
]

Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

[

Tomáš PLCH

Believable Decision Making in Large Scale Open World

Games for Ambient Characters

Department of Software and Computer Science Education

Supervisor of the doctoral thesis: Mgr. Cyril Brom, Ph. D.

Study program: Computer Science

Specialization: Theoretical Computer Science

Prague 2017

I want to thank everybody who supported me on this quest and I apologize to everybody

whom I forgot. First of all, I want to thank my parents for their never-ending support and

inspiration. I want to thank my supervisor Cyril for his oversight and guidance for god-

knows-how-long. I also want to thank all my friends (Kryštof, Dana, and many more) for

cheering me on. All my friends at the faculty with whom I shared the same path to make

some small scientific relevance in the world (Michal, Jakub, Martin). I want to thank my

colleagues at work whom helped me make this work a reality (Matej, Mikee, Martin,

Prokop, Pigi, Viktor, Baz and many more). I want to thank Warhorse Studios (Martin,

Viktor, Dan and Petr) for providing me with the opportunity to have my ideas put to work.

Also, my thanks goes to scripters and designers (Petr, Michal, Zigi, Dan…) who helped

shape my ideas to make them work for actual production.

But my most sincere thanks go to Martina, my soul-mate, for being primary source of

strength and raw power to push through this. She cared for me with all her love. Thank you

for being at my side.

Thank you

I declare that I carried out this doctoral thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

Název práce: Uvěřitelné rozhodování virtuálních postav ve hrách s velkým

otevřeným světem

Autor: Tomáš Plch

Katedra / Ústav: Katedra softwaru a výuky informatiky

Vedoucí doktorské práce: Mgr. Cyril Brom, Ph. D., Katedra softwaru a výuky

informatiky

Abstrakt: Hry s velkým otevřeným světem jsou obydleny populacemi s velkým

počtem virtuálních bytostí, které se účastní na herním příběhu a obohacují virtuální

svět svojí přítomností. Realizmus tohoto prostředí a uvěřitelnost chování jeho

obyvatelstva je klíčová pro hráčův imerzivní zážitek. V první části naší práce

prezentujeme vylepšení jazyka pro specifikaci chováni virtuálních bytostí tak, aby

bylo možné specifikovat komplexní uvěřitelné chování jednoduchou a udržitelnou

formou. Specifika jazyka jsme založili na kombinaci principů objektového

programování a paradigmatu behaviorálních stromů. V druhé části práce popisujeme

koncept Inteligentního prostředí schopného adaptivně reagovat na chování

virtuálních bytostí i na hráčovy akce tak, abychom hráči prezentovali uvěřitelný svět.

V třetí části specifikujeme koncept Smart konstruktů, které poskytují virtuálním

bytostem kontextově správné chování, aby bylo ve specifických oblastech

uvěřitelnější. Dále Smart konstrukty poskytují chování spjaté s používáním předmětů

a účastí v příběhu hry tak, aby nedocházelo k narušení iluze uvěřitelného světa. V

poslední části popisujeme funkci sémantické sítě informací, které umožňují

poznávání virtuálního světa za pomocí jednoduchých dotazů. K ověření praktické

aplikovatelnosti našich postupů jsme integrovali naši architekturu do

velkorozpočtové hry Kingdom Come: Deliverance vyvíjené ve Warhorse Studios.

Klíčová slova: uveřitelné chování, virtuální bytost, otevřený svět, volba akcií,

počítačová hra, behaviorální strom

Title: Believable Decision Making in Large Scale Open World Games for Ambient

Characters

Author: Tomáš Plch

Department / Institute: Department of Software and Computer Science Education

Supervisor of the doctoral thesis: Mgr. Cyril Brom, Ph. D., Department of Software

and Computer Science Education

Abstract: Large scale open worlds for computer games are inhabited by populations

of Non-Player Characters (NPC). Believability of these NPCs is key in presenting

immersive gameplay to the player. Managing complexity of NPC behaviors is a

fundamental game development problem. This thesis is focused on increasing

believability of NPCs’ behaviors by providing an enhanced language for specifying

action selection for these characters. The language is based on the Behavior Tree

paradigm combined with object-oriented programming. We introduce our language’s

mechanisms that enable a developer to create complex, yet maintainable behaviors

for individual NPCs. Second, we introduce our mechanism called Intelligent

Environment aimed at maintaining a believable game environment able to adapt to

player’s actions and NPC’s behaviors. Thirdly, we present our Smart construct

concept which provides NPCs with context relevant behaviors from dedicated

behavior containers to employ them when present at locations, using objects, or

engaging in the game’s quests. Fourthly, we present our semantic network to allow

exploration of relations between objects, NPCs and in-game locations by means of

predicate based queries. We integrated our architecture into the Kingdom Come:

Deliverance computer developed by Warhorse Studios to evaluate the feasibility our

approach in a real-life production of a big budget open world computer game.

Keywords: believable behavior, non-player character, open world, actions selection,

computer game, behavior tree

Contents

1 Introduction ... 6

1.1 The Uncanny Valley of Believable Intellect ... 7

1.2 Virtual Worlds ... 8

1.3 Virtual Life .. 9

1.4 Thesis Goals .. 9

1.5 Thesis structure ...12

2 Analysis ...13

2.1 Computer Game Engine ..13

2.2 Basic Concepts ...14

2.2.1 Belief-Desire-Intention ..15

2.2.2 Action Selection ..16

2.2.3 Summary ...20

2.3 Transferable Design Reasoning ...20

2.3.1 Making a game ..20

2.3.2 Engineered Virtual Worlds ...21

2.3.3 Managing Complexity and Context ..23

2.3.4 Summary ...25

3 Scenarios ...26

3.1 Life of Brian ...26

3.2 Tavern ..26

3.3 Death in the streets ..27

3.4 Poisoned Jerry ..28

3.4.1 Battle ...28

3.5 Summary ..29

4 Making Decisions ...30

4.1 Behavior Tree ...30

4.2 Stateful Behavior Tree ..32

4.2.1 Tree Nodes ..33

4.2.2 Execution and Evaluation...34

4.2.3 Budgeting ..36

4.2.4 Parallelism ...38

4.2.5 SBT Events ..40

4.2.6 Data Model ..43

4.2.7 Data Storage and Access ..46

4.3 Messaging ..50

4.4 The Message ...51

4.4.1 States ...51

4.4.2 Inboxes ..52

4.4.3 Timeouts..54

4.4.4 Addressing...54

4.4.5 Processing Schemas ...54

4.4.6 Summary ...56

4.5 Synchronization ..57

4.5.1 Locks ...57

4.5.2 Semaphores ...58

4.5.3 Barriers ..58

4.6 SBT Actions ...59

4.6.1 Run an Action ..59

4.6.2 Asynchronous execution ..61

4.6.3 Synchronized Actions ..63

4.6.4 Action Chaining ...65

4.6.5 Move and Act ..67

4.6.6 Summary ...68

4.7 SBT Summary ..69

5 Decision Making Mechanism for NPCs ...70

5.1 Architecture ..71

5.2 Brain ..72

5.2.1 Day Plan ..72

5.3 SubBrain...74

5.4 The Player ..75

5.5 Summary ..76

6 Smart World, Intelligent Environment ...78

6.1 Motivation ..78

6.2 Relevant work...79

6.2.1 Smart Objects ..79

6.2.2 Smart Environments ..80

6.3 Analysis ..80

6.4 Behavior Injection ..82

6.5 Intelligent Environment ..84

6.5.1 IE Object ...84

6.5.2 IE Area ..86

6.5.3 IE Mechanism..87

6.5.4 IE Virtual Observers ..88

6.6 Smart Constructs...88

6.6.1 Smart Objects ..91

6.6.2 Smart Quests ...92

6.6.3 Smart Navigation Objects ..92

6.6.4 Smart Areas ...92

6.6.5 Summary ...96

7 Knowledge network ..98

7.1 Relation Knowledge Network ...98

7.2 Static, Dynamic and Virtual Links ..99

7.3 RKN Query .. 100

7.4 Query Predicate .. 102

7.4.1 Filter .. 102

7.4.2 Logical Operator .. 102

7.4.3 Analyzers .. 102

7.4.4 Sub-queries .. 103

7.5 Adding Dimension .. 103

7.6 Search Mechanism .. 104

7.7 Example ... 105

7.8 Scenario 1 – Life of Brian ... 105

7.8.1 Going to work .. 106

7.8.2 Having some fun .. 106

7.8.3 Player steals from the neighbor .. 106

7.9 Summary .. 107

8 Evaluation ... 109

8.1 SBT Use Evaluation.. 109

8.1.1 Qualitative Evaluation of MBTs ... 109

8.1.2 Quantitative Evaluation of MBTs ... 110

8.2 Comparing SA and SBT concepts ... 111

8.2.1 Results ... 112

8.3 Qualitative Evaluation .. 113

8.3.1 KCD Integration and Deployment .. 114

8.3.2 Personal Feedback via Interview .. 115

8.4 Industrial Deployment Evaluation ... 118

8.4.1 Frame Time ... 119

8.4.2 Overall numbers .. 122

8.4.3 Messaging ... 123

8.4.4 Intelligent Environment and NPCs ... 125

8.4.5 Updating SBTs .. 128

8.4.6 RKN queries .. 130

9 Summary .. 132

9.1 Stateful Behavior Tree Language .. 133

9.2 Three-Tier Deliberation Architecture .. 134

9.3 Intelligent Environment .. 134

9.4 Smart Constructs... 135

9.5 Semantic Network .. 135

9.6 Evaluation and Integration .. 135

10 Future work .. 137

11 Conclusion ... 138

12 Bibliography.. 139

List of Figures ... 148

List of Tables .. 153

List of Abbreviations .. 154

List of Author’s Publications ... 155

 Publications relevant to this thesis .. 155

 Other publications .. 155

Appendix A – Attached Digital Content .. 158

Appendix B – Video commentary .. 159

 6

1 Introduction

The evolution of computer games went hand in hand with the evolution of computer

hardware. At first, only a handful of selected individuals could create and play games

on expensive equipment mainly intended for scientific or military applications. As

time progressed, Moore’s Law (Moore, 1965) effect provided the common public

with better and cheaper hardware and computer games took deep roots in our society.

Known and loved classics like the game of Pong (1973) (Sellers, 2001) and Pac Man

(1980) (Kent, 2001) are part our cultural heritage of the late 20
th
 century.

With the progression of the Internet and more powerful hardware, evolution of

games took a more global turn. The culture moved from single and split-screen

played games to online gaming. At the dawn of the 21
th
 century, games like World of

Warcraft (2004) (Entertainment, Blizzard, 2004) started a social gaming revolution.

Players could access gigantic virtual worlds, socialize with other players, play

together against each other or kill creatures populating the environment’s dungeons.

Players enjoyed a complex in-game life of their virtual characters and do identify

with them on some level. The role-playing aspect was ever more intrusive into every

game genre, from Role Playing Games (RPG) to First Person Shooters (FPS) and

Real Time Strategy (RTS) games.

Virtual worlds inhabited by both players and Non-Player Characters (NPC) have

gotten bigger and more complicated with every new game. However, due to the ever

slowing progression of visual fidelity, user focus has shifted to a more delicate topic

of virtual world’s believability (Umarov & Mozgovoy, 2012). Believable worlds

with believably behaving entities tend to mimic the real world as much as possible to

provide the player with the highest degree of immersion. It is an intricate illusion of

intelligence which tricks the player into asking whether NPCs are exhibiting

cognitive properties associated with humans – thinking for themselves to achieve

their goals and desires in a deliberate way.

 7

1.1 The Uncanny Valley of Believable Intellect

The Uncanny Valley Theory (Mori, MacDorman, & Kageki, 2012) postulates that

when human-like artificial life is presented to a human observer the affection for it is

increasing with the replica’s ability to imitate human traits and properties. However,

there is a major dip the observer’s affinity called Uncanny Valley (Figure 1). This

effect is further increased by reducing the consistency of the presented imitation

(MacDorman & Chattopadhyay, 2016). There are different theories which have

proposed explanations of this phenomenon like mate selection (Green, MacDorman,

Chin-Chang, & Vasudevan, 2008) or pathogen avoidance (Craig, 2012). The

common theme is the fact that humans are very sensitive about imperfections and

subtle differences which are perceived at a subconscious level.

Figure 1: The Uncanny Valley diagram shows how human resentment is more intense with

increase in human-like appearance (© MacDorman, 2005)

The theory is often applied to androids and humanized robots, but it also applies

to animated virtual characters in movies and computer games (Tinwell, 2014). Since

computer games are not limited to the physical capabilities of artificial skin and

mechanical actuators (e.g. small servos to move an android’s eyes), they can provide

a more complex virtual representation that is more ahead into the Uncanny Valley.

In respect to computer games, a lot has changed over recent years. Polygon count

of both environment and characters has increased dramatically – from few hundred

to several thousand polygons per single character (Figure 2). Animation have

advanced from simple sprite sequences to skeleton based animations with character

skinning and muscle simulation (Geijtenbeek, van de Panne, & van der Stappen,

2013). Nowadays, characters utilize complex facial expressions to convey emotions

and internal state of mind. Both in real-time (e.g. computer games) and offline

rendered (e.g. movies) applications, the depth of the visual fidelity has increased

almost exponentially.

 8

Figure 2: Soldier NPC from the Half Life game series (Valve & Gearbox, 1998-2007). On

the left a low polygon model with few animations (e.g. walking, kneeling, jumping). On the

right a high polygon character with a large animation repository (e.g. jumping over
obstacles, leaning etc.) (© Valve Software)

However, visual fidelity is only one part of the problem (Tinwella, Grimshawa,

Nabib, & Williamsa, 2011). If characters are behaving in an unnatural or unrealistic

way, it breaks the illusion and provides additional inconsistencies which throw the

observer deeper into the Uncanny Valley. Therefore, the concept of believable

behavior (Loyall, 1997) is key in getting games with amazing visuals more accepted

by the players.

1.2 Virtual Worlds

Imagine virtual worlds – visually appealing, interactive, full of wonders, but lifeless.

Nobody to talk to, nothing to see moving except leafs on trees and grass on

meadows. Wandering such worlds would be boring after a while. Games are as much

about interaction as they are about looks and mechanics. What would be a story

without actors, a quest without anybody to give it, a dungeon without nothing to

guard its treasures.

Imagine these worlds being populated by virtual life, virtual humans and animals,

able to provide sense of meaning. Imagine actors for the stories and ambient life for

the world to watch. However, if these virtual inhabitants would be hollow non-

interactive husks, they would not be more than just better skinned set of moving

statues.

Imagine believable acting, where reason, hidden or evident, might be suspected.

Imagine a world where the player is stalked by the question if other characters are

played by humans or not. A world where virtual humans go about their jobs, have

hobbies, feuds with their neighbors or cheat on each other. Such an intriguing world

might be fun to explore, to watch and live its stories.

Therefore, a virtual world is more than just a sum of all the graphical assets and

animations. The true illusion of a virtual environment is the illusion of artificial life

with its own principles, its own mechanisms and its own reasons. A successful

 9

virtual world is the one that can capture the imagination of the player on what can be

explored and what can happen and keep the consistency of what happens in the

world, to avoid confusion.

1.3 Virtual Life

Large scale virtual worlds are commonly populated by both human players and

intelligent NPCs. Where players follow their own game related agenda (i.e. quests in

a storyline), NPCs perceive the fulfillment of their own goals (Russell & Norvig,

2009) and tasks. The agenda may be either a) story bound, or b) ambient. Story

bound agenda is often related to activities in respect to the player’s game agenda,

where an NPC helps or opposes the player. There is little to no room to deviate from

such predesigned paths, since game design tends to avoid situations which could

break the game. On the contrary, an NPC’s ambient agenda denotes the autonomous

function of the NPC within the virtual world – Virtual Life (Figure 3).

Figure 3: Virtual life of a simple farmer in Kingdom Come: Deliverance

(© Warhorse Studios 2017)

Virtual Life can be summarized as a set of available actions (e.g. go to sleep, go to

work etc.) and given goals (e.g. have something to eat, chat with friends from time to

time) to achieve on a day-by-day basis. A common peasant NPC at home in a village

is the most generic example available. The NPC is not particularly interested in the

player’s quest and goes to work day-by-day and tends to have fun at the village’s

tavern from time to time. The believability of such ambient NPCs adds to the overall

believability of the virtual world. If the NPC would be a simple automaton walking

around the house all day, without any context specific reactions (e.g. it rains so avoid

work outside), it would break the overall immersion.

1.4 Thesis Goals

The gaming industry mantra »visuals sell« implies that very limited time and effort is

invested into creating complex virtual worlds inhabited with NPCs capable of

believable human-like reasoning in everyday life aspects. It is much more desired to

 10

utilize computing power and developers to facilitate a good-looking game, instead of

complex and rich environments with emergent gameplay. Due to pressing

technological limitations of today’s hardware, visuals tend to advance at a slower

pace, leaving room for more focus on believability of virtual worlds and their virtual

life. In other words, it is ever harder to make the game look better, but they can be

made more immersive and fun to play.

Our thesis focuses on RPGs which manifest within large scale virtual worlds

facilitating a complex real time simulation of Virtual Life. We aim at providing a

framework for creating and maintaining a persistent and believable NPC population

which imitates a real-life environment with complex relations between participants

and their believable reactions to emerging situations. The notion of behavior

believability is imperative to our work.

Primarily we focus on six areas:

Goal 1) Believable Ambient Environment denotes the essence of Virtual Life

within the large scale world – day-by-day life of NPCs which exist on

their own within the world, living their virtual lives. We aim at producing

a rich and diverse environment where NPCs have actual deliberation and

purpose about their actions. Our focus is to provide an NPC architecture

and mechanisms which allow for constructing day-by-day routines in a

diverse and effortless way.

Goal 2) Emergent Situations may arise when something unexpected happens

and NPCs need to deal with it in a reasonable and context specific manner.

Fixing a broken cart wheel or investigating a murder should not be a big

issue for both NPCs and the designers as well. Our goal is to provide

mechanisms to create such situations easily in a controlled manner to

maintain a proper situation context to participating NPCs.

Goal 3) Story Driven Environment is present in most RPGs, since having only

an open world tends to get boring rather quickly. We aim at making the

ambient environment able to adapt to a player centric narrative in a

seamless way without disturbing their day-by-day lives

Goal 4) Behavior Depth and Complexity is necessary to facilitate believable

human-like behaviors. We focus on providing mechanisms which can be

utilized to create NPC relations with diverse interactions and

communication. We want to provide NPCs with a more diverse rooster of

actions without compromising the simplicity of the NPCs design.

Goal 5) Large Scale Deployment of NPCs is necessary to maintain an illusion

of a vibrant and life-filled open world. Our architecture’s goal is to be

deployable in a large scale setting with hundreds of NPCs spread over a

large landscape.

In summary, we aim at providing a complete solution to a large scale open world

simulation for hundreds of NPCs within a story driven game. Our main goal is to

provide a framework capable of satisfying all the above described areas of interest in

production grade quality.

To facilitate the above specified goals, we propose a set of mechanisms which we

will investigate in our thesis in detail. These mechanisms will be implemented as an

Artificial Intelligence Framework for the Kingdom Come: Deliverance (KCD)

(Warhorse Studios, 2017) computer game, developed at Warhorse Studios. We have

identified the following mechanisms:

 11

1) Stateful Behavior Tree Language – we will discuss details of our extended

behavior description language called Stateful Behavior Tree (SBT)

language, which is aimed at providing a more complex deliberation

mechanism than the commonly used scripting or Behavior Tree languages.

We focus on behavior decomposition into blocks similar to function calls

present in a programming language. This mechanism is primarily aimed at

being the foundation to all our goals, since it is our way to express

complex behavior patterns for a believable virtual world. Our primary

focus is on Goal 1 and 4, where the expressiveness and complexity of the

language are key to deliver believable behaving NPCs.

2) Three Tier Deliberation Architecture – we will discuss details of our

deliberation architecture where high-level decisions are passed down to

lower level decision making and action execution. We implemented it to

be able to manage issues at Goal 2, 3, and 4 where adaptation to the

situation’s context is key and behavior decomposition is necessary to

provide a maintainable overall solution.

3) Intelligent Environment – we propose to imbue objects, areas and other

entities present in the virtual world with intelligence to provide more

complex and context sensitive environment’s behavior. It allows us to

provide a context relevant reaction to emerging situations addressed by

Goal 2. In respect to Goal 3, the Intelligent Environment enables us to

provide custom tailored behaviors to player actions in respect to quests

and the storyline. The required scale of the solution addressed in Goal 4

implies the necessity to decompose behaviors into maintainable partitions,

which we intend to spread into the environment to avoid monolithic

constructions which are hard to maintain.

4) Smart constructs – we propose to allow objects, areas and other entities to

be a source of behaviors for any intelligent entity within the virtual world,

displacing context and relevant (e.g. to an object, area or situation)

behaviors for intelligent objects to make use of. This mechanic focuses on

Goal 2, 4, and 5 where providing context relevant behaviors is key. This

allows us to maintain simple and generic NPC behavior and spreading

context relevant behaviors into the environment for use by NPCs. At Goal

2, emerging situations are a prime candidate to be the source of context

relevant behaviors which provide more depth and complexity to NPCs

required at Goal 4. This concept also provides a generic solution to the

need to introduce new content, objects and mechanisms to a large-scale

game (Goal 5). Overall, having context relevant behaving NPCs is also

relevant to Goal 1.

5) Semantic network – we propose a graph based knowledge representation

within the virtual world to allow for more natural acquisition of

information about the environment and its capabilities. This is aimed at

providing a supportive mechanism for Smart constructs (e.g. what can be

done with an object) and the SBT language, to allow to query and modify

semantics and relations within the virtual world (e.g. where do I like to go

to have fun). It also provides a mechanism for the high-level deliberation

(Goal 3) of an NPC to reason about the virtual world’s dependencies (e.g.

what is in my house is mine). Since a semantic network is fairly easy to

 12

visualize, thus it is necessary for a large-scale deployment (Goal 5) of our

architecture in a complex virtual world. The semantics introduced into the

network (e.g. somebody who is not my friend present at my house at night

is a threat) allows for a much more believable ambient behavior of NPCs

aimed at by Goal 1.

In summary, all the above presented mechanisms are key to facilitate our goals as

a whole, since they either support or complement each other (Figure 4).

Figure 4: Dependency between Goals and Mechanisms

1.5 Thesis structure

We structure our thesis into chapters addressing the outlined issues in sequence. In

Chapter 2, we focus on our analysis of the target environment (i.e. computer game),

we present relevant work and setup fundaments for our thesis. In Chapter 3, we

present a set of scenarios we used to develop the presented approaches
1
. In

Chapter 4, we present our Stateful Behavior Tree language for describing behaviors.

In Chapter 5, we present out Three Tier Deliberation Architecture. In Chapter 6 we

present our approach on decomposing behaviors into our Intelligent Environment

and Smart constructs. In Chapter 7 we present our Semantic Network used to access

information in the world to convey behavior decomposition and logical inferences

about the world. In Chapter 8, we present our evaluation of the presented

mechanisms. Chapter 9 we summarize our thesis in respect to our goals. In Chapter

10, we discuss future work and Chapter 11 concludes our thesis.

1 The presented scenarios are part of the KCD game proving the feasibility of our industrial

integration.

 13

2 Analysis

Our thesis focuses on enhancing Virtual Life within a large scale open world to make

it more believable and thus more enjoyable for the player. RPGs are about player’s

character progression and often have a story to follow. We consider the ambient

world and its population to be the key component in building such environment for

the player to explore and enjoy.

In this chapter, we establish the basic concepts we build our architecture upon.

We also address the relevant work influencing our approach in respect to action

selection and deliberation.

2.1 Computer Game Engine

Computer Game Engine (CGE) represents the environment which hosts all the

subsystems that make out a game (e.g. rendering, Artificial Intelligence, sound

system etc.). It encompasses core mechanisms which may be required by other

subsystems. Simply put, the CGE runs the game providing the overall architecture

other subsystems respect.

There are many ways on how to design a CGE (Gregory, 2014), but one key

conceptual trait has been present in most designs so far – the endless game loop (also

called frame loop). The virtual world advances at discrete steps (i.e. frames), where

inputs are collected, the world is transformed based on accumulated time difference

from last frame (e.g. NPCs move in their current direction at their present speed), and

all is rendered as soon as possible.

Since the game loop can be understood as the perpetual presentation of the virtual

environment, it is frequent practice to present a framerate above the human

perception threshold (i.e. 24 Frames Per Second (FPS) in movies) to keep the illusion

of a continuous non-discrete runtime. Rates of 30 or 60 FPS are common target

values for present game engines like Unreal Engine (Epic Games, 1998) and

CryEngine (Crytek, 2002).

There are two key issues game developers tend to avoid – frame rate drops and

varying delta differences. Rendering less frames per second than desired is called a

frame rate drop. It may occur if some time-consuming action takes place within the

CGE and as result, the virtual world advances at perceivably more discrete manner,

thus losing the real-time feeling. It is similar to pausing and skipping over parts of a

movie. Obvious it is not desired and has to be avoided at all cost by all subsystems.

Varying delta difference issue is manifested if the difference between frames varies

significantly and the overall feeling from moving objects is that they travel at varying

speeds and the overall feeling of dynamic scenes is not good.

Therefore, one key feature of any component responsible for facilitating the

Virtual Life’s mechanisms must be designed so that it only consumes as much

computational resources so that the frame loop is not hindered beyond the designated

frame rate. Also, it is necessary that utilization of resources will be spread even to

avoid frame rate fluctuations. It would be desirable to run all computations in parallel

(i.e. on another thread) to other subsystems, so most of the frame time can be

utilized. It is noteworthy that if target frame rate is 30 FPS, the overall time for one

frame is not more than 30ms to advance the simulation to the next frame.

 14

2.2 Basic Concepts

Open World Games (OWGs) can be abstracted as virtual environments that provide

the player with the maximum available freedom in respect to both movement and

actions. Simply put, the player should be able to go anywhere and do anything game

mechanics and level design allows. A large scale OWG is presented to the player as a

continuous world where everything happens simultaneously. Commonly such games

cover a substantial virtual landscape, ranging up to hundreds of square kilometers.

Therefore we can abstract the large scale OWG as a system defined at any time by

a configuration (CFG), which represents a set of facts valid within the world

{F1,...Fn}. A fact can be seen as a logical predicate which holds true – e.g.

»Frank is at Work«, »Hammer belongs to John«. When an action (a) is applied to the

world, it changes the configuration of the world over time from one configuration to

another a(OWG,t): C1 → C2. Simply put, actions transform the world. We

assume that when actions are applied, their effects can be serialized.

Every NPC has a given set of available actions (aa) {A1, ...An} which can be

invoked. The contents of the set depend on the present OWG’s CFG. Therefore,

available actions are context specific (e.g. a sitting NPC has a separate set of actions

than a standing NPC) in respect to the NPC and the environment. The player is

similarly equipped with a set of available actions. Practically, actions may range

from simple animations (e.g. picking up an objects) to complex constructs like »Find

the Player«.

Further, every NPC has a set of desires and goals. These can be abstracted as a set

of desirable configurations {CFG1,...CFGn} or as an evaluation function

fH:CFG → Happiness. Simply put, the NPC tends to execute actions which lead

to accomplishing goals (de Silva, Sardina, & Padgham, 2009) (e.g. going to work,

going to have fun). The overall goal of an NPC is to maximize the fH over time.

To achieve this, the NPC facilitates Action Selection (AS), which chooses the next

action to execute based on the current configuration and value of fH. Therefore, the

action selection can be abstracted as follows AS: max{fH(a(CFG));a ϵ aa}.

The action selection runs within a Decision-Making Mechanism (DMM), which is

responsible for collecting CFGs, running AS and committing to the chosen actions.

The DMM can provide additional interpretation of CFGs into an intermediate

representation for a simpler AS processing. A DMM can also be responsible for

information aggregation over time, to translate sets of CFGs into perception (e.g.

slow moving NPCs are perceived as potential targets for the AS to choose to shoot

them).

 15

Figure 5: The DMM contains the Action Selection process which is queried about the next

suitable action in respect to the constructed context of the environment’s configuration. The

produced action is committed to the environment afterwards.

2.2.1 Belief-Desire-Intention

The Belief-Desire-Intention (BDI) (Bratman, 1999) model is used to develop

intelligent agents by separating the representation of the environment as an agent’s

informational state (belief), the motivational state to achieve objectives or

situations (desire) and deliberative state (intention). In our case, the agent coincides

with the NPC.

The belief base represents the NPC’s perception of the virtual world’s

configuration. It is a collection of beliefs and inference rules which can be used to

utilize forward chaining to create new beliefs. The notion of belief represents the

NPC’s interpretation of the observed world’s configuration thus, it may not be

accurate.

The desire conceptually represents the motivation of the NPC to achieve a set

beliefs – e.g. »have shiny armor« or »find the player«. In respect to our prior

formalism, the desire is the set of perceived configurations or the maximization of

the fH function. If the NPC commits to a subset of desires, it adopts a goal to pursue.

The intention represents the agent’s commitment to a goal, thus to commit

resources to achieve it, i.e. to utilize the underlying action selection to reach the

chosen intent. The action selection produces actions the NPC commits to – a plan.

The NPC’s plan represents a sequence of actions which when executed achieves one

or more intentions. Plans can be nested, where one plan includes other plans.

The BDI also introduces events which are either utilized to trigger a reactive

response from the NPC or to inform the belief system about changes in the

environment.

As can be seen, the BDI model is a high-level abstraction of intellectual

decomposition within a virtual agent’s mind. It is often used in conjunction with

action selection mechanisms, both reactive (Kaminka & Frenkel, 2005) and

deliberative (Sardina, de Silva, & Lin, 2006), to produce agents for various purposes,

 16

not limited to entertainment industry (Kaminka, Yakir, Erusalimchik, & Cohen-Nov,

2007).

2.2.1.1 Summary

We utilized the notion of BDI to design our three-tier architecture of NPC's DMM

(Mechanism 2 – Three tier deliberation architecture). In principle, the notion of

belief manifests as DMM’s internal data structures which are modified based on the

NPC’s perception layer as well as other processing mechanisms (e.g. RPG updates of

the NPC’s stats like health, stamina etc.). These data structures are accessible to the

underlying AS mechanisms which reside within the DMM. The notion of a desire is

addressed as a high-level plan provided by the highest tier of our architecture.

Further, the commitment to a goal provided by high-level planning is addressed at

lower levels by selecting a dedicated AS which is responsible for choosing proper

actions based on emerging contexts (e.g. the NPC wants to do some work (desire),

however it rains outside (belief and perception), thus it chooses an indoor activity

and respective actions (intention) like cleaning up, working on repairing clothes etc.).

2.2.2 Action Selection

As stated earlier, an OWG environment can be abstracted as a CFG of facts valid at a

given point in time. An action transforms the CFG from a present state to a new set

of valid facts. Therefore, the problem of action selection can be abstracted as a

search within the search space (Russell & Norvig, 2009) of all available

configurations. The goal of the search is either to reach a specific configuration or at

least maximize the fH function. Conceptually, searching for the best next action can

be visualized as finding a route over a changing landscape of CFGs. We distinguish

two basic approaches to AS:

a) Reactive action selection is primarily focused on providing a decision

about the next action in a timely fashion, mostly due to either lack of

computational resources or the overall complexity of the reasoning in

question (i.e. search space of possible choices may be too large). This

approach utilizes none or a short lookahead in respect to further choices

and anticipated changes in the CFG landscape. This means the AS only

maximizes the fH function in a local fashion. For example, the NPC can

choose attack or defend actions based on current NPC’s and enemy’s

health ratio.

b) Deliberative action selection is focused on providing an action in respect

to a lookahead considering what may happen or which actions may be

chosen next (i.e. planning ahead). The deliberative approach is often more

computational expensive, since it explores the search space of possible

actions. For example, if the NPC is planning how to acquire food, it may

consider various options like »stealing«, »doing work for food« or »selling

unwanted items to get money«.

2.2.2.1 Reactive Action Selection

Reactive Action Selection covers a wide range of possible mechanisms on how to

approach the deliberation about the next action. The following are to our knowledge

commonly employed for NPCs within computer games:

1) Finite State Machines;

 17

2) Behavior Trees;

3) Scripts in an interpreted procedural language.

Finite State Machines (FSM) (Fu & Houlette, 2004) are a simple and easy to use

concept for AS for sole purpose NPCs (Isla, 2005) like soldiers, guards etc. It is easy

to implement and is often paired with other AS or organized in a hierarchical manner

(Girault, Lee, & Lee, 1999). In principle, a simple FSM AS can be defined as a tuple

{S, s0, T, ASF}, where S denotes the set {S1,...Sn} of available states for

the FSM to enter. The s0 denotes the initial state the FSM start within and T is a set

{T1,...Tn} of available transitions between states. A transition is triggered by

DMM relevant conditions (e.g. being under fire). The ASF represents a set of action

selection functions, which map the FSM’s current state and DMM context to an

action from the NPC’s action set (e.g. IDLE state means »sit down« in the forest,

however it means »lie down« at home). The actual ASF is made in respect to the

current state the FSM is at (Figure 6).

Figure 6: Simple FSM for NPC with a limited set of states and transitions focusing on four

principal areas of function – Idling, Combat, Search, Self-Preservation and Flight. NPC has
been used primarily as combat opponents

The set of ASF functions can be represented by other AS mechanisms, which will

choose appropriate actions in respect to a hierarchical decomposition. For example,

when being idle at full health has a different outcome than idling at low health. To

our knowledge, FSM are employed in a variety of games (e.g. ARMA

(Bohemia Interactive, 2006) game series uses a hierarchical FSM variant).

However, utilizing FSM as the main AS can be difficult over time, since a new

state is required for almost any new game mechanic introduced into the NPC’s

repertoire (e.g. introducing flight capability to an NPC). Therefore, FSM tend to

grow and are hard to maintain (Champandard, 2007.2).

Behavior Trees (BT) (Champandard, 2007) are a well-established reactive AS

mechanism, which is built around the notion of representing the AS process in a tree-

like structure (Figure 7). In principle, the tree is traversed during an DMM update to

determine the next action. Non-leaf nodes are steering the selection process until a

leaf node is reached. Commonly, leaf nodes represent actions or trigger another

nested action selection mechanism (e.g. a scripting language call) which in return

 18

chooses an action. Behavior Trees can also be viewed as an extension of Selection

Trees (Quinlan, 1987).

Figure 7: A simple Behavior Tree concerned with choosing the proper action to go through

a door which may be closed

Another common paradigm is the Behavior Oriented Design (BOD) (Bryson,

2001) which represents a complete methodology on how to create agent’s behavior

based on behavior decomposition. BOD Reactive Plans perform action selection

trough behavior arbitration – choosing the most suitable to satisfy a goal. The

Reactive Plan decomposes into action patterns, competences and drive collections.

Action patterns are simple sequences of low level actions (e.g. get → hold → throw).

Competences satisfy goals and are priority ordered pairs of preconditions and either

action patterns, competences or marking of the given goal being satisfied. Higher

priority preconditions override lower priority preconditions, thus if a higher priority

element fires (i.e. the precondition is activated), it receives control. Further, drive

collections are perpetually checked collections of preconditions and goal triggers.

These pairs are also priority ordered, where higher priority active goal receives

control from a lower priority one. The BOD methodology allows to decompose

agent’s action selection in a hierarchical and structured manner, which is relatively

easy to maintain and use (Brom, Gemrot, Bída, Burkert, S., & Bryson, 2006). We

also did address issues with the BOD in our previous work (Plch, 2009).

Implementation details at the lowest level vary considerably. Interpreted

procedural languages like LUA (Schuytema & Manyen, 2005) are often employed at

the lowest level of action selection. Most interpreted procedural languages are like

their compiled counterparts C++ or Java. However, their use heavily depends on the

integrated solution and may vary from instance to instance. However, they are easy

to comprehend but tend to lack expressiveness or efficiency.

2.2.2.2 Deliberative Action Selection

The deliberative approach is commonly referred to as planning ahead. Action

selection is aimed at providing the next best action based on lookahead steering

action selection towards achieving a goal. Where reactive approach is more

concerned with local based maximization of the fH function, a deliberative approach

 19

is aimed at maximizing the fH function over time, avoiding bad decisions. There are

two major approaches a deliberative AS can produce either a) single actions, or

b) action plans.

Single action deliberation choose a single action and the choice of the action is

evaluated in respect to maximizing the fH over time and in respect to possible

follow-up actions. However, the deliberation is always set to start anew if an action

is required. This approach is often utilized in complex but dynamic domains, like

combat, where the situation may change rapidly and short sighted reactive

approaches may not provide satisfactory results. Often utilized techniques is Alfa-

Beta pruning (Knuth & Moore, 1975). However, since even small domains tend to

have an exponentially growing search space, the search is coupled with Monte Carlo

(Ward & Cowling, 2009) techniques to create mechanisms that tend to evaluate the

situation in both short term and long term perspective (Cerny, 2016).

