × R. Furthermore,

sup
t∈Ux

sup
y

∣∣∣yḟt(y)
∣∣∣ <∞, sup

t∈Ux
sup
y
|yft(y)| <∞, sup

t∈Ux
sup
y

∣∣y2f ′t(y)
∣∣ <∞.

(mσ′) The functions m and σ are twice continuously differentiable in a neighbourhood Ux

of the point x and inft∈Ux σ(t) > 0.

Remark. Some common distributions whose support is not the whole real line R (e.g. uni-

form, exponential, . . . ) fail to meet assumption (F2’) at the borders of their support.

Let A be a subset of R such that assumption (F2’) is satisfied for (t, y) ∈ Ux × A. Then

Theorem 5.1 below still holds with supy∈R being replaced with supy∈A.
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Theorem 5.1. Assume that (k’), (Bw’), (F1’), (F2’) and (mσ′) are satisfied for the

given point x. Then

(5.11) sup
y∈R

∣∣∣F̂ ax (y)− F̃ ax (y)
∣∣∣ = oP

(
1√
nhn

)
.

Theorem 5.1 implies that the asymptotic properties of the estimator F̂ ax can be derived

from the asymptotic properties of F̃ ax . Let F ax stand for the conditional distribution function

of Y a = Y−m(X)
σ(X) given X = x. With the help of Theorem 5.1 and similar calculations as

in Fan and Gijbels (1996) (p. 66) one can derive the asymptotic representation for the

pre-adjusted estimator in (5.8)

(5.12) F̂ ax (y)− Fx(y) =

n∑
i=1

wni(x, hn)
[
I
{
Y a
i ≤

y−m(x)
σ(x)

}
− F aXi

(y−m(x)
σ(x)

)]
+ 1

2 h
2
n µ2K F̈

a
x

(y−m(x)
σ(x)

)
+ oP

(
h2
n

)
+ oP

(
1√
nhn

)
,

where µ2K =
∫
u2K(u) du. Analogously, for the estimator in (5.2)

(5.13) F̂x(y)− Fx(y) =
n∑
i=1

wni(x, hn)
[
I {Yi ≤ y} − FXi(y)

]
+ 1

2 h
2
n µ2K F̈x(y) + oP

(
h2
n

)
.

Now, using (5.12) and (5.13) one can derive the approximate asymptotic variances of the

pre-adjusted and standard estimators

var
(
F̂ ax (y) |X

)
= ‖k‖

nhnfX(x) F
a
x

(y−m(x)
σ(x)

) (
1− F ax

(y−m(x)
σ(x)

))
+ oP

(
1

nhn

)
,(5.14)

var
(
F̂x(y) |X

)
= ‖k‖

nhnfX(x) Fx(y) (1− Fx(y)) + oP
(

1
nhn

)
,(5.15)

where ‖k‖ =
∫
k2(u) du. Note that since

F ax (y) = P
(
Y−m(X)
σ(X) ≤ y

∣∣∣X = x
)

= Fx
(
y σ(x) +m(x)

)
,

one gets F ax
(y−m(x)

σ(x)

)
= Fx(y), which together with (5.14) and (5.15) implies that the ap-

proximate asymptotic variances of the standard estimator F̂x(y) and of the pre-adjusted

estimator F̂ ax (y) are equal.

As pre-adjusting does not increase the asymptotic variance, the success of this method

depends on the fact whether it reduces the bias. From representations (5.12) and (5.13) the

approximate asymptotic bias is reduced if F̈ ax
(y−m(x)

σ(x)

)
is closer to zero than F̈x(y). Note

that if the location-scale model (5.1) holds, then F ax (y) = P(ε ≤ y) which does not depend

on x anymore implying that F̈ ax (y) ≡ 0. Thus, in case the nonparametric location-scale

model holds, pre-adjusting is guaranteed to remove the leading term in the asymptotic

bias.