Creating action plans revolves around the idea that if a plan is good enough, it can

lead you step-by-step to your goal. Thus such approach focuses on creating a set of

actions {A1,...An} called a plan (p) which when applied to the environment in a

consecutive fashion, will either maximize fH or reach the goal configuration:

p(CFG): An(...(A1(CFG))). The produced plan is executed at the DMM step

by step. The production of a plan is commonly referred to as planning (Ghallab, Nau,

& Traverso, 2004) where various methodologies have been developed to search for

either optimal or suboptimal plans within both small (Bartak, Brom, Cerny, &

Gemrot, 2013) or large (Kolombo & Barták, 2014) domains.

There are many ways on how to search for a proper plan. Most commonly

referred mechanisms are forward and backward chaining (Feigenbaum, McCorduck,

& Nii, 1988) (Kapoor & Bahl, 2016). In principle, chaining refers to putting actions

into a plan in a fashion that their results can enable the next action to be used

properly. Since actions transform the world from one valid CFG to another, putting

an action into the plan either disables or enables other actions to be put after it.

Forward chaining aims at choosing the next action in sequence of the created plan,

thus searching the domain space in a front-to-goal fashion. This approach is suitable

for environments with dynamic situations (Hayes-Roth, Waterman, & Lenat, 1983).

Backward chaining works in the opposite direction, when the target configuration is

the starting point and actions are put into the plan in reverse order.

2.2.2.3 Goal Oriented Action Planning

The Goal Oriented Action Planning (GOAP) (Orkin, 2006) system integrated a

modified classical planning paradigm STRIPS (Fikes & Nilsson, 1971) into a real-

time environment (Orkin, 2005) of the F.E.A.R computer game

(Monolith Productions, 2005) to avoid the complexity of a FSM for NPC action

selection. The principle of GOAP is to create sequences of actions to satisfy a given

goal. Actions are defined as a tuple (cost, preconditions, effects). The actions cost is

an arbitrary cost of the action, representing a metric of either how time consuming or

complex the action is. Preconditions specify the necessary states to be valid within

the world (e.g. atHome && haveMoney). This can be either specified as

enumeration of states or as logical predicates. When an action is executed, effects

represent changes in the world’s state, both positive and negative ones. This

representation is common in the classical planning literature (Ghallab, Nau, &

Traverso, 2004).

The actual planning for GOAP utilizes a modified STRIPS approach with cost of

actions in mind, minimizing the aggregated value. Further the GOAP planner utilizes

 20

an optimized representation of world state modifications by the investigated actions.

One key difference is the introduction of procedural preconditions and procedural

effects which represent more complex reasoning about the world’s state (e.g. does a

path from A to B exist) and the complex effects (e.g. run to a specific location).

Overall the GOAP system has proven that a planning can be used for action

selection within a real-time environment (i.e. computer game). Other practical

experiments in this area followed suit (Bartak, Brom, Cerny, & Gemrot, 2013) as

well as tools to be utilized (Plch, Chomut, Brom, & Bartak, 2012).

2.2.3 Summary

The BOD methodology (Bryson, 2001) and our previous work (Plch, 2009) represent

the foundation of our architecture. We utilize the notion of behavior decomposition

into smaller more maintainable sub-behaviors. However, due to the fact that the

BOD methodology less favored than common BT or imperative languages (C# or

LUA), we combine the BT notation with the conceptual structure of a common

imperative language (Mechanism 1 – SBT language) to provide a deployable

solution. We utilize the techniques of reactive action selection to provide actions in a

timely fashion in respect to a low-level context specific action selection (e.g. AS for

day-by-day work differs from combat AS). We also build our NPC architecture to

accommodate high level deliberative mechanism to create plans for the NPC to

manage goals to manifest a believable virtual life (Mechanism 2 – Three tier

deliberation architecture).

2.3 Transferable Design Reasoning

The Transferable Design Reasoning (TRD) is the notion of structuring the virtual

world and its mechanisms so integrating new concepts and mechanisms does not

require changing already present code or script. Design of a computer game’s virtual

environment can be seen as an engineering problem where new requirements are

being introduced during development, thus requiring the underlying architecture to

be adaptive and generic as much as possible.

TDR reflects the necessity to transfer designer’s initial reasoning about features

into the virtual world without triggering a major issue in the virtual world’s

conceptual architecture or practical implementation.

2.3.1 Making a game

Creating a computer game requires various professions – programmers, designers,

screen writers, scripters, animators and many more. These professions can be split

into several groups, based on how they contribute to the production’s progress. At

Warhorse Studios, we identified 1) designers, 2) developers, and 3) content creators

as key participating groups.

Designers are the source of ideas about what should be in the game, producing

proposals and requirements about what content should be present and how should it

work. For example, a designer proposes a dice gambling mini-game between the

player and NPCs which is introduced as a part the main story line. Beyond the mini-

game’s mechanics, there are constrains on which NPCs can participate and how to

solve certain use-cases (e.g. cheating, lack of money etc.).

The design requirements are processed by developers (e.g. programmers,

scripters) and integrated into the CGE. The actual integration can go beyond the

initial design to accommodate the necessary mechanisms for the mini-game (e.g.

 21

NPCs may require a subsystem tracking their gains and losses). Scripters develop

subsystems for the NPC’s DMM to utilize the new available features. The script

subsystems may vary, ranging from decision about actual mini-game strategies to

high level decisions about who to play with (e.g. if the NPC is poor, it would be

unlikely to play at all).

The final integration into the game is done by content creators – animators, level

designers, level scripters etc. From an NPC’s perspective, the integration comprises

of utilizing mechanisms already present for NPCs (e.g. everybody at the local tavern

plays the dice mini-game). This may trigger further development of features for

proper ambient integration (e.g. NPCs cheer when a game nearby has high stakes

involved).

The overall process of developing a game can be summarized in iterations where

designers describe how a feature should work, developers integrate the necessary

functionality into the game’s systems and provide tools for content creators to

manifest the feature. The process than returns to the designer for review and is

reiterated.

Based on our experience, introducing new features into the virtual world may

have cumulative effects in respect to bad prior design decisions. Therefore, it is

necessary to approach the overall architecture’s design as generic as possible.

2.3.2 Engineered Virtual Worlds

Creating a virtual world within an OWG with changing requirements is not an easy

task from an engineering perspective. It is much easier if necessary features are

known beforehand any design of a framework development starts. However, game

development is notorious for changing its core mechanisms as the development

progresses and the game comes together as a whole.

Since our focus is to provide the virtual world with believably deliberating NPCs,

we have to look upon the framework from an engineering perspective

(Champandard, 2004). In principle, any AS can be viewed as an algorithm evaluating

inputs and producing outputs. Therefore, we can abstract every NPC (or any other

deliberating entity) as a collection of code which evaluates the environment and

manifests by choosing actions within the virtual world.

2.3.2.1 World design principles

The actual notation (i.e. language or description) of an NPC’s AS mechanism is

negligible from a framework’s high level design perspective. Therefore, we can

abstract the NPCs and their AS from a software engineering perspective as

components within a large software system. Software engineering as a research field

has created many paradigms and approaches on how to handle software design

(Gamma, Helm, Johnson, & Vlissides, 1995), development management (Sutherland

& Sutherland, 2014) and maintenance (Swanson, 1976).

Our primary concern while designing the virtual world and our encompassing

framework should be the software design paradigm we choose. There are several

valid models for structuring our framework. The most notoriously known paradigm

is the Object-Oriented Design (OOD) (Gamma, Helm, Johnson, & Vlissides, 1995)

which capitalizes on discriminating everything as objects and interactions between

objects. It is by far the most popular model to represent ideas and constructs within

software design. We follow the OOD as our principle design paradigm for our

architecture.

 22

Software developers often employ the concept of decoupling components (Beck,

2011) from each other to reach a degree of independence, thus being resilient to

changes within. Further, decoupled systems tend to be more adaptive when new

mechanisms are introduced. Our framework is built on top of the philosophy of

decoupling and decomposition into independent components.

2.3.2.2 Language Design principles

The internal workings of the AS may be irrelevant from a high level perspective, but

are important to the overall virtual world’s design. In principle language design

impacts the way virtual world is perceived by developers, thus influencing design

choices in return. The language design also influences patterns which address

common design pitfalls. In software development, there are many relatable patterns

(Larman, 2005) which have been explored in respect to good practices how to handle

them. For decision making and action selection, known patterns have been proposed

in robotics (Graves & Czarneck, 2000), autonomous agents (Kendall, Krishna,

Pathak, & Suresh, 1998), and reactive reasoning (Weber, Mawhorter, Mateas, &

Jhala, 2010).

The Object-Oriented Programming (OOP) (Lewis & Loftus, 2008) paradigm is

commonly associated with the OOD paradigm. In principle, everything is an object

with associated procedures and data in respect to encapsulation (Scott, 2006) which

facilitates the information hiding principle (Mitchell, 1990). Objects are strictly

isolated from each other and only their respective routines do modify object’s data.

To provide means for access, an object can provide a public interface which provides

services to manipulate encapsulated data. This allows to employ separation of

concerns (Laplante, 2007), where objects are responsible for certain dispositions of

overall functionality. Having the software solution separated in this manner allows

for a much more modular approach when designing features.

It is common that OOP is coupled with generic programming (Musser &

Stepanov, 1989) paradigm, where code only denotes algorithms and is independent

of data types. This reduces code duplication and formalizes certain algorithms (e.g.

sorting of items).

Metaprogramming (Joshi, 2014) and reflection (Krauss, 2014) paradigms are

concerned with adaptation of code. In principle metaprogramming falls under the

generic programming paradigm and is in principal concerned with executing

expressions that contain snippets of code. Such expressions can be modified during

runtime allowing to change code as required. Reflection paradigm is similar to

metaprogramming, but is aimed at host code inspecting and modifying itself during

runtime. For example, choosing the called function on an object based on daytime

(e.g. CallDay and CallNight).

It is noteworthy that there are other programming paradigms like aspect oriented

programming (Kiczales, Hilsdale, Hugunin, Kersten, Palm, & Griswold, 2001)

which focuses on extending functionality by adding code associated with specific

aspects of existing code. We perceive it as adding another dimension to the already

present code.

2.3.2.3 Conceptual perspective

Artificial intelligence within OWG tackles similar conceptual problems with

deliberation as robotics (Bryson, 2001) and agent systems (Schurr, Marecki, Tambe,

Scerri, Kasinadhuni, & Lewis, 2005) do. These environments can be classified as

dynamic, adversarial, partially observable and populated by multiple entities. The

 23

deliberating entities have only limited resources at disposal with the requirement to

behave believably in a timely fashion.

Within robotics, the subsumption architecture (Brooks, 1986) provides the

concept of behavior decomposition into sub-behaviors organized in a layered

structure. High level behaviors utilize competences present at lower levels to

manifest action selection based on received sensory input. The layers were populated

by FSMs which were modified to hold data structures and have the capability to

inhibit or suppress other FSMs by sending signals. This design influenced the

development of artificial intelligence for both robotics and games alike.

2.3.2.4 Summary

One of our goal is to deploy our architecture in a real-life large scale production of a

computer game. Therefore, we take design pipelines and production interactions into

account. One of our key concerns is to make our architecture understandable on a

principal level, thus abstractions must be relatable to common non-programmer’s

thinking (Mechanism 2 – Three tier deliberation architecture, Mechanism 5 –

Semantic network). However, on a lower level, we adhere to principles used in

software development using OOP (Mechanism 1 – SBT language), since they are

commonly adopted as the most natural way to express human concepts in a

computer’s environment.

We adopt the OOP paradigm in our architecture’s design, strictly separating

entities from each other, providing low level mechanisms for communication. Our

architecture is aimed at motivating developers to separate concerns into dedicated

systems on both engine and script side (Mechanism 3 – Intelligent Environment,

Mechanism 4 – Smart constructs). Further, we found the need to integrate reflections

as a key component within our architecture, where objects can communicate their

interfaces and capabilities to others at run-time (Mechanism 5 – Semantic Network),

being able to adapt based on the current context (e.g. when it starts to rain, an NPC

cannot go to work on a muddy field).

2.3.3 Managing Complexity and Context

Managing complexity is one of the key issues of developing any software. The field

of software engineering (Pressman & Maxim, 2014) has identified and investigated

many pitfalls and dead ends in respect to software design (McConnell, 2004) (Hunt

& Thomas, 1999), code management (Fowler, Beck, Brant, Opdyke, & Roberts,

1999), maintenance (Feathers, 2004), and agile development (Humble & Farley,

2011).

Managing complexity of virtual worlds does not differ from managing software

complexity. Most of AS mechanisms can be seen as part of a codebase which has to

be designed, integrated and put together so the result is a working product and not

»spaghetti code«. Interactions and competences of virtual world’s subsystems have

to be designed so they can be easily understood. Many projects which have built

complex environments have stumbled upon these issues as well.

Within the computer game industry, several projects stand out in respect to

managing complex virtual worlds in a believable fashion. Bethesda

(Softworks Bethesda, 1985) has developed Radiant AI (Bertz, 2011) which

decompose behaviors into isolated actions which are combined to satisfy goals.

Decomposition helped to contain behavior complexity. The Sims game series

(Ingebretson & Rebuschatis, 2014) utilized a system build on affordances (Gibson,

1977) where needs of NPCs (e.g. sleep, hunger, boredom) were satisfied by objects

 24

or other NPC actions within the world. NPC actively searched or passively accepted

presented influences by objects. The interaction was driven by engaged object (i.e.

the object takes control of the NPC) thus allowing to introduce novel stuff without

changing the underlying architecture.

The game of F.E.A.R (Monolith Productions, 2005) utilized the GOAP system,

thus decomposing the world into actions and goals, there the NPC’s deliberation

comprised of a modified STRIPS planner (Fikes & Nilsson, 1971). This allowed for

an adaptive introduction of new interactions, however was less manageable and

developers did not have enough control over the NPC’s AS outcome.

The Halo series of games (Halo Games, 2001-2017) combined FSMs and a

variation of behavior trees (Isla, 2005) to handle the complexity of varying behaviors

for different types of characters (e.g. soldier, enemy, civilian etc.). The overall

complexity was handled by decomposing behaviors into sub-behaviors managing

possible situations. However, scripts were chosen from a library in respect to

impulses from the environment thus limiting any complex contextual reaction to the

diversity of the impulses (e.g. player got into the car).

In Hitman: Absolution (IO Interactive, 2014) NPCs were coordinating with player

triggered events to solve complex situations (e.g. searching for an intruder, engaging

in combat etc.). The triggered event (e.g. shooting a gun in room) created a situation

which coordinated a set of NPCs with assigned roles (Vehkala, 2012) (e.g. leader,

point-man, panicking civilian etc.). The situation was responsible for communicating

changes to participating NPCs to influence their AS. However, every NPC had to

cover specifics of a situation it could be part of, thus creating a tightly coupled

design which may prove fragile in respect to future changes.

Other projects also employ concepts of opportunistic control (Crytek, 2013). This

concept allows for objects and places to take control of an NPC, which either enters

an area (e.g. gate of a compound), uses an object or is in the proximity of an object

(e.g. bench). The respective area or object takes full control over an NPC (e.g. full

animation control) or instructs the NPC’s AS to execute necessary actions (i.e. a

bench tells the NPC to sit on it). Other games like FarCry 4 (Ubisoft Montreal,

2014), Castlevania: Lord of Shadows (Mercury Steam, 2010)(Parera, 2013),

F.E.A.R. 2 (Monolith Productions, 2009), BioShock: Infinite (Irrational Games,

2013) used similar approaches.

In FarCry 4, not only objects could acquire control over NPCs, but also events

triggered by the player. These events either used existing NPCs or spawned

temporary ones. For example, the player could trigger a »tiger attack« which

spawned a tiger and took control of the closest soldiers to use them as victims. In

BioShock: Infinite, the player’s companion Elizabeth engaged objects placed in the

environment. For example, if the player was staying too long at an area, Elizabeth

started to wander around investigating the environment and triggered opportunistic

control from certain objects like levers etc.

In academia, behavior decomposition was introduced with the subsumption

architecture (Brooks, 1986) which proposes the decomposition of behaviors into

sub-behaviors. Sub-behaviors were utilized to handle specific functions (e.g. pickup

an item) and can be further decomposed. Introducing a hierarchy and decomposition

is similar to introducing function calls, object oriented design and differentiation of

competences in software engineering.

Putting intelligence into the environment was also utilized in crowd simulations

(Tecchia, Loscos, Conroy, & Chrysanthou, 2001), where the environment was

overlaid with a grid of cells which instructed agents on their proper behavior in those

 25

areas. The approach by (Sung, Gleicher, & Chenney, 2004) introduces situation

based behavior selection (similar to Hitman: Absolution) where an area denotes a

topological trigger, and a situation denotes a contextual trigger (e.g. NPC reaches

20% health in the village).

There is also the work on smart materializations (Brom, Lukavský, Šerý, Poch, &

Šafrata, 2006) which is coupled with the BDI model decomposing intentions into

hierarchical structure. Adopting an intention from the environment may trigger the

NPC to adopt its sub-intentions. Intentions can be split until a low-level AS can

provide necessary actions or action plans to satisfy the intention. This allows for a

structured approach on designing the world for NPCs to manage their goals.

2.3.4 Summary

We adopt the notion of intelligent (Mechanism 3 – Intelligent Environment) and

context aware objects (Mechanism 4 – Smart constructs) within the world. However,

we avoid the notion of opportunistic control over NPCs, since we aim at maintaining

full control over NPC’s action selection within the confines of the NPC’s DMM (i.e.

encapsulate action selection as a conceptual part of the NPC). We build on top of the

ideas of affordances, where we intend to maintain relatively simple and generic NPC

action selection and be able to allow NCPs to extend their action selection based on

what they encounter in their environment (Mechanism 5 – Semantic network).

Decomposition of behaviors into the environment’s components (i.e. objects, areas,

etc.) aids our focus on reducing singular complexity (i.e. huge unwieldy action

selection at an NPC) and on keeping a large code/script base maintainable. Further,

decomposition of behaviors is also necessary to allow easy and straightforward

integration of new features and behavior variations (e.g. sitting on a chair, sitting on

a bed, sitting on a bench with several places).

 26

3 Scenarios

We aim our architecture to be employed within a real-life production of computer

games. Therefore, we focus the function and principles to go beyond a proof-of-

concept. Based on our experience we established a set of common scenarios

encountered in large scale open world role playing games. Our architecture is aimed

at providing both conceptual and practical means to address the overall believability

of the virtual world in such cases. These scenarios were coauthored by developers at

Warhorse Studios
2
 to utilize their know-how on how such scenarios would be

engaged in the actual production. We explored situations which are present in the

produced KCD game: 1) Life of Brian, 2) Tavern, 3) Death in the streets,

4) Poisoned Jerry, and 5) Battle.

3.1 Life of Brian

Brian is a common peasant in the KCD game, who is not particularly interested in

any questing or being hurt in any way. When something happens, he tends to run

away as far as possible to avoid any harm. Brian is very responsible and goes to work

every day, except for rainy days.

Brian, gets up in the morning, eats some breakfast, goes to work or does

housework. After he is done, he likes to have some fun at one of the local taverns in

his village. After he has had his fun, Brian returns home to get some sleep before the

next day starts. When Brian gets too drunk, he wakes up his wife and they argue a

little.

This scenario investigates the common ambient life we focus at Goal 1. Brian is a

common representation of any day-by-day NPC which populate an OWG. Brian-like

characters often avoid interacting with the player, since from a production

perspective it is rather problematic to voice so many characters with different voices.

Also, dialog topics would be rather limited, since game design tends to avoid

repetitive dialogues. Therefore, it is common that the player triggers mostly reactive

behaviors resulting in either generic responses (e.g. greetings, shouting etc.) or fight-

flight scenarios (e.g. guards fight, civilians flee).

3.2 Tavern

The »Tavern« scenario revolves around NPCs seeking fun in the afternoon after a

day full of demanding work on nearby fields. Some of them head straight into a

tavern and some stop at home. Since the life of a single NPC is covered by the »Life

of Brian« scenario, we will focus on the tavern’s workings. Primarily the tavern is

home and workplace for an innkeeper and his daughter who acts as the waitress.

Their day-by-day work is to keep the tavern clean and when it opens, they are

responsible for keeping the guests happy. However, since the tavern is their home,

they tend to avoid any damages to it. Since most townsfolk are at work during the

day, the daughter can clean up the place, and the innkeeper brings new beer barrels

and repairs potential damages from last night. Before the tavern opens at 18:00, all

potential guests are asked to come back later. As for the tavern itself, it contains

some place to sit, drink, and play cards.

2Petr Ondráček, Martin Antoš, Michal Vrtílek, Petr Maláč and Viktor Bocan

 27

There are three sub-scenarios that may happen:

1) A guest enters the tavern and wants to sit somewhere, it may happen that

the tavern is full and so he goes to have fun at a different place. He may

prefer to sit alone far from everybody or with his friends to socialize.

2) A guest orders some food and drinks. After he finishes his beer, he orders

another one, until being drunk. Some guests may start to sing, others may

get upset about losing a card or dice game and start a fight.

3) Fighting guests may attract a guard to sort things out. If the situation gets

out of hand, the waitress will run for help. Other guests leave as soon as a

bigger disturbance occurs, since they do not want to be part of it.

The tavern closes at midnight so everybody can go home. This scenario covers

Goals 1 and 4. We aim at providing a believable ambient simulation of how a tavern

is managed from both a processing point of view (i.e. managing drink orders etc.) as

well as from an individual perspective (i.e. going for a drink). The complexity of the

presented behavior is important for a believable feeling.

3.3 Death in the streets

This scenario revolves around a common issue within almost any RPG game – the

player kills an NPC either by accident or on purpose. We focus the scenario on

reactions of bystanders:

a) Guards – are responsible for maintaining law and order within densely

inhabited areas. They are allowed to stop, interrogate and engage hostile

targets. They even can throw a criminal into prison.

b) Citizens – inhabit nearby houses and tend to run away from any potential

situation, since they want to avoid any bodily harm. They are also very

investigative and like to watch.

c) Soldiers – are similar to guards, but tend to have much less understanding

for criminal activities and tend to engage first, and not ask at all.

One important notion is how the scenario starts from a bystander’s perspective:

1) Murder is witnessed directly, thus there is no question about what may

have happened. Guards tends to arrest the player, and if resisting, engage

him in combat. If the player flees the crime scene, guards will chase after

him. Citizens run away, preferably seeking a guard to report the crime. If

no guard is found, citizens tend to forget what they saw. Soldiers tend to

engage the player directly, but will not chase him.

2) Dead body is found, thus a question arises who did it. If a criminal can be

inferred (e.g. the player stands nearby with a drawn sword), the outcome is

similar to the first case. Otherwise, guards try to investigate crime scene,

ask around and eventually clean up the body. Citizens are investigative

and tend to stand around and talk about what may have happened. After a

while, they get bored and go after their business. Soldiers tend to be

uninterested in a dead body, since they have seen their fair share already.

This scenario covers Goal 1, 2 and 4. The reactions of bystanders creates a

believable emergent situation which may affect ambient life nearby (e.g. after a

murder people avoid going to taverns for some time). Overall mood in the village

 28

may change due to the fact that some murderer is running around. Also, NPCs can

chat about what and where has happened and maybe be less friendly when talking to

strangers, creating a more complex experience providing the illusion of

consequences for actions.

3.4 Poisoned Jerry

The scenario of Poisoned Jerry reflects a complex quest within an RPG game. The

storyline revolves around a villager called Jerry who sits in front of his house and is

sick to his stomach. When the player comes along, Jerry asks for help. He wants to

get rid of his stomach pain and find out what has happened to him and who is

responsible. Jerry provides the player with a set of suspects – 1) his wife, 2) his

sweetheart, 3) his neighbor, and 4) a herbwoman living in the woods. The player

must collect evidence, talk to other NPCs and help Jerry to get healthy. There are

several ways on how to make Jerry healthy: a) befriend the herbwoman and get an

antidote, b) try to steal an antidote from the herbwoman or Jerry’s enemy, or c) buy

an expensive antidote in the nearby city. Discovering who poisoned Jerry requires

the player to talk to most of the suspects and observe their behavior in respect to

Jerry. The player may not get all the information and may guess whom to accuse.

However, there can be dire consequences for wrong accusations.

After the quest starts, all the participants change their daily routines to be more in

line with the quest. The herbwoman goes for occasional walks into the woods to let

the player search for her. But after they meet she will stay more at home to avoid

being robbed if the player bullies here instead of befriending her. Jerry’s sweetheart

will be working longer hours at the tavern where she cooked rotten meat (i.e. the

actual culprit) by accident. The neighbor will get sick next day after eating at the

tavern too, so the player gets a clue about what may have happened. Jerry’s wife will

be around not being friendly at all, having some antidote with her. After the player

comes to a conclusion, he decides to accuse someone of mischief. If he accuses

Jerry’s wife, she stops talking to Jerry and Jerry starts to drink a lot more. If he

accuses Jerry’s sweetheart, they stop seeing each other and some future quests in

respect to their relationship cannot be acquired anymore. If the herbwoman is

accused, she will not come into the village anymore and there will be no more

potions for sale. If the player takes too long to investigate, the neighbor will die

eventually.

This scenario covers Goals 3 and 4, since the behaviors are rather complex,

having story driven effects on the NPC behaviors. We aim at providing custom

changes to NPC behavior based on the storyline. However, these custom behaviors

are integrated into the day-by-day NPC behavior, to avoid behavior artifacts common

in other games, where NPCs on a quest tend to wait for the next player’s move no

matter what happens (i.e. they stand in front of their home day and night not caring

for anything else than the quest). Further, the quest’s results and the player’s

approach have long term effects on both the world and the relationships between

NPCs. This provides a more believable environment where the player acquires a

feeling of actions having consequences. We want to avoid the common OWG pitfall

where ending of a quest has no impact of what happens in the world.

3.4.1 Battle

The Battle is a simple scenario covering a large-scale employment of many NPCs at

one location. All NPCs are put into formations and march towards the enemy and a

 29

small skirmish is conducted. The evaluation of the battle is semi-random in nature

(e.g. which flank collapses is based on actual combat between NPCs). The player is

dispatched to help at problematic locations.

This scenario mostly covers Goal 5, since most of the fighting and low level

decision making (e.g. where to go, how to attack, etc.) happens in code due to

optimization. The large-scale nature of this scenario determines how well our

architecture copes with large amounts of NPCs present at one location. It will also

show how our architecture scales in respect to NPC counts.

3.5 Summary

The above presented scenarios are to our knowledge the most relevant to OWG.

They were our primary test bed for both the implementation as well as the feasibility

of the core mechanisms. Since they were developed for use in the KCD game,

Warhorse Studios used them to evaluate and educate candidates for the scripting and

level design departments. Last but not least, these scenarios helped us to outline the

overall picture on how a believable virtual world should manifest and how designers

and screenwriters can make use of our architecture. These scenarios also helped us to

identify common subsystems at the script level, which had to work across scenarios

to provide specific functionality (e.g. crime system works the same in Scenario 4

(Jerry), Scenario 3 (Murder) and Scenario 2 (Tavern), since there is the possibility of

the player conducting a crime – murder, theft, false accusation).

In the KCD game, these scenarios are covered by a large collection of behaviors

spread across the virtual environment. Decomposing and isolating specific

functionality into small behaviors helped scripters to maintain a fairly large (above

3000 individual behavior trees) behavior base.

 30

4 Making Decisions

Action Selection (AS) is the process of choosing the next proper action based on

evaluating the context provided by NPC’s DMM. DMM context specifies NPC’s

interpretation of the environment – it combines sensory perception, internal state

and goals. Action selection is aimed at either reaching a desired configuration of the

environment (e.g. to move from point A to point B) or maximize a utility function

either momentarily (e.g. having enough health to avoid death) or over time (e.g. to

experience some fun at least once a week).

Conceptually speaking, AS is the lowest level decision making mechanism within

an NPC, except for automated subsystems like collision avoidance or path following.

There are many different ways on how to execute AS – FSMs, BTs, procedural

scripting languages, classical planning etc.

Based on our prior research (Plch, 2009), we chose to further develop our concept

of Stateful Behavior Trees (SBT), which builds upon the well-established notion of

Behavior Trees (Champandard, 2007) (BT).

This chapter discusses our low-level action selection language. We introduce the

language's tree-like structure and explain its internal mechanisms. We provide

insight into our budgeting system, to allow users to employ our language in a large-

scale simulation where computational resources are limited. We also address

parallelism issues to allow for concurrent AS code execution. We also discuss our

data model, expression evaluation and data type handling. As part of this chapter, we

introduce our communication mechanism utilizing a messaging system, where NPCs

send complex data to each other. We discuss our synchronization mechanisms to

create synchronization schemes between NPCs (e.g. locks and semaphores). Lastly,

we discuss our low-level action system to provide more streamlined execution of

actions.

Our main goal is to provide a generic and expressive language to manifest

complex behaviors for both the environment (Goal 3 and Goal 4) and NPCs (Goal 1).

We combine the approach on how to structure code in an imperative language (e.g.

C++) with the structure of a BT. We build on top of our prior research (Plch, 2009)

which tackles the issues with the BOD methodology (Brom C. , 2005). The use of

BTs is aimed at non-programmers to avoid complex written languages and provide

visual means to abstract behaviors.

4.1 Behavior Tree

Behavior Trees (BTs) (Simpson, 2014) represent a well-established approach

describing action selection for NPCs. BTs decompose AS into a tree-like structure

(Figure 8). The tree is evaluated from the root in a consistent (i.e. child nodes are

always access in the same order) depth first approach (Cormen, Leiserson, Rivest, &

Stein, 2001) until an action choice is reached. Every non-leaf node aggregates its

result from evaluating its respective children. Every node can report three results

1) processing, 2) success, or 3) failure. The duration of the evaluation is not limited

to being atomic, thus can take time to finish. If no new action is chosen, the NPC

either enters an idle state or continues with the currently executing action (e.g.

playing a looped animation).

The leaf nodes represent action choices and non-leaf nodes are used to create a

path through the BT for a leaf node to be reached. The non-leaf nodes are split into

four types:

 31

1) Sequence node evaluates its children in order from first to last. If the child

node returns Success, the evaluation continues to the next child. When a

child Fails, or is Running, the sequence adopts this result as its own and

reports it. Since the evaluation is perpetual, the sequence keeps track of

which child is to be evaluated next. Further, if all children return Success,

the sequence also returns Success.

2) Selector node evaluates in the same manner as the sequence does, with the

difference when processing of a child node. If a child node returns Fail,

the evaluation continues to consecutive child. In case of Success,

evaluation stops similar to what happens at the sequence in case of Failure.

3) Decorator modifies the result of the underlying subtree which is rooted

under its single child. Common uses are to invert evaluated values of a

child node from Fail to Success and vice versa.

4) Parallel behaves similarly to either a sequence or selector (depends on the

specified parameters) however it evaluates all children concurrently. When

in sequence-like mode, the evaluation of its child nodes is stopped if at

most one child returns Failure.

Figure 8: A simple Behavior Tree representing the action selection of searching an item and

grabbing it with either one or both hands. If the item is not found, it is searched on the floor,

in the drawers and in the closet. The block leaf nodes represent action choices, the rounded

leaf nodes represent sense actions (determine if something is true or not), boxes with
question marks represent selectors and arrows represent sequences. (©Wikipedia)

The Action Selection represented by Behavior Trees can be used to create rather

complex constructions with little effort. Contrary to FSMs or other mechanisms,

structuring of the thought process is very close to how designers think about humans

solving action selection.

We have identified downsides to the basic idea and improved both the syntax and

the semantics of the trees to better express complex behaviors. The key issues were:

 32

a) Node execution model – nodes are only limited to reporting their current

evaluation, thus being limited in representing their internal state. This

limits nodes in respect to different states representing their inner

mechanism to other nodes without reflecting the node’s purpose. Further

nodes cannot suspend and resume when either being passive (e.g. waiting

for a pathfinding request to finish) or being suspended by parent nodes.

Nodes also lack the capability to resume their suspended state. The issue

of switching between behaviors was addressed in our previous work (Plch,

2009). A more complex execution model may allow for a more detailed

control over a BT’s evaluation.

b) Limited variable support – the traditional BT representation has only

limited support for variables as part of the BT description. Often

employing a blackboard data architecture (Corkill, 1991) to store relevant

data. We aim at providing local data for the BT to be able to store partial

evaluations, temporal and persistent data to be used when executing. This

also follows the methodology of encapsulation and information hiding

present in the OOP paradigm.

c) Missing synchronization – the BT scheme lacks any complex

synchronization mechanism between ASs, either from NPC to NPC or

within one NPC’s AS. To provide complex behaviors, synchronization is

key to executing coordinated actions (e.g. one NPC waits until another

NPC finishes an evaluation).

d) Missing communication mechanisms – BTs also lack any complex

communication mechanism beyond using a blackboard. This limits the

capacity of NPCs to convey complex data structures to each other in

organized fashion.

e) No explicit execution awareness – commonly BT are executed so all nodes

can evaluate their result and report it to its parent node. We need BTs to be

able to function in a manner when their evaluation and execution can be

interrupted at any time and budgeted in a similar fashion as common CPU

run code. This is a key mechanism due to the fact that running large

numbers of responsive NPCs on limited hardware requires more intricate

execution schemas.

The above presented issues are addressed in our Stateful Behavior Tree (SBT)

model and its internal structures and mechanisms. In the further subchapters, we will

present our architecture’s low level language implemented as the primary AS for

DMM for a large scale OWG. All the presented mechanisms have been implemented

into the KCD game and utilized in the game’s production.

4.2 Stateful Behavior Tree

The SBT model is an extension of our prior approach on extending the BT formalism

(Plch, 2009). We took our primary inspiration from known procedural language

structures like C++ or Java. In principle, we view the SBT as set of named language

elements (i.e. nodes) organized into a tree-like hierarchy of nested blocks, similar to

code written in C++. Our aim is to provide the language with more flexibility in both

execution and evaluation. We also focus on being able to simply add new language

elements (e.g. loops, switch statements, try-catch constructs etc.).

 33

4.2.1 Tree Nodes

Every tree node within the SBT model represents an isolated language element.

These can be simple elements like »if« or »for« statements, or more complex one

»follow the player«. The notion of »language element« is synonymous with the

notion of »tree node«. All language elements are organized into a tree-like structure

similar to a code block organization in a procedural programming language. We have

designed our nodes with two principles in mind:

1) Abstract isolation of nodes is focused on separating nodes from each other

so they are not affected by what is happening within other nodes. Ideally,

nodes are unaware of what other nodes do and are only concerned with

their own agenda. This provides us with the flexibility of decoupled code.

2) Abstract control of nodes is focused on providing only abstract interfaces

to nodes to be influenced by other nodes. The individual control allows for

more detailed execution control and debugging capabilities (i.e. we can

stop AS at any node at any time provide inspection tools to evaluate it).

Based on these requirements, we designed the workings of a node as small FSM

(Figure 9).

Figure 9: The FSM of a language element (node) within the SBT structure. The node starts

at the None state and traverses over the available states until it reaches the Fail or Success
state.

We designed our node’s FSM to start at a state called None where the node is

inactive. When transitioning trough states, every FSM finishes at either a Success or

Failure state (i.e. terminal states). The internal reasoning about when to get to a

termination state may differ from node to node. Generally speaking, a terminal state

can be reached from almost any state of the node’s execution. Every node can be

Reset to get from a termination state to the None state.

To enter the Running state, the node has to be initialized first by its parent. In our

case, the initialization is a synchronous process, but it could be reasonable to have

initialization that takes more time to happen. After the initialization is finished, the

 34

node enters the Running state, from which it may terminate on its own only by

means of Success or Failure. To provide the parent with some governance over a

node, the parent may enact Halt, Suspend, or Abort on the executing node. When

halting, the node is asked by its parent to enter a Fail state at the earliest possible

occasion. Halting can be viewed as an asynchronous request and Abort as a

synchronous one, where the parent node needs the child node to end instantly. A

third option is to Suspend an executing node, by asking it to enter a specific

suspended state where the node stops receiving updates for its execution and waits

for a Resume to happen. In our implementation, Resume is synchronous, however it

may be reasonable to have it asynchronous. All asynchronous operations lead to

necessarily dealing with conflicting situations between transitions (e.g. a node

Suspends, the parent requests a Halt.).

4.2.1.1 Summary

We chose this structure of nodes to provide other nodes and subsystems with a

more complete information about their internal state. Further, other nodes and

subsystems do not need any knowledge of the node’s internal mechanisms and can

control it by a simple interface. Adding new states allows us to handle additional

practical issues with proper initialization and termination of the node in respect to the

AS and other NPC subsystems (e.g. the node can register to callbacks when

initialized and when terminating, unregister in a paired fashion).

Another upside of such node structure is the easy implementation of new nodes by

programmers, maintain existing ones over time and adapt to changing requirements

by scripters and designers (e.g. the follow-the-player node has to have a chasing

policy).

4.2.2 Execution and Evaluation

The language structure defines how the language is shaped, its interpretation shapes

the evaluation’s outcome and use. Popular decision trees have an execution model,

where all predicates are evaluated at once and the action following the highest

priority predicate is chosen to be executed. On the other hand, an imperative

language like C++ has an execution model where branched instruction streams are

packed into calls which may be executed within a stack in a very linear fashion.

Other languages like Prolog (Clocksin & Mellish, 2003) are based on periodic

evaluation of a predicate set to meet a query.

Evaluation represents the contract between language elements and the ordering of

data operations which we trivialize as reads and writes to memory. In SBT reads can

occur concurrently at any time, since they do not affect data. Write operation have to

be ordered in respect to both other write operations and read operations (i.e. a write

operation is executed after all the preceding reads and writes are finished).

Execution represents the contract between language elements and the interpreting

system on how and when individual elements are executed and their effects are

committed. In SBT we distinguish two effect types:

1) External effects are directed outwards in respect to the NPC. These affect

the NPC’s external properties, the environment or other NPCs. They are

commonly executed at the end of a frame and taken into account at the

next frame.

 35

2) Internal effects can be either directed at modifying NPC’s internal

properties or can be read/write operations into variables or data

containers contained within the NPC.

Since our language elements are small FSMs, we view the execution model of

SBT as executing every active node (i.e. Running, Halting, Suspending or Resuming

state) in a concurrent fashion. All effects of node decisions are applied as they come

along. Practically, execution happens within a frame, based on a given time budget.

Since every node is isolated, the communication up and down the language’s tree

structure is limited to reporting of state changes – either being a report from a child

to a parent or being an operation forced from parent onto child (i.e. do halt, suspend,

resume).

With respect to evaluation, we require SBTs to have partial execution ordering,

since nodes share memory scopes which are also organized into a tree like hierarchy

i.e. parent nodes provide scopes for child nodes. Branching statements (i.e.

conditions, switch statements etc.) and their evaluation can lead to different results if

at least some order of evaluation is not kept. To provide a manageable sense of

evaluation, branching elements are guaranteed to evaluate in order of their

appearance in execution – i.e. parents are evaluated before child nodes and child

nodes are evaluated in an ordered fashion (i.e. sibling nodes are strictly ordered).

Primarily, we assume the SBT execution engine of every NPC receives a given

time maximum it may use – a time quantum. If the execution exceeds the quantum’s

limit, the execution is required to cooperatively return control to the governing

system (i.e. DMM mechanism of NPC’s AS). This is also known as cooperative

multitasking (Silberschatz, Gagne, & Galvin, 2008), where executed elements need

to cooperate to a certain degree to avoid stalls and provide an illusion of parallelism.

To further optimize overall performance, we allow nodes to be excluded from

execution – falls asleep. This concept is also known as passive waiting (Tanenbaum,

Modern Operating Systems, 2014). The sleeping node can be either forced out of

sleep (e.g. by other nodes who want to halt it) or can wake up on its own (e.g. a timer

is finished and the node wants to terminate). We have developed three ways on how

SBT can approach the order of execution within the tree structure:

1) Pass Through is an execution ordering, where the tree is always traversed

from the top to all its eligible leaf nodes. Every node at the traversed paths

is given time to process. Every node executes within the execution of its

parent, thus providing a sequential ordering of any effects. This approach

has major drawbacks in respect to effective code execution and is heavily

impacted by the depth of the executed tree. To avoid unnecessary

execution, some nodes may enter a passive state until a governing system

wakes them up (e.g. timers).

2) Linearization of node execution creates a queue of nodes. Nodes are

pushed onto the queue by request (either by them or by their parent), or

automatically after they wake up from passive waiting or their child node

changes its state. The queue executes sequentially in a round robin

fashion. All nodes are uniquely present in the queue. This approach allows

for a more streamlined execution which can be interrupted at any time at

the granularity of a single node’s execution. However, there are complex

corner cases based on implementation details – e.g. an already suspending

child is halted by its parent etc.

 36

3) Contracted tree represents the original tree in a fashion where sleeping or

not-executing nodes get contracted – are temporarily removed from the

hierarchy. All nodes within the contracted tree are executed in a breadth

traverse pattern. If a node is required to reengage execution it is

reintroduced into the contracted tree at its original position. Conditions for

a node to reengage execution are similar to the Linearization execution

principle.

At first, we implemented SBT execution as a Pass through approach, since it is

easier to implement and maintain. However, due to optimization requirements, we

implemented the Linearized approach. We prototyped the Contracted tree approach

but the operations on top of the tree structure were too computationally costly.

4.2.3 Budgeting

Since processing power is a limited resource on any computer system, it is necessary

to employ some sort of budgeting system for the execution of DMM to avoid stalls

(i.e. FPS drops) or non-responsive reactions. Even on multi-core and threaded

environments, the hardware limitations require to interleave multiple DMM

executions to provide the illusion of parallelism.

The Budgeting concept is built upon a simple idea, that a governing system splits

the overall budget (i.e. part of the frame limit) between all governed systems based

on fair approach and priority. A budget can be set arbitrarily (e.g. 30ms) or estimated

based on system load.

However, since our current system has no means to enforce preemptive

multitasking (Bovet & Cesati, 2006), we have to rely on a cooperative multitasking

approach (Bartel, 2011), where every component of the executed system is aware of

the notion of being budgeted and cooperatively returns the control to the system as

soon as possible. Otherwise, the system’s update will be stuck within the non-

cooperative subsystem. This was a frequent problem in MS-DOS (Paterson, 1983)

operating system, before processors supported preemptive multitasking.

Since our framework is run on a separate thread, parallel to the rendering thread, it

determines its budget adaptively, based on the assumption that the framework’s

thread and renderer thread should be aligned at the end of each frame to maximize

resource utilization. Since renderer thread is beyond our control, the framework’s

budget is changed to align to it. However, there is also a hard limit to avoid stalls – a

single frame should not go over 33ms to reach 30 FPS. Our multitasking is based on

following concepts:

1) Priority is aimed at having various levels of importance in respect to

update. Higher priority DMM receive more time to execute in respect to

others. At the same level, execution takes shape of a Round Robin queue.

However, to avoid starving, every DMM has to receive at least some

budget over a given time frame. This can result in either a larger portion of

a budget being given to higher priorities, or having an absolute addition to

the budget (e.g. priority 0 DMM receive a +1ms boost). Priorities may

change over time, based on various circumstances – e.g. player

interactions should be more responsive than ambient presences. There is

also the concept of priority boost, where a DMM receives a temporal

priority gain if it was suspended and resumes execution. We utilized both

approaches, when NPCs in closer proximity to the player are in a higher

 37

priority queue and certain actions (e.g. message is delivered) trigger a

temporal boost to the budget given to an NPC.

2) Debt denotes the overuse of an assigned budget. Since we employ a

cooperative multitasking paradigm, it may happen that an DMM does not

return control in time and thus generates debt. This is tolerated misuse of

cooperative approach, however the debt has to be paid at the earliest

possible moment. Therefore, if a DMM has debt, it is primarily consumed

at the next DMM’s update (e.g. the next frame) and the remainder is

provided to the DMM as a budget. If a DMM constantly overuses its

budget, it may receive a penalty either a negative priority boost or as a

more severe budget cut. However, this may have a cumulative effect, since

a DMM may require a budget for processing and stalling its processing

creates even more demand to catch up. We only implemented a simple

debt mechanic and avoided any penalty system, since we consider these

hard to tune to behave predictable.

3) Fairness is a straight forward principle, where every DMM receives an

even portion in respect to its debt and priority. This avoids differences

between DMM executions.

4) Interactivity is aimed at providing the user with the most responsive

experience, since humans are sensitive about response times. Therefore, it

is crucial to take player centric interactions into account, either by

boosting priority, budget quantum or overlook debt. We implemented a

mechanism to boost priority if an interactive action is triggered.

5) Proximity is similar to interactivity, only difference being the topological

nature in contrast to triggered action. The player is sensitive about their

immediate environment, thus if something far away is amiss, it is less

distracting than something wrong happening up close. Therefore,

proximity to the player is crucial to provide adequate reaction times. We

divide priority queues based on proximity, where closer NPCs are moved

into queues with higher priority.

6) Adaptability is aimed at providing changes to the budget based on the

current execution pattern of a DMM and a collection of DMMs. It is built

around the idea that most DMM do some baseline decision making,

occasional demanding computations and tend to sleep plenty (i.e. wait for

input from external sources). The baseline decision making cannot be

avoided; however, it should be marginal and stable in nature. Occasional

spikes in demand for computational power should be met with boosting

budget or priority to allow AS to get through the spike as quickly as

possible to get back to its baseline decision making. The spike indicates a

short-term necessity; therefore, it should be prioritized. Spikes can be dealt

with temporal budget increases which are smoothed over time, to avoid

overfeeding an AS with computational resources, triggering a cascade of

spikes as effect. Eventually we did not address these issues since spikes in

AS were not our primary optimization concern.

7) Yielding is a concept build upon the capability of the executing SBT node

to forfeit its budget. It can be viewed as a self-imposed budget restriction.

This can be either intentional or proactive. Intentional yielding is triggered

at the node, based an in-node analysis (e.g. too many child nodes were

 38

updated). Proactive yielding is triggered at the DMM level based on

varying reasons, for example the tree is being too deep, or too many

language elements have been executed. We implemented intentional

yielding into specific nodes like Loop and Parallel.

4.2.3.1 Summary

Budgeting is key in respect to delivering responsive and thus believable behavior

from NPCs. We implemented a multilayered round robin scheduling scheme taking,

budget debt, proximity, interactivity and yielding into account. Without budgeting,

Goal 1, 4 and 5 could not be accomplished in any meaningful manner, since we

could not afford to manage large numbers of active NPCs with complex SBTs.

4.2.4 Parallelism

Executing tasks in parallel is often a desired feature for a system managing multiple

concurrent constructs. Often employed in environments where encapsulated entities

execute their code and effective utilization of hardware is key. Presently most

modern hardware configurations contain multiple processing units – e.g. 8 core

CPUs able to provide 16 virtual cores. Therefore, we aim at designing our

architecture to support parallel execution and multicore systems. We have employed

the paradigm of parallelism at different tiers of our design:

1) External parallelism is aimed at having our architecture’s designed so it

can be run independently from other engine subsystems in a parallel

fashion.

2) Internal parallelism is aimed at handling concurrent execution at the

DMM’s level, where active subtrees can be executed concurrently.

4.2.4.1 External Parallelism

One of key mechanisms of our DMM’s architecture is the capability to run in parallel

with other engine subsystems to take as much advantage of hardware resources as

possible. To run independently of the engine, we employed a cache-commit

mechanism in respect to data access. Data from the engine is cached at the DMM

before AS’s update is executed. The AS is executed with cached data at its disposal,

thus it is not required to synchronize the data with the engine while accessing it. The

downside is the possibility of outdated data. After the AS is done, the changed data is

committed back to the engine. We employ the caching phase at start of every frame

and commit the aggregated changes at the frame’s end.

4.2.4.2 Internal Parallelism

Internal parallelism denotes our aim at executing parts of the SBT in concurrent

fashion. A simple example is how new inputs from the environment are processed

while executing actions. In principle, the solution are divided into two basic

approaches:

a) Sequential approach – sequences of checking for inputs and executing

actions are executed in a loop. New inputs can be processed only after an

action finished its execution. This may lead to untimely reactions to new

inputs or reacting to outdated inputs. However, this approach is often

favored due to its simplicity, since there is no need to synchronize access

 39

to shared resources or synchronize execution of actions with emerging

high priority inputs.

b) Parallel approach – has two branches of code, where one branch passively

waits for an input and the other branch deliberates and executes chosen

actions. The processing branch can filter out unwanted or outdated inputs

and deliberate about interrupting the execution branch if a timely reaction

is necessary. This approach allows for timely reactions and more complex

processing of events and actions. However, it is less favored due to

complexity and an inherit need to manage shared resources and

communication between branches executed in parallel (e.g. the input

processing branch requests actions to be executed at the execution branch).

In our case, we allow to use both approaches to solve problems, since in some

cases sequential processing is satisfactory. Sequential processing is supported by use

of sequences in the SBT language. To support parallel approaches, we provide two

mechanisms at the SBT language and DMM level:

1) Parallel branching introduces a node into SBT language structure, which

has at least one child node and all child nodes are executed in parallel. If a

child node enters a passive state (i.e. waits for a system wakeup), its

branch is not executed. However, if the node is signaled and awakens, its

execution is resumed. The Parallel node waits for all its children to either

succeed or fail. The setup of the parallel node may wary, terminating when

at least one succeeds/fails or all succeed/fail. This approach is commonly

known as coroutines (Conway, 1963).

2) Asynchronous execution represents the concept where a piece of SBT (i.e.

subtree) is marked as asynchronous, which leads to pulling (i.e. copy) it

out of the current tree and placing it into a separate AS running in parallel.

It can be also described as spawning the sub-tree separately and executing

it. However, there is the issue of utilizing data, since the origin SBT can

stop to exist at any time in respect to the pulled SBT. Thus data (i.e.

variables) is either copied by reference, by value or using a copy-on-write

approach
3
 (i.e. the data exists as a reference until it is modified at the

origin). We utilize a copy by value approach, which is slower but easier to

implement and maintain.

The parallel branching approach is relatively easy to implement by utilizing a

specific node which handles scheduling of its child nodes. In contrast to a sequence

which executes one child node after another, the parallel node simply executes all of

its child nodes and periodically (i.e. when a child reports a change of state) evaluates

their state. However, it represents a static way to describe parallel branching, thus

limiting its expressiveness. Also, since the parallel node has to be within a SBT, the

parallel executing branches are limited to the lifetime of the parallel node. Thus, it is

not suited to handling tasks which require to complete the handler when started.

Further, the parallel branches share the data
4
 scope thus race conditions on data have

to be taken into account. There is also necessity to synchronize the execution of the

parallel branches if they depend on each other (e.g. one branch evaluates actions the

3 Referencing data and asynchronous execution is explain in detail in 4.6.2
4 Data scoping and variables are explained in 4.2.6

 40

and other branch executes them). However, this approach has proven to be popular

due to its simplicity and easy maintenance.

The asynchronous execution approach requires a node to denote a subtree to be

executed asynchronously. This allows for to trigger execution of isolated

asynchronous handlers to manage emerging situations (e.g. the NPC is hit by

something and it has to be handled as soon as possible). Since the SBT is pulled from

its origin and put into a separated AS within the NPC’s DMM, the execution in

individualized (e.g. it can be prioritized etc.). The separated execution also provides

a separated memory envelope which limits the capacity of developers and scripters to

introduce data related bugs (e.g. writing into a variable without synchronizing).

However, this requires the data management at the SBT to handle moving referenced

data (i.e. when accessing data in the origin tree), which can be quite inefficient.

Further, since the pulled SBT is executed in a separated fashion, it can be executed

multiple times with little binding to the origin (e.g. one asynchronous handler per

every event). This allows for proper response times and well separated and

decoupled SBT code. However, it is not simple to use the pulled tree to report back

to the origin SBT, since they run independently (e.g. the origin tree runs an

asynchronous handler for every enemy in sight and the handlers report their

evaluation of the target’s threat level to the origin tree to choose a target). This

approach is popular for handling events and triggers which are independent of the

core NPC’s AS.

4.2.4.3 Summary

Our architecture provides both of these approaches to the user, since we need the

NPC to deliberate in a timely fashion. The branching approach is aimed at providing

more complex behaviors (Goal 4), where an NPC can evaluate and execute at the

same time. The asynchronous approach is aimed at managing the variety of events

which the NPC can encounter in complex environments with emerging situations

(Goal 2). We also utilize the asynchronous approach to deliver complex behaviors

(Goal 4) coupled with actions
5
 where asynchronous SBTs manage an action’s

internal events. Both approaches allow us to provide the SBT language with more

capability to handle design of complex believable behaviors (Goal 1), where NPCs

act in a more complex fashion (i.e. NPCs can do more actions – go to work, greet the

player and make remarks about his armor).

4.2.5 SBT Events

SBT node states are designed to inform about the particular high level state (e.g.

suspended) of a node thus avoiding any detailed information about results or internal

specifics. This works well in respect to node management, where no more detailed

information is needed. However, there is understandable desire to communicate more

complex information than simple running/success/fail of a node. Beyond the concept

of returning a result, the node may need to inform the user or other DMM systems

about specific situations (e.g. it encountered an exception while evaluating) or partial

results.

One possibility for a node to communicate is over shared data, where the parent

node provides the child node with variables to use either as return value or to report

specifics during execution. However, this approach has limitations, due to the fact

5 Actions are discussed in 4.6

 41

that the parent node has to inform the child about which variables are designed for

which information (e.g. $pos should be filled with the target position for

movement). Further there is the necessity to synchronize changes to those variables

between the child node and anyone interested in the results (i.e. some other node or

subsystem may be interested in that information). One possible solution is to always

provide a commonly named variable (e.g. named »returnValue«), but this creates

unwanted memory consumption and requires providing a proper type for the

variable. Since we do not want to introduce a reflection contract (i.e. being able to

tell what is the node’s or subtree’s return value type), we avoid the principle of

forwarding contracted return variables as much as possible. We do however forward

contracted data into subtrees as parameters (i.e. a subtree of a particular node has

variables the subtree’s root fills with data).

To avoid the dependency between parent nodes and child nodes, we implement an

Event System within the SBT. The Event System is easy to use and versatile up-the-

tree (i.e. traverses the node from child to parent) communication mechanism. An

event is a tuple (name, type, custom data) and is either provided by the node’s code

or by the SBT script (i.e. similar to a C++ throw statement). Events are not limited to

returning values after node termination and may be spawned by any running node at

any time.

Events are propagated from their origin (i.e. node within the SBT) to its parent.

The parent either removes the event, or propagates it upward. If not stopped, the

event propagates into the DMM (Figure 10). This system follows an approach known

as exception unwinding (Cubbi, 2013).

To our knowledge, this mechanism is not utilized in any of the known AS

mechanisms, ranging from BT to scripting languages like LUA. However, these are

common in high level programming languages like C++, Java and C#. Therefore, we

consider it a much-needed extension to our SBT architecture, to be able to provide

more expressive capability to our nodes and the AS. This allows us to introduce

mechanisms like a Try-Catch construction (Persson, 2012) in C++, where events can

be coupled with asynchronous event handlers (Figure 10). For example, a movement

node while following a path, engages in one of two situations 1) NPCs is stuck, or 2)

player forces a dialog. The movement node throws an event for each such situation

and the vents are handled within the parent structures of SBT the movement resides

within.

 42

Figure 10: Event propagation for delivering the »Foo« event which originates at the Action
node. The event is caught by the Try node and the respective Catch branch is activated. If the

event would be something else than »Foo« or »Bar«, the propagation would continue until

reaching the DMM.

4.2.5.1 Summary

SBT events is primarily aimed to provide more complex behaviors (Goal 4) for a

believable environment (Goal 1). Being able to handle complex internal states,

including various failures or execution specifics (e.g. Move node can report why the

movement has failed – no path found, target unreachable, NPC stuck etc.).

Furthermore, events allow us to produce information within the SBT to be handled

by the scripter, which can be manipulated by the already present means (e.g.

expression evaluation, data operations etc.) since the event internally contains

custom data being SBT variables (e.g. the catch branch of a try-catch can send the

event’s data as a message
7
). Overall, the SBT events provide our architecture with

capability to communicate more information to the scripter and designer about what

is happening around the NPC and within the CGE. They have proven to be a

7 Messages and the Messaging System are addressed in 4.3

 43

valuable tool for debugging purposes, since debug events can carry complex

information (e.g. which animation was not found) which can be processed and

viewed in our tool-chain.

4.2.6 Data Model

Every language which evaluates expressions (e.g. x > y + 3) requires a Data

Model to manage conceptual representation. Conceptual constructs are commonly

represented by organized data aggregations. These aggregations are distinguished by

being associated with named types (e.g. Human, Actor, Car etc.) (Parnas, Shore, &

Weiss, 1976). Variables represent a dedicated portion of memory where such data is

stored and the type describes the memory’s use (i.e. where which type member is

stored) (Jackson, 1977).

There are many ways on how to represent data using types, either in a strong or

weak typed form (Aahz, 2003). The classification revolves around being able to

identify data types more or less precisely and determine parameter requirements and

possible conversions between types that have predictable results (Cardelli, 1991):

1) Strongly typing of data means that every partial data is represented by a

fundamental type representation with a given set of available

transformations – i.e. conversions. Fundamental types can range from

integral types, trough floating point representations up to more complex

constructs like 3D vectors and strings. Fundamental types can be

aggregated into more complex types to provide a more coherent

representation. Typing of parameters is important for proper expression

evaluation. Further, a function call uses a definition to specify its

parameter’s and return value types to avoid invalid use. Type checking

manages run-time or compilation checking of proper function use (Liskov

& Zilles, 1974). A common example of a strongly typed language is C++.

2) Weakly typed languages are less concerned with data type specifications,

where implicit conversions between data happens during runtime.

Function calls and data operations may have varying results based on

varied factors like ordering, used operations etc. (e.g. a+b used on strings

has a different result than a*b – the addition produces a string conjunction

ab and the multiplication a transformation to integers). In some cases,

there is no concept of type present at all. Often there are some fundamental

types, thus they are implicitly convertible. However, this can lead to

issues, for example 1+1 may mean 2 or 11 depending on the

interpretation and the current state of the given variables. An established

representative of a weak typed language JavaScript (Crockford, 2008) or

Perl (Sheppard, 2000).

Our data model is focused on a strongly typed data environment. We consider this

approach more error prone, easier to debug and simpler to comprehend. From our

perspective, having type knowledge provides necessary insight into the design

decisions used (i.e. a 3D vector denotes position, and is not used as an arbitrary

triplet of floats). To provide more expressive evaluation, we provide explicit and

implicit conversions for data types. As for data type consistency, we chose to make

use of a dynamic type checking scheme, since we also support introducing variables

at runtime. To provide some static analysis, we allow scripters to utilize simple

 44

forward declaration of variables (Wikipedia, 2017). Overall, our Data Model goes is

heavily influenced by data models utilized by procedural languages like C++ and

Java.

4.2.6.1 Primitive Data Types

Primitive Data Types (PDT) (Fog, 2010) represent the fundamental low level

representation of data. We distinguish the following PDT types:

a) integer (32bit) and long integer (64bit) – represent a whole signed integral

number of the given bit width;

b) float – represent floating point number with a 7-decimal digit precision,

similar to a C language POD (Bazzy, 2012) type;

c) boolean – represent the logical true/false value;

d) string – represent a dynamic array of 8bit characters;

e) polymorph – represent all the above types as one type, able to change

between representations, however we abandoned this type in later

development to avoid user confusion.

We provide most common conversions between types. In the case an operation

would result in data (e.g. float converted to integer) or precision loss (e.g. long

integer converted to integer), we provide users with a run-time warning. We do not

allow to convert any type to string type to avoid user confusion.

4.2.6.2 Structuring Types

Aggregating types into structures is a common feature of any more advanced

language commonly known as Advanced Data Types (ADT) (Liskov & Zilles,

1974). To avoid a flood of PDT variables and user confusion, we utilized the

mechanism of creating structures commonly known in the C language. However, we

do not allow member methods to be declared.

Creating an aggregated type is based on one rule, where every aggregated type has

to have at least one member having a PDT or already defined type (Figure 11).

Further, every member may have a default initialization specified in its description.

If an initialization is not specified, it will be composed of prior existing member

initializations. Every PDT type always has an initialization specified in code (i.e. all

zero initialization). Members within a structured type are ordered by their appearance

in the type’s definition.

Figure 11: Schema of structuring types based on aggregation of either EDT or already

defined types

 45

This allows us to create a more complex representation of ideas, starting from 3D

vectors and ending in complex sensory information. In respect to language

evaluation, we define a staged dot description, where members at every level are

separated by a ».« character. For example in (Figure 11) the defined type contains a

member of another type, thus accessing the 3D vector is denoted by

$Variable.Foo.CoordX, where $Variable represents the variable of the

Bar type, and Foo represents the first member being a Vec3 type. Furthermore, the

CoordX represents the floating point X coordinate.

4.2.6.3 Inheritance

We also introduce the concept of Type Inheritance (Wegner & Cardelli, 1985) where

one structure can be inheriting its members from another structure, thus extending it

by providing additional members. Languages like Java and C++ build most of their

internal concepts around inheritance. Furthermore, inheritance is the key concept for

OOD and OOP.

In respect to our language, we allow for a simplistic inheritance model, where one

structured type can extend an already existing structured type, by creating a new

type, which at least contains already existing type’s members. The new child type is

not required to add new members. If no members are present, the extending type is a

type alias of the parent type. We only allow single inheritance, where one type can

only have one parent type.

We utilize a colon notation, where the child type has to be fully identified by its

parent types. For example if a Foo type inherits from a Bar type, which inherits

from a Miau type, the Foo’s complete type identification would be

Miau:Bar:Foo.

With inheritance comes the necessity to provide conversions, both implicit and

explicit. Imagine there are two variables – A of type Miau:Bar and B of type

Miau:Bar:Foo. The Miau:Bar type is a different type than the

Miau:Bar:Foo type. However, we could execute two basic operations onto A and

B a) A = B and b) B = A. In the first case A being of a superclass type, we need to

implicitly convert B to a Miau:Bar type, and data slicing will occur (part of the

information stored in B will not be stored in A). We support the implicit conversion

of types at such occasions.

In the second case, only a part of the B variable may be addressed by the A

variable, due to if being its superclass. This requires a conversion, where the A has to

be changed to a Miau:Bar:Foo type and the extended members will be initialized

by default. This results in overwriting the members not present in the superclass of B

by their default values – whipping. This may be considered undesirable and in some

languages, requires specifying an explicit conversion. In our case, we avoid

converting the A into its subclass type and recognizing the inheritance, assign only

the members present in the superclass, leaving the subclass members intact.

4.2.6.4 Summary

Having a more complex data model than the common BT or LUA allows us to

translate design ideas into a simpler and more maintainable data representation

within the SBT language. This allows to more readable code base, where scripters

can infer the intended use of a variable by its type (e.g. Vec3 is commonly used for

describing positions). This also allows us to provide users with run-time and static

 46

type analysis in respect to node use (e.g. a node parameter is limited to input Vec3

and Foo types). Overall, the strict typing of the languages data allows us to provide a

more believable environment (Goal 1) since the SBT language can be used to express

more complex design constructions in an easier, understandable and manageable

fashion.

4.2.7 Data Storage and Access

Almost every programming language requires to store data in temporal or persistent

form. However, FSM do not use variables at all and express everything in states. To

our knowledge, this can lead to too many states if variety of the environment is too

complex. Further BT can be without variables, however, similar to FSM they tend to

grow into unmanageable proportions (Rasmussen, 2016).

Based on our experience we chose to include typed variables to represent

constructs within the AS. This allows us to manage the decision-making process with

more ease and utilize common programming paradigms. Almost all users of our

architecture will have some experience with common programming languages like

Java and C++ thus providing them with a known mechanism on how to express data

is beneficial.

4.2.7.1 Variables

Variables can be described as parts of the AS where users store data for either

immediate or later use. They can be either temporary or persistent, having a volatile

or constant content. Temporary variables exist for the purpose of evaluation and are

removed after a statement’s end (e.g. statement z>1+x creates a temporary variable

for 1+x which stops to exist after the statement is evaluated). Persistent variable’s

existence is not influenced by statements (i.e. they exist within a SBT variable data

scope
8
). Constant content of a variable prevents expressions to modify their content.

All other variables are volatile in nature. In our case, variables represent instances of

the structured types and may take the shape of four different forms:

a) Single variable is the simplest form, representing only one instance of the

specified type.

b) Indexed variable represent an adaptively growing array of instances of a

particular type. Indexing of such arrays starts at 0 and is continuous. If an

instance is added at an index beyond the end of the array, the void between

the latest item and the end is filled with instances.

c) Associated variable is similar to an indexed variable, with the difference

that their instances are indexed by string names, not being in any way

continuous. If an instance is added at an address, it does not create new

instances to fill a void.

d) Custom associated variable works the same way as an associated variable,

with the difference the key being another structured type.

To specify access to our variables, we utilize a simple mechanism of Variable

References, for both constant and volatile ones. It is a simple adapter pattern

8 Data scopes are addressed in 4.2.7.2

 47

construction (Freeman, Sierra, & Bates, 2004) for accessing the data stored in

variables. It consists of three parts (Figure 12):

1) Variable specifier can be simply understood as the variable’s name. It also

represents a key into an indexing structure holding the variables in the

SBT.

2) Selector represents the selection of a specific variable instance in respect

to the variable’s form. It represents the key to search for the variable’s

content (e.g. in an associated variable it is a string to search by).

3) Member specifier is a collection of by-dot-separated member names which

coincide with members within the variable type’s definition. The

collection represents a path within the tree structure of the type. The

resulting member is not required to be a PDT

(e.g. $A.Foo.Pos = $B.Bar.Miau.Pos is an assignment of two 3D

vectors within the A and B variables).

Figure 12: Variable Reference consists of a variable specifier (name), a selector to locate a
specific instance within a complex variable form (e.g. array) and a member specifier, which

denotes the exact data part of the accessed variable

4.2.7.2 Data Scopes

There are several ways on how to approach storing and access to variables. One

common approach is to utilize a Blackboard architecture (Corkill, 1991), where all

data, both constant and volatile, are kept accessible for everyone. Variables may be

added and removed, requiring coordination either between developers or within

code. There may be distinct levels of blackboards – e.g. world blackboard, entity

blackboard etc., but the paradigm of everybody being able to modify data in a shared

container remains.

We utilized a different approach, commonly used in modern programming

languages – Data Scopes (ISO/IEC 9899:TC3, 2007). Since SBT language is

structured as a tree, it was natural to structure data containers in the same manner –

as a tree of data scopes (Figure 13).

 48

Figure 13: Nesting of data scopes for a SBT and access to that data via variable references.
Variables are stored in Data Scopes. These can be at any level of the SBT hierarchy (i.e. at

any node). The access searches the data scope hierarchy until a variable is found. If not, it

results in a failure to locate the variable.

Data Scopes are constructed as simple data containers, where every data scope has

one parent scope and may contain any number of named variables. There is Global

Scope which has no parent scope. This scope is used to store constant or restricted

(i.e. only specific subsystems can alter these) data, which should be accessible to

everyone. Further down the hierarchy, nested scopes are present within the DMM

and the underlying AS (i.e. SBT). At the SBT language level, scopes are present in

every node, similar to data scopes within programming languages like C++. This

allows for nodes to introduce data for their respective subtrees. This serves three

purposes:

1) Forwarding data for later use by subtrees (e.g. a move element provides

the target position as a named variable to be used within the subtree as

parameters for looking and targeting).

2) Return values (e.g. a spawned subtree computes a targeting solution and

writes the result into a provided variable).

3) Temporary and Local variables to avoid polluting parent scopes.

The lookup of variables is done in a bottom-up manner, first the local scope of the

node is asked, and if not present, the search is moved upwards in the hierarchy. The

first match is returned as a result of the search. It may occur that a found result is

restricted (e.g. private within the scope), thus leading to an error in access. If any

variable name is present in a parent and a child scope, and the child scope is

 49

precedent in the search – the child variable shadows (Kildaegi, 2008) the parent

variable. While shadowing, it is not required that parent and child variables have the

same type, since shadowing is only concerned with variable’s name.

One disadvantage of a hierarchical lookup approach is the necessity to search for

variables over a possibly large set of containers. We introduce a lookup cache where

a variable found above a scope’s index can be stored within that index as a reference

to avoid further lookup. Since it is unlikely that a variable in parent scopes is

removed, a consolidation (e.g. clearing of caches) occurs less frequent. This leads to

increased memory consumption but provides an efficiency boost. This is most

prominent when global constants are accessed. To avoid unnecessary memory

consumption, lookup caches may be introduced at key points (e.g. root nodes) within

the SBT’s hierarchy.

We also define forward definitions, where SBT subtrees can specify a variable

required to be present in a parent’s scope. All forwarded variable definitions are

checked prior to using a tree as a subtree for a node. This allows for run-time and

compile-time checking for correct evaluation of expressions and correct parameter

use at nodes.

There is also the possibility to access variables by their fully qualified name

(Weik, 2000) to circumvent shadowing – e.g. a variable named Foo is present in a

subtree’s scope and in the global scope as well. To access the global scope we need

to specify a fully qualified name of the variable global::Foo to skip the search

within the hierarchy of scopes. The naming of scopes is up to developers and

scripters (e.g. global, NPC etc.).

4.2.7.3 References and Closures

Variables are named data containers which exists within a data scope which reside

within the data scope hierarchy. A variable can exist in two forms in a data scope:

1) By value – variable and its internal data containers reside within the data

scope. Therefore, any access to the variable from the underlying SBT

execution is contained within the data scope.

2) By reference – variable’s actual internals reside within a different data

scope, possibly not even in the actual hierarchy path from the scope

having the reference to the global scope.

Variable references may exist in different modes:

1) Concurrently accessed variable is unguarded except its constant-volatile

specification (i.e. being modifiable). The reference is only a proxy to the

referenced variable. However, the reference is not protected against

variable destruction and invalidation.

2) Shared access behaves in the same manner as a concurrent reference, but

in a case of invalidation or destruction of the referenced original, a new

original is created instead of one of the references

3) Copy-on-write (COW) variables is instanced if the original is either

modified, invalidated or destroyed.

Creating of references most commonly occurs while a closure (Landin, 1964) is

created i.e. a part of the tree structure is copied or moved for asynchronous

execution. In SBT an environment’s closure is done either by naming a capture list

(similar to a C++ lambda capture (Bazzy, 2012)) or by examining the SBT. Naming a

 50

capture list is an enumeration of variable names which are to be captured from the

source environment. Examining the SBT expressions requires an active cooperation

of nodes, which have to be able to analyze their content and provide a listing of

variables to reference.

Creating referenced variables can provide us with benefits in respect processing

and memory optimization. However, it is more demanding on the developer to

properly use this concept and avoid hard to maintainable code constructions.

The choice of variable representation within the captured SBT closure depends on

either explicit specification by the user (per variable), or is based on the intended use

of the SBT closure.

4.2.7.4 Summary

Variables as storage is a cornerstone of the SBT language (Mechanism 1). Storing

persistent data is imperative to providing complex behaviors (Goal 4) and a

believable environment (Goal 1). Without variables, it would be hard to express

almost any design decision in an easy to understand and easy to maintain way.

4.3 Messaging

Mathematical models of message exchange (Hewitt, Bishop, & Steiger, 1973) have

been proposed to model communication between actors (Agha, 1986) (i.e. universal

artificial agents) in a concurrent environment. Communication (Ferguson & Terrion,

2014) has also been identified as one of primary human ways to frame ideas and

concepts. From our perspective, designing believable behaviors require a messaging

system to allow for relatable problem solutions, both between NPCs as well as within

an NPC (i.e. between parallel branches of execution). We have designed a messaging

mechanism on top of SBT and our data model, to allow scripters to transfer data (i.e.

messages) using several methods (e.g. synchronous sending, mass sending, context

specific delivery etc.). In this subchapter, we will discuss the basic principles

integrated into the SBT. We also present our concept of inboxes and delivery

methodologies. There are three components to our Message Delivery System (MDS)

(Figure 14):

1) The Message is a data container holding a typed variable which can be

used by the sender to provide data to the receiver.

2) The Sender provides the delivery system with a message, utilizing an

addressing and processing scheme.

3) The Recipient is responsible for message pickup and processing. It is also

possible to engage in an exchange process with the sender.

 51

Figure 14: Message Delivery System provides a subsystem to be used by the SBT to deliver

messages containing data to another NPC and its respective SBT

4.4 The Message

The message is primarily aimed at providing a vehicle for data delivery from the

sender to the receiver/receivers – it holds a typed variable with message’s data. If the

message is destined for multiple receivers, every receiver is provided with their own

copy of the message’s data. The data can be stored in a shared reference to avoid any

unnecessary copy of the actual source data.

In respect to our scenarios, we utilize messaging almost everywhere. In Scenario 1

(Brian), we use messages to communicate changes in the daily schedule of Brian.

One SBT handles the schedule, watching the daytime changes (e.g. morning at 6:00

wakeup time, or 18:00 end of work) and when a different activity is to be scheduled,

it sends a message to itself to process the change. Another SBT subsystem within

Brian’s AS processes these messages and changes Brian’s behavior accordingly.

Using messages leads to proper decomposition to pass information between parallel

processes in a clean and well organized manner.

In our Scenario 2 (Tavern), NPCs who attend the tavern send messages to the

Innkeeper to order beer and drinks. The Innkeeper collects and organizes these

requests (e.g. by the table the NPCs are sitting at) and sends messages to the waitress

about tables that need service. This also illustrates how messaging allows for a front

controller pattern (Fowler, 2002) to be implemented via SBT using messages. The

waitress may get bored over time by not getting any orders to handle, so she start to

sweep the tavern’s floor.

4.4.1 States

Beyond the data, the message has an internal state (Figure 15):

1) Ready – initial state, all data is instantiated and necessary checks are made

e.g. receiver exists, data is valid etc. If something would be amiss, the

message would switch to a failed state.

2) Sent – after being accepted by the MDS. It is removed from the sender’s

competence (i.e. object ownership).

3) Delivered – after being accepted by the receiver for processing.

 52

4) Picked up – after being accepted by processing and moved into the SBT to

be handled.

5) Processed – the SBT handler can explicitly state the message’s evaluation

has finished.

6) Returned – the SBT handler may provide a response message to be

returned to the sender. The original message is paired with the response.