What if the location-scale model (5.1) does not hold? Expressing F̈ ax
(y−m(x)

σ(x)

)
in terms

of the derivatives of Fx, m(x) and σ(x) yields

F̈ ax

(
y−m(x)
σ(x)

)
= F̈x(y) + 2 ḟx(y)

(
(y−m(x))σ′(x)

σ(x) +m′(x)
)

(5.16)

+ f ′x(y)
(

(y−m(x))σ′(x)
σ(x) +m′(x)

)2
+ fx(y)

(
(y−m(x))σ′′(x)

σ(x) +m′′(x)
)
,
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where fx = F ′x stands for the conditional density of Y given X = x. The terms on the

right-hand side of (5.16) should be compared to F̈x(y), the factor in the main term of the

bias for the standard estimator (5.2). Since the terms on the right-hand side of (5.16) can

be of opposite signs, no general comparison between the asymptotic bias of F̂x and F̂ ax
is possible. From expression (5.16) it is seen that less or no advantage of a pre-adjusted

estimator is to be expected when the conditional density fx(y) and/or its derivatives with

respect to either y or x are high when compared to F̈x(y). See also the numerical study in

Veraverbeke et al. (2014, Section 5).

Remark. If it is preferable to have a smoother estimator one can consider, in general, re-

placing the indicator in (5.4) by an integrated kernel function (a distribution function) J.

Together with pre-adjusting via nonparametric estimation of location and scale, the result-

ing estimator is then of the form

F̂ ax (y) =

n∑
i=1

wni(x, hn) Jbn
(
Ŷ a
i −

y−m̂n(x)
σ̂n(x)

)
, where Jbn(y) = J( ybn ),

with bn being a bandwidth sequence tending to zero. This double-kernel smoothing can

be advantageous if one needs to plot the estimator or to use the estimator for quantile

estimation (Yu and Jones, 1998).

5.2 Alternative methods of pre-adjusting

The nonparametric pre-adjusting method described in Section 2 is just one manner of pre-

adjusting. There are many alternative methods that can be applied in the pre-adjusting

step. In this section, we restrict to discuss some of these.

5.2.1 Alternative nonparametric pre-adjustments

Instead of pre-adjusting through nonparametric estimation of the conditional mean and

variance as in (5.7), one can also perform a pre-adjustment by using other estimated quan-

tities of conditional location and/or scale, such as using a conditional median, a conditional

interquartile range, and so on.

Instead of aiming at reducing the influence of Xi on the Yi’s by standardizing the latter

through a conditional mean and variance, an alternative road to go is to transform the Yi’s

as to make these observations more uniform-like (and thus not depending on the Xi). If the

conditional distribution function of Y given Xi, denoted by FXi(y) would be given, then the

transformed variable FXi(Yi) would have a uniform distribution. A method that follows this

angle to tackle the problem, consists of estimating nonparametrically the function FXi(y)

and use this in the above described pre-adjustment step. Inspired by the work of Swanepoel

and Van Graan (2005) a method of pre-adjusting would be to take Ŷ a
i = F̂Xign(Yi), where

F̂xgn(·) is a pilot nonparametric estimator of the conditional distribution function given

by (5.2) with hn replaced with a possible different bandwidth gn. The resulting pre-adjusted

estimator is then defined as

(5.17) F̂ ax (y) =

n∑
i=1

wni(x, hn) I
{
F̂Xign(Yi) ≤ F̂xgn(y)

}
.
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Note that the asymptotic version of the estimator is

F̃ ax (y) =

n∑
i=1

wni(x, hn) I
{
FXi(Yi) ≤ Fx(y)

}
.

As Y a
i = FXi(Yi) has a uniform distribution, F̈ ax (y) = 0. Thus, this estimator aims at

reducing the approximate asymptotic bias to the order of o(h2
n).

All previously discussed nonparametrically pre-adjusted estimators are simply examples

of the key idea of transforming Yi into G(Xi, Yi), as to make the distribution of Yi to be less

influenced by Xi. In the previously described methods we took G(x, y) = (y−m(x))/σ(x),

or G(x, y) = Fx(y).

More generally, for an appropriate function G(x, y), we would have the oracle estimator

(5.18) F̃ ax (y) =

n∑
i=1

wni(x, hn) I
{
G(Xi, Yi) ≤ G(x, y)

}
.