7) Dropped – the message is refused by the receiver at any stage after being

delivered.

8) Failed – it could not be delivered or was explicitly rejected.

9) Finished – processing has finished. In the case of a return message, both

messages enter this state synchronously.

Figure 15: Message states and their respective transitions in the process of delivering the

message from Sender to Receiver.

4.4.2 Inboxes

An NPC’s internal MDS can handle incoming messages two ways:

1) Delivery to a listener – only accepts messages to which somebody is

actively waiting to receive – i.e. a »read« node at the SBT. If such listener

is not present, the message is rejected. This can lead to issues when a

schema of »read and process« in a loop can miss out on important

messages just because they have arrived at the wrong time. The upside of

this method is the simplicity of use and integration at the SBT. The

downside is the necessity to distinguish concurrent listeners at the DMM,

and to whom to deliver the message.

2) Delivery to an inbox – provides the MDS with a set of user specified

inboxes. The MDS provides the recipient’s DMM with the message and

the internal delivery subsystem runs it through a set of rules for accepting

or dropping the message. If at least one inbox accepts the message, it is

considered to be delivered. Every inbox may be either limited or unlimited

in respect to number of stored messages. Messages reside within the

inboxes until they are either cancelled by the sender or fetched by requests

 53

from a SBT node. A »read« specifies the type of message data it wants to

fetch from an inbox into the internal SBT memory scope. Therefore, all

inboxes have types they may store. Since our types form an inheritance

hierarchy, an inbox may contain types and their respective child types, due

to looking at the inbox as a form of an array of typed variables.

Further we provide the notion of providing inboxes for subtrees. This provides us

with inboxes that are introduced for the lifetime of a given subtree, thus providing

the subtree’s »read« requests with concrete inboxes to work with. This however leads

us to the creation of an inbox hierarchy (Figure 16), where inboxes may be

introduced similarly as data scopes. The organization of inboxes into a tree-like

structure carries additional problems with which inboxes to prefer in respect to

delivery and fetch requests, if multiple inboxes of a similar type are present. We

order the new inboxes prior to the existing inboxes, since it is reasonable to expect

that these inboxes will be used for processing messages for the particular subtree that

introduced them – thus ordering of inboxes is based on their appearance in time, for

those which come later have higher priority. Fetch requests inspect the higher

priority inboxes first. It is noteworthy that requests are type specific and the internal

MDS tries to match provided data as much as possible avoiding data slicing.

Figure 16: Inbox hierarchy within the DMM. Fetching of messages is based on the

hierarchical ordering, where the closest inboxes are checked first

Delivery to inboxes is common in the Scenario 1 (Brian), where notifications

about new activities are stored within an inbox and processed sequentially. It would

be incorrect to use the delivery to a listener, since the SBT may not have a pending

»read« request and the notification would be lost.

Scenario 5 (Battle) illustrates how delivery to a listener can be properly used to

simulate believable behavior – commands from the Commander are only received if

a trooper NPC has nothing else to do (i.e. he is not fighting other NPCs). Thus, a

command can be lost in the heat of battle.

 54

4.4.3 Timeouts

Further the message can have various timeouts:

1) Delivery timeout denotes how long a message can wait for delivery. This

can be viewed as how long the message is available to be picked up by the

receiver’s MDS. For a message that is to be delivered based on a predicate

(e.g. all NPC in an area), this denotes the time of its existence.

2) Hang timeout denotes how long the message is willing to stay delivered

but not processed.

3) The process timeout denotes how long is the message available for a return

message to occur. Timeout’s expiration is handled by a failure of nodes

involved in the message’s processing.

For example, in Scenario 5 (Battle), whilst in battle, the Commander sends a

message to some of his troops to engage on left flank. He annotates the message with

a hang timeout and a process timeout. The hang timeout will tell him how many

troopers are able to fight at the left flank, since the message was not processed, the

NPC may be dead or too occupied by fighting. If the message gets processed but is

not processed in due time, the order for that trooper will be dropped (i.e. message

fails) and the Commander sends other troops onto the flank. It can be seen, that

timeouts are a necessary mechanism for more complex behavior to manifest, like the

presented Command pattern (Freeman, Sierra, & Bates, 2004).

4.4.4 Addressing

The address of the receiver is a vital component of any messaging system. We chose

several schemas of how to approach the issue of addressing receivers:

1) Direct addressing is aimed at providing the MDS with an exact address to

whom to deliver the message, most commonly being a unique identifier. It

is not limited to one recipient.

2) Predicate addressing is aimed at providing the MDS with a predicate,

which when satisfied, will trigger an attempt to deliver the message. Such

predicates may address area presence, health of an NPC, performed

actions, observed actions, time spent in an area etc.

In our Scenario 4 (Jerry), we use direct addressing to send notifications to NPCs

about what the player told Jerry during the quest. Jerry forwards these information to

his wife, so she knows how to change her daily schedule to accommodate to the

quest. In Scenario 3 (Murder), we use predicate addressing to tell everybody within

the radius of a crime that they should come and look. Guards investigating the crime

often tell (via message) every citizen within the area of the crime to go about their

business.

4.4.5 Processing Schemas

A processing schema is concerned with how messages are sent, processed and

received:

1) Instant processing schema from a sender’s perspective requests the

delivery from the MDS, only checking for being valid (e.g. recipient

exists, predicate can be validated etc.). The sender’s request may be

 55

processed later, but the request is instant in respect to SBT’s execution and

sender does not care about the message. From a processing view, the

message’s status is not reported to the sender and effort is made to deliver

it. From a recipient perspective, instant fetching of messages does only

check and possibly pick up a message from an inbox. If the message is not

present, the request fails. Both sender and receiver instant schemas can be

summarized as being non-blocking in respect to SBT execution.

2) Temporal processing schemas are bound to timeouts in respect to

requested operations. From a sender’s perspective, a given timeout is

provided for either delivery or pickup of a message by the recipient. If this

timeout runs out, the message is dropped by the sender. Therefore, the

sender must be informed about changes in the message’s state, thus the

request is blocking in respect to the SBT execution. From a processing

perspective, the message changes states as it transits from the sender to the

MDS and to the recipient’s inbox and is processed within the recipient’s

MDS and SBT respectively. These changes must be adequately reported.

The MDS should be able to recall the message from the recipient, if the

sender runs out of time. The timeout is also part of the message to avoid

concurrency issues, where the sender wants to cancel a message being

processed. From a recipient’s perspective, temporal processing is done by

a blocking node at the SBT waiting for a suitable message.

3) Coordinated processing establishes a contract between sender and

recipient about a message being sent, received and processed in a manner

where both parties are synchronized. Simply put, the sender’s perspective

is that the message is being sent in a temporal fashion, where the release of

the blocking node happens after the recipient reports the message has

finished processing. On the other side, the recipient must process the

message as part of it being fetched from an inbox (i.e. the »read« request is

a root of a process subtree). The message can be cancelled by the sender

until it reaches recipient’s processing stage. Further, the recipient can

provide an answer to be delivered to the sender if the sender allows this to

happen. From a processing perspective, both parties are connected via the

established connection of sending and answering. This allows for a cleaner

solution to a send-acknowledge schema of communication, where only

temporal or instant schemas would not perform well, since the both sender

and recipient have no idea about the current counterparty’s state. Binding

their execution together provides a clear mechanism on what is happening

on both ends (e.g. one side’s execution is halted due to a hit reaction, the

other is notified and both fail).

Instant processing can be utilized for example in Scenario 5 (Battle), for

commands by the Commander, where he does not care if a specific command to

retreat was followed or not, since the Commander is fleeing himself. In the

Scenario 2 (Tavern), temporal processing is used to model discomfort of guests with

untimely fashion of handling their orders. If the Innkeeper has too much work to do

(i.e. too many orders), he will miss out on some order’s timeouts, thus signaling to

guests that they should get angry. In Scenario 5 (Battle), the Commander may want

specific commands to be acknowledged by his troops, thus he will not issue further

orders until they are done processing already issued orders. Coordinated processing

 56

makes it easier to implement a Command pattern with acknowledgments, where the

Commander will wait before the soldier has finished processing on his end.

4.4.6 Summary

Messaging represents one of the key concepts for communication between NPCs and

between parallel executing SBT within an NPC. Without it, some of the more

complex behavior patterns presented above could not be easily implemented or not

possible at all. Implementing synchronized execution of two or more BT or FSMs

would be rather complicated and would require special modifications to those

paradigms. In our case, implementing a synchronized execution takes only one inbox

and use of read and send nodes. Messaging is fundamental in respect to our Goals 1,

2, 3, and 4.

Goal 1 manifests in our Scenario 1 (Brian) where the messaging is employed as an

internal scripted mechanism to be able to provide adaptable behavior for Brian in

respect to his day-by-day activities. Brian’s AS responsible for selecting the present

activity sends messages to other AS parts to execute it. In Scenario 2 (Tavern), the

messaging is employed to facilitate tavern management. Sending messages between

customers and tavern’s manager provides a believable system where player’s

interactions (e.g. he distracts the waitress with a dialogue) may trigger believable

reactions from other guests (i.e. the waitress is talking thus does not process

messages from her manager). Scenario 3 (Murder) employs messaging to convey

believable behaviors of civilians who are informed by messages about something

happening nearby. Scenario 4 (Jerry) utilizes messages to provide communication

between NPCs about how to change daily activities to suit needs of the quest. NPCs

are informed via messages what to do next in their day-by-day life to be able to

participate in the quest. Scenario 5 (Battle) uses messages to deliver commands to

troops in a believable fashion. Commands to troops are delivered via messages and

troops occupied with combat ignore them. Killing the Commander puts the troops

into disarray, since no one is issuing commands anymore.

Goal 2 is mainly manifested by Scenario 2 and 3. Messaging allows Brian in

Scenario 2 (Brian) to change his behavior based on how the environment changes.

For example, if the player steals all food from a nearby tavern, Brian will receive a

message about the tavern being closed and removes it from his list of favorites. Also,

when Brian receives a message from the environment that it started to rain, he will

change his daily schedule to avoid working outside. In Scenario 3 (Murder) the

messaging system is used to convey information about the emerging situation to the

nearby NPCs. If guards identify someone as the murderer, they will send out

messages to everybody nearby to chase him. NPCs can spread those messages further

to other nearby NPCs until everybody knows that the player killed somebody.

However, the information can change slightly so after few broadcasts, recipients only

know that the murderer had a helmet and a sword. Thus, messaging provides a

natural way how to spread information within the virtual world and how to create

new emergent situations based on these information. Guards could also use

messaging to query nearby NPCs about seeing the murder and use this information to

reason about the suspect. As can be seen, messaging is used to create an emergent

world in natural and understandable fashion.

Goal 3 is mainly manifested in Scenario 4 (Jerry). Messaging is used to facilitate

communication between NPCs about what the player does and to adapt the quest

participant’s behavior. The questing manager can use messaging to send commands

to NPCs so they can enrich their day-by-day behavior in ways to suit the quest.

 57

Messages can be used to report results of dialogues and even local NPC decisions to

the quest’s manager to change the quest’s structure (e.g. the player is spotted when

stealing the healing potion from the herbwoman, closing off some ways to finish the

quest).

In principle, Goal 4 is reached by employing the messaging paradigm. Scripters

and designers can provide a more complex set of behaviors where NPCs

communicate easily with each other. It allows for deeper interactions with the player,

since NPCs can coordinate their actions in an intricate fashion. The downside is

implicit SBT complexity which is harder to maintain over time. Also, debugging

tools within our tool chain have to be able to track communication between NPCs to

discover issues and mishaps.

4.5 Synchronization

One key communication mechanism in any concurrently executing system are

synchronization primitives (Tanenbaum & Woodhull, 2006) – commonly known as

mutexes, semaphores and read/write locks. Since our architecture provides both

internal and external concurrency, where internal concurrency is concerned with

parallel executing SBT branches and external concurrency is aimed at parallel

executing NPC’s DMMs, we introduce locks and semaphores to our architecture.

Both locks and semaphores are designed to stall execution until the invariant they

guard is reached.

4.5.1 Locks

A lock can be abstracted as a simple device which unlocks after a given set of key

turns is reached. In respect to SBT a lock is represented by a SBT decorator node

where the node’s subtree represents the guarded execution. Our Locks have 5 basic

characteristics:

1) Identification is a shared information amongst participants, which

identifies the lock uniquely.

2) Participant limit gives the count of necessary lock participants for the lock

to open.

3) The meeting timeout denotes how long a participant is willing to wait for

the lock to open. If the lock opens, all participants are signaled and

continue with their respective SBT execution into the lock node’s subtree.

Everybody exits in a synchronized manner (e.g. the lock is closed and

reactivated).

4) Reopen timeout marks how long a participant is willing to wait for the lock

to reactivate.

5) Break behavior specifies how the lock should behave if somebody leaves

it before others finish execution of their respective subtrees associated

with the lock.

This mechanism allows for simple constructions where several NPCs synchronize

on executing their respective subtrees. This also allows for guarding resources for

mutual exclusion, by providing the lock with a participant limit on one NPC.

A simple example for using locks is when two NPCs want to coordinate on an

activity at a specific location. For example, 2 soldiers in Scenario 5 (Battle) prime

 58

the trebuchet to fire at the enemy castle walls. Both execute an animation which

when started at various times will look bad – they will not synchronize at turning the

trebuchet’s mechanism. Since they start executing the animation independently, we

need to put a lock on top of the subtree where they execute the node which runs the

animation. The lock allows for further execution only after both soldiers have

reached it in due time. To our knowledge, such synchronization is not possible in any

other scripting language for computer games.

4.5.2 Semaphores

Semaphores can be abstracted as gateways with limited tokens at their disposal to be

consumed by execution entering the sequence guarded by the semaphore. In respect

to SBTs the semaphore is represented by a decorator node with a single subtree

representing the guarded sequence. When existing the sequence, the consumed token

is returned to the semaphore. If there are no more tokens, the semaphore node stalls

the SBT execution until a token is available. Since the semaphore is concurrently

accessed, we guarantee that all token acquisitions are atomic. A Semaphore consists

of:

1) Identification is a unique identification shared amongst participants.

2) Token limit indicates how many semaphore subtrees can be executed in

parallel.

3) Wait timeout indicates how long are participant willing to wait until failing

the request to enter the semaphore.

For example, if the scripter wants to limit the number of NPCs present in a room,

he will provide them with a semaphore which represents how many NPCs can enter

the room. If the semaphore is depleted (i.e. all tokens are consumed), no other NPC

enters and they wait for someone leaves. To our knowledge, implementing such

behavior in other scripting languages is not possible by easy means or depends on

exploiting implementation details of the language in question.

4.5.3 Barriers

A barrier represents a decorator node which waits until a predicate is true, to allow

its subtree to execute. If the predicate cases to hold, based on the barrier’s setup, it

may either halt the subtree’s execution or keep it running. Some barriers may wait

for certain events to occur either within the NPC, or from other entities (e.g. a

navigation spot is occupied). Barriers can be used for simple synchronization

between NPCs and the environment.

For example, a barrier may check the predicate if a NPC’s health drops below

20% in combat. The barrier’s subtree sends a message to the high level decision

making of the NPC’s DMM. This may trigger getting out of combat and running

away. However, the fleeing may not commence until the NPC’s barrier for »having

an available flee route« is not valid. Thus, the barrier will allow the NPC to stop

fighting and run away only after a search for a fleeing route has finished.

4.5.3.1 Summary

Synchronization primitives are a key mechanism to allow development of complex

behaviors required at Goal 4. It would be much harder to implement utilization of

shared environmental resources without using semaphores. Further, reliably scripting

complex behaviors incorporating multiple coordinated NPCs would be much more

 59

demanding without using locks. Where locks and semaphores are more focused on

communication between NPCs, barriers are key in respect to effectively

communicating specific changes in the environment to a reactive AS. Barriers also

proved to be valuable in respect to adapting to internal changes of NPC’s stats, like

health, stamina etc.

4.6 SBT Actions

The common denominator of all SBT Actions is that they have a set of requirements

for their successful execution and when executed, have a set of effects which change

the configuration of a virtual world. They either can be a result of AS or be invoked

by the environment (e.g. when an NPC is hit by a rock, it causes a hit reaction, which

puts the NPC into a ragdoll state).

We can split the actions into two basic categories in respect to their manifestation

a) atomic, or b) temporal. Atomic actions are executed synchronously with the DMM

of the host NPC. Temporal actions take effect over time, either in a synchronous or

asynchronous manner. When an action is executed synchronously, the DMM waits

until the action is finished. The asynchronous approach lets the action play out on its

own, so the SBT can continue execution. Effects of an action can be either atomic or

temporal. Atomic effects happen instantly. Temporal effects may take time to

manifest e.g. moving an NPC.

Atomic actions with atomic effects are the simplest to utilize since they happen

instantly and can be evaluated instantly. Temporal synchronous actions with atomic

effects are also simple to utilize, since the SBT has to wait for the action to finish

until it can continue execution. Asynchronous actions are the most complex in

respect to executing them. In our case, we execute the action within the NPC’s DMM

with the capacity to have its own SBT to handle specific states
9
 (e.g. the action wants

to attach an object to the NPC).

4.6.1 Run an Action

When an action is executed within an NPC’s DMM, it is handled by an Action

Manager (AM). All actions coexist within the AM and compete for control over the

NPC’s facilities (e.g. movement, manipulators, etc.) The AM owns actions and is

responsible for managing their lifetime (e.g. construction, initialization, destruction)

and facilitates event handlers (e.g. action attaches a tool to the NPC’s manipulator).

Actions may either originate within SBT nodes or are forced on the NPC by the

environment (e.g. hit reactions). When executed, the action is queued at the Action

Manager. Within the AM are Facility Scopes (FS) an action can occupy (Figure 17).

FS cover NPC’s facilities an action can take control over – e.g. movement, full body

control, left or right hand, vision, etc. An action cannot be executed if at least one of

required FS cannot be satisfied by the AM (i.e. it is occupied by another action).

Every FS can actively be occupied by at most one action at any given time. We

denote two or more actions competing for an FS to be »in conflict«. The AM’s

primary purpose is to resolve conflicts (e.g. by terminating a running action or

rejecting a requested action) so all the running actions are non-conflicting.

9 We addressed the asynchronous execution in 4.2.4

 60

Figure 17: Action Scopes within the Action Manager denote various facilities the Action can

occupy – e.g. movement, vision, hands, full body etc. Actions which want to take control over

a FS are in conflict which may be solved by terminating the already present action. All FSs

for an action have to be satisfied to run the action properly

Actions may be further enhanced by setting a priority, where a lower priority

action cannot terminate a higher priority action, an equal priority action can

terminate an already executed action at the earliest possible point, and higher priority

actions can terminate lower priority actions immediately.

If an action is validated for execution and all the conflicts have been resolved in

favor of the new action, the action is submitted to the Action Manager and enters its

lifecycle (Figure 18).

Figure 18: Action Lifecycle starting at the Initialization and ending at being Interrupted or
Finish on it own. An action in conflict triggers a termination of a previous action, however it

may be postponed due to the previous action being in an Interrupt Safe state.

First every action starts at the initialization phase, where the action’s internals are

set up for valid execution (e.g. the database of action preprocessing is queried to get

more information about the action effects etc.). After being initialized, the action is

queued into the proper FS. If there are any conflicting actions, the AM triggers their

termination. Both the old and new action may enter a transition phase which denotes

a controlled way to go from one action to another
10

 (e.g. holding a rock may

transition into holding a sword for combat via a »throw rock at enemy« transition).

However, transitions over multiple FS are tricky, since the action can only continue

to enter execution phase if all its transitions have finished. When executing, the

10 We cover the topic of transitions in respect to BT in our previous work (Plch, 2009) where we

discuss the downside of the BOD and BT approaches when transitioning between behaviors.

 61

action may abandon FSs, but it has to retain control over at least one. Control over a

FS cannot be reacquired during action execution. The action may finish its execution

in two ways, either being interrupted or finishing on its own. Interrupting happens

when the action’s conflict with another consequent action has been resolved in

termination. Finishing an action means that all scopes are released and the action

enters the end phase. While ending, the action either executes a transition to a

following action or puts the AM’s FS to an idle state (i.e. no action follows). An

NPC can enter a specific idling state if all AM FS are idling (e.g. play an idle

animations). In the case of equally prioritized actions, we provide designers and

scripters with the ability to enter an Interrupt Safe (IS) state on demand during an

action execution. This state protects an action from being terminated, however

postponing the termination to the closest possible occasion (i.e. when IS ends). The

IS state is ignored when a higher priority action wants to terminate a lower priority

action.

During execution, an action can also trigger an event which is distributed to the

AM for processing. These are processed within the AM utilizing either an automated

(e.g. play a sound) or designer defined SBT handler. These handlers are running

within the NPC’s DMM in an atomic fashion, to guarantee minimum delay (e.g.

when attaching an object has to be guaranteed with a few frames tolerance to avoid

awkward visuals).

Most common example of an action is an animated action – which triggered by

the PlayAnimation node within the SBT. Animated actions commonly occupy the

full body and movement facility scope. One of the most common animations are

executed for picking up items. The animation triggers an »attach event« which is

processed by linking the picked-up object’s pivot and the hand bone together. The

animation is marked as IS until this attach event occurs, to avoid interrupting the

action before the item is in hand. If a follow-up animation would utilize the object

(e.g. to strike at somebody in combat), it would transition into the striking animations

seamlessly, creating a much more fluid feeling of the two actions combined.

4.6.2 Asynchronous execution

Synchronous actions have a downside in respect to their executing SBT – execution

cannot continue to the next node, until the action is finished (Figure 19). So, in our

previous example with pickup animations, two actions following each other would

lead to the first finishing and going the idle state and the second starting from the idle

state. It would be much more believable if the actions would transition from one to

another (Figure 20).

Figure 19: Synchronous Execution of Actions which ends in an Idle state since every action

has to end for the SBT to run a node triggering the next action.

 62

To compensate the issue of synchronized actions ending in the idle state, we

introduce asynchronous actions. Asynchronous actions are executed decoupled from

their origin SBT’s execution, thus allowing to proceed with evaluation of the SBT

tree and possibly triggering another follow-up action.

We also identified the need for asynchronous actions due to the fact that some

actions are executed as loops (e.g. looped animations). Since looped actions would

run indefinitely, they cannot be executed as synchronous actions and have to be

interrupted by other actions.

Figure 20:Asynchronous Execution where two actions interleave. The Action1 is started, the

AS waits for 7 seconds and Action2 is started, which interrupts Action1. Both actions would

run for 10 seconds when not interrupted.

We also allow asynchronous actions to define SBT handlers which are handled as

function closures (Turner D. A., 2012) with all the referenced variables copied by

value into the SBT handler. These handlers are executed (Figure 21) in an atomic

fashion within the DMM, however in parallel with all other AS mechanisms.

Figure 21: Executing Asynchronous Actions with its event handler closures in a parallel

manner within the NPC’s DMM. The Action1 has two handlers Attach and Detach, where

the Attach handler when executed more than once, terminates the animation. The NPC’s AS

runs in parallel with the handler code.

 63

4.6.2.1 Summary

Asynchronous actions are a key mechanism in providing a seamless execution of

actions, since returning to an idle state may produce undesirable visual or practical

results. Transitions between actions are for example key in combat where an action

of using an item may transition into combat by throwing the held item at the

assailant. Without asynchronous action, the NPC would first put the item into its

inventory and then start fighting or running away from the assailant. Executing

asynchronous handling of action events also decouples the action from the origin

SBT logic, thus promoting a more separated way of designing an NPC’s behavior.

4.6.3 Synchronized Actions

In some cases, there is the need to execute actions on different entities

(e.g. 2 different NPCs) in a synchronized manner i.e. the action’s start is aligned.

One example is an animated action, where two NPCs pickup up a wooden log and try

to break down a gate.

There are numerous ways how manage it via already presented mechanisms – e.g.

create a lock, wait for everybody to enter and the first action following the lock is to

be the animated action (Figure 22). However, this works only if everybody gets to

execute their animated action at the same time and few frame difference can produce

a lot of discomfort in the final visualization.

Figure 22: Simple approached for executing animations in a synchronized manner by

entering a synchronization lock

Therefore, we require these actions to manifest in a more synchronized manner.

Also, we address the issue if a participant (e.g. one of the two NPCs breaking down

the gate) terminates his action (e.g. he is hit by an arrow). It may be required that all

other participants terminate as well – it would look silly if two men carried the

wooden log and one would get killed and it looked like both are still holding the

log’s ends and running towards the gate.

However, we want to avoid introducing new SBT mechanism, so have we focused

on enhancing already present SBT principles. Commonly, actions are created and

scheduled at the AM by their respective origin nodes (e.g. PlayAnimation) where the

node directly contacts the AM and provides the action.

To allow for synchronized actions, we first introduce event bases startup, which

utilized the already presented Event System. When a node wants to trigger an action

(e.g. »Pickup« node wants an NPC to pick up a tool with an animation), it creates a

»start action« event which it throws into its respective origin tree. This event travels

 64

over the SBT hierarchy until it reaches the top most root node and is forwarded to the

DMM, where the AM catches the event and schedules the specified action.

However, if a node along the path from the origin node (i.e. origin of the startup

event) decides to modify or consume the startup event, it may do so in respect to

being synchronized with other nodes at another NPC’s SBT. Thus, a synchronization

mechanism already present in the SBT (e.g. locks) is used to delay the startup event

until all other participants enter the lock. After everybody has entered their locks, all

locks re-throw their respective startup events thus triggering the startup of the action

at the same time (Figure 23).

Figure 23: Synchronizing Actions between 2 NPCs which use the synchronization lock as a
mechanism to postpone the delivery of the startup event for an animation

One common example is when multiple NPCs have an animation for picking up

large items. Since it is unlikely that both NPCs get to their respective spots at the

same time, they synchronize at the pickup action. The movement and pickup action

are both within the subtree residing under a lock. So, after they arrive, the faster one

waits for the slower one to start its action. After both action startup events arrive at

the respective locks, the locks trigger both actions at the same time.

4.6.3.1 Summary

Synchronizing actions is a key mechanic in respect to starting a coordinated set of

actions amongst several NPCs in a controlled and repeatable manner that is not

dependent on the current computational resources (i.e. lower FPS means less NPCs

are scheduled to run in a single frame). Further, the mechanism provides an internal

 65

termination semantic for group execution of actions (e.g. if one of the participant’s

action is terminated, all actions get terminated). This allows for simpler SBT code

and a more complex overall behavior (e.g. if one NPC is shot and lets the carried log

fall, all other NPCs let go of it too).

4.6.4 Action Chaining

Our action system handles scope conflicts by either terminating the prior executed

action or refusing to run a low priority one. However, in some cases it may be

appropriate execute actions after each other without terminating the presently

executed one – action chaining. We implement this concept within the AM as well as

a part of the action’s inner mechanisms.

In principle, the newly committed action decides on how to resolve the scope

occupancy conflict with the prior action – either by requesting it to terminate or wait

for it to finish. If no resolve mechanism is specified, the AM reverts to terminating

actions by default. In case the new action decides to wait for the current action to

finish it enters a chain (Figure 24). For example, a movement action can wait for an

animated action, if the animation moves the NPC around. However, if the animation

does not move the NPC around, movement terminates the action as soon as possible.

Figure 24: Actions Chains are created by Actions which do not require termination from

their predecessors but can work with the results of those actions or even influence them

Within a chain there are three major concepts involved (Figure 25):

1) Dependency within a chain means that actions execute with the

expectation of the prior action’s successful finish. Therefore, actions in a

chain can be abstracted as one merged action consisting of sub-actions.

However, a conflict between a chain (i.e. at least one action in the chain)

and a new action would lead to termination of all actions within the chain.

 66

2) Forecasting of action results is applied on actions in a chain, where a

previous action provides the next action with effects (e.g. expected end

position). Consider the following example of a chain of 3 actions

Animation, Movement. Animation may change the position of the entity,

its expected effect will be forecasted to the movement action which can

plan the path beforehand based on the provided end location. This

pathfinding query can be executed during the Animation’s execution, thus

spreading the computational consumption over the action’s execution. The

following transition from Animation into Movement can result in a

seamless animation transition (Figure 24).

3) Inverse influence represents the capacity to influence an already executing

action (e.g. Movement) by a newly scheduled action (e.g. Animation). The

effect of the Animation has a set of limitations on where the end point for

the movement has to be to properly execute the actual animation (e.g.

limiting the approach points only from front and back to be able to align

the animation properly). The Animation sends the necessary changes to

the Movement action to try to influence the action. However, this may fail

(e.g. the movement is not willing to change its end destination) and the

influencing action has to either terminate or compensate.

Figure 25: Actions Animation and Movement when not in a chain lead to the animation
moving the NPC from A to B, where the move when executed before the animation ends,

searches the path from A to C. Forecasting provides the move with the end location of the

animation. When a Movement is followed by a Sit, the sitting animation provides the
necessary target position for the move to plan to via inverse influence.

 67

4.6.5 Move and Act

Moving and animating is one of the key examples of action utilization and chaining.

The movement of an NPC requires having at least a valid start and end position to

plan the path in-between. However, the end position may change over time, thus

triggering a creation of a new path to follow. Since movement is an action within the

AM system, it has its preconditions (e.g. valid positions, existing path etc.) and

effects (change of position over time, final position of the entity within a tolerance

etc.). Playing animations is utilized by designers to choose a specific animation for

the NPC to play (e.g. sit down on a bench, jump over an obstacle), which has

preconditions (e.g. existing animation, enough space to execute it without collisions

etc.) and effects (e.g. NPC ends up sitting on a bench).

Combinations of both actions is a common pattern in the NPC’s execution where

all the above principles manifest. We will inspect the following combinations of

Moving Action (MA) and Playing Animation Action (PAA): a) {PAA, MA}, b) {MA,

PAA}, c) {PAA, MA, PAA}.

When a PAA precedes a MA, the MA may choose to enter a chain with the PAA

if a set of conditions is met: a) the PAA is not a looped action, b) the PAA moves the

entity around. If the PAA is a looped action the MA may choose to wait for the loop

to finish its current iteration and chain with the action at this point requesting a

synchronized termination. If the PAA moves the entity around, it would be

complicated to chain with the PAA and determine the exact position or state the

action would be in. If this is possible the MA can request a termination at the given

point being reached. After the PAA finished, the MA can chain its execution to the

position being reached and continue with its execution. The MA, when chained,

utilizes the forecasting mechanism to determine where the PAA will end to plan its

path accordingly from the reached point (Figure 26).

Figure 26: The Animated Action provides the Movement action with a forecast on the end of

the animation, allowing for movement to pathfind during the execution of the action taking

the end location as the start position for the path. If these actions would not be chained, the
movement would be planned from the current location of the NPC when the movement action

was invoked.

When the PAA precedes the MA, it will chain with it by default. However,

depending on the situation, the PAA may have a limited spectrum of animations to

play at the end location of the MA (e.g. there are only 2 available aligned animations

to sit down on a bench), thus the PAA will inverse influence the MA to change its

target to reach the proper destination to execute the PAA (Figure 27). The inverse

influence may repeatedly happen, since the conditions the MA tries to reach the end

location may change (e.g. the NPC gets injured and the available animations change

with their respective positions to align from). If the PAA and MA actions are created

 68

and chained at the same time, the PAA can influence the initial setup of the MA

based on its internal demands on the end location, avoiding an on the fly re-plan of

the path.

Figure 27: Adaptive inverse influence by the animation to change the destination of the

movement action to suit the necessary alignment requirements. The movement goes in the
general direction of the Bench, which has two points from which the Sit animation can be

executed (Front and Back). Since path planning may get the NPC from either direction, the

Animation Action (Sit) monitors the progress and chooses the end destination (i.e. either

front or back) when movement gets close enough. After the move reaches the end location
provided by the animation, the animation already knows which animation should be

executed.

The last case of an MA being in the middle of two PAAs leads to the combination

of both approaches, where the MA is both influenced at the start and end location by

the chained PAAs. The MA can optimize its start point based on the first PAA – for

example if first PAA would jump over a fence, it may shorten the actual MA by a

substantial distance (no need to walk around the fence). Thus, the MA can wait for

the PAA to finish jumping to execute a shorter path to its target. It may also happen

the other way around, where the MA may terminate the PAA prior to finishing the

jump, to avoid going back around the fence.

If any of these cases would be executed in a non-chained approach, the end result

would look much worse. For example, when reaching a bench to sit down, the NPC

would first come close to the bench, then get back to the required alignment location

and then execute the animation. The back and forth communication between actions

s necessary to provide a well-orchestrated and seamless execution.

4.6.6 Summary

Proper action manifestation is as much important to deliver believable behavior as

proper action selection is. Therefore, having a seamless, well executed set of actions

is key to achieving our Goal 1 and 4. The necessity of chaining actions is key to

delivering a believable visual performance of NPCs to avoid the feeling of robotic

execution. The transitions between actions with inverse influence provide the illusion

of actions depending on each other, thus the deliberation process manifests in a more

complex fashion. Actions allow us to further decompose behavior into isolated

components (i.e. actions) on both the code as well as the script side.

 69

4.7 SBT Summary

We presented our SBT architecture aimed at providing low level decision making for

NPCs within a large scale OWG. The SBT architecture with the supportive

mechanisms (i.e. messaging, synchronization primitives, actions) focuses on our

Goals 1, 2, 3 and 4. We focus on enhancing the believability of the presented

ambient virtual life in an emergent and story driven environment. Our focus was to

maintain and promote decomposition and encapsulation on both the architecture’s as

well as level design side. The presented SBT architecture allows to introduce more

complex behaviors utilizing complex and more generic SBT constructs (e.g.

messaging, actions etc.) allowing for a more fluent transition from design to in-game

script.

In our implementation for the KCD game the SBT language's resemblance to a

OOP language has proven as a benefit, since most developers and content creators

are familiar with the OOD and OOP principles
11

.

11 Chapter 8 focuses on evaluating developer feedback.

 70

5 Decision Making Mechanism for NPCs

Conceptually we view the Action Selection (AS) being a low-level component which

transforms inputs (i.e. configurations of the world) into outputs (i.e. actions) in a

streamline, program like fashion. Having a believable AS at the low level is key in

making the proper believable choices in respect to short term decisions, reactions and

executing predesigned sequences of actions to achieve a task the NPC has committed

to (e.g. go to work). From a design perspective, the low-level AS is only responsible

for behavior specifics, e.g. how to acquire tools for work, how to get home etc. The

downside of such approach is often a rigid structure which results in repetitiveness

and lacks long term structure or continuality. Therefore, to achieve more believable

and long term focused behavior, we introduce additional higher level mechanisms

into the Decision-Making Mechanism (DMM), to provide a feeling of a deliberating

and thinking NPC.

The DMM represents the enclosing mechanism for Action Selection (AS) to

reside within. Thus, it is only natural to decompose the mechanism into a tiered

architecture. In principle, we aim at following simple decomposition principals,

similar to what we learned from Hierarchical Task Networks (HTN) (Erol, Hendler,

& Nau, 1996). In principal, HTN utilizes the notion of designed problem

decomposition into subtasks which can be further decomposed, until atomic

operations are reached. The key concept is that decomposition of tasks is done by a

designer with domain knowledge who provides the DMM with a structure a human

may come up with when solving a problem. Solving high level goals by arranging

tasks into a plan is done by a planning mechanism. Tasks are principally structured

similar to STRIPS (Fikes & Nilsson, 1971) actions, have preconditions and effects,

thus can be arrangement by various different methods, ranging from classical

planning (Ghallab, Nau, & Traverso, 2004) to hybrid approaches (Kambhampati,

Mali, & Srivastava, 1998). The key difference to classical approaches is the

designer’s domain based knowledge which act as a form of principal heuristic, which

allows the planning mechanisms to approach problem solving in a much more

structured way.

Our principal inspiration is the decomposition which goes from goals, to task, to

actions. A goal can be viewed as a long term (e.g. life-long) or short term (e.g. for

one day) commitment to satisfying a given set of conditions e.g. »be at work«, »do

not feel hunger«, »feel safe«. Since our NPCs live their life on a day-by-day basis,

we avoid overreaching their ambitions to longer than one day purpose. We abstract

goals as parts of a Day Plan every NPC has for every day. The NPC tends to follow

the plan, utilizing its environment to satisfy goals in a decomposed manner, one task

at a time. The tasks are executed by the AS at the lower levels of the DMM.

We further decompose the functioning mechanisms of the DMM into dedicated

components for different areas of expertise e.g. combat, day-by-day life, player

interaction etc. Our practical reasoning behind adding a layer of functional

decomposition is that distinct types of behaviors have different requirements, as well

as various subsystems they employ. For example, when in combat, the NPC may

employ anticipation, tracking and targeting subsystems, which are of no use in a day-

by-day life. This decomposition of functionality is motivated by the notion of having

a specific mindset for different situations.

In this chapter, we will present our NPC’s DMM architecture with our high-level

plans and their executions. Our primary focus is on providing solutions to our Goal 1

and Goal 4, where we focus on providing more believable and complex behaviors by

 71

adding the illusion of NPC purpose and long term reasoning. Introducing Day Plans

also suits our Goal 3, since long term goals and tasks can be utilized by a questing

mechanism to modify NPC behavior to suit a quest’s needs.

5.1 Architecture

To provide a more believable behaving NPC, we decided to structure the DMM into

a three-tier architecture, where levels range from abstract to specific. We are also

concerned with the modularity of our approach, where components within the

architecture can be added and removed on-the-fly during runtime. One of our

motivations was to structure the architecture in a comprehensive and easy to

understand way, to be able to employ it in an industrial application of the KCD

game’s ambient environment. The architecture is organized in a tree like fashion

(Figure 28):

1) Brain represents the high-level manager, containing shared subsystems,

planning mechanisms and a set of by-priority-ordered SubBrains.

2) SubBrain (SubB) is a mid-tier DMM component which focuses on

managing a specific area of decision making, ranging from day-by-day life

to combat. The SubB contains a set of Action Selection mechanism

3) Action Selection represents the low-level decision making manifested by a

SBT or any other similar technology.

Figure 28: NPC Architecture divided into the Brain, SubBrains and AS mechanisms

In principal, we employ graceful governance at our architecture – higher level

tiers within our DMM (including the SBT’s nodes) are responsible for execution of

lower level tiers. Lower level tiers are utilized to accomplish the high-level goals

managed by their respective tiers. A higher-level component can terminate a lower

level component in two ways – 1) graceful, where the lower level tier has time to

ends its execution in a meaningful but timely fashion, and 2) abrupt, where the

higher tier terminates the lower tier’s execution without any time to bring local

 72

affairs into order. Thus, the lower level tiers have to be able to terminate instantly

without compromising the NPC (e.g. putting it into an undefined state).

5.2 Brain

The Brain represents the top-level tier responsible for managing NPC’s DMM

subsystems and the SubBrain layer. There is a multitude of support subsystems

present in the Brain, mainly pathfinding, combat movement, level of detail

management, and many others. The Brain also holds the top-most DMM memory

scope and the messaging subsystem. It also contains a high-level planning

mechanism which creates the day-by-day plans for the lower tiers to handle.

The Brain’s core functionality is to provide SubB management. There is a set of

by-priority-ordered SubBs, which may run either exclusively or concurrently to each

other. The Brain is responsible for maintaining the invariant that no two conflicting

SubBs run at the same time. Thus, when two SubBs are exclusive to each other, the

higher priority one prevails. A SubB can be activated either by a different SubB or

by an automated trigger.

There is one SubB called the Switching SubBrain (SSubB) which can run

concurrently with every other SubB. The SSubB evaluates external stimuli, percepts

and internal state of the NPC and decides which other SubBs to activate. For

example, if the NPC perceives an enemy NPC, it triggers the activation of a Combat

SubB (CSubB). However, if the NPC is hit by something (e.g. an arrow), an

automatic trigger activates the CsubB to handle the threat. But most of the time, the

NPC lives its life having the Day-By-Day SubB activate, which handles the

necessities of the Day Plan produced by the Brain’s planner.

5.2.1 Day Plan

One of our key motivations for making NPCs more believable is to create the illusion

of long term deliberation which can be explored or investigated by the player. From

an OWG perspective, NPCs require having at least some sort of mid-term planning

perspective to avoid being only reactive to what the player does. In our architecture,

we utilize the Brain as a high-level decision making platform to provide goals for

lower tiers of the architecture.

Since our NPC are day-by-day oriented, we focus on providing them with a mid-

term plan specifically tailored for their role within the world (e.g. a baker differs

from a soldier). These plans consist of Activities (Figure 29) the NPC has to follow in

respect to the capabilities of its local environment.

Figure 29: Day Plan of a common peasant NPC. The Goals are annotated by simple strings

which are evaluated within the Day-By-Day SubBrain

The Activities, being a basic building blocks of a Day Plan consist of: a) start

time, b) end time, c) start variation, d) end variation, e) start tolerance, f) end

tolerance, and f) priority. Start and End time specify when the activity should be

scheduled. Variations are used to add a sense of randomness to the world. Activities

are stacked into priority lanes (Figure 30). If an activity of a higher priority is to be

 73

activated, the NPC is notified and switches to executing it
12

. The start tolerance is

used to avoid starting an activity when a known higher level activity will happen

soon enough. The end tolerance is utilized when resuming activities which end time

is close, to avoid resuming activities when there is no time to finish them.

Figure 30: Activities are organized into priority lanes where the activity with the highest

priority at the current time is to be executed.

When the NPC’s internal clock reaches midnight, a Default Plan is created for the

next day. The planner takes the NPC specific set of Activities from a designer filled

database and puts them in a given order based on their start/end time applying

start/end variations to those values. The Activities are scheduled back-to-back and if

a time gap is created, both ends of an activity are extended to meet in the middle of

the time gap. This ensures that the entire day’s plan is covered and no idling should

occur. The initial activities have the lowest level of priority. The Default Plan

ensures the NPC has no downtime and it looks like it is always doing something

meaningful.

When an Activity is activated (i.e. it should run), the Brain sends a message over

the MDS to the NPC itself. There is an in-build message inbox within the Brain’s

messaging context, which stores these messages. If a running AS picks up the

message, it can handle the situation accordingly. In most cases, this is the

responsibility of the Day-By-Day SubB. Using the messaging approach allows us to

handle Activities after the NPC has been doing something with a higher priority (e.g.

combat).

Changes to the plan may occur from various sources, either from within the NPC,

when a SubB decides that there is something more important to do (e.g. recover

wounds after combat) than following the Default Plan, or from an external source

(e.g. quest system needs the NPC to go somewhere). These alterations are called

patches. The invariant for adding patches to a running plan is that at every priority

lane no Activities can overlap (i.e. a conflict). When a patch is committed to the Day

Plan, it turns into an Activity.

If the higher-level priority activity is not active anymore, the system reverts back

to a lower priority activity. However, it would be unreasonable to return to a lower

level activity if there is very little time to finish it (Figure 31) – e.g. the default

12 We use messaging to deliver the notification to the Switching SubB to handle the change

 74

activity was working on the field, a quest provided a patch to go visit a lover and it

ended 5 minutes prior to end of the work activity.

Figure 31: Start and end tolerances change the chosen activity based on how close a higher-
level activity is to either the start or an end of another activity that would be executed prior

or after it.

We solve this issue by specifying the end tolerance where the planning

mechanism looks at the remaining time and if it is lower than the tolerance, it

continue with the next activity on the priority lane. This mimics the human approach

of not doing work when there is not enough time to finish it. We observed a similar

approach in ENTs (Brom, Lukavsky, Sery, Poch, & P.Safrata, 2006).

5.3 SubBrain

A SubBrain (SubB) denotes a dedicated mid-tier component within the DMM

hierarchy, which is responsible for managing a certain type of activity – e.g. combat,

day-by-day life, social interactions with other NPCs, dialogues, quest specifics,

action handlers etc. Every SubB provides an environment for the underlying AS

mechanism (i.e. SBTs). For example, the Combat SubB (CSubB) provides the SBT

with a dedicated targeting and target tracking subsystem with the capacity to make

automated reasoning about the target’s proximity and estimate movement.

SubBs within a Brain is specified as a tuple (prio,CON,EXCL), where prio

specifies the priority within the Brain’s set of SubBs. The CON enumerates SubBs

which can be run concurrently (Lamport, 1978), and ECXL enumerates exclusive

SubBs which have a conflicting execution. Concurrent SubBs are considered those

who do not require the same facilities at the Brain level, for example the Day-By-

Day SubB can run concurrently with an Animation Event handling SubB. Exclusive

SubBs cannot be executed at the same time within a Brain, since they will clash on

use of some exclusive resources, for example movement of the NPC is used by both

the Day-By-Day SubB and the Combat SubB. Therefore, the Brain manages the

execution of SubBs in respect to favoring the higher priority ones which are non-

conflicting.

There are three groups of states a SubB may take:

a) Inactive – the SubB does not compete for NPC control, it only checks for

its activation predicate to be valid

b) Active – signals the Brain the SubB wants to enter a running state and

acquire control over NPC facilities. Active states cover the transition from

 75

being Inactive to Running. The SubB has to be Queued, the conflicts

resolved when the SubB is about to run. When transitioning back to being

Inactive, the SubB may go through a Suspended state, when a same

priority SubB is in conflict.

c) Running – the SubB takes control of the NPC’s facilities while its internal

AS is being executed. SubBs in this state receive a fair share of the update

time for their internal execution. A SubBs execution is guarded by a

Switch In and Switch Out state, where the SubB handles initializations,

transitions and cleanup.

 Transitions between inactive and active states are in full control of the SubB

while the Brain controls the transitions to running states (Figure 32). This system is

inspired by previous academic research (Plch, 2009).

Figure 32: Every SubBs default state is the Inactive state, into which it may enter when an

activation by the SubB or external source (e.g. other SubB, environment etc.) is requested.

The SubB is Queued to run. While waiting in the Brain’s queue, all conflicts are resolved.
Before entering and after leaving the Running state, the SubB transitions over the Switch In

and Switch Out respectively. A running SubB may enter a suspended state if the conflicting

SubB is at the same priority level.

5.4 The Player

One key concept we utilize in our ambient architecture is the notion of the Player

being part of the world. In most games, the Player represents a singular special entity

which is apart from all other NPCs. In our case, we take a different approach and

view the Player as another NPC having a human decision making as well as a virtual

subconscious. In principle, the Player exists as another NPC within the world,

 76

sharing the same mechanisms and capabilities as any other NPC. The Player’s avatar

actually has its own Brain-SubBrain-Action Selection (BSA), which can take control

over the Player’s NPC if necessary or required (e.g. Player triggers a context action

like opening a door or shooting a trebuchet). It also provides us the benefit for NPCs

to view and communicate with the Player in a more systemic fashion e.g. send

messages to his BSA to trigger responses, which can be evaluated by his AS.

An example is the Player going to sleep in someone’s house. When the NPC that

wakes everybody up wanders the house, it wakes up both the Player and other NPCs

in the same fashion. However, the Player’s AS can decide to ignore the wakeup due

to being too tired and in need to sleep-off injuries.

5.5 Summary

We utilized this architecture in all our presented use-cases for the KCD game. Every

NPC within the game is build using the decomposition into the BSA architecture.

Presently there are more than 600 fully active NPCs within one instance of the game,

with additional NPCs being streamed in during runtime as ambient additions. Almost

every NPC has a BSA complement of at least 6 distinct SubBs with specific AS:

a) Switching SubB is responsible for managing other SubB activation, in

respect to perception and internal requests from other SubBs.

b) Combat SubB is responsible for fighting, manages weapon use, target

tracking and everything necessary to get out of a deadly situation.

c) Day-By-Day SubB responsible for maintaining daily routines according to

the Day Plan.

d) Planning SubB is responsible for evaluating the Day Plan and tasking the

Day-By-Day SubB. It also manages further decomposition of Day Plan’s

Activities if necessary.

e) Situation SubB is responsible for managing social interaction. These may

arise when for example NPCs meet and greet in the morning.

f) Event Handler SubB is responsible for running emerging events (e.g. from

Animated Actions) by means of a SBT

However, the content of the BSA architecture can be specifically tailored to a

given NPC. For example, soldiers in our Scenario 5 (Battle0 have no need for any

other SubB than the Combat SubB, since they will die anyway. However, in Scenario

4 (Jerry), Jerry and all the other NPCs involved in the quest can receive a specific

quest handling SubB, which replaces their Day-By-Day SubB for the duration of the

quest. This allows for a much more tailored development of the behaviors necessary

for the quest and provides means to avoid polluting the generic Day-By-Day SubB.

In respect to goals, our three-tier architecture focuses on Goals 2, 3 and 4.

Emerging situations in Goal 2 are commonly handled by mid-tier SubB which handle

different emerging situations in either a generic (e.g. CSubB) or custom manner. Our

capability to introduce a SubB on the fly to the Brain at runtime allows us to

adaptively enhance NPC capabilities to handle new situations in the environment.

The existence of a Day Plan and a planning mechanism on top of a Switching SubB

allow us to adaptively react on changes introduced by quests and the questing system

in a story driven game. The Day Plan also focuses on providing mechanisms to

provide a deeper and more complex behavior providing the illusion of a long and

 77

mid-term goals. Since a daily routine is a common human trait, it allows for a more

believable ambient behavior (Goal 1). The NPC’s daily routine can also be exploited

by the player for questing. Further, various SubBs utilized for solving various

situations within the virtual world can provide designers with the capacity to encode

more complex, custom behaviors to enrich the NPC’s capabilities.

 78

6 Smart World, Intelligent Environment

Creating huge monolithic code base has been proven to be inefficient, hard do

maintain and inherently prone to bugs. Programming languages and environments

have evolved concepts like encapsulation (Scott, 2006), object oriented design

(Gamma, Helm, Johnson, & Vlissides, 1995), function calls (Svenk, 2003), dynamic

linkable code (Hart J. , 2005) and many others to avoid those issues. The overall

theme is to split code into understandable subparts which can be coupled with other

code to provide functionality, storage and other services. It is the rule of thumb, that

a loosely coupled code (Beck, 2011) is more resistant to failure and simpler to

maintain. Loosely coupled code denotes the notion of having independent code

constructions that can be put together so changes in either of the parties does not

affect the other.

In this chapter, we focus on addressing the issue of behavior decomposition in

respect to simplifying action selection. We present our method of Behavior Injection

(BI) into the SBT structure. We couple the SE concept with our Intelligent

Environment (IE) approach on how to enrich the ambient environment with more

context aware entities beyond the notion of NPCs. Further we address our concept of

Smart Entities (SE) which represent context aware providers of SBT to be injected

into a running SBT AS.

6.1 Motivation

One of the key issues with believable large scale OWG is the principal broad

spectrum of situations an NPC can encounter. The player experiences the world in a

unhindered fashion, thus the necessity for proper reactions to complex emerging

situations is key in respect to overall believability of NPCs’ behaviors. However, the

sheer combination complexity of such environments puts immense requirements on

the amount of code and script that should be working together flawlessly.

Our primary motivation is to provide mechanisms and constructs for scripters and

developers to avoid giant monolithic code and script bases custom tailored for every

NPC and situation combination. We focus on decomposing behaviors so they can be

reused and utilized in a much more fluent and natural way. We focus on providing

mechanisms that developers can relate to on how humans think about human

thinking. From our experience, it is much easier to produce believable behaviors if a

designer can relate to the technology solution utilized to deploy it.

From a designer’s standpoint, our goal is to provide believable behaviors so no

NPC just wanders around randomly without any purpose, hidden or obvious. To our

knowledge, almost any large scale OWG has regressed some of their characters to

just wander around and play random animations, simply due to the complexity of

creating custom tailored behaviors for each of those NPCs. We want the player to

explore NPC behavior patterns to use or exploit them (e.g. when the NPC goes to

buy groceries, the player can sneak into its house and steel a quest item he would

need to buy otherwise).

Our overall goal is to create a virtual world full of NPCs with actual agenda and

traceable reasoning about goals and purpose. We focus on making such world

producible and maintainable in a real life setting of the KCD computer game.

 79

6.2 Relevant work

Computer games industry and academia have worked on tackling behavior

decomposition and complexity management in numerous ways, commonly inspired

by programming languages. We present our principal inspiration found in Smart

Objects (SO) and Smart Environment (SEnv). We already discussed some details in

Chapter 2. We build our work on joined research collaboration in this topic (Cerny,

2016) and our previous work (Plch, 2009). We deployed these solutions at Warhorse

Studios for the KCD game.

6.2.1 Smart Objects

Conceptually, Smart Objects (SO) (Kallman & Thalmann, 1999) represent actual

objects in an environment (e.g. computer game, internet, physical world etc.) with

enhanced interactions with other objects and humans. The concept of »smart« refers

to the capacity of the object to describe its interaction capabilities. From a practical

standpoint, SO refer to physical objects connected to the internet (Kortuem, Kawsar,

Fitton, & Sundramoor, 2010) enhancing human interaction by understanding the host

environment.

The SO concept caught easy traction in the computer game industry, since it

allowed to annotate the world in a more convenient and controllable way. Within a

computer game, a SO can be abstracted as anything non-NPC with the capacity to

provide extended interaction for possible users (e.g. NPCs, player, other SOs). This

extended interaction may range from providing information about animations

necessary to engage the object, to taking complete control over the NPC. These

interactions can be exploited within various other mechanisms, beyond AS, for

example while moving the NPC or engaging in idle behaviors (e.g. a companion

NPC stands there without any commands from the player).

One example of utilizing a SO is during executing path planning and path

following for NPC movement (Reed & Geisled, 2004). The SO (e.g. door, fence,

trench) provides contextual information based on the NPC type on how to traverse

over it (e.g. jump, crawl, open). The traversal method can be considered while

planning and executing the path.

Another commonly utilized SO principle is the already discussed opportunistic

control
13

, where the object takes control of the NPC if the NPC satisfies a set of

predicates (e.g. is close enough). These are being utilized as means of enriching the

behavior, for example in CryEngine (Crytek, CryEngine, 2002) games like FarCry

(Ubisoft Montreal, 2014).

Smart Objects may also have a form of triggered control, when they only take

governance over an NPC if the NPC enters a specific state. For example, if the NPC

is in a dungeon as a player companion and the player stops for some reason, the NPC

gets bored. After a time, the NPC starts to explore the immediate environment and

triggers various SO which provide animations (e.g. pulling on levers) or provide

audio tracks for NPC commentary (e.g. »there is an interesting door«).

Within the computer game Sims (Ingebretson & Rebuschatis, 2014), the concept

of SO is built on top of affordances (Gibson, 1977), where objects are viewed as

providers for needs (e.g. ease hunger) or provider of opportunities (e.g. open box). In

the Sims game, NPCs traverse the world with their needs (e.g. toilet, hunger, joy) to

13 Discussed in 2.3.3

 80

be satisfied. The player fills the environment with objects to satisfy those needs. The

more NPC’s needs were satisfied, the happier it is. Behaviors are decomposed into

interactions which were associated with objects. Every interaction utilizes a

decomposition into blocks which are associated with NPC animations and change of

NPC’s state. The NPC can engage in multiple interactions where the particular

blocks may interleave.

In principle, the SO concept is key to employ when decomposing behaviors, since

it provides behaviors relevant to the use or engagement with a particular SO.

However, to our knowledge, these interactions are often very limited in nature and

SO in games are often limited to the notion of sole purpose behavior providers.

6.2.2 Smart Environments

Smart Environments (SEnv) are a variation on the SO principle, where the

decomposition is aimed at topological (e.g. a house) or contextual areas (e.g. a

designated area to shoot arrows in a battle). The principle is the same as with SO,

SEnv provides information about possible interactions within the confines of its

region (e.g. an NPC should move differently when an area is on fire).

Within the game S.T.A.L.K.E.R. (GSC Game World, 2007) the virtual world

provided long-term goals for NPCs residing within specific areas annotated by smart

terrain. In further development, smart zones (De Sevin, Chopinaud, & Mars, 2015)

were proposed for the game’s environment. However, these approaches use the

opportunistic control over NPCs which entered them, thus bypassing their high-level

reasoning and on-going tasks.

Another approach was presented in the Hitman: Absolution game (Vehkala,

2012), where the NPCs utilized coordination objects called situation which instructed

them on their role for a particular event (e.g. attack on a guard). These instructions

are evaluated within the NPC’s DMM where all possible instructions were reflected,

rendering this method prone to bloating the host NPC code. Since different NPCs can

vary in their DMM (e.g. guards, civilians, police officers), new situations should be

introduced into all NPCs types, making it a tedious process.

6.3 Analysis

Large Scale OWGs are complex and unpredictable environments inhabited by

numerous varying NPC. The environment is filled with interactive objects and

situations NPCs either use or walk into eventually. The overall complexity of the

possible interactions can be summarized as |N|*|OBJ|*|ITR|, where N

represents the set of all distinct NPC types (e.g. guard, farmer, soldier), OBJ

represents the set of all object types (e.g. hammer, spade, fork, sword) and ITR

represent the set of high level interactions (e.g. use, throw etc.). It is obvious that the

overall complexity increases dramatically with either of these sets increasing in

magnitude.

We aspire to provide a believable environment where NPCs behave in a

believable manner, thus it is necessary to be able to cover most of the interactions

that could emerge. However, we need to maintain a manageable architecture, so

adding a new tool or a new situation should not trigger the necessity to change every

NPC type in the game.

Since believable behaviors are the key issue, we focus them as the principal

manifestation of our system. We need to address the issue of Behavior

 81

Decomposition applying the proven concepts of OOD for having a more manageable

and easier to understand set of behaviors and entities within the virtual world.

Primarily the necessity to decouple and encapsulate is the key concept.

Decoupling behaviors is critical since we need to deploy isolated solutions to specific

situations accessible for NPCs within the environment. We want to avoid coupling

behaviors as much as possible to avoid situation where introducing a new mechanism

or situation causes rework of other behaviors or ones already in-use. Decoupling is

also important in respect to proper contextual execution, where NPC behavior

depends on combining context specifics and NPC’s capabilities to provide a proper

solution to an emerging situation (e.g. having fun at a wedding is completely

different from having fun at a tavern).

Encapsulation is also key in respect to isolate NPCs and other objects in an OOD

manner, hiding internal mechanisms and focusing on providing functionality via

well-established interfaces. Therefore, if a behavior related functionality changes, the

NPC who uses it does not need to change its internal AS if the interface and contract

(Meyer, 1991) is kept unchanged. We address decomposition and encapsulation by

providing several concepts:

1) Behavior Injection (BI) allows to introduce a SBT subtrees at run-time

into an already running SBT. The selection of the injected SBT may be

based either on static or run-time data. The injected subtree can be

abstracted to a late binding (Booch, 1994) function call.

2) Intelligent Environment (IE) represents a collection of non-NPC constructs

(e.g. areas, objects, quests etc.) within the OWG, having their own

perception and AS.

3) Smart constructs are various entities (e.g. areas, objects, quests etc.) within

the environment which can provide BI for other SBT running entities.

Smart constructs do not employ a control scheme over BI users, they only

represent context specific containers for BIs.

Our Scenario 1 (Brian) shows how decomposition of behaviors is key to

maintaining believable behaviors. Brian, having a simple AS mechanism wakes up in

the morning based on his Default Plan. He wanders around his house asking the

house how to satisfy the need for a breakfast. Since the house is part of the IE, it can

tell Brian to go to the kitchen to get something to eat. Brain’s wife made a meal a day

before, thus the house knows about it. However, there may be no more food left,

since Brian’s wife already woke up and ate it, Brain receives a hint to go and grab

something from the pantry. Let’s assume, Brian’s wife is still asleep so Brain goes

into the kitchen and finds food in a kettle. Since Brain does not like cold food, he

wants to heat it up. He asks the kettle how to make the food inside hot. The kettle,

being a Smart kettle, knows that Brain has to heat it up at the stove. Brain than asks

the Smart stove to give him hints on how to heat up the kettle by getting wood and

start a fire. When Brian finally puts all these together, he can eat and go to work.

This example shows, how even a simple ambient behavior can be complex in its

design if approached in a believable fashion.

However, proper decomposition comes into play, when either Brian’s house

changes, or the kettle and stove are put into Jerry’s house by a level designer (i.e. a

different instance of those objects). For example, when either level designers or

Brian’s wife introduce a new object into the house (e.g. a indoor fireplace), Brian can

 82

use it employing the same mechanism as with the stove and kettle. And Brian has no

need to enhance his core AS to accommodate novelties, he explores them on-the-fly.

Since we follow the encapsulation principle, both Jerry and Brian have no idea

how the kettle and stove work on their inside, and only utilize a reflected interface

(e.g. make hot, eat, use etc.) which satisfies their needs. So, if the same kettle is used

at Brian’s and at Jerry’s house, they work the same.

6.4 Behavior Injection

Behavior Injection (BI) is a simple mechanism on how to extend the SBT language

to introduce run-time changes to the SBT’s structure. A BI can be compared to the

concept of calling a late bound function within a programming language. In

principle, the request to inject a SBT subtree originates within an existing and

executing SBT (Figure 33). The injected SBT is connected to all the host’s SBT

contexts (i.e. memory and messaging context) so all data access and operations

happen as they would within the host SBT.

Figure 33: Injecting Behavior SBT into a running SBT is done at the Injection Point (IP)

node. The BI manifests after the IP is executed. The IP continues to run until the injected
SBT runs. After the injected SBT fails or succeeds, it is discarded.

The actual structure of the injected behavior is not known prior to injection. The

Injection Point (IP) may request a BI based on various parameters, ranging from a

simple name (Behavior Tag) in a behavior library to a set of parameters which to use

to generate the behavior.

Since the injected behavior is connected to the host behavior, all its internal

memory accesses are reevaluated to be correct in respect to the host tree. This

mechanism is similar when shared code libraries (e.g. dll files) are injected into host

code. However, the BI SBT can specify its own local data environment (i.e. local

variables) as well as communication context (i.e. inboxes). Further, to follow the

encapsulation principle, the BI SBT can provide a list of expected variables and their

types within the host SBT, as well as necessary inboxes. We have not considered any

other constrains, but the principle stays the same – when the injection preconditions

 83

are not met, the injected code is refused. The injection can be nested, where the

injected SBT contains another injection. After the SBT has finished, the IP returns

the behavior to its source – we call it a behavior drop.

This simple mechanism allows us to decompose behaviors and inject them at any

required spot within the host SBT. Further, validation/rejection mechanism allows us

to create SBT code independently but in a contained manner, so errors can be easily

identified. However, the run-time nature of the mechanism limits the possibility to

identify possible issues during SBT design.

One key feature is the capacity to provide SBT generators, which can take

parameters for the BI and either select an appropriate tree to inject or can construct

one on the fly. We utilize this mechanism in our Smart constructs described later.

Another feature is revoking the injected behavior based on either an external input

(e.g. the repository retracts the injections) or when the IP’s predicate does not hold

anymore (e.g. the NPC’s opponent is dead, the combat relevant BI has no need to run

anymore). This allows to introduce some designer control over how BI are used and

can identify and handle badly behaving host SBTs at runtime (e.g. a NPC should

send a message to another NPC when using a BI SBT but fails to do so in due time

and the BI is revoked).

Further, the IP (i.e. a node within the SBT) can provide a place to manifest

opportunistic control over an aspect of the NPC. In principle, the NPC’s IP publishes

a capacity to receive BI. Thus, an external source may trigger a forced injection at

the published point (Figure 34).

Figure 34: The NPC wanders around with a published IP called »Fear« which can be used

by the Hunted Church to force a behavior to act afraid in the area

Overall, utilizing the BI provides us with a strong tool on how to effectively

decompose behaviors so we can create more complex behaviors in comparison to

current methods of static AS’s behavior declaration.

 84

6.5 Intelligent Environment

The Intelligent Environment (IE) represents a collection of non-NPC entities, which

perceive the environment and exhibit deliberation to satisfy their individual agenda

(i.e. short and long term goals). We took our inspiration from the SO concept

(Kallman & Thalmann, 1999), providing NPC deliberation mechanics to objects,

areas and game mechanics (i.e. quests). Our main motivation is to populate the world

with thinking entities which can aid NPCs and enhance believability of the ambient

world. In principle, we introduce a SBT as a component of an non NPC entity. We

split the IE into four categories:

a) Object represent a physical manifestation of game objects within the world

e.g. hammers, forks, swords, doors.

b) Area represent a region within the virtual world having a dedicated

meaning e.g. city, home, tavern, work place.

c) Mechanism represent game mechanisms which require an intelligent proxy

to manage their influence in the virtual world (e.g. quests, dialog system

etc.).

d) Virtual observer is a run-time entity who observes the virtual world and

makes deliberations and communicates with other AS capable entities (e.g.

crime observers watching player’s actions and informing nearby guards,

battle observers monitoring how many NPCs are alive).

All of the above presented categories receive a custom DMM and are managed in

a similar fashion like NPCs. However, run-time execution of NPCs and IE is

separated to avoid running the IE on behalf of NPC execution budget. NPCs also

differ from IE components in respect to capabilities (e.g. they cannot move around,

play animations etc.) and forms of perception. Some IE components may require

custom code to provide their percepts (e.g. aggregated health of a group of soldiers).

6.5.1 IE Object

The IE Object represent the most common manifestation of an IE component within

a virtual world. These are simply done by adding an AS mechanism to an existing

object (e.g. a hammer). Further, a IE Object is enhanced by a perception mechanism.

There is either the possibility to specify the mechanism by design (e.g. a mug

receives percept information in form of messages if somebody picked it up) or are

used as in-parallel executed barrier nodes (e.g. a node waiting for somebody picking

up the mug) within the AS’s SBT (Figure 35).

 85

Figure 35: How to specify an IE Object a) the Mug object’s perception informs the AS via
messages, b) the Mug object waits on pickup events to happen to break at random

An example of the use is within Scenario 2 (Tavern), where beer mugs are a

common item. Our intent here is to provide the Tavern with realistic mugs whose

contents depend on how many times have they been used so they can be realistically

refilled when empty. Further the mug keeps track who is its current owner, so it can

distinguish who is using it legitimately and who is not. Further the mug keeps track

of its content (e.g. beer, water, poison). Thus, it can forward this information (e.g.

being drunk, poisoned etc.) to the present user. In our case, the effects of using the

mug manifest in putting temporal effects (Buffs, 2017) on the user.

The use of an IE Object provides us with all the above mechanisms without the

necessity to make any changes to the user’s (i.e. NPC) AS. First, the mug has a form

of perception which is informed when either a 1) new customer takes control of the

mug, 2) the mug is used for drinking, and 3) the mug is filled. These percepts can be

manifested by simple messages to the mug’s MDS so the AS can take care of them.

Internally the mug stores persistent information (i.e. variables) about a) the owner, b)

the level of its content, and c) effects of its content. The actual AS of the mug is

relatively simple, maintaining a reactive approach on handling percepts based on

mug’s present state. When someone uses the mug, they are checked against the

current owner. If they are not the same person, the owner is informed via a message

to handle the situation (i.e. complain about someone using his mug). Further, use of

the mug triggers creation of effects on the user (e.g. poisoning), making it possible

for the player to poison someone’s mug, or even other NPCs to poison the player’s

mug. When the mug gets empty, it reports this to its owner, so a refill can be

requested.

It can be seen how IE Objects provide a simple and convenient way to enhance

the believability (Goal 1) and complexity (Goal 4) of the virtual environment by

decomposing the behavior into several components at various entities. In a common

approach, all the mug’s logic had to be present in the NPC’s AS or at some managing

system which takes care of mugs and drinking. The strength of the system is the

overall separation of competences, e.g. when the mug detects drinking, it triggers an

effect on the user. This mechanism also benefits the overall production, since

 86

introducing new liquids and innovative ways of using the mug is independent of the

user (i.e. NPC or player). Thus, having IE Objects adds a dimension of modularity to

the virtual world. This provides the capacity to create new emergent situations

(Goal 2) based on object use, without the necessity to heavily modify NPC behavior.

6.5.2 IE Area

The IE Area is a similar concept to IE Object. An IE Area represent a 3D region

within the virtual world
14

. IE Areas are responsible for managing topological based

deliberation. The IE Area is equipped with 3 SBTs to manage its own deliberation

and region relevant events a) entering and b) leaving of entities.

When a NPC enters the area, it triggers an inbuilt Enter event which is associated

with an SBT. The local SBT’s data scope is filled with the necessary information

about the entering entity (e.g. its name, identification, health etc.). The Leave event is

handled in the same manner, when an NPC leaves the area. The event handling SBT

executes in atomic fashion, to provide a strict time ordering of all events (Figure 36).

Figure 36: NPCs enter an IE Area triggering Enter events which are handled by the area’s
AS. After leaving the area, they trigger the Leave event. The events are strictly ordered. The

IE area has three AS mechanisms (Enter, Leave, Action Selection) where the Action

Selection runs the internal AS of the area, Enter and Leave are triggered by NPCs. All the

AS share the areas data and communication context to store variables and send messages.

In Scenario 2 (Tavern) the IE Area is the Tavern itself. It tracks who enters and

who leaves the room, thus creating a list of clients the Tavern’s employees have to

serve acting as a manager. When someone orders a beer or food, the Tavern is

responsible for handling the message by its AS and deliberate about proper actions

(e.g. when some NPC is too drunk it will not be served). When an NPC leaves the

Tavern, and does not pay his bills, the IE Area can trigger an alarm and designate

that NPC as being a thief.

As can be seen we can easily decompose behaviors in an OOD manner and simply

implement a »command« and »front controller« design pattern (Freeman, Sierra, &

14 In KCD, the region is specified by a 2D polygon and its height

 87

Bates, 2004). It also can be seen that the decomposition of the scenario is natural in

respect to how humans perceive competences and management.

6.5.3 IE Mechanism

IE Mechanism is similar to IE Object with the distinction that they are associated

with systems within the game’s engine which are not materialized in the virtual

world. For example, quests are a common RPG mechanism which is ideal to

manifest as part of the IE being a IE Mechanism. In principle, IE Mechanisms are

proxies for relevant engine objects providing additional functionality in respect to the

virtual world.

For example, a quest being an IE Mechanism can receive updates from the

relevant quest (e.g. bring Jerry his medicine) and influence the quest mechanic based

on what is happening in the virtual world (Figure 37).

Figure 37: The IE Mechanism providing a proxy for a Quest, which is a part of a quest

chain. The AS within the IE Mechanism can »cancel« the quest if for example someone kills
Jerry (see Scenario 4). The quest also informs the IE Mechanism about specifics (e.g. the

event’s timeout expires) so the IE Mechanism can react accordingly (e.g. tell all NPCs to get

back to work).

In our Scenario 4 (Jerry), the IE Mechanism is used to represent specific parts in

the quest. When Jerry sends the player on a mission to get him some medicine, the

player is tracked by the custom designed IE Mechanism for this quest. On the quest’s

part, there are timeouts (i.e. Jerry cannot wait all day) and conditions (e.g. the correct

antidote in the medicine) which have to be communicated to the virtual world. For

example, if the timeout is running out, Jerry may send someone looking for the

player and medicine. On the other hand, if something happens in the virtual world

the IE Mechanism perceives (e.g. the player steals the medicine from the

herbwoman) it may inform the world about it to act accordingly (e.g. the herbwoman

is not friendly to the player anymore).

It can be seen, providing IE Mechanisms is vital to integrating other mechanisms

into the virtual environment to provide a two-way proxy. Having IE Mechanisms

mainly focuses on quests at Goal 3. Binding perception and action selection to sub-

quests within a quest allows us to manage more complex quest development as well

as deeper and more managed involvement of NPCs (Goal 4 and Goal 1). At Goal 1,

NPCs change their day-by-day routines based on requests and day plan patches thus

 88

providing a more context specific set of reactions (e.g. when the player investigates a

murder, NPCs tend to stay at home because they are afraid).

6.5.4 IE Virtual Observers

All the above concepts of IE are primarily bound to some object, area or an engine

mechanism. However, in some cases, the situation, script or environment may

require an abstract entity which observers and deliberates about the world around it.

The IE Virtual Observer (IEVO) is a virtual entity with no physical or observable

(i.e. from the virtual world’s perspective) manifestation within the virtual world. In

principle, the IEVO acts the same way a IE Object does, having the same capabilities

and internal mechanisms, but represents only the essence of deliberation about the

world.

As an example, in Scenario 5 (Battle) both fighting sides are observed by IEVO.

Each of those manages the necessary target pairing between NPCs, choosing the

appropriate targets for every combatant. The IEVOs are also responsible for

balancing the battle out so it does not end too soon or differs from the by design

intended story line (i.e. the bad guys win). Thus, both observers act as battle

managers. The player is also watched by an individually attached IEVO, which

provides him with opponents in respect to design requirements (e.g. on easy

difficulty only 1 at a time, on hard difficulty 5 at a time).

The IEVOs are necessary for our Goals 2, 3 and 4. At Goal 2, they provide the

roaming player with emergent situations. There is always an IEVO watching and

evaluating if a nearby emergent situation is feasible to be activated. Thus, when the

player roams the woods, he comes upon bandit camps, small side quests and

interesting situations. At Goal 3, the IEVOs are responsible for managing small side

quests which happen in specific places or at specific circumstances (e.g. the player

meets a NPC at night). The IEVOs are spawned by other quests and may be removed

after some time (e.g. a main story line quest is completed in a specific way creates

IEVOs with small side quests around the town to provide some story background for

what happened after the main story quest). At Goal 4, the IEVOs can provide more

complex context specific situations for the player to engage.

6.6 Smart Constructs

One of the key issues with believable behaviors is the capability to handle situations

in a contextually sensitive way. NPCs acting in odd or unnatural ways may break

believability in respect to the situation at hand. Another key issue with believable

behaviors is the overall design complexity, when encoding all environment specifics

into one NPC’s AS, thus rendering the individual AS unmaintainable over time.

Introducing new mechanisms, items or situations to the environment would facilitate

a rework of the present NPC AS. Smart constructs is our concept to tackle issues of:

a) Contextually relevant behaviors, which can be viewed as the notion of

behaving in different situations differently, following the human reasoning

on how a reaction should look. Consider two situations where NPCs

observe the player walking around in full plate armor with all weapons on

display. In a peaceful village, almost everybody would run away and hide

and soldiers would be questioning the player’s intent. In an army camp

just before battle, soldiers would cheer and comment on the armor’s

quality.