Replacing the unknown function G by an estimator Ĝn would then result into the gen-

eral nonparametrically pre-adjusted estimator as in (5.4). In Section 5.2.3 we discuss the

assumptions needed to guarantee result (5.11) for F̂ ax and F̃ ax given by (5.4) and (5.18).

5.2.2 Alternative parametric pre-adjustments

In a general fashion, a parametric pre-adjustment would consist of transforming the obser-

vations Yi into G(Xi, Yi,θ) where now G(·, ·,θ) is a given parametric function, depending

on a parameter vector θ. The unknown parameter vector is then replaced by an estimate

θ̂n of θ, resulting into the general parametrically pre-adjusted Ŷ a
i = G(Xi, Yi, θ̂n).

We next describe two specific examples of such parametrically pre-adjusted estimation

approaches, that parallel the previously discussed nonparametric approaches. Consider

parametric forms for the conditional mean and variance functions m and σ2 of Section 2,

and denote them as m(·,θ) and σ2(·,θ).

Let θ̂n be the estimator of the unknown parameter θ. The pre-adjusted observations

Ŷ a
i are now given by

Ŷ a
i =

Yi −m(Xi, θ̂n)

σ(Xi, θ̂n)
, i = 1, . . . , n.

Remark. A very simple pre-adjustment that can be often useful is given by:

Ŷ a
i = Yi − θ̂0 − θ̂1Xi − θ̂2X

2
i − . . .− θ̂pX

p
i , i = 1, . . . , n,

where θ̂0, θ̂1, . . . , θ̂p are the estimates of the unknown parameters in the conditional mean

function E [Y |X] = θ0+θ1X+. . .+θpX
p, obtained for instance by the least-squares method.

A second example is when the conditional distribution function of Y given X = x, is of a

parametric form, denoted by Fx(y,θ). The transformed observation Y a
i = FXi(Yi,θ) would

then have a uniform distribution. Replacing the unknown parameter θ by an estimate θ̂n

of θ leads to Ŷ a
i = FXi(Yi, θ̂n) and the parametrically pre-adjusted estimator for Fx

(5.19) F̂ ax (y) =

n∑
i=1

wni(x, hn) I
{
FXi(Yi, θ̂n) ≤ Fx(y, θ̂n)

}
.
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Suppose that there exists a θ, such that θ̂n → θ in probability. Then under appropriate

regularity assumptions, asymptotic properties of the pre-adjusted estimator F̂ ax in (5.19)

can be derived from the asymptotic properties of

F̃ ax (y) =
n∑
i=1

wni(x, hn) I
{
FXi(Yi,θ) ≤ Fx(y,θ)

}
.

5.2.3 Further discussion

In this section we discuss whether for a more general transformation Y a
i = G(Xi, Yi),

the result of Theorem 5.1 continues to hold. Note that showing (5.11) would be quite

straightforward provided that Ĝn converges to G at a faster rate than (nhn)−1/2 (see also

Theorem 5.3 at the end of this section). But assuming such a fast rate of convergence of Ĝn

would either exclude nonparametric adjustment (that gives rate O(n−2/5)) or require that

hn is of smaller order than O(n−1/5) which is typically the optimal rate for hn. The following

technicalities are introduced in order to enable both the nonparametric adjustment as well

as hn ∼ n−1/5.

(G1) There exists a neighbourhood Ux of the point x and a sequence of deterministic

functions
{
G(n)(t, y)

}
such that uniformly in (t, y) ∈ Ux × R

(5.20) Ĝn(t, y) = G(n)(t, y) +
(
1 +G(n)(t, y)

)
op
(

1√
nhn

)
,

where hn is the bandwidth used in the construction of the weights wni(x, hn) in (5.4).

Note that assumption (G1) guarantees that there exists a sequence of deterministic

functions {G(n)(t, y)} such that the difference Ĝn(t, y)−G(n)(t, y) converges to zero faster

than (nhn)−1/2.

Remark. To illustrate assumption (G1), consider Ĝn(t, y) = y−m̂n(t)
σ̂n(t) , where m̂n and σ̂n are

given by (5.9).

Recall that m(t) = E [Y |X = t] and put

(5.21) anj(t) =

∫
sjk(s)fX(t+ sg1n) ds, bnj(t) =

∫
sjk(s)fX(t+ sg1n)m(t+ sg1n) ds.