 89

b) Behavior decomposition in respect to using objects and handling situations

is necessary to avoid aggregated solutions. In principle, encoding every

possibility into a AS of an NPC may bloat the description immensely over

time (e.g. covering all combinations of items and jobs) providing a

unmaintainable mess.

We take our primary inspiration in OOD, where every concept is wrapped in an

object encapsulating data and functionality. Communication between objects is done

by providing interfaces which can be used to change objects in a controlled manner.

In our perspective, we turn this concept around – if a Smart construct (e.g. object,

area, situation, quest etc.) provides functionality, it is focused at influencing the

requesting entity. This influence is aimed at providing contextually proper approach

to handling the interaction between the requesting entity and the Smart construct.

Simply put, the Smart construct is a behavior container, where every behavior has

a name and number of instances for each behavior. The requesting entity (i.e. a NPC)

asks for a behavior by name, and injects it into its own AS utilizing the BI principle.

The injected code is part of the host AS until the IP or the host AS are willing keep it

there (Figure 38).

Figure 38: Smart construct contains behaviors which can be provided for BI at host AS. The

behavior is identified by a name tag and there may be a limited amount available to be

injected at the same time.

Another key mechanism at the Smart construct is that it can deliberate about the

request for BI by the to-be-host AS. For this purpose, the Smart construct is

enhanced with a simple DMM which handles two events 1) requested, and 2)

returned. The requested event is invoked when someone requested a BI of a

behavior. The behavior request is automatically rejected if there are no more

instances of the behavior, or there is no such behavior available. When the host SBT

drops the behavior (i.e. discards it after it finishes its execution), the behavior is

returned to the Smart construct and the returned event is invoked. Smart constructs

can associate both events with a SBT (or any other AS mechanism) (Figure 39). The

event handler also has access to the data and messaging context associated with the

 90

Smart construct (i.e. modify persistent variables and send/read messages). For

example, a Smart can count how many times somebody requested a particular

behavior. The data context is also used to forward information about the host and the

requested behavior into the event handler (i.e. SBT).

Figure 39: Requesting a BI from a Smart triggers the Requested event which is handled

within the Smart construct. When dropped, the injected behavior returns to the Smart and

the Returned event is invoked and handled

Our Scenario 2 (Tavern) can be used as a simple example of utilizing Smart

constructs (Figure 40). This scenario we will take 3 entities into account – a NPC, a

beer mug, and the tavern. First, we have to establish that the beer mug is registered at

the tavern as being an item within it and it also has knowledge to which tavern it

belongs to. We will omit all other NPCs and entities taking part in this scenario. Both

the tavern and the beer mug are Smart constructs.

At first, the NPC enters the tavern and asks for a context specific behavior

»guest« to behave in a way the tavern requires. Different taverns may have different

guest behaviors at disposal. A fancy tavern may even reject a low life NPC by

denying it the behavior. If there are enough instances to BI into the NPC, the tavern

satisfies the request. Within the injected behavior, the tavern provides the NPC with

the means and logic to use the beer mug it assigns to him. We can simplify this to a

sequence of »Take, Drink, Ask for Refill If Empty«. Both »Take« and »Drink« are

behaviors requested from the beer mug, since it knows best how to use it. However,

»Ask for Refill If Empty« represents a behavior that is requested at the tavern.

Within it, the tavern checks the status of the beer mug and if empty, tells the tavern

via message to get a refill. Note that all this is happening within the NPC’s AS, thus

it has to communicate with the tavern for the refill. However, the code above the

Refill behavior provides the data on how full the beer mug is via local variables.

It can be seen that rather complex believable behaviors can be decomposed into

components which can be put together in a very loose fashion. The whole concept

would work if the beer mug and the NPC would meet in a restaurant (i.e. being a

 91

fancier tavern). It also shows how the beer mug can be replaced with a glass of wine

without the NPC changing any part of the composition.

It also shows how stacking behaviors can lead to complex behaviors, where

injected behaviors can inject behaviors based on evaluating the current context (e.g.

if all beer is gone, lets order wine).

Figure 40: When the NPC enters the tavern it only requests the »Fun« behavior, which

further makes use of requesting behaviors from the mug and tavern. The NPC does not know

of any other behaviors except for Fun.

We recognize four main representatives of Smart constructs: 1) Smart Objects, 2)

Smart Quests, 3) Smart Navigation Objects, and 4) Smart Areas.

6.6.1 Smart Objects

Smart Objects (SO) are associated with in-game materialized objects, like hammers,

beer mugs etc. These objects are utilized to provide behavior decomposition in

respect to their intended use e.g. »use« behavior, »drink« behavior etc. These objects

are also coupled with other constructs (e.g. Smart Areas) to provide proper context of

their use. If used alone, these are often responsible for providing proper context for

activities in their immediate surroundings (e.g. cross near the road makes people

bless themselves).

 92

6.6.2 Smart Quests

Smart Quests (SQ) are associated with game mechanisms, like questing (i.e. a SQ

represents a particular quest) or emergent situations (e.g. murder in the streets). The

SQ acts as a source for BI for participants. When some NPC (or any other AS

capable, e.g. an IE Object) wants to take part in a quest or is pulled into a situation,

SQs are responsible for providing context relevant behaviors. For example, when

Jerry gets sick in Scenario 4 (Jerry), his behavior is provided by an associated SQ.

Emergent situations provide specific behaviors based on the situation type (e.g.

surprise attack on the player provides attackers with behaviors how to engage) and

the ongoing circumstances (e.g. if the player’s health drops below 50% no more

participants are allowed in arresting him to give him a chance).

6.6.3 Smart Navigation Objects

Smart Navigation Objects (SNO) are a specific purpose SO associated with

navigation in both path finding and path following. The SNO represent a complex

behavior necessary to plan or traverse over a certain navigation element (e.g. door,

trench, fence). The SNO is also responsible for providing context information about

the possibility to traverse over them (e.g. when path planning wants to go over an

SNO but the host NPC would be too heavy, the host SNO denies the passage while

path finding) to avoid valid paths being planned over them but being rejected while

following the planned path. During execution, the SNO provides the movement

mechanism with behavior to be used as a part of the movement process – the BI

happens as part of the »move« node (Figure 41). The used behavior is implicit.

However, the SNO can have different variant of the implicit »Traverse« behavior for

distinct types of NPCs or different path planning or path execution requirements (e.g.

a fully armored knight does not care for a locked door, he just walks through).

Figure 41: The NPC walks along the planned path with a SNO (Door) being part of it. The

SNO provides the »Traverse« behavior to get through the door using specific animations and
handling issues like locked doors.

6.6.4 Smart Areas

Smart Areas (SA) represent a region, i.e. topological information in respect to the

context they represent and the region coverage they are responsible for. In principle

SA behave similar to SO, with the difference of having a volumetric coverage of the

 93

virtual world, thus NPCs and other constructs can enter, leave and reside within

them.

Therefore, we provide the NPCs with an enhanced way to request behaviors in

respect to a reference point – topological request (TR). The principle of a TR is the

same as a direct request from any other Smart construct (including a direct request

from a SA), it provides a name of the behavior to inject at the IP. However, the

reference point is used to determine which area is to be contacted to provide the

behavior. Often the reference point is the same location the NPC is at.

In principle, the SA represents a contextual annotation of the virtual space and

provides specific behaviors on how to behave in that context. The spatial

decomposition helps to associate certain behaviors with certain areas (e.g. having

»fun« in a city is different from having »fun« at home). However, a key issue with

the TR is the possibility of SA to overlap (Figure 42).

Figure 42: Overlapping SA are ambiguous in respect to a TR for BI. Non-overlapping areas

can be used in a hierarchy, where »FOO« when not found at an area, can be searched at its
enclosing (i.e. parent) area.

When overlap happens, the possible areas to contact are ambiguous to the

provided reference point. Therefore, we require the SA to be ordered in a strictly

exclusive hierarchy, where every area has to be either without overlap with other

SAs, or completely contained within another SA. As a result, we can specify a

hierarchy for the TR to follow while contacting SA to satisfy the BI request. Since

the SAs are exclusively contained within each other, the reference point has a given

set of SA it can contact, from the current area it is within to the topmost containing

SA (Figure 43). We avoid having a SA forest by introducing a World SA (WSA)

which represents the whole virtual world, thus every SA without a parent SA resides

within the WSA.

 94

Figure 43: Exclusive strict ordering of SA provides the TR for a BI with a set of areas to ask
in a given order from the most bottom to the topmost SA

Due to the fact that a specified behavior may not be provided by a SA, we allow

two variants of TR – 1) explicit and 2) transitive. The explicit TR only searches the

bottom most SA (i.e. the smallest area it is within). This allows to explicitly ask for a

behavior from a SA. The transitive TR is aimed at providing a behavior from the SA

that is within the set from the current (i.e. most bottom area) to the WSA. The SA

closest to the current SA is the preferred choice for providing the BI for the TR.

To illustrate the use of SA we use the Scenario 2 (Tavern). In principle, we can

topologically divide the world (Figure 44) and search that world based on the NPCs

current location.

 95

Figure 44: The topological division of a part of the virtual world into a Land, City, Districts

within the City, and Taverns and Homes within each District. There is also o Castle where

only soldiers are.

For example, if the NPC would be at outside of the »City« looking for »Fun« it

would get no behavior, since there is no fun outside the city. However, the WSA may

respond with a generic behavior for »Fun« which seeks for the nearest city to go into.

After the NPC arrives at the nearest city, it would again search for »Fun« (i.e. as a

TR within the WSA’s generic fun search). When being within the »Castle«, the

provided »Fun« behavior would again end up in a search like behavior directing the

NPC to go into a city district based on the NPC’s wealth. When the NPC arrives at

the wrong district, the pattern repeats, sending the NPC to the proper district to have

fun. When arriving at the Poor district, the NPC receives a behavior »Fun« to choose

a tavern based on the proximity and some randomness. The NPC goes to the nearest

tavern and requests »Fun« finally getting what it asked for. The resulting structure of

the SBT within the NPC’s AS may look something like (Figure 45).

 96

Figure 45: The SBT of the NPC seeking Fun in the City

Utilizing the SA allows us to manage the behaviors in a more in the sense of

topological decomposition in respect to the context specifics of certain locations.

6.6.4.1 Trigger Area

In some cases, the restriction to have SAs exclusively contained within parent areas

may be limiting, either in respect to spawning specific areas during runtime, or as a

design limitation. Therefore, we utilize a parallel system of Trigger Areas which are

SAs but are taken out of the SA hierarchy. However, all trigger areas are exclusive to

each other. If a request for behavior is executed, first the Trigger Areas are queried

and if not being able to satisfy the request, the SA Hierarchy is queried to satisfy the

request.

6.6.5 Summary

In this sub-chapter, we presented our Smart construct approach on decomposing and

distributing context relevant behaviors into the virtual environment. This approach is

primarily aimed at helping to mitigate the overall complexity of believable behavior

in respect to context relevant behaviors in specific regions, utilizing objects,

participating in quests and traversing the environment. Employing the decomposition

of behaviors in conjunction with behavior injection provides an adaptive tool how to

tackle context relevant believability, where adding new behaviors, objects and quests

does not influence how the already present behaviors interact with the NPC, thus

keeping the NPCs basal SBT as generic as possible.

 97

Smart constructs are primarily focused to achieve our Goals 2, 4 and 5. In respect

to Goal 2, Smart construct provide specific behaviors for emerging situations, either

in a static manner, when some situation the area or object is designed to handle

occurs and NPCs can utilize the Smart construct to behave in a contextually aware

fashion. For example, when the Scenario 3 (Murder) happens in a tavern or in the

streets, surrounding NPCs will be inquisitive in a different fashion than when the

murder happens in a church or at a cloister. The hierarchical structuring of Smart

Areas allows us to manage emerging situations at a more generic level with every

parent layer (e.g. a city handles murder in a more generic fashion than a church).

The complexity and depth of behaviors aimed at in Goal 4, is enhanced by

utilizing both Smart Objects and Smart Areas. SOs can provide complex handling

mechanisms which can make complex use of objects within the game’s world. Using

a simple hammer can lead to searching for nails to hammer some wood together.

Smart Areas can provide context on how to handle complex and structured

behaviors, like cooking at home, where the NPC (e.g. Brian) has to find food, make

use a of a stove and find a place to eat.

Goal 5 aims at supporting development and easy maintenance of a large scale

open world. Decomposing behaviors into SO and SAs allows for more structured and

reusable behavior base (e.g. SBTs for chairs and benches can be reused at almost

every place within the virtual world where benches and chairs are). However, it

requires a more generic approach when designing behaviors (e.g. for sitting on

chairs) but it pays off in a long run where one script (i.e. SBT provided by a chair)

can be reused and maintained only at one place (i.e. chair).

The Smart construct concept are also focuses on Goals 1 and 3. Since Goal 1 is

aimed at providing a believable ambient environment, the SO and SA help to

maintain the proper mechanisms on how to employ objects and behave in regions.

SOs provide proper behaviors for their correct use, so NPCs do not need to know in

detail how to employ objects for their activities (e.g. using a shovel to dig a hole). SA

provide guidelines (i.e. behaviors) on how to discover places for activities (e.g. a city

helps to find a tavern) or provide context and proper behaviors on how to behave at

those places (e.g. tavern provides a behavior on how to be a good guest). NSO are

also employed to help the NPC traverse in a believable way through objects (e.g.

jumping over fences, opening locked doors etc.).

Goal 3 is mainly managed by our Smart Quests, which provide specific behaviors

for NPCs to believably engage in the respective quest or it’s part. Injecting these

custom behaviors helps designers to manage NPCs in a controlled and desirable

fashion to provide more believable integration of quests into the ambient virtual life.

 98

7 Knowledge network

There are many ways how to convey information about the world to a DMM.

Without accurate information about the environment, the NPC would be only a

simple automaton with limited capacity to adapt to the changing situation:

1) Perception provides knowledge as percepts which are interpreted within

the internal DMM’s mechanism. This limits the entity in respect to only

perceivable information from immediate surroundings. This approach is

feasible for reaction based DMM.

2) Static Information is introduced to the DMM during the design phase by a

designer and has limited use, since it is not updated during run-time. For

example. the NPC’s fraction is considered a static information in KCD.

3) Databases may provide the designer with the capacity to query more

complex relational information and store additional information. However,

the downside is the necessity to have database schemas prior to game

deployment and in some cases a database query is not simple to process

and may take plenty of time and memory to answer.

4) Graph based information representing entities and relations (e.g.

ownership, family relations etc.) between them provides a different

approach on how to conceptualize the information within the OWG
15

.

In our case, we make use of all the above specified information sources on

different system levels. Every DMM capable entity which has a perception

subsystem provides the DMM with messages about the perceived situation within the

world. Since visual perception is commonly considered computationally heavy, we

apply it only to entities in close proximity to the player. Static information is encoded

by designers into the SBT as constant literals – e.g. player being the primary enemy.

We also utilize a database exported alongside level data e.g. armor sets for NPCs,

animation preprocessing, etc.

In respect to a graph based information database, we introduce a run-time

adaptive (i.e. links can be added and removed) semantic network between entities.

We use the network to annotate relations and capabilities (e.g. how much does John

like Jane, which behaviors are available at a SA and how preferred are they (e.g.

drink, sing and fight at a Tavern)). We integrate the network with SBTs to provide

AS with the capacity to explore the world on a quantitative, semantic and functional

level.

7.1 Relation Knowledge Network

The Relation Knowledge Network (RKN) represents the semantic network annotating

the virtual world. In principle, the RKN is a directed graph between engine entities

(Figure 46). World entities (e.g. spots, roads, NPCs, quests) are edge endpoints.

Every edge may be annotated with Tags (an empty tag is allowed), thus creating a

directed multi-graph. Every edge’s Tag can be associated with data which is stored

on the edge (i.e. a variable). These edge data are volatile in nature, therefore can be

modified from any AS.

15 To our knowledge, no OWG or RPG uses a graph based network of knowledge

 99

Figure 46: The Relation Knowledge Network annotates the semantic bindings between

entities. John has a binding (i.e. edge) to Jane and Jill. John is also married to Jane but he

likes Jill more. John also has two jobs and one house. John owns some tools which are SO
who annotate themselves with their available behaviors. John also has a binding to himself,

on how happy he is.

The use of the RKN is on one side to store information about the world to be

queried and explored. For example, if John would like to go to a place where he can

have »Fun« he simply explores his bindings to the world. However, someone else

can also inspect the world from John’s point of view, to see where John goes to have

fun and who is his wife.

Furthermore, the idea behind RKN is the capability to adapt based on

modifications. For example, if the player would tell John about a new tavern in town,

John could add a binding to it and from that point onward, have the possibility to

choose from 3 instead of 2 taverns.

7.2 Static, Dynamic and Virtual Links

There are three types of links (i.e. bindings) within the RKN:

1) Static links are present in the exported level data and cannot be removed

or modified. These links represent the initial setup of the world to work

with. These links may only change due to changes in the level’s makeup –

e.g. when loading or unloading level layers.

 100

2) Dynamic links are links which are introduced to the RKN during runtime.

These links freely accessible and modifiable from any AS either directly

or by a query. These links represent the current emerging bindings

between entities within the virtual world.

3) Virtual links exist to avoid too many links in the environment. These are

created while executing queries into the RKN. For example, the links

between NPC’s inventory and its content is not necessary to maintain,

mostly due to the fact it tends to change a lot and it is only interesting

when it is queried. The virtual links are removed after a query has been

resolved.

7.3 RKN Query

The Query represent a mechanism which explores the RKN and provides results to

the hosting AS. Conceptually a query is the »cognition« about the environment and

its semantic properties. In practice, any result produced by the query has to satisfy a

provided set of logic predicates. The query searches the RKN from an origin using a

pattern (e.g. depth first search, breadth first search) and checks edges (i.e. bindings)

in respect to the provided predicates. The query continues to expand the searched

space until it either cannot expand or is terminated. For example, a query can be

verbalized as »Find the closest spot to shoot a bow not further than 50m« (Figure

47). Since commonly such searches are uninformed, they may be computationally

heavy if badly shaped.

Figure 47: The RKN annotating the NPC’s knowledge about the available shooting spots for

both Bow and Crossbow. Some of them are at a Tower, some of them are in the open.

Every query has several key parameters to start with – 1) origin to start the search

from, 2) maximum depth of the search, 3) search pattern, 4) tag subselection, and

5) logical predicate. The origin of the search is obviously necessary, since the search

mechanism traverses the RKN to satisfy the given predicate and it has to start

somewhere. A properly identified origin of the search may produce less

computationally heavy pass-through. In some cases, the designer can anticipate the

maximum depth the search needs to travel to either be successful or failure, mainly

due to the designer’s knowledge on how the RKN is structured in respect to that

particular search. The search pattern provides the search engine with a mechanism on

how to approach the order of expanding edges for the search engine to validate. Most

 101

commonly, RKN queries utilize Breadth First Search and Depth First Search

patterns (Figure 48), which however are uninformed search patterns (Shimon, 2011)

thus may lead to unnecessary expanding the RKN’s edges. The user may also specify

a heuristic based search pattern which would lead the search expansions based on the

provided heuristic – e.g. an A-Star search pattern (Hart, Nilsson, & Raphael, 1968).

Additionally, a search pattern’s choices for expansion may be either static or random.

The static selection always follows the same order of expansion on every node,

whereas the random selection chooses the next edge to investigate by random.

Figure 48: Depth First Search and Breadth First Search

Since the RKN is a multigraph, the designer may want to execute the search query

over a subselection of the available edges by filtering out unwanted parts of the

graph. The subgraph is specified by the tag subselection which filters out the

unwanted edges (Figure 49). Tags are link annotations describing the semantic

relation between entities.

Figure 49: The Subgraph from the RKN based on the Tag SubSelection of (A) and (C)

excludes all other edges (B) from the search.

 102

The logical predicate provides the mechanism for the search algorithm to validate

edges to be included in the query’s result. It can be abstracted as the question the

cognition has to answer by exploring the RKN’s semantic bindings.

7.4 Query Predicate

Every logical predicate within a RKN search query consists of a non-empty set of

Predicate Components (PC). These components are a) filters, b) logical operators, c)

analyzers, and d) sub-queries. In principle, the evaluation engine asks every PC to

answer its particular cognition about an inspected edge in an isolated manner (i.e.

PCs have no idea how other PCs have answered). A PC can opt out from being

questioned, if it cannot be answered (e.g. a question »Has health above 50%« cannot

be answered neither true or false on an entity that has no health).

Beyond asking about the PC’s cognition about an edge, the PC answer two more

questions about edge pruning and ending the search. If a PC knows that it is not

feasible to continue the search on a particular path within the RKN, it can request to

prune the search to avoid further traverse. If a PC thinks there is no need to continue

the search, it can request for the search to be terminated.

These PC cognitions about the search are aggregated and their results drives the

search algorithm. They represent a triplet (found,prune,end) of answers every

PC has to provide to the query mechanism. We utilize three valued logic (Bergmann,

2008) to represent the values of all answers (e.g. prune → yes/no/unknown)

7.4.1 Filter

Filter is simple mechanism that evaluates a provided edge. They range from filters

evaluating edge endpoint properties (e.g. »is alive«) to evaluation of edge associated

data. Commonly they answer a simple yes/no question on top of their predicate and

when positive, they require the search to terminate. Otherwise, filters want to

continue with a search. Pruning is specified as a parameter of a particular filter.

7.4.2 Logical Operator

Logical operators are simple PC aggregators either being a) and, b) or, c) not clause.

Logical operators simply aggregate the evaluation of their components and present

the results as their own.

7.4.3 Analyzers

Analyzers are special PC which do not take part in the actual evaluation of an edge.

They are mostly concerned with the aggregated result. Their primary function is to

process or output (i.e. write to SBT variables) the validated edges. Secondly, they are

responsible for organizing the outputs based on an internal predicate – e.g. sorting

the edges based on the proximity of one of the endpoints. Thirdly, analyzers are

responsible for managing the amount of positive validated edges since they control

the output of the search. They either can provide a quantifier constrain a) for all, or

b) exists, or c) absolute constrain (i.e. not more than 5 results) which mainly

influence the question about ending the search. Commonly analyzers do not have

answer the question about pruning the search.

 103

7.4.4 Sub-queries

Sub-queries are a PC which triggers a separated query within the currently executed

search. In principle, the origin of the sub-query can be either the currently validated

edge, or a designer specified origin. For example, a query may be verbalized like this

»Find a house which has at least one chest which contains a sword« where the search

for the sword is to be considered a sub-query conducted from an edge which has

»house« as its endpoint. Another query could be verbalized as »Find a house which

is targeted by our trebuchet«, where the sub-query runs from the Trebuchet after the

search has found a house at an edge’s endpoint.

7.5 Adding Dimension

When looking upon the RKN visually, it can be perceived as a graph being on a 2D

plane. Therefore, we introduced a concept of adding another dimension to it, by

connecting other RKNs via a given set of transition edges. These edges have to be

explicitly mentioned for the search query to be able to traverse over, since they are

filtered by default. Further every transition edge has to be a singular bridge into the

RKNs component which it connects to the main body of the RKN. Transition edges

cannot be combined with other edges (Figure 50).

Figure 50: Adding bridge separated components to the RKN graph provides the search with
an additional dimension to work with

Further, the components isolated by the transition edges are called Isolated Graph

Components (IGC). These may be either designed or generated by code. In specific

cases, we can make assumptions about the IGC’s internal structure, thus optimizing

the search, or even caching the previous results of searches made upon them. By

engine generated IGCs can provide a unified interface between the SBT query and

the engine. An example of a generated IGC is the representation of an NPC’s

 104

inventory in KCD. The actual IGC is generated for every search and it is comprised

completely out of virtual links. We know that the inventory’s IGC is a tree structure,

thus we can avoid checking the processed edges in a closed list (to avoid loops). This

provides us with an optimization benefit, since we can avoid making costly lookups

into a closed list, where already visited edges are stored (to avoid endless loops).

7.6 Search Mechanism

The search mechanism is in principle a continuous expansion of the searched space,

where new edges to be evaluated are taken from the search horizon (Figure 51),

which represents a set of edges adjacent to already evaluated edges that have not

been evaluated. The outline of the algorithm is as follows:

1. -> RKN query (origin point, expansion policy...)
2. Prepare Search
3. Initialize Predicate Components
4. Loop until Edges are available

4.1. Take open Edge from the Horizon

4.2. Pre-Search Step On All Predicate Components

4.3. For All Predicate Components

4.3.1. Pre-Evaluation

4.3.2. Evaluate Edge

4.3.3. Post-Evaluation

4.4. Post-Search Step On All Predicate Components

4.5. Aggregate Results

4.6. If Evaluate Search Finished

4.6.1. (True) End Search

4.6.2. (False) Continue Search

4.7. If the Search Be Expanded Beyond the Edge

4.7.1. (True) Expand the Horizon with adjacent

edges. Exclude edges already evaluated

4.7.2. (False) Throw edge away

5. Finalize Predicate Components
5.1. Produce outputs into local SBT variables

6. Cleanup Search

Algorithm 2: RKN Search algorithm

 105

Figure 51: Horizon of expanded edges which have not been evaluated by the Search

Mechanism’s predicate

As we can see, the search mechanism is fairly simple in respect to traversing the

searched space and providing the PC with edges to reason about the search results.

There are varying PC with different internal mechanism.

7.7 Example

To illustrate the use of our RKN, we provide a simple example in respect to our

Scenario 1 (Brian). We will outline how the RKN can be employed to represent and

acquire information about the world. We will also present how the RKN can be used

to provides adaptive solutions without the need to change AS descriptions at the NPC

level.

7.8 Scenario 1 – Life of Brian

In Scenario 1 (Brian), we focus on Brian, who lives in a small village. The village

consists of few houses, a smith’s shop, a baker, several field nearby and two taverns.

It is populated by at most 50 people, who live their lives in a similar fashion as Brian

does. Brian is a simple farmer, who occasionally helps out at the bakery, has few

friends and has a feud with his neighbor. He likes to hang out with at the tavern and

play cards
16

.

As can be seen, Brian’s life is quite common. We focus on three basic use-cases

Brian’s AS can come across 1) going to work, 2) having some fun, and 3) witness the

player steal something from the neighbor’s house. Brian has the following bindings

(i.e. edges in the RKN) to places with the data representing specifics about the

binding (Table 1). The presented data is only schematic.

16 This description reflect the initial stages of design for NPCs within the KCD's world.

 106

Table 1: Brian’s bindings (edges) to others. The Target represent the entity the edge points

to. Annotation represents the tag associated with that edge, Data represents the associated

variables

Target Annotation Data

Building Home (no data)

Building Tavern, Fun Last Visit; Popularity

Building Tavern, Fun Last Visit; Popularity

Person Friend Popularity, Last Seen

Person Friend Popularity, Last Seen

Person Neighbor, Feud Popularity

Place Farm, Work Progress

Place Farm, Work Progress

Place Bakery, Work Progress

Place Smith, Supplies Inventory

7.8.1 Going to work

When Brian wants to go to work, he simply queries for at least one destination (i.e.

Target) that has the annotation »Work« which has the least »Progress«. If Brian is

too tired, he order’s these places based on distance and chooses the closest one,

however dismissing places with »Progress > 80%«. Adding a new work place

requires linking Brian to it. Note that the Places are represented by SA and provide a

uniform behavior structure, so Brian only calls for BI »work« and the SA takes care

of the rest. However, sometimes when Brian needs to repair something, he asks for

the closest »Smith’s shop« where the necessary supplies are in its »inventory« and

the NPC linked to the Smithery is at home (i.e. it is present in the area of the

Smithery). It is noteworthy, that the BI provided by the SA can be inferred from a

link from the SA on itself, denoting what behaviors it has at disposal (i.e. the

reflection principle).

7.8.2 Having some fun

If Brian wants to go to have fun, he chooses the Tavern where most of his »Friends«

are. He avoids the Taverns having his less likable friends as customers (i.e. Brian

likes to avoid conflicts). When Brian gets to the Tavern, he talks to his friends in the

order of him seeing them lately, to catch up with his friends. Again, Brian can be

introduced to new friends very easily, just by adding a new link. Brian can also loose

friends by removing links. It can be seen the network provides the means to make the

virtual world a socially dynamic environment. Brian can use his bindings to other

people to determine to whom will he talk and who will he avoid. Thus, the player

might need to first gain Brian’s trust to be able to talk to him about Brian’s other

friends, since Brian does not like to talk to strangers.

7.8.3 Player steals from the neighbor

When Brian stays home, he may witness the player trespassing on his neighbor’s

property. If Brian does not know the player as a friend, he will sound an alarm.

However, when the player befriends Brian he can benefit from Brian being angry at

his neighbor. Brian does not care for anything happening at anybody’s house when

the mischief is done by his friends.

 107

7.9 Summary

The RKN represents the necessary means to annotate the virtual world so NPCs can

deliberate about the properties and opportunities present in the environment. Since

visual perception is computationally heavy, the RKN provides the means to encode

easy to access information about nearby entities without the need to employ virtual

senses. Queries into the RKN are also useful to discover and infer relations between

entities. Our RKN query language allows scripters and designers to encode complex

logical information into the environment’s annotation. For example, a guard can

query the contents of the player’s inventory to stolen items that originate from his

village, omitting items stolen at location he does not know.

In principle, the RKN is mainly aimed at providing the information about the

large-scale world addressed in Goal 5. Without the RKN, we would require encoding

information either statically into the NPC’s SBTs or into some form of relational

database (i.e. SQL). Since SBT execution depends on the results from the RKN

queries it is easy to deploy generic NPCs into the world, just by connecting them to

their respective environment and let them query for what they need. For example, an

NPC has a generic home related behavior, thus the only requirement is to have its

home be a SA and link it to the NPC. Everything else will be arranged by the script

invoking BI from the linked SA. Another example is to link owned items (SOs) to

the NPC. The responsible SBT script at the NPCs AS will discover the attached

objects and choose one best suited for the work they intend to do to satisfy a Day

Plan’s goal. The actual search for an item can be present in the BI provided by the

destination area where the work is conducted. The area’s BI SBT can query for any

item owned by the host NPC limiting it to specific provided behaviors (e.g. a field

limits the SO to providing »farming« behaviors).

Further, the RKN supports all the other Goals providing the means to explore the

world and its properties. For Goal 1, the ambient environment can be more

believable if the semantic relations represent the actual relations between NPCs (e.g.

love, hate, parent, child etc.), or represent the affinity to places (e.g. like the tavern,

dislike the prison) or activity relevance (e.g. workplace, home, fun and friends). The

designer can add new connections between entities to further enrich the environment

by new and more believable constructions. The presence of data on the links between

entities allows to encode data in respect to the specific relation (e.g. how much do I

like a tavern). These can be used to further refine NPCs’ and IEs’ behaviors .

The capacity to add and remove links provides a mechanism to utilize support for

Goal 2, where new emerging situations can be introduced into the virtual world by

simply adding or removing links or changing link data. Within our deployment for

the KCD game, SBTs have barrier nodes, which watch over the changes in the RKN.

This can lead to NPCs reacting on the changing setup within the world’s RKN.

RKN is an important support mechanism for Goal 3, where the story can utilize

the current state of the RKN network, to choose optional participants (e.g. Scenario 4

(Jerry) choosing people who will get food poisoning at random from the village

occupants who go to the same tavern as Jerry). Quests can also modify internal

parameters based on specific configurations within the RKN, for example adding

guards for quests if the player is too strong at that point in the game (i.e. to provide a

more challenging sub-quest).

The overall depth and complexity addressed in Goal 4 is covered by the capacity

of the RKN to describe complex relations between entities within the world. For

example, the NPC makes choices based on the setup of the nearby RKN (i.e. part of

 108

the RKN close to the NPC in respect to how deep the NPC searches get). The

environment and player can change the setup and data of the RKN to influence the

NPC (e.g. it starts to rain and the NPC avoids workplaces too far from its home).

Furthermore, chaining SA and SO can be inferred in various ways (this depends on

the designer’s intent and setup of the RKN). For example, tools in a RKN chain with

a tag »next tool« can be processed as a sequence of tools to be used to manufacture

something. When the player steals a tool, it will disrupt the capacity of an NPC to

manufacture the respective product. These can be put into combinations and are

easily extensible. Simply chaining the SOs in a SA can lead to rather complex

behaviors. All in all, the RKN has proven to be a key mechanism in our KCD

integration to facilitate convenient world discovery and environment annotation.

 109

8 Evaluation

We deployed our architecture at Warhorse Studios to be used during KCD’s

production for the large open world environment. All the above presented

mechanisms have been deployed as a standalone artificial intelligence module within

the KCD’s game framework. In this chapter, we present our architecture’s

evaluation, to provide insight into its properties and practical use. We split our

evaluation into three major topics:

1. SBT Use evaluation;

2. Comparative evaluation of use of SBTs and SAs;

3. Qualitative evaluation of SA and SO use and deployment in a long term

large scale production of an OWG;

4. Deployment and integration evaluation.

8.1 SBT Use Evaluation

We have performed two types of evaluation with SBTs – qualitative evaluation

where scripters tried to implement the same scenario with different tools and

quantitative performance evaluation. In this chapter, we present the summary of our

evaluation covered in (Plch, Marko, Ondracek, Cerny, Gemrot, & Brom, 2014).

8.1.1 Qualitative Evaluation of MBTs

We utilize two of our scenarios for evaluating Scenario 1 (Brian) and Scenario 2

(Tavern) since we consider them adequate for testing common use of SBTs in a real-

life application. Two of Warhorse Studios scripters implemented both scenarios in

SBTs to be used in full production. They also implemented scenarios using other

available technologies provided with CryEngine. The first one was plain behavior

trees with conditions evaluating only boolean variables and allowing for FSM action

selection as tree leafs (BT1). The second comparative implementation was behavior

trees with boolean based conditions (i.e. no relational operations) retaining node

states (BT2). Both technologies had support for communicating with LUA scripts.

Both BT1 and BT2 were hard to develop and eventually regressed to use of lengthy

and hard to maintain LUA code.

Both BT1 and BT2 solutions suffered from disadvantages in respect to language

expressiveness, where certain concepts inbuilt into SBT had to be supplanted by

LUA code. Beyond that, BT1 and BT2 suffered from being too specifically tailored

to explicit problem instances, having significant issues in adapting to instance

variants (e.g. no two taverns have the same furniture dispositions) or changing

requirements (e.g. Brian’s life is enriched by one additional activity in the morning –

eating breakfast).

Our architecture managed well, since both scenarios were solved without using

any custom LUA code as a crutch. The code for Brian had managed his simple life

(e.g. »sleep, go to work, have fun, go to sleep«) as a set of reactions to messages

from Brian to Brian. Part of his DMM followed the activity schedule and dispatched

notifications to other DMM parts to handle them. Adding new activity required only

to implement a handler for the activity and it was plugged into the present code

without issues. This also showed how our architecture coped with decomposition of

behaviors in a manageable way.

 110

Our architecture was able to solve the issues of instance variations robustly, since

adding a table in the tavern or changing required only change in data but not of the

actual behavior.

Moreover, the scripters considered SBTs relatively easy to learn and did not have

trouble understanding its semantics. They were also very fond of the debugging

features which were superior to other systems as well as to the LUA implementation

we provided. In the end, we started instructing our scripters to use LUA as little as

possible for two reasons: 1) invoking LUA environment was computationally

expensive, and 2) LUA code was less readable to the scripters than the visual

structure of SBTs. On the other hand, nodes invoking LUA proved very useful as a

tool to prototype new functionality that will later be added as a specialized SBT

node.

8.1.2 Quantitative Evaluation of MBTs

For our quantitative evaluation, we utilized two scenarios 1) simple behaviors, and 2)

Scenario 1 (Brian) variant. In first scenarios (simple) we used many NPCs with a

simple tree (10 nodes, depth 4). The NPCs moved to random positions at various

speeds, while the tree was enlarged by spurious decorators and composites. The

Scenario 1 (Brian) was a production variant where several NPCs carried out daily

routines – hoeing fields, visiting pub and eating (SBT were populated by with 60+

nodes and maximal depth > 10). Aside from the NPCs, the environment in the day

cycles scenarios contained 142 non-NPC entities which also may have some SBT

logic to coordinate with NPCs.

Both scenario sets were tested with different numbers of NPCs (Table 2Chyba!

Nenalezen zdroj odkazů.). All NPCs were updated every frame in full detail. To

keep the results meaningful, no CPU budgeting restrictions were enforced — the

trees always ran until an action was executed. Data was gathered running the game

for 3 minutes, resulting in 3000–6650 captured frames. To reduce noise caused by

interrupts from the operating system or other processes, up to 10 outlying frames

were removed from each measured category. We imposed a budget of 5ms per frame

(on a single core) for the whole AI system’s update, including other subsystems as

well (e.g. pathfinding etc.).

Even with plenty NPCs on the scene, the average and the .99 quantile

performance is far below the limit, although the peak performance is not satisfactory.

But as there are high peaks in SBT evaluation, enforcing CPU budget restrictions

should effectively cut the peaks, postponing some of the workload to next frame.

Since at maximum 1 in 100 frames is over the limit, this will not have any

detrimental effect on the resulting behavior.

 111

Table 2:The results of the quantitative evaluation. The table displays mean (left), and .99

quantile and maximum times (right)

 NPC SBT DMM Perception Other Total

Simple

100 0.33
0.6
0.7

0.09
0.2
0.5

0.02
0.2
0.4

0.34
0.6
1.7

0.79
1.3
3.9

200 0.53
0.9
2.5

0.20
0.3
0.5

0.03
0.3
0.7

0.42
0.8
1.8

1.19
2.0
4.3

300 0.75 1.1
4.0

0.30
0.5
3.3

0.05
0.4
 1.1

0.59
1.0
4.0

1.71
2.6
6.8

Brian

10 0.39
0.7
1.4

0.12
0.2
0.6

0.02
0.1
0.5

0.22
0.5
1.0

0.76
1.1
2.0

20 0.46
0.7
1.6

0.12
0.2
0.4

0.02
0.6
2.8

0.22
0.6
 2.8

0.84
1.4
3.4

30 0.56
0.9
1.8

0.14
0.2
0.5

0.02
0.1
0.3

0.23
0.7
2.7

0.96
1.6
3.9

8.2 Comparing SA and SBT concepts

Our comparative evaluation is aimed at comparing the capacities of both the SA and

SBT approaches in respect to producing believable behaviors in respect to our

Scenario 1 (Brian) and Scenario 2 (Tavern). We aim at manifesting behaviors where

individual behaviors and their decomposition is connected to the problems within

everyday life. In this chapter, we present the summary of our published work (Černý,

Plch, Marko, Ondracek, & Brom, 2014). We are evaluating four hypotheses based on

the typical use cases in industry development:

1) Learning to create day cycle like behavior is harder using SA than SBTs;

2) New behaviors from scratch are developed faster using SBTs;

3) Existing behaviors are modified more convenient and faster using SAs;

4) SA decomposed behaviors are easier to read.

We conducted the evaluation by using small scale group of 6 males and 2 females.

We used the methodology developed by our colleagues (Gemrot, Cerny, & Brom,

2014) for comparing design tools and mechanisms. We also used the evaluation to

target usability issues with the production tool chain. The studied group was rather

small; however, usability research has shown that even smaller scale groups can

provide significant results (Turner, Lewis, & Nielsen, 2006). We also had limited

human resources with access to the proprietary technology used for KCD

development at Warhorse Studios.

In our experiment, we have used a within-subject due to the small number of

participants. We proposed a set of simple tasks for the participants to develop to

emulate standard development in a time constrained production environment:

1) Create a simple NPC having a daily routine of 4 distinct behaviors with a

fixed order and manifested predefined places.

2) Create two additional NPCs with different daily routines, one having 4 and

the other 6 behaviors. One new behavior type was added to the set used in

the first task.

 112

3) Make modifications to the behaviors that the daily routine is composed

from.

4) Add new places for behaviors to manifest. Let the NPC choose by chance,

which place to use.

Our focus is not on the behavior design, since we provided the test subjects with

the possibility to use already prepared low level SBT designs. We composed our test

group out of two Warhorse employees with experience working with the tool chain

and having prior experience designing NPC behaviors. One of the participants from

Warhorse may be considered having expert level knowledge about SA use and NPC

behavior design. Six of our subjects were university students, only two of those

having limited experience with the used tool chain and having no NPC design

experience. The students had no prior experience with the SA concept. Two of our

subjects had extensive programming experience (more than 90 man-months) and two

had limited programming experience (less than 5 man-months). We focused on

measuring how long did it take for our subjects to complete the given tasks, with an

approximate limit of 90-180 minutes for all tasks. We also evaluated their qualitative

feedback via a questionnaire. We analyzed the Task 4 solutions in respect to quality

(i.e. by expert inspection) and quantity of used SBT nodes.

Our experiment was divided into two parts where subjects solved the tasks using

1) plain SBTs, and 2) SAs. To test SBT readability, we provided the subjects in Part

2 with the solution to for Task 1 while they worked only on Tasks 2–4. For Part 1,

we used only half of our subjects (i.e. the less experienced), where the other half

used SA. We also provided a template for the structuring of the SA in part 2, similar

to our example in (Section 6.6.4), where the »city« SA was responsible for sending

the NPC to the respective SA to perform their daily routine. We provided the

subjects with a prepared level, with all NPCs and SA present in the tool chain.

8.2.1 Results

We summarize our quantitative results in (Table 3). On average, subjects took much

more time to finalize Task 1 using SAs than SBTs. This can be explained by the lack

of experience with the SA concept, thus the subjects had to figure out the

mechanisms. We also consider the possibility that utilizing SA requires creating a

much more structured content, where SBTs are much less structured in respect to

behavior interactions. The data seems to support Hypothesis 1 »that SA are harder to

learn« and Hypothesis 2 »that new behaviors are faster to develop using SBTs«. Our

subjects using plain SBTs were capable to solve the Task 1 very quickly.

Further, the time necessary to learn to use a novel technology was reasonable (less

than 90 minutes for all subjects). The learning time was further reduced if subjects

were presented with a working example. All users took less than 30 minutes to

replicate or modify the SA example shown to them at Task 2.

The modification tasks (2–4) were faster solved by using SBTs than SA, except

for Task 3. Thus, it does not support our Hypothesis 3 »that modifying SA is faster«,

although the difference in Task 3 is statistically significant (p = 0.01, Wilcoxon

paired test), while other differences are not. However, Tasks 2 and 4 when solved

using SA incorporate the necessity to learn the new technology. The total time spent

on Tasks 2-4 slightly favors SAs over SBTs, however the significance is on the verge

of statistical significance (p = 0:05, Wilcoxon paired test).

 113

Table 3: Summarization of our experiments comparing the Behavior Trees and Smart Areas

 Behavior Trees Smart Areas

 Duration in

minutes

Standard

deviation

Duration in

minutes

Standard

deviation

Task 1 10.00 3.5 47.25 20.3

Task 2 12.00 1.5 13.50 6.0

Task 3 12.88 5.5 4.88 1.5

Task 4 9.38 3.7 10.63 6.8

Sum 2-4 34.25 9.4 29.00 12.5

Node count 85 14 56 4

In respect to subjective evaluation (Table 4), subjects have identified the task of

modifying SBTs more tiresome than modifying SA. Our qualitative data supports the

view that modifications to SBTs are prone to manifest mistakes due to the

repetitiveness of the task. Thus, the ease of use is compensated by more time-

consuming testing and debugging. In general, our data promotes that SAs are better

in real production environment, where repetitive modifications and better code

structure is required. Our data also showed that utilizing the SA produced almost

identical code in all subjects. The SBTs allowed for more freedom to solve the issues

at hand. From a production and development perspective, the SA are to be favored

since they lead to common design patterns. We also observed the increase in

decomposition for the SA approach, where the nodes were distributed between 14

simple trees, in comparison to 3 large trees for the SBT approach.

Table 4: Subjective qualification of the tasks difficulty when creating new SBTs/SA or
modifying existing ones. Scale is from 0 – 3, (easy – hard)

 Assignment difficulty Recreating Modifying

SBTs 2.7 1.3 1.1

Smart Areas 2.6 0.1 0.3

In conclusion, both our Scenarios (1 and 2) were evaluated in a realistic setting

and support our approach as being feasible in large scale development. The learning

curve is acceptable for untrained users with or without programming knowledge.

Further, both technologies (SBTs and SA) were adopted easily and did not hinder

design decisions. The Behavior Displacement was also very easily understood and

used.

8.3 Qualitative Evaluation

We present our qualitative evaluation in respect to our collaboration with Warhorse

Studios on Kingdom Come: Deliverance during the last 5 years. In this chapter, we

present the summary of our published work (Černý, Plch, Marko, Ondracek, &

Brom, 2014). We split it into two parts:

a) We present the practical achievements within the KCD game made by

utilizing the concepts and mechanisms presented in this thesis.

b) We present a set of interviews with some members of the script

department who daily engage with our technology.

 114

8.3.1 KCD Integration and Deployment

Presently our technology and concepts are integrated
17

 as a key system running the

entire virtual world, both ambient and individual NPCs. In principle, the AI Engine

which is mainly build on top of ideas presented in this thesis, represents one of the

game’s fundaments. Presently all game mechanics in respect to the virtual world are

implemented using our approaches and methods, on how to specify and decompose

behaviors. More than 80 quests are implemented via the use of SA and SO, where

SBTs are the primary language for scripters to express ideas and manage the world.

The 15-people strong script department uses our technology to perpetuate the world

to be as believable as possible. Other technologies, like a script based crime system

were built on top of SBTs combined with SAs and SOs. This proves the quality of

the overall approach, since such long deployment presents a unique capability test.

From out observations, the concepts of SA and SO are a natural way to express

design decision. They allow for a natural decomposition of behaviors in respect to

both places and objects in an encapsulated way. We have learned that the

management design pattern is a strong and useful mechanic to employ for coupling

SA with another SAs or SOs. In our common case, the SA represents a management

entity which governs the SA and SO contained within. The SO are responsible for

managing low level interactions, and instruct NPCs on how to directly interact with

them. Interactions between SOs is commonly carried out under SA supervision,

which orchestrates the proper use and cleanup of the utilized SOs. This provides

strong control over what is happening in the world and who is responsible. The BI

provided by the SA includes the further BI by a governed SO, thus creating deeper

SBT structure and not a broad one.

We also did observe that scripters make use of the Intelligent Environment

concepts, often combining both Smart constructs and IE principles. It is common to

populate the world with objects that provide BI to their users and within those

behaviors, they introduce a communication mechanism to their IE part. A »chicken

leg« eaten by both the player and NPCs provides the functionality to »eat« where

animations are specified. However, the injected behavior also sends messages back

to the chicken leg to tell it how many times an animation was played, so the IE

Object may change its visual appearance (e.g. the meat actually is vanishing). All the

respective behaviors are encapsulated (both NPC and IE Object) and only loosely

coupled. The NPC has no knowledge about the communication mechanism involved

in its action. In some cases, we introduced such complex interaction at a later stage

of development, and there was no need to alter the NPC’s AS, only the SO’s and IE

Object’s internals
18

.

We employ the SO concept in every interactive entity within the world, and since

the player is an NPC from the SO’s perspective, he utilizes the same mechanisms as

NPCs do. Further, every door, chair, table and bed (and many more) are SO, being

more than 15000 within the game. These provide various mechanisms (e.g. people

are coordinated when somebody wants to sit on a bench and they need room to scoot

by) and contextual behaviors (e.g. doors provide complex context sensitive behaviors

17 The AI integration team headed by Tomáš Plch consist Matej Marko, Martin Černý, Petr

Smrček and Martin Štýs, with support by the scripters department's Petr Ondráček, Michal Vrtílek,

Martin Antoš, Petr Maláč and many others within Warhorse Studios
18 The chicken leg is both an SO and IE Object at the same time

 115

on how to handle their locked state, they also can recognize who is walking through

and who waits on either end).

The entire KCD quest system using SO and IE Virtual Observers to manage

complex quests with multiple endings. Quests reside within the world as hidden

objects and are both integrated into the RKN and influence what is happening in the

world. The Quest SO communicate with the questing backend over messages. The

Quest SO represent an entire world on its own, commonly residing deep under the

landscape.

We also used SBTs to prototype the low-level AI for combat behaviors. Due to

optimization necessity, we had to rewrite it into C++ code, to allow large scale

battles. But the targeting system for combatants still runs as a SBT implementation in

the Combat SubBrain of every combat capable NPC.

One of our most interesting achievements is the integration of a believable,

research based (Pitnerová, 2008), sheep AI implementation fully written using SBTs.

We focused on realistic sheep behavior, in respect to their daily routines and their

heard behavior. This realistic behavior allows us to actually include the natural

behaving sheep into our quests concerned with helping sheppards and finding lost

sheep.

Overall, from a usability standpoint, our architecture was proven repeatedly to

provide well manageable results in large scale production of an OWG game.

8.3.2 Personal Feedback via Interview

In this sub-chapter, we present the summary of our published research (Cerny, Plch,

Marko, Gemrot, Ondracek, & Brom, 2016). We conducted two rounds of interviews

with 6 Warhorse scripters who were engaged with our technology on a daily basis for

more than 4 years. Our selection in subjects was limited due to the fact that there are

no more scripters with such long experience at disposal and invited subjects would

be of no practical use. We chose these scripters due to their experience and lasting

exposure to our technology. However, their individual responsibilities in respect to

utilizing our technology differ.

We build the structure of our interview based on five basic usability measures

(Shneiderman & Plaisant, 2005): time to learn, speed of performance, rate of errors

by users, retention over time and subjective satisfaction.

Our first set of questions (Table 5) is focused on typical use of SBTs and Smart

constructs in the KCD’s AI system. Each interview took from 30 to 60 minutes. We

try to frame the questions in the manner to avoid bias in respect to the used

technologies (i.e. Smarts, SBTs) and investigate the possibility of alternative

solutions. Our intention is to evaluate the system as a whole.

 116

Table 5: First set of questions. Every question is stated in the upper part, where the

reasoning behind it is in the lower part

Question

1

What were the tasks you worked on recently?

Frame the interview and provide source for specific examples for the rest of the
interview

Question

2

What activity consumes the most of your development time?

Discover the main bottlenecks for production.

Question

3

Give an example of a code segment/snippet that is often repeated across
behaviors and has to be copied each time and a segment that is well reused across

behaviors.

Discover a situation where Smart constructs are not applicable in practice,

although they should be in theory. Understand the potential for AI code reuse.

Question

4

Describe the process of implementing a behavior from a design request to the

final code.

Discover how Smart constructs fit (or do not fit) in the overall production

pipeline.

Question

5

How would your behavior code change if you could only use plain tree injection

(without Smart constructs).

Understand what features of Smart constructs are considered important.

Question

6

What was the most complex/difficult task you have worked on in this company?

The most challenging tasks are likely to demonstrate the full power (or lack

thereof) of a system.

Question

7

Describe the process of resolving an issue reported by the Quality Assurance

department.

Discover whether Smart constructs help/hinder debugging.

Question

8

What do you dislike about the scripting tools?

Gather all the problems scripters face when writing code.

Question

9

Describe your ideal scripting tool.

Gather constructive suggestions and let the scripters compare Smart constructs to
hypothetical alternatives.

Answers to questions 4, 6 and 7 did no yield any useful insight into how Smart

constructs were used. Answers to questions 3, 8 and 9 provided us with feedback on

the overall usability of the system, mostly focused on the tool-chain (i.e. editor and

debugging tools). Problems with debugging larger SBTs were mentioned by 4

scripters overall (e.g. »large trees do not fit on a single screen«). This is observed

mainly due to the fact that the SO/SA decomposition with the management pattern

employed (often used technique at KCD) leads to deep trees. A single scripter

complained about the need to connect the SOs representing quests into the RKN even

when there is no natural connection
19

. Overall, Smart constructs were not presented

as the source of scripter’s frustration.

Answers to question 2 have pointed out that debugging and refactoring of SBTs

due to code changes were the most frustrating and time-consuming for scripters.

Both issues were mentioned by 4 scripters in total. One scripter complained about the

complexity of creating of synchronized behaviors. Another scripter reported that

figuring out how to translate a broad design specification into a SBT implementation

is his most time-consuming task. Answers to question 3 provided no valuable data

since the examples for encapsulation were too specific to our system, to be able to

19 This is a implementation specific necessity in the KCD game

 117

compare them with other similar systems. Our subjects provided us with 7 examples

of repetitive small scale SBT code (around 8 nodes) which was not suitable to be

implemented as BI via SO/SA use. This indicates that the SO/SA are more suitable to

decompose problems into larger structures, but a different approach has to be

provided to create small reusable SBT snippets.

 Best input in respect to using Smart constructs was provided in answers to

question 5, where our subjects reported that if not for Smarts, they would

reimplement the a) capacity to connect behaviors and data (4 mentions), b)

messaging between entities (manager pattern) where handling of context specifics

are handled (3 mentions), c) central NPC logic (i.e. brain) for managing a set of

behaviors (2 mentions) and d) a container aggregating related behaviors (1 mention).

One of our subject stated that he would implement a similar architecture. The

principles of decomposition and encapsulation, as well as a hierarchy of control and

coordination were recognized as important capacities of our system.

Our second set of questions (Table 6) was aimed providing information about the

utilization of our system to achieve design goals. This part of the interview took from

10 to 30 minutes.

Table 6: Second set of questions aimed at feedback in respect to design problems when

creating the believable ambient environment

Question

10

When writing code, do you take into account the possibility of interruption by

quest/combat? How?

Question

11

Is there a difference in using BTs and BOs in quest logic and in ambient AI?

Question

12

What are the necessary steps to place a new instance of an SA/SO in the game

world?

Question

13

Have you implemented any behavior where NPC attributes would change the

way the NPC behaves in a given context?

Question

14

What was the most difficult synchronization/coordination task you implemented?

Why?

In respect to question 10, only one scripter reported the need to implement a

complex enough SBT logic to accommodate for being interrupted by the Dialog

SubBrain by suspending the Day-by-Day SubBrain. The primary issue was the

necessity to resume the entity into the interrupted task so it would seem

uninterrupted. Since this issue was mainly concerned with animation continuity, we

solved it by using a twin character for the dialogues and pausing and hiding the

talked-to NPC. Four of our subjects have implemented simpler variants of a

interruptible behavior by halting the subtree within the Day-By-Day SubB not

needing to resume. Two scripters stated halting the SubBrain was easy to integrate.

This shows that the NPC architecture can handle interrupts well.

Our question 11 was aimed at inspecting the coupling between the ambient AI and

the questing system. No issues were reported. However, one of the mentioned issues

was the complexity of the adjacent systems like Quest Management and Dialogue

System. Scripters are required to interact with several different systems to integrate a

quest and the logic can be distributed amongst these system in various measures, thus

creating different approaches for handling quest design. Quest SO’s SBTs were

considered simpler to implement than SBTs for NPCs. In principle, scripters noted

that the Quest SO acts as a central entity that coordinates quest participants as well as

the quest’s progression. This indicates that the design of the system is followed as

intended.

 118

All scripters have reported that creating a new instance of a SO only requires

linking the SO to the appropriate environment within the game. Two scripters

explicitly stated the process was quick, however two other scripters reported issues

with the tool chain responsible for managing the RKN. This indicates that the system

allows for logic decomposition to separate data and code, where reusing an SO is as

simple as putting it into its proper context.

Only one scripter implemented a system investigated by question 13, where the

NPCs behaved differently based on their attributes. The use-case was a military camp

where different work was assigned based on the NPC’s rank. The implementation

was straight forward without any issues,

Question 14 was focused on synchronization and coordination between NPCs. All

scripters encountered the issue of explicit synchronization. Two scripters

encountered this issue in a simple context. One scripter needed to address this issue

outside of a Smart construct’s scope and described it as being difficult to handle. One

scripter mentioned Smart constructs being helpful with maintaining coordination.

Three scripters considered the synchronization to be non-problematic. However, two

scripters complained about debugging issues. One scripter reported that he considers

parallel behavior’s a challenging principle. Two scripters reported that writing

message oriented SBTs as tedious.

In respect to quests, two scripters have addressed the issue of reducing available

NPC states to be able to coordinate in respect to a quest. NPCs participating in a

quest are instructed to stay at specific places and maintain only simple and limited

activities, so simple assumptions about the overall setup can be made. One scripter

utilized the messaging system for synchronizing use of a door (i.e. Navigational

Smart Object) when traversing it.

Overall, scripters are not complaining about using SBT and Smart constructs and

have naturally absorbed the system’s principles in respect to behavior decomposition

and encapsulation.

8.4 Industrial Deployment Evaluation

Since our system was deployed as being part an industry project Kingdom Come:

Deliverance, we also provide an evaluation of overall performance and utilization of

our architecture. We have conducted measurements within the running Beta

development stage (Chandler, 2009) of the game.

The game consists of one large scale level being 16km
2

of surface area. The level

is loaded as a whole, but parts (e.g. animations, object meshes, textures) are streamed

into memory and Level of Detail (LOD) mechanisms (Brom, Poch, & Serý, AI Level

of Detail for Really Large Worlds, 2010) are used for all entities (i.e. NPCs, SA, SO

...). The world’s population is split into persistent NPCs (around 600) and semi-

persistent NPCs. Persistent NPCs inhabit the world, where semi-persistent are

spawned to provide the feeling of the world being filled with life. However, semi-

persistent NPCs also have a Day-by-Day life but with more limited goals and are

more generic in nature. Persistent NPCs have persistent recollection of player’s

activities and maintain a relationship to him and an attitude towards his actions. We

also have non-persistent NPCs, which exist only at specific locations and most often

represent wildlife within the game’s woods.

We measured the game’s performance at three different location in respect to

level and game progression:

 119

a) Start of the Game at Skalitz village – the game starts in an isolated

environment where the player is tutored about to the game’s mechanics.

The number of active NPCs is limited to the village’s population, where

other NPCs within the world are disabled (i.e. the open world is not

accessible at this point).

b) Big city of Rataj – the open world is fully accessible and all persistent

NPCs are active (but may be in LOD behavior). The city of Rataj is full of

people who engage in their daily life.

c) Battle – two groups of soldiers engage in a battle. The focus of the game is

on the battle and all other parts of the open world are not accessible and

tend to be LODed out or disabled.

Our setup PC is a Core i7 4790K 3.6GHz, 32GB of memory, running a release

version of the game (i.e. the game’s source code is optimized but all debug and error

messages are logged). We used the GeForce GTX760 as the system’s graphics card.

The game was stored on a SSD drive for faster access to streamed resources.

8.4.1 Frame Time

We measured the frame time in 5 measurements in 1) Skalitz standing around, 2)

Skalitz roaming around, 3) Rataj city standing around, 4) Battle and 5) Long term

gameplay.

During a common day in Skalitz, when looking around (Figure 52), frame time is

acceptable around 25-30 milliseconds (i.e. around 30 FPS) except for spikes when

more NPCs are present in the main village’s square. We identified these spikes as

waiting for rendering to finish. The frame time is fairly consistent thus avoiding

frame rate variation and frame rate drops are only occasional.

Figure 52: Skalitz, Common day, frame time in millisecond measured over 10000 frames,

standing in one place and looking around. Red line denotes 30ms.

 120

When roaming around (Figure 53), the frame rate is more stable because the

player encounters less NPCs in one location, thus the render is less under load from

the environment. The spikes at the beginning of the measurement can be attributed to

the initial location at Skalitz being full of NPCs.

Figure 53: Skalitz, Common day, frame time measured over 6800 frames, roaming around.
Red line denotes 30ms.

Since the City of Rataj (Figure 54) has more NPCs and is much more complex in

respect to geometry and number of rendered entities, the frame times increase thus

proving more frame drops and the FPS fluctuates more above the 30 FPS target

border. The spikes can be linked to rendering, where multiple animated characters

burden the rendering engine too much.

Figure 54: City of Rataj, Common day, Frame time measured over 10000 frames, standing
and looking around. Red line denotes 30ms.

 121

In a short and small battle (Figure 55) (around 30 soldiers in total) the frame time

fluctuates steadily around 20 milliseconds with occasional spikes. Stable FPS is due

to the fact that most of the fighting NPCs are handled by automated systems within

their decision making and are the overall load is spread by a scheduling system.

Figure 55: Battle of 30 soldiers, Frame time measured over 1200 frames, taking part in the

battl. Red line denotes 30ms

During a long-term gaming session (Figure 56) we were running around in the

country and visiting villages and talking to NPCs. Overall the frame times were well

below 30ms threshold and the fluctuations were kept to a spread of 5ms around a

mean value of 20ms per frame. This is due to the fact that the animations of

characters take a heavy toll on the rendering process. Also, there are less NPCs

outside of the bigger cities, thus our architecture can spread the resources in a more

efficient manner.

 122

Figure 56: Long term game play running around in the country side, visiting villages and
talking to NPCs, occasionally engaging in a fight. Red line denotes 30ms.

8.4.2 Overall numbers

In the KCD game we collected statistics about how many instances and templates of

given classes are present. Active NPCs are all NPCs presently doing action selection

within the virtual world. These NPCs’ DMM can be suspended due to all their AS

nodes being passive and waiting (e.g. message read is waiting for a message to arrive

at an inbox). All AI Objects contain all the relevant objects within our framework,

accounting for all objects which can be accessed over the RKN (e.g. tag points,

paths, NPCs, Smart Objects, Player, NPC actions etc.). Smart Objects and Smart

Areas have a varying number of instances within the environment, since they can be

spawned on demand or present within level layers loaded during runtime. The

minimum amount of SAs and SOs represents how many are present in the virtual

world from start (i.e. at the load of the game). All SAs and SOs have their respective

template from which they are instanced into the world. Further, every SBT within the

game has a specific template from a repository of templates. These are loaded or

constructed on demand, thus their range can vary. Variables include all typed data

containers, including variables in messages and on links. The amount of links in the

RKN fluctuates due to the fact that we account for virtual links. However, adding

and removing links is an often-used practice to store run-time information about

NPCs and their respective relations. The inbox count varies based upon which trees

are injected. The node count also varies in the same manner, but the base of 90000

represents the minimum instanced nodes aggregated over all SBTs.

Table 7: Overall amount of entities and constructs within the KCD data

Active NPC Count 600 – 640

All AI Objects 72000 – 79000

Smart Object Instance Count 15180 – 15300

Smart Object Templates 380

Smart Area Instance Count 964-987

Smart Area Templates 256

 123

Loaded Tree Templates 3919 – 4267

Variables ~ 320000

Links in the RKN 37830 – 39092

Inbox Count 44346 – 48887

Node instances 90000 – 100000

8.4.3 Messaging

The load of the Messaging system heavily depends on what is currently happening in

the world. We have focused on 3 scenarios 1) Skalitz, 2) Rataj, and 3) Battle.

Figure 57: Inbox congestion for Skalitz, Rataj and Battle scenarios. The battle is short in
comparison to other scenarios.

In (Figure 57) we show how the congestion of inboxes behaves over time of up to

9000 frames. In the Battle scenario, messaging is used to inform soldiers about what

will happen in battle, thus the congestion of their inboxes is high at the beginning but

when processed, the inboxes stay relatively empty. In the Skalitz scenario, the

inboxes are saturated due to the fact that the NPCs figure out what to do in the world

and communicate with other entities (e.g. IE areas and IE objects). At the Rataj

scenario, the inbox congestion oscillates in respect to what time of day it is and what

the player does in the city. It is important to note that one message can be present in

more than one inbox, if multiple inboxes at one NPC accept it.

 124

Figure 58: Message pickup and processing for 6800 frames at the Skalitz scenario

Figure 59: Message pickup and processing for 1200 frames at the Battle scenario for 1200

frames

Figure 60: Message pickup and processing for 8700 frames at Rataj

In (Chyba! Nenalezen zdroj odkazů.)(Figure 59)(Figure 60) we can see the

constant pickup and processing of messages in respect to (Figure 57). It can be seen

that the processing is more intense if there are more messages present. This allows

for a constant capacity to respond to environment’s stimuli.

 125

Figure 61:Message count exchanged over the messaging system

As expected the congestion of the messaging system (Figure 61) is structured in

the same fashion as the inbox congestion presented in (Figure 57). The drop-in

message processing in (Figure 60) mirrors the drop at the end of (Figure 61) since the

messaging systems processing is in tandem with the messaging congestion and inbox

fill.

8.4.4 Intelligent Environment and NPCs

As can be seen in (Table 7) there are plenty of NPCs, Smart Objects, Smart Areas

and components of the Intelligent Environment. To be able to handle such large-scale

loads of active entities, we have to manage computational resources in a very strict

manner. We focus on updating only those entities which require computational time

to advance their decision making, thus if an entity is only waiting for an event (e.g. a

message arrives) we suspend its DMM to avoid CPU consumption.

 126

Figure 62: Active AI entities in different scenarios. All these entities receive an update from

our framework

In (Figure 62), we present how many active AS capable objects can run within our

architecture. These objects receive an update call and can utilize the given budget. In

the Battle scenario, only a fairly limited amount of entities is updated, since only

those participating in the Battle are of interest. In Rataj, we can see an overall spike

in active objects, since the city is much more crowded. However, the overall spikes

in Rataj are fairly contained to avoid overconsumption of computational resources.

The scenario in Skalitz has multiple spikes due to the fact that this is the start of the

game and many entities are using this time to discover the world and setup their

respective role within it (e.g. the Tavern communicates with all the associated

objects). In all cases, the running NPC count is stable (Figure 63).

 127

Figure 63: NPC counts in various scenarios tracked over 9000 frames

The updates of the IE Objects (Figure 64) and IE Areas (Figure 65) heavily

depend on where the player or NPCs are at the moment. In principle, most of the IE

Objects and IE Areas are passive most of the time, waiting for someone triggering an

event or entering an area. However, IE Virtual Observers are often actively (e.g.

every 5 seconds) scanning for some condition to be valid, thus triggering something

as a follow-up. We can see that in all the presented scenarios, the overall update of

SAs and SOs is identical and kept on a very strict budget, to avoid overconsumption

of resources.

Figure 64: Intelligent Environment Objects updated per frame

 128

Figure 65: Intelligent Environment Areas updated per frame

8.4.5 Updating SBTs

The SBT is the primary action selection approach in our tool chain. Besides using the

SBT we utilize custom build mechanisms for specific tasks which require complex

analysis (e.g. combat movement and cooperation) or are computationally heavy.

However, SBT nodes (Figure 66) are the primary mechanism to make action

selection for NPCs and other AS capable entities.

Figure 66:: Total number of node instances aggregated over all SBTs

In (Figure 67) we show how many node updates can be processed every frame. To

maximize responsiveness, it is important to maximize the throughput of node

 129

updates. We employ a scheduling mechanism with several layers of priorities and a

budgeting system to allow for as hundreds of nodes to be updates per frame.

Figure 67: Node updates per frame

In (Figure 68) illustrates how many unique SBT are active over a period of up to

9000 frames. Every of these SBTs has at least one updated SBT node thus doing

some decision making. The number of trees does not coincide with the number of

NPCs but they are very close, thus the architecture can manage a fairly decent

throughput of NPCs doing decision making. It is noteworthy that it is not required for

every NPC to update every frame, thus spreading the load of NPC execution over

several frames. Also, often there are several nodes updated at one NPC at once, to

make use of cache coherencies and memory proximity on both node code and node

data.

 130

Figure 68: Active SBT which have at least one updated node

8.4.6 RKN queries

The RKN queries are one of the primary means on how SBT logic obtains relevant

semantic information to make decision on how to approach the world. In principle,

the SBT searches the RKNs edges via a query language specifying the search

predicates. Therefore, the throughput of the RKN query system is key to having

responsive NPC in a dynamical world. In (Figure 69) we show how many RKN

queries are commonly executed in an active situation. It can be seen that in Battle the

RKN is used a lot, mostly to acquire new targets and on evaluation of the battlefield.

In the case of both Rataj and Skalitz, the RKN queries are very similar in nature,

oscillating around 7 queries per frame.

Figure 69: Unique solved RKN queries per frame

 131

The amount of edges traversed (Figure 70) in every single frame indicates how

complex the queries into the RKN are. It can be seen that often the edge traversal

does not go above 50 edges per frame, however some peaks may occur if more

complex searches are executed. For the purpose of dealing with such peaks, we

provide the RKN query mechanism with a budget of how many edges can be

traversed per search in a frame, thus distributing the load over several frames.

Figure 70: Traversed edges every frame by the RKN queries

 132

9 Summary

Believable behaving Non-Player Characters are vital for conveying a believable

virtual world with immersive gameplay. Maintaining the illusion of proper NPC’s

reasoning and cognition provides an intriguing environment a player may explore

and enjoy. Our thesis was focused on providing tools and mechanisms to enhance the

capacity of open world computer games to express believable behaviors for both

ambient and story driven NPCs, so they may convey the illusion of deliberation and

intelligence.

Our primary focus was to advance the illusion of Virtual Life in a complex

environment by presenting complex behaviors with short and long term goals beyond

a reactive approach. Our thesis was concerned with distributing intelligence into the

game’s environment to provide the virtual world with capacity to reason and

deliberate about necessary reaction to player’s actions in a localized and isolated

manner. An intelligent and adaptable environment is as important as the individual

reasoning of a singular NPC, since we want to maintain the illusion of a believable

environment where actions have consequences and places have meaning. We also

identified the need to manifest context specific behaviors in respect to object use,

topological presence, and participation in a larger event or quest. Context specific

behaving NPCs are key to maintaining the illusion of adaptable individual NPC’s

intelligence capable to live in a complex and changing world. Last but not least, we

focused on providing designers with means to express semantic bindings to be able

to manage logical and conceptual understanding of the virtual world surrounding an

NPC. At the begin of our thesis, we voiced 5 goals:

Goal 1) Believable Ambient Environment to advance the illusion of Virtual

Life within open world computer games.

Goal 2) Emergent Situations occur within the virtual world because of the

world state, NPCs’ decisions and player’s actions.

Goal 3) Story Driven Environment is required to function properly for games

with a storyline for the player to follow.

Goal 4) Behavior Depth and Complexity facilitates the necessity for complex

human-like behavior to keep up the illusion of believable NPCs’

behaviors.

Goal 5) Large Scale Deployment is necessary for manifesting the framework

within a large scale open world game.

To address these goals, we have proposed 5 mechanism which in conjunction can

satisfy the proposed goals:

1) Stateful Behavior Tree Language is based on combining the Behavior Tree

annotation for NPC action selection and the Object-Oriented Programming

paradigm. We decompose our SBT language for NPC action selection into

nodes which are internally represented as Finite State Machines. We

provide a scoped access to strongly typed variables with type inheritance

support. We enhance the SBT capabilities with synchronization,

messaging and decomposition of logic into synchronous and asynchronous

actions.

 133

2) Three Tier Deliberation Architecture denotes our decomposition of the

NPC’s DMM into isolated substructures (i.e. SubBrains) of a NPC’s

Brain, having different competences where each competence houses an

SBT based action selection. Further, the Brain represents the high tier

deliberation about long and midterm goals manifested as a Day Plan for

every NPC.

3) Intelligent Environment represents the adaptive and reactive component of

the virtual environment manifested as singular objects, areas, observers

and mechanisms (i.e. quests). All these structures observe what is

happening within the virtual world and act accordingly to achieve their

agenda (i.e. design intent). These structures are responsible for changing

the world’s behavior and structure to adapt to the player’s activities as well

as following the designer’s agenda.

4) Smart constructs are containers for context relevant behaviors to be used

by SBT capable entities. Smart constructs provide SBT templates for

Behavior Injection at host entities to provide them with a context relevant

way to deal with using objects, behaving in areas or engaging in quests

and situations.

5) Semantic network represents one of our key means to discover the world

beyond the player’s proximity, where NPCs utilize visual and sound

perception. The semantic network denotes an oriented graph of annotated

relations between entities within the world. We provide SBT capable

entities with a query language to infer connections and dependencies

present within network.

9.1 Stateful Behavior Tree Language

We use the SBT language (Mechanism 1) to provide an Action Selection mechanism

for any entity within the virtual world which needs to deliberate about changes to

itself or the world (i.e. all thinking entities, like NPCs, IE Objects, IE Areas etc.).

The SBT language is the supporting mechanism for our Goals 1 – 4, where

expressive AS is key to provide believable behaviors (Goal 1), handle emergent

situations (Goal 2), have an adaptive story driven environment (Goal 3) and to

produce complex behaviors (Goal 4).

We consider our language an advancement in respect to capacity to produce more

complex behaviors with a wider set of language constructs (e.g. messaging,

synchronization, interleaved actions) to express complex behavioral patterns.

Without messaging, our NPCs could not communicate with each other, with

Intelligent Environment’s components or engine subsystems in an organized manner.

Messages provide an easy to understand and simple to employ mechanism for

delivering complex data from entity to entity in a well-orchestrated fashion.

Synchronization is key to manage complex execution patterns which rely on

coordination. Without synchronization, our NPCs would rely on pure luck that

coordinated actions would happen in synchrony.

Our action system is key for producing fluent execution of actions in a complex

environment. Actions influencing each other allows us to create NPCs in a much

more data driven way, where for example animations can dictate exact positioning

for movement.

 134

All this aggregates in a much more believable ambient environment, where NPCs

live their day-by-day life. Management of emergent situations relies heavily on the

capability to express complex execution patterns by using the SBT language. Quests

and stories would be much more straightforward without the use of more complex

coordination between quest participants at the lowest level of AS.

9.2 Three-Tier Deliberation Architecture

Our Three-Tier Deliberation Architecture is mainly focused on dealing with Goal 2–

4. In principle, we decompose the structure of our NPCs’ DMM into a management

tier – Brain, a competence tier – SubBrain and an execution tier – SBT Action

Selection.

The Brain’s principal function of – creating and maintaining the NPC’s Day Plan

– is aimed at solving problems for Goal 3 (and partially Goal 1), where the NPC can

follow its individual (daily) agenda. The questing component of the game can

influence this agenda by introducing patches to the Day Plan, so the NPC can take

part in the quest without distributing its day-by-day life. This allows us to influence

the NPC in a decoupled and less intrusive way, than introducing the knowledge of all

possible quests into its low-level AS (common in other games).