Then for

m(n)(t) =
bn0(t) an2(t)− bn1(t) an1(t)

an0(t) an2(t)− a2
n1(t)

,

it holds that uniformly in t ∈ Ux:

(5.22) m̂n(t)−m(n)(t) = OP
(

1√
n g1n

)
.

Similarly (for details see Appendix A Veraverbeke et al., 2014), one can construct σ(n)(t)

such that uniformly in t ∈ Ux:

(5.23) σ̂n(t)− σ(n)(t) = OP
(

1√
n g2n

)
.

Thus, by (5.22), (5.23) and assumption (Bw’) one gets (5.20) with G(n)(t, y) =
y−m(n)(t)

σ(n)(t)
.
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Remark. If one considers a general nonparametric adjustment (5.17) with the transformation

given by Ĝn(t, y) = F̂tgn(y), then G(n)(t, y) can be taken as

G(n)(t, y) =
dn0(t, y) an2(t)− dn1(t, y) an1(t)

an0(t) an2(t)− a2
n1(t)

,

with anj(t) defined in (5.21) and dnj given by

dnj(t, y) =

∫
sjk(s)fX(t+ sgn)Ft+sgn(y) ds.

The next assumption guarantees that

I
{
G(n)(x, Y ) ≤ G(n)(x, y)

}
= I
{
G(x, Y ) ≤ G(x, y)

}
= I
{
Y ≤ y

}
,

which is needed to recover the conditional distribution of Y from the conditional distribution

of the random variable G(n)(x, Y ) or G(x, Y ).

(G2) Suppose that G(t, y) as well as the functions G(n)(t, y) are for all sufficiently large n

increasing in y for a fixed t. Let H(t, u) (H(n)(t, u)) be a function such that for a fixed t

the function H(t, ·) (H(n)(t, ·)) is an inverse function of G(t, ·) (G(n)(t, ·)). Suppose

that for all sufficiently large n it holds

(5.24) H
(
x,G(x, y)

)
= y, H(n)

(
x,G(n)(x, y)

)
= y, ∀y ∈ R.

The following assumptions are ‘generic’ replacements of the assumptions (F2’) and

(mσ′). They guarantee that the functions G(n)(t, y) are sufficiently smooth and sufficiently

close to the function G(t, y). They can be either written in terms of the distribution of the

original variables Y or in terms of the transformed variables G(n)(x, Y ). For brevity we

formulate these assumptions only in terms of the transformed variables.

Let F ant(y) and F at (y) be the conditional distribution functions of the random variables

G(n)(X1, Y1) and G(X1, Y1) given X1 = t. The corresponding densities are denoted as fant(y)

and fat (y).

(F2g) Suppose that

lim
n→∞

sup
(t,y)∈Ux×R

∣∣F ant(y)− F at (y)
∣∣ = o(1)

and

lim
n→∞

sup
(t,y)∈Ux×R

∣∣y fant(y)
∣∣ <∞, sup

(t,y)∈Ux×R

∣∣y fat (y)
∣∣ <∞.

(F3g) There exists a neighbourhood Ux of the point x such that the function F̈ at (G(x, y))

exists and is uniformly continuous for (t, y) ∈ Ux × R.

(F4g) supy∈R

∣∣∣Ḟ anx(y)
∣∣∣ <∞ and

sup
(t,y)∈Ux×R

∣∣∣F̈ ant(G(n)(x, y)
)
− F̈ at

(
G(x, y)

)∣∣∣→ 0, as n→∞.
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Theorem 5.2. Assume that (k’), (G1), (G2), (F1’), (F2g), (F3g) and (F4g) are

satisfied for the given point x and hn = O(n−1/5). Then the result (5.11) of Theorem 5.1

holds, where F̂ ax is given by (5.4) and F̃ ax by (5.18).

The theorem is proved in Veraverbeke et al. (2014, Appendix B).

Remark. Note that the assumption of monotonicity of the function G(t, y) in the second

argument is not satisfied if one considers G(t, y) = Ft(y) and the conditional distribution

function Ft(y) is not strictly increasing. Although this is distracting, it is only a technical

problem. Generally, it seems natural to consider only the transformations Ĝn(t, y) that are

for fixed t nondecreasing in y. Thus one can consider G(n)(t, y), G(t, y) that are nondecreas-

ing in y. Let H(n)(t, ·) and H(t, ·) be a pseudo-inverse of G(n)(t, ·) and G(t, ·) respectively.

Further, let the assumption (5.24) hold in the points y where G(x, ·) is strictly increasing.

Note that then it holds

Fx
(
H(x,G(x, y))

)
= Fx

(
H(n)(x,G(n)(x, y))

)
= Fx(y), y ∈ R,

and the proof of Theorem 5.2 works also for the situation when G(t, y) is nondecreasing

(but not strictly increasing) in y.

It is interesting to point out that the proof of Theorem 5.2 relies on a sufficiently fast

convergence of Ĝn toG(n) (see assumption (G1)), but it does not assume anything about the

speed of convergence of G(n) to G. On the other hand smoothness assumptions formulated

in (F2g), (F3g) and (F4g) are required. Alternatively, one can considerably weaken the

smoothness assumption about F at provided that already Ĝn(x, y) converges to G(x, y) at ‘a

sufficiently fast rate’. This is formalized by the following assumptions that are used in the

subsequent theorem.

(G1’) There exists a neighbourhood Ux of the point x and a function G(t, y) such that

uniformly in (t, y) ∈ Ux × R

(5.25) Ĝn(t, y) = G(t, y) +
(
1 +G(t, y)

)
op
(

1√
nhn

)
,

where hn is the bandwidth used in the construction of the weights wni(x, hn) in (5.4).

(G2’) Suppose that G(t, y) are for all sufficiently large n increasing in y for a fixed t. Let

H(t, u) be a function such that for a fixed t the function H(t, ·) is an inverse function

of G(t, ·) Suppose that it holds

H
(
x,G(x, y)

)
= y, ∀y ∈ R.

(F2g’) It holds

sup
(t,y)∈Ux×R

∣∣y fat (y)
∣∣ <∞.

Note that assumption (G1’) is useful for parametric pre-adjustment where the remain-

der term in (5.25) is typically of order OP (n−1/2).

The following theorem can be proved by mimicking Step 1 of the proof of Theorem 5.2

and replacing G(n), H(n) and Y a
ni with G, H and Y a

i .

Theorem 5.3. Assume that (k’), (G1’), (G2’), (F1’) and (F2g’) are satisfied for the

given point x and hn = O(n−1/5). Then the result (5.11) of Theorem 5.1 holds.
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5.3 Discussion and further extensions

The idea of pre-adjusting can be applied in a straightforward way to the estimators of a

conditional distribution function discussed in Hall et al. (1999). Pre-adjusting can also

be applied together with the methods presented in Dette and Volgushev (2008) to have a

monotone estimator of Fx(y) when local linear weights are used.

As discussed in Veraverbeke et al. (2014, Section 4) the idea of pre-adjusting can be

helpful in other estimation settings as nonparametric quantile estimation and conditional

density estimation. Further, Veraverbeke et al. (2014) illustrate that pre-adjusting can be

used also with censored data.
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Fermanian, J.-D., Radulovič, D., and Wegkamp, M. (2004). Weak convergence of

empirical copula processes. Bernoulli, 10, 847–860. doi: 10.3150/bj/1099579158.

45

http://dx.doi.org/10.1016/j.jmva.2012.02.001
http://dx.doi.org/10.1214/13-EJS866
http://dx.doi.org/10.1214/13-EJS866
http://dx.doi.org/10.1080/10485259408832597
http://dx.doi.org/10.1080/01621459.1993.10476411
http://dx.doi.org/10.1016/j.jmva.2013.04.003
http://dx.doi.org/10.1214/14-AOS1237
http://dx.doi.org/10.1002/cjs.5550350205
http://dx.doi.org/10.1111/j.1467-9868.2008.00651.x
http://dx.doi.org/10.3150/bj/1099579158


46 BIBLIOGRAPHY

Gänssler, P. and Stute, W. (1987). Seminar on Empirical Processes. Birkhäuser, Basel.
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