The SubBrain concept is primarily aimed ad splitting specific competences into a

distinct subcomponents of a NPC’s DMM. The main focus of such decomposition is

the capacity to deal with emerging situations (Goal 2) which are beyond what can be

handled in a day-by-day fashion. Such emergent situations can range from combat,

trough quest specific AS, to custom management of in-game situations. This allows

us to address emerging situations in a much more controlled way.

All three tiers combined can create an illusion of complex NPC’s deliberation

process with many facets (Goal 4). Various NPCs can be equipped with a different

range and setup of SubBrains to allow designers to create unique experiences when

engaging different NPCs.

9.3 Intelligent Environment

We have shown how an open world’s environment can be enriched with intelligence

to provide a more adaptive and reactive world in respect to NPCs’ decisions and

player actions. In principle, a game’s Intelligent Environment is comprised of non-

NPC entities like objects, areas, observers and mechanisms (i.e. quests) capable of

deliberation and action selection. However, the actions executed by the IE

components differ from actions an NPC chooses, since they are not manifested in the

same fashion a NPC is. This concept is aimed at dealing with our Goals 2–4.

In respect to new and unexpected emerging situations (Goal 2), the IE represents

the environment’s counterpart to NPCs and the player. The IE observers and

manages emerging situations in respect to the design agenda (i.e. how we want the

game to behave). This allows for creating various constructs like a game’s crime

system or siege and battle management.

An Intelligent Environment is key to manifesting a well-orchestrated story

(Goal 3), where we use the capacity to observe and manage the quest’s progress.

Intelligent Mechanisms provide proxies for quests to handle distributing commands

and Day Plan patches to NPCs who should take part in a quest. When done in an

adaptive fashion, the quest can change the story’s course based on what currently

happens.

 135

The overall complexity and depth (Goal 4) of NPC behavior can be heavily

influences by the IE’s deliberation about what should or should not happen. Areas

can watch for trespassers and send messages to inhabitants that someone has broken

into their home. The decomposition of the overall world’s behavior into the IE is a

key component in maintaining a believable environment.

9.4 Smart Constructs

Smart constructs can be simplified as behavior containers where any SBT capable

entity can request a behavior template to inject and contextually enhance its own

deliberation. Since the behavior templates are identified by names, the required

injection can be composed during run-time, based on a SBT deliberation. The

conceptual mission of Smart constructs is to provide a context relevant behavior to

be used at either an object, location or in a situation (i.e. quest).

Smart constructs are mainly aimed at supporting Goals 2, 4 and 5. From a

behavior complexity (Goal 4) standpoint, Smart constructs provide the means to

adequately enhance the present NPC AS based on its intent and internal agenda.

Topological behavior requests are a powerful tool to make use of Behavior Injections

based purely on the topological position, thus reflecting the realistic context. Having

fun at a church differs vastly from having fun at a tavern. Since behavior requests for

BIs can be recursive, an NPC can enhance its own AS almost to any necessary

extent.

In respect to emergent situations (Goal 2), Smart Constructs provide a

contextually valid way to handle such situations. A Smart Area representing the

region of an emerging situation (e.g. a murder) can provide participating NPCs with

specific and relevant behaviors to deal with that situation in a believable way.

The overall decomposition of behaviors into Smart Constructs allows to mitigate

the immediate size of most NPCs’ SBTs. It also forces the designers to use

decomposition as their primary tool for shaping the virtual world.

9.5 Semantic Network

Since actual perception is computationally costly, most NPCs cannot have the luxury

of employing it beyond the player’s proximity. Beyond that, some information

cannot be perceived by means of visual or sound perception. Therefore. we

introduced the semantic network of directed relations between entities. These

relations are abstracted as a directed multigraph where edges connect entities and

carry relevant data in respect to the annotated relation.

This mechanism allows the designer to shape the world’s dependencies and

relations in a human understandable way (e.g. John likes Jane, John works at a farm).

To support our Goals 1–5, we provided the SBT with a simple predicate based query

language on how to inspect properties of the semantic network and search for

dependencies between endpoints. Further, since the network is adaptive, it can be

utilized to shape the way an NPC solves the approach to satisfying its goals (e.g. the

NPC wants to have fun, thus discovers its closest place providing the »fun«

behavior).

9.6 Evaluation and Integration

Part of our thesis is a quantitative, qualitative and integration evaluation of our

architecture’s deployment at Warhorse Studios for the big budget open world role

 136

playing computer game Kingdom Come: Deliverance. Our evaluation has shown that

our approach is superior in respect to use and expressiveness in comparison to other

industry standardized approaches present in state-of-the art computer game engines

(e.g. CryEngine by Crytek). We also have shown that our integration proves to be an

effective component in managing the entire virtual worlds population of NPCs

(600+), Smart constructs, Intelligent Environment’s components and others (almost

80000 entities in total). Our architecture is currently deployed in the game’s full

production and is used by the scripting (16 scripters) and testing (16 testers)

department. All of the game’s quests are written utilizing our IE Mechanisms and

every NPC and deliberating entity, including the player’s NPC is managed by our

SBT trees.

Therefore, we assume the architecture is beyond a theoretical proof-of-concept

and is a fully production mature technology capable of supporting large scale

simulations of virtual life in open world computer games.

 137

10 Future work

Providing believable environment’s in large scale OWG at a production level quality

is a tedious task. In our future work, we intend to intend to focus on three major

issues with our architecture.

First, we need to improve the tool chain used to produce and maintain the contents

of the believable environment. One of our primary concerns is the capability to track

what an NPC does and why has it decided to do it. In most cases, when something

goes wrong (i.e. an NPC ends up at a different place doing something not desired by

the designer), we need to be able to track and replay the deliberation that caused it.

Secondly, we intent do improve the low-level implementation of our mechanisms

to be even more capable to handle large scale loads of NPC and other deliberation

capable entities. We have to focus on computational and memory optimizations to be

able to accommodate larger and more complex worlds.

Thirdly, we intend to introduce further low level AS mechanisms to be at the

designer’s disposal, ranging from low level FSMs, to code snippets in C# and other

programming languages, to be plugged into either the SBT ’s structure, or as

standalone AS modules at the lowest DMM level.

Fourthly, we will focus on more concurrent execution of our architecture, to

utilize more of the multicore capabilities of current hardware platforms. We intend to

run individual NPCs in a concurrent fashion.

Fifthly, we aim at improving our high level DMM by going beyond the current

mechanism of predefined plans for every NPC. We will focus on introducing

classical planning in respect to long term goals (i.e. ranging beyond a day-by-day

schedule). We also intend to capitalize more on an affordance based mid-range

planning for day by day activities, where SA can satisfy daily needs in a more

emergent fashion.

Lastly, we will work on improving our low-level action mechanisms, to provide

more interleaved execution so our NPCs look even more realistic.

 138

11 Conclusion

For the last five years, we have worked on improving the (virtual) Lives of countless

Non-Player Characters, who were standing sadly in the rain, waiting for the player to

come by and ask for a quest. Our mission was to give them an actual (virtual) Life

with meaning and goals to aspire to. We wanted to populate their worlds with

something else than just bloodthirsty creatures, whose only purpose is to die by the

player’s sword.

Our vision was to let the world work on its own, not caring about a player at all,

just letting stories and situations unfold. We wanted players to ask themselves what

do NPCs thinking about, what are their motivations, goals and purpose. We want

players to investigate, stalk and observe, so they can appreciate the (virtual) Life that

makes up the world surrounding their game.

The mechanisms and architecture presented in this thesis were developed to

manifest this vision. Presently, all NPCs within the Kingdom Come: Deliverance’s

virtual world think about their actions utilizing our SBT language. They go beyond

their individual deliberation and communicate and exchange information with others.

They infer knowledge about their environment to follow their goals and adapt to

what they find. They have their own agenda, they follow their desires and have a

plan on how to spend the next day being happy in their own way.

We wanted to go beyond making only NPCs think, we wanted the world itself to

cast an eye on the player and watch him as he watches the world. We filled the

virtual world with Intelligent entities that watch and think for themselves, steering

the world, stories and the player in various direction. The world is filled with things,

places and stories that can provide those who are interested with means on how to

use, act or participate. We want the world to make the NPCs smarter just by being

(virtually) alive.

Figure 71: Virtual Life in KCD (©Warhorse Studios 2017)

However, the road out of the Uncanny Valley is still ahead and fairly steep.

 139

Bibliography

Aahz. (2003). Typing: Strong vs. Weak, Static vs. Dynamic. Retrieved 4 4, 2017,

from Artima Developers:

http://www.artima.com/weblogs/viewpost.jsp?thread=7590

Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press.

Bartak, R., Brom, C., Cerny, M., & Gemrot, J. (2013). Planning and Reactive Agents

in Dynamic Game Environments: An Experimental Study. In J. Filipe, & A. Fred

(Ed.), Proceedings of 5th International Conference on Agents and Artificial

Intelligence (ICAART 2013) (pp. 234-240). SciTePress.

Bartel, J. (2011). Non-Preemptive Multitasking. Retrieved 4 4, 2017, from

ClassicCmp:

http://www.classiccmp.org/cini/pdf/HT68K/HT68K%20TCJ30p37.pdf

Bazzy. (2012). C++ concepts: PODType. Retrieved 4 4, 2017, from CPP Reference:

http://en.cppreference.com/w/cpp/concept/PODType

Bazzy. (2012). Lambda expressions. Retrieved 4 4, 2017, from C++ reference:

http://en.cppreference.com/w/cpp/language/lambda

Beck, S. D. (2011). On the Congruence of Modularity and Code Coupling. In

Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering.

Bergmann, M. (2008). An Introduction to Many-Valued and Fuzzy Logic: Semantics,

Algebras, and Derivation Systems. Cambridge University Press.

Bertz, M. (2011, 01 17). The Technology Behind The Elder Scrolls V: Skyrim.

Retrieved 4 4, 2017, from Game Informer:

http://www.gameinformer.com/games/the_elder_scrolls_v_skyrim/b/xbox360/arc

hive/2011/01/17/the-technology-behind-elder-scrolls-v-skyrim.aspx

Bohemia Interactive. (2006). ARMA.

Booch, G. (1994). Object-oriented Analysis and Design. Addison-Wesley.

Bovet, D. P., & Cesati, M. (2006). Understanding the Linux Kernel. O'Reilly Media.

Bratman, M. E. (1999). Intention, Plans, and Practical Reason. CSLI Publications.

Brom, C. (2005). Hierarchical Reactive Planning: Where is its limit? Proceedings of

MNAS - Modelling Natural Action Selection. Edinburgh.

Brom, C., Gemrot, J., Bída, M., Burkert, O., S., P., & Bryson, J. (2006). POSH Tools

for Game Agent Development by Students and Non-Programmers. Proceedings of

CGAMES 06, (pp. 126-135). Dublin.

Brom, C., Lukavsky, J., Sery, O., Poch, T., & P.Safrata. (2006). Affordances and

level-of-detail AI for virtual humans. Proceedings of Game Set and Match, (pp.

134–145).

Brom, C., Lukavský, J., Šerý, O., Poch, T., & Šafrata, P. (2006). Affordances and

level-of-detail AI for virtual humans. Proceedings of the Game Set and Match,

(pp. 134–145).

 140

Brom, C., Poch, T., & Serý, O. (2010). AI Level of Detail for Really Large Worlds.

In Game Programming Gems 8 (pp. 213-231). Course Technology.

Brooks, A. (1986). A Robust Layer Control System for a Mobile Robot. IEEE

Journal of Robotics and Automation RA-2, (pp. 14-23).

Bryson, J. J. (2001). Intelligence by Design: Principles of Modularity and

Coordination for Engineering Complex Adaptive Agents. Massachusetts Institute

of Technology.

Cardelli, L. (1991). Typeful programming. Formal description of programming

concepts (pp. 431-507). Springer-Verlag.

Cerny, M. (2016). Reducing Complexity of AI in Open-World Games by Combining

Search-based and Reactive Techniques. Charles University in Prague.

Cerny, M., Plch, T., Marko, M., Gemrot, J., Ondracek, P., & Brom, C. (2016). Using

Behavior Objects to Manage Complexity in Virtual Worlds. IEEE Transactions

on Computational Intelligence and AI in Games.

Černý, M., Plch, T., Marko, M., Ondracek, P., & Brom, C. (2014). Smart Areas: A

Modular Approach to Simulation of Daily Life in an Open World Video Game.

Proceedings of 6th International Conference on Agents and Artificial Intelligence,

(pp. 703-708).

Champandard, A. J. (2004). AI Game Development: Synthetic Creatures with

Learning and Reactive Behaviors. New Riders.

Champandard, A. J. (2007). Understanding Behavior Trees. Retrieved 4 4, 2015,

from AI Game Dev: http://aigamedev.com/open/article/bt-overview/

Champandard, A. J. (2007.2, 12 28). AI Game Dev. Retrieved 4 4, 2017, from 10

Reasons the Age of Finite State Machines is Over:

http://aigamedev.com/open/article/fsm-age-is-over/

Chandler, H. M. (2009). The Game Production Handbook (2 ed.). Hingham,

Massachusetts: Infinity Science Press.

Clocksin, W. F., & Mellish, C. S. (2003). Programming in Prolog. Springer-Verlag.

Conway, M. E. (1963). Design of a Separable Transition-Diagram Compiler.

Communications of the ACM, Volume 6, Issue 7, pp. 396–408.

Corkill, D. D. (1991). Blackboard Systems. AI Expert, (pp. 40–47).

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to

Algorithms. MIT Press;McGraw-Hill.

Craig, R. S. (2012). Applied Evolutionary Psychology. (p. 423). Oxford University

Press.

Crockford, D. (2008). JavaScript: The Good Parts. O'Reilly Media.

Crytek. (2002). CryEngine.

Crytek. (2013). Smart object system. Retrieved 4 4, 2017, from CRYENGINE

Manual: http://docs.cryengine.com/display/SDKDOC2/Smart+Object+System

Cubbi. (2013, 3 25). Exceptions. Retrieved 4 4, 2017, from CPP Reference:

http://en.cppreference.com/w/cpp/error/exception

 141

De Sevin, E., Chopinaud, C., & Mars, C. (2015). Zones To Create the Ambiance of

Life. In Game AI Pro 2 (pp. 89–100). CRC Press.

de Silva, L., Sardina, S., & Padgham, L. (2009). First principles planning in BDI

systems. Proceedings of The 8th International Conference on Autonomous Agents

and Multiagent Systems.

Entertainment, Blizzard. (2004). World Of Warcraf. Retrieved 4 4, 2017, from

http://www.worldofwarcraft.com/

Epic Games. (1998). Unreal Engine.

Erol, K., Hendler, J., & Nau, D. S. (1996). Complexity results for htn planning.

Annals of Mathematics and Artificial Intelligence (pp. 69–93). Springer.

Feathers, M. (2004). Working Effectively with Legacy Code. Prentice Hall.

Feigenbaum, E., McCorduck, P., & Nii, H. P. (1988). The rise of the expert company.

Times Books New York.

Ferguson, S., & Terrion, J. (2014). Communication in Everyday Life, Personal and

Professional Contexts. Oxford University Press.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application

of Theorem Proving to Problem Solving. Artificial Intelligence, (pp. 189-208).

Fog, A. (2010). Calling conventions for different C++ compilers and operating

systems. Retrieved 4 4, 2017, from Agner.org:

http://www.agner.org/optimize/calling_conventions.pdf

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley

Professional. Retrieved from martinfowler.com.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:

Improving the Design of Existing Code. Addison-Wesley Professional.

Freeman, E., Freeman, E., Kathy, S., & Bates, B. (2004). Head First Design

Patterns. O'Reilly Media:.

Freeman, E., Sierra, K., & Bates, B. (2004). Head First Design Patterns. O'Reilly.

Fu, D., & Houlette, R. (2004). The ultimate guide to FSMs in games. In AI game

programming Wisdom (pp. 283–302). Charles River Media.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley.

Geijtenbeek, T., van de Panne, M. A., & van der Stappen, F. (2013). Flexible

Muscle-Based Locomotion for Bipedal Creatures. ACM Transactions on

Graphics. 32. ACM SIGGRAPH.

Gemrot, J., Cerny, M., & Brom, C. (2014). Why you should empirically evaluate

your AI tool: From SPOSH to yaPOSH. Proceedings of 6th International

Conference on Agents and Artificial Intelligence.

Ghallab, M., Nau, D. S., & Traverso, P. (2004). Automated Planning: Theory and

Practice.

Gibson, J. J. (1977). The Theory of Affordances. Perceiving, Acting, and Knowing.

 142

Girault, A., Lee, B., & Lee, E. (1999). Hierarchical finite state machines with

multiple concurrency models. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (pp. 742 - 760). IEEE.

Graves, A., & Czarneck, C. (2000). Design patterns for behavior-based robotics.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans, 30, pp. 36-41.

Green, R. D., MacDorman, K. F., Chin-Chang, H., & Vasudevan, S. (2008).

Sensitivity to the proportions of faces that vary in human likeness. Computers in

Human Behavior (pp. 2456-2474). Elsevier Ltd.

Gregory, J. (2014). Game Engine Architecture (2 ed.). A K Peters,CRC Press.

GSC Game World. (2007). S.T.A.L.K.E.R.

(2001-2017).Halo Games. Series. Bungie;Ensemble Studios;343 Industries;Creative

Assembly.

Hart, J. (2005). Windows System Programming. Addison-Wesley.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science

and Cybernetics SSC4, (pp. 100–107).

Hayes-Roth, F., Waterman, D., & Lenat, D. (1983). Building Expert Systems.

Addison-Wesley.

Hewitt, C., Bishop, P., & Steiger, R. (1973). A Universal Modular Actor Formalism

for Artificial Intelligence. International Joint Conference on Artificial

Intelligence.

Humble, J., & Farley, D. (2011). Continuous Delivery: reliable software releases

through build, test, and deployment automation. Pearson Education.

Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley Professional.

Ingebretson, P., & Rebuschatis, M. (2014). Concurrent interactions in The Sims 4.

Game Developers Conference.

IO Interactive. (2014). Hitman: Absolution.

Irrational Games. (2013). BioShock Infinite.

Isla, D. (2005). Handling Complexity in the Halo 2 AI. Game Developer's

Conference 2005.

ISO/IEC 9899:TC3. (2007). 6.2.1 Scopes of identifiers. In WG14 N1256 (2007

updated version of the C99 standard).

Jackson, K. (1977). Parallel processing and modular software construction.

Proceedings of the DoD Sponsored Workshop on Design and Implementation of

Programming Languages (pp. 436-443). Springer.

Joshi, P. (2014, 4 5). What Is Metaprogramming? – Part 1/2. Retrieved 4 4, 2017,

from PERPETUAL ENIGMA: https://prateekvjoshi.com/2014/04/05/what-is-

metaprogramming-part-12/

 143

Kallman, M., & Thalmann, D. (1999). Modeling Objects for Interaction Tasks".

Springer: 73–86. Computer Animation and Simulation ’98. Eurographics (pp. 73-

86). Vienna: Springer.

Kambhampati, S., Mali, A., & Srivastava, B. (1998). Hybrid planning for partially

hierarchical domains. In Proc. of the 15th Nat. Conf. on Artificial Intelligence (pp.

882–888). AAAI Press.

Kaminka, G. A., & Frenkel, I. (2005). Flexible Teamwork in Behavior-Based

Robots. In Proceedings of the Twentieth National Conference on Artificial

Intelligence.

Kaminka, G. A., Yakir, A., Erusalimchik, D., & Cohen-Nov, N. (2007). Towards

Collaborative Task and Team Maintenance. In Proceedings of the Sixth

International Joint Conference on Autonomous Agents and Multi-Agent Systems.

Kapoor, N., & Bahl, N. (2016). Comparative Study of Forward and Backward

Chaining in Artificial Intelligence. International Journal Of Engineering And

Computer Science.

Kendall, E., Krishna, P. V., Pathak, C. V., & Suresh, C. B. (1998). Patterns of

intelligent and mobile agents. Proceedings of the second international conference

on Autonomous agents, (pp. 92-99).

Kent, S. L. (2001). The ultimate history of video games: from Pong to Pokémon and

beyond : the story behind the craze that touched our lives and changed the world.

Prima Publishing.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. G.

(2001). An Overview of AspectJ. Object-Oriented Programming: 15th European

Conference, (pp. 327-354).

Kildaegi. (2008). Variable Shadowing. Retrieved from

https://en.wikipedia.org/wiki/Variable_shadowing

Knuth, D. E., & Moore, R. W. (1975). An Analysis of Alpha–Beta Pruning. In

Artificial Intelligence (pp. 293–326).

Kolombo, M., & Barták, R. (2014). A Constraint-based Planner for Mars Express

Orbiter. In A. Gelbukh, F. C. Espinoza, & S. N. Galicia-Haro (Ed.), Nature-

Inspired Computation and Machine Learning (13th Mexican International

Conference on Artificial Intelligence (pp. 451-463). Tuxtla Gutiérrez: Springer.

Kortuem, G., Kawsar, F., Fitton, D., & Sundramoor, V. (2010). Smart Objects as

Building Blocks for the Internet of Things. EEE Internet Computing 14 , (pp. 44-

51).

Krauss, A. (2014, 9 14). Programming Concepts: Type Introspection and Reflection.

Retrieved 4 4, 2017, from The Societea:

https://thesocietea.org/2016/02/programming-concepts-type-introspection-and-

reflection/

Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Distributed

System. Communications of the ACM, 558-565.

Landin, P. J. (1964). The mechanical evaluation of expressions. The Computer

Journal, pp. 308-320.

 144

Laplante, P. (2007). What Every Engineer Should Know About Software

Engineering. CRC Press.

Larman, C. (2005). Applying UML and Patterns. Prentice Hall.

Lewis, J., & Loftus, W. (2008). Java Software Solutions Foundations of

Programming Design (6 ed.). Pearson Education Inc.

Liskov, B., & Zilles, S. (1974). Programming with abstract data types. ACM

SIGPLAN Notices.

Liskov, B., & Zilles, S. (1974). Programming with abstract data types. Proceedings

of the ACM SIGPLAN symposium on Very high level languages, (pp. 50-59).

Loyall, A. B. (1997). Believable Agents: Building Interactive. Carnegie Mellon

University Pittsburgh, PA, USA.

MacDorman, K. F., & Chattopadhyay, D. (2016). Reducing consistency in human

realism increases the uncanny valley effect; increasing category uncertainty does

not. Cognition. 165, pp. 190-205. Elsevier Ltd.

McConnell, S. (2004). Code Complete: A Practical Handbook of Software

Construction. Microsoft Press.

Mercury Steam. (2010). Castlevania: Lords of Shadow.

Meyer, B. (1991). Design by Contract. (D. Mandrioli, & B. Meye, Eds.) Advances in

Object-Oriented Software Engineering, 1-50.

Mitchell, D. R. (1990). Managing Complexity in Software Engineering.

Monolith Productions. (2005). F.E.A.R.

Monolith Productions. (2009). F.E.A.R. 2.

Moore, G. E. (1965). Cramming more components onto integrated circuits.

Electronics, 4.

Mori, M., MacDorman, K. F., & Kageki, N. (2012). The Uncanny Valley. IEEE

Robotics & Automation Magazine . Volume: 19, Issue: 2, pp. 98-100. IEEE.

Musser, D. R., & Stepanov, A. A. (1989). Generic Programming. Symbolic and

Algebraic Computation: International symposium ISSAC 1988, (pp. 13–25).

Orkin, J. (2005). Agent Architecture Considerations for Real-Time Planning in

Games. Artificial Intelligence and Interactive Digital Entertainment.

Orkin, J. (2006). Three States and a Plan: The AI of F.E.A.R. Game Developers

Conference 2006.

Parera, J. (2013). Combat AI and animations in CASTLEVANIA: Lord of Shadows.

Retrieved from AIGameDev.com.

Parnas, D. L., Shore, J. E., & Weiss, D. (1976). Abstract types defined as classes of

variables. Proceedings of the 1976 conference on Data : Abstraction, definition

and structure, (pp. 149-154).

Paterson, T. (1983). An Inside Look at MS-DOS. Retrieved 4 4, 2017, from Paterson

Technology: http://www.patersontech.com/dos/byte%E2%80%93inside-look.aspx

Persson, M. (2012). Try-block. Retrieved 4 4, 2017, from CPP Reference:

http://en.cppreference.com/w/cpp/language/try_catch

 145

Pitnerová, B. (2008). Etologie volné pastvy ovcí. Brno: Mendelova zemědělská a

lesnická univerzita v Brně Agronomická fakulta Ústav výživy zvířat a

pícninářství.

Plch, T. (2009). Action selection for an animat. Prague: Charles University.

Plch, T., Chomut, M., Brom, C., & Bartak, R. (2012). Inspect, Edit and Debug PDDL

Documents: Simply and Efficiently with PDDL Studio. 22nd International

Conference on Automated Planning and Scheduling - System Demonstrations and

Exhibits.

Plch, T., Marko, M., Ondracek, P., Cerny, M., Gemrot, J., & Brom, C. (2014). An AI

System for Large Open Virtual World. Proceedings of Tenth Annual AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment, (pp.

44-51).

Pressman, R. S. (1999). Software Engineering: A Practitioner's Approach.

Pressman, R. S., & Maxim, B. (2014). Software Engineering: A Practitioner's

Approach. McGraw-Hill Education.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-

Machine Studies.

Rasmussen, J. (2016, 4 27). Are Behavior Trees a Thing of the Past? Retrieved 4 4,

2017, from Gamasutra:

http://www.gamasutra.com/blogs/JakobRasmussen/20160427/271188/Are_Behav

ior_Trees_a_Thing_of_the_Past.php

Reed, C., & Geisled, B. (2004). Jumping, Climbing, and Tactical Reasoning: How to

Get More Out of a Navigation System. In AI Game Programming Wisdom II (pp.

141-150). Charles River Media.

Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach.

Pearson.

Sardina, S., de Silva, L., & Lin, P. (2006). Hierarchical planning in BDI agent

programming languages: a formal approach. Proceedings of the fifth international

joint conference on Autonomous agents and multiagent systems.

Schurr, N., Marecki, J., Tambe, M., Scerri, P., Kasinadhuni, N., & Lewis, J. (2005).

The Future of Disaster Response: Humans Working with Multiagent Teams using

DEFACTO. AI Technologies for Homeland Security.

Schuytema, P., & Manyen, M. (2005). Game Development with Lua. Charles River

Media.

Scott, M. L. (2006). Programming language pragmatics (2 ed.). Morgan Kaufmann.

Sellers, J. (2001). Pong. In Arcade Fever: The Fan's Guide to The Golden Age of

Video Games (pp. 16-17). Running Press.

Sheppard, D. (2000). Beginner's Introduction to Perl. O'Reilly Media.

Shimon, E. (2011). Graph Algorithms. Cambridge University Press.

Shneiderman, B., & Plaisant, C. (2005). Designing the user interface: Strategies.

Pearson Education.

 146

Silberschatz, A., Gagne, G., & Galvin, P. B. (2008). Operating System Concepts.

John Wiley & Sons.

Simpson, C. (2014, 07 17). Behavior trees for AI: How they work. Retrieved 4 4,

2017, from Gamasutra:

http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_tree

s_for_AI_How_they_work.php

Softworks Bethesda. (1985). Bethesda. Retrieved 4 4, 2017, from

https://bethesda.net/en/dashboard

Sung, M., Gleicher, M., & Chenney, S. (2004). Scalable behaviors for crowd

simulation. Computer Graphics Forum, 23, pp. 519–528.

Sutherland, J., & Sutherland, J. (2014). Scrum: The Art of Doing Twice the Work in

Half the Time. Crown Business.

Svenk, G. (2003). Object-oriented Programming: Using C++ for Engineering and

Technology. . Cengage Learning.

Swanson, E. B. (1976). The dimensions of maintenance. Proceedings of the 2nd

international conference on Software engineering, (pp. 492 — 497). San

Franciso.

Tanenbaum, A. S. (2014). Modern Operating Systems. Pearson.

Tanenbaum, A. S., & Woodhull, A. S. (2006). Operating Systems Design and

Implementation. TBS.

Tecchia, F., Loscos, C., Conroy, R., & Chrysanthou. (2001). Agent Behaviour

Simulator (ABS): A Platform for Urban Behaviour. The First International Game

Technology Conference and Idea Expo.

Tinwell, A. (2014). The Uncanny Valley in Games and Animation. CRC Press.

Tinwella, A., Grimshawa, M., Nabib, D. A., & Williamsa, A. (2011). Facial

expression of emotion and perception of the Uncanny Valley in virtual characters.

Computers in Human Behavior (pp. 741–749). Elsevier Ltd.

Turner, C. W., Lewis, J. R., & Nielsen, J. (2006). Determining Usability Test Sample

Size. In W. Karwowski (Ed.), International Encyclopedia of Ergonomics and

Human Factors (2 ed., Vol. 3). CRC Press.

Turner, D. A. (2012). Some History of Functional Programming Languages.

International Symposium on Trends in Functional Programming.

Ubisoft Montreal. (2014). FarCry 4.

Umarov, I., & Mozgovoy, M. (2012). Believable and Effective AI Agents in Virtual

Worlds: Current State and Future Perspectives. In B. Dubbels (Ed.), :

International Journal of Gaming and Computer-Mediated Simulations, 2, p. 23.

Valve, C., & Gearbox, S. (1998-2007). Half-Life series.

Vehkala, M. (2012). Crowds in Hitman: Absolution. AIGameDev.com . Retrieved 4

4, 2017, from AI Game Dev: http://aigamedev.com/ultimate/video/hitmancrowds/

Ward, C., & Cowling, P. (2009). Monte Carlo Search Applied to Card Selection in

Magic: The Gathering. Proceedings of the 5th international conference on

Computational Intelligence and Games.

 147

Warhorse Studios. (2017). Kingdom Come: Delieverance.

Weber, B. G., Mawhorter, P., Mateas, M., & Jhala, A. (2010). Reactive planning

idioms for multi-scale game AI. IEEE Conference on Computational Intelligence

and Games, (pp. 155-122).

Wegner, P., & Cardelli, L. (1985). On Understanding Types, Data Abstraction, and

Polymorphism. ACM Computing Surveys, (pp. 471–523).

Weik, M. H. (2000). Computer Science and Communications Dictionary. Springer.

Wikipedia. (2017). Buffs. Retrieved 4 4, 2017, from Status effect:

https://en.wikipedia.org/wiki/Status_effect#Buffs

Wikipedia. (2017). Forward Declaration. Retrieved 4 4, 2017, from Wikipedia:

https://en.wikipedia.org/wiki/Forward_declaration

 148

List of Figures

Figure 1: The Uncanny Valley diagram shows how human resentment is more

intense with increase in human-like appearance (© MacDorman, 2005) 7

Figure 2: Soldier NPC from the Half Life game series (Valve & Gearbox, 1998-

2007). On the left a low polygon model with few animations (e.g. walking, kneeling,

jumping). On the right a high polygon character with a large animation repository

(e.g. jumping over obstacles, leaning etc.) (© Valve Software) 8

Figure 3: Virtual life of a simple farmer in Kingdom Come: Deliverance

(© Warhorse Studios 2017) .. 9

Figure 4: Dependency between Goals and Mechanisms ..12

Figure 5: The DMM contains the Action Selection process which is queried about the

next suitable action in respect to the constructed context of the environment’s

configuration. The produced action is committed to the environment afterwards.15

Figure 6: Simple FSM for NPC with a limited set of states and transitions focusing

on four principal areas of function – Idling, Combat, Search, Self-Preservation and

Flight. NPC has been used primarily as combat opponents17

Figure 7: A simple Behavior Tree concerned with choosing the proper action to go

through a door which may be closed ...18

Figure 8: A simple Behavior Tree representing the action selection of searching an

item and grabbing it with either one or both hands. If the item is not found, it is

searched on the floor, in the drawers and in the closet. The block leaf nodes represent

action choices, the rounded leaf nodes represent sense actions (determine if

something is true or not), boxes with question marks represent selectors and arrows

represent sequences. (©Wikipedia) ...31

Figure 9: The FSM of a language element (node) within the S BTL structure. The

node starts at the None state and traverses over the available states until it reaches the

Fail or Success state. ...33

Figure 10: Event propagation for delivering the »Foo« event which originates at the

Action node. The event is caught by the Try node and the respective Catch branch is

activated. If the event would be something else than »Foo« or »Bar«, the propagation

would continue until reaching the DMM. ..42

Figure 11: Schema of structuring types based on aggregation of either EDT or

already defined types ..44

Figure 12: Variable Reference consists of a variable specifier (name), a selector to

locate a specific instance within a complex variable form (e.g. array) and a member

specifier, which denotes the exact data part of the accessed variable47

Figure 13: Nesting of data scopes for a SBT and access to that data via variable

references. Variables are stored in Data Scopes. These can be at any level of the SBT

hierarchy (i.e. at any node). The access searches the data scope hierarchy until a

variable is found. If not, it results in a failure to locate the variable.48

Figure 14: Message Delivery System provides a subsystem to be used by the SBT to

deliver messages containing data to another NPC and its respective SBT51

 149

Figure 15: Message states and their respective transitions in the process of delivering

the message from Sender to Receiver. ...52

Figure 16: Inbox hierarchy within the DMM. Fetching of messages is based on the

hierarchical ordering, where the closest inboxes are checked first53

Figure 17: Action Scopes within the Action Manager denote various facilities the

Action can occupy – e.g. movement, vision, hands, full body etc. Actions which want

to take control over a FS are in conflict which may be solved by terminating the

already present action. All FSs for an action have to be satisfied to run the action

properly ..60

Figure 18: Action Lifecycle starting at the Initialization and ending at being

Interrupted or Finish on it own. An action in conflict triggers a termination of a

previous action, however it may be postponed due to the previous action being in an

Interrupt Safe state. ...60

Figure 19: Synchronous Execution of Actions which ends in an Idle state since every

action has to end for the SBT to run a node triggering the next action.61

Figure 20:Asynchronous Execution where two actions interleave. The Action1 is

started, the AS waits for 7 seconds and Action2 is started, which interrupts Action1.

Both actions would run for 10 seconds when not interrupted.62

Figure 21: Executing Asynchronous Actions with its event handler closures in a

parallel manner within the NPC’s DMM. The Action1 has two handlers Attach and

Detach, where the Attach handler when executed more than once, terminates the

animation. The NPC’s AS runs in parallel with the handler code.62

Figure 22: Simple approached for executing animations in a synchronized manner by

entering a synchronization lock ...63

Figure 23: Synchronizing Actions between 2 NPCs which use the synchronization

lock as a mechanism to postpone the delivery of the startup event for an animation 64

Figure 24: Actions Chains are created by Actions which do not require termination

from their predecessors but can work with the results of those actions or even

influence them ..65

Figure 25: Actions Animation and Movement when not in a chain lead to the

animation moving the NPC from A to B, where the move when executed before the

animation ends, searches the path from A to C. Forecasting provides the move with

the end location of the animation. When a Movement is followed by a Sit, the sitting

animation provides the necessary target position for the move to plan to via inverse

influence. ..66

Figure 26: The Animated Action provides the Movement action with a forecast on

the end of the animation, allowing for movement to pathfind during the execution of

the action taking the end location as the start position for the path. If these actions

would not be chained, the movement would be planned from the current location of

the NPC when the movement action was invoked. ..67

Figure 27: Adaptive inverse influence by the animation to change the destination of

the movement action to suit the necessary alignment requirements. The movement

goes in the general direction of the Bench, which has two points from which the Sit

animation can be executed (Front and Back). Since path planning may get the NPC

from either direction, the Animation Action (Sit) monitors the progress and chooses

 150

the end destination (i.e. either front or back) when movement gets close enough.

After the move reaches the end location provided by the animation, the animation

already knows which animation should be executed. ...68

Figure 28: NPC Architecture divided into the Brain, SubBrains and AS mechanisms

 ...71

Figure 29: Day Plan of a common peasant NPC. The Goals are annotated by simple

strings which are evaluated within the Day-By-Day SubBrain.................................72

Figure 30: Activities are organized into priority lanes where the activity with the

highest priority at the current time is to be executed. ...73

Figure 31: Start and end tolerances change the chosen activity based on how close a

higher-level activity is to either the start or an end of another activity that would be

executed prior or after it. ...74

Figure 32: Every SubBs default state is the Inactive state, into which it may enter

when an activation by the SubB or external source (e.g. other SubB, environment

etc.) is requested. The SubB is Queued to run. While waiting in the Brain’s queue, all

conflicts are resolved. Before entering and after leaving the Running state, the SubB

transitions over the Switch In and Switch Out respectively. A running SubB may

enter a suspended state if the conflicting SubB is at the same priority level.75

Figure 33: Injecting Behavior SBT into a running SBT is done at the Injection Point

(IP) node. The BI manifests after the IP is executed. The IP continues to run until the

injected SBT runs. After the injected SBT fails or succeeds, it is discarded.82

Figure 34: The NPC wanders around with a published IP called »Fear« which can be

used by the Hunted Church to force a behavior to act afraid in the area83

Figure 35: How to specify an IE Object a) the Mug object’s perception informs the

AS via messages, b) the Mug object waits on pickup events to happen to break at

random ...85

Figure 36: NPCs enter an IE Area triggering Enter events which are handled by the

area’s AS. After leaving the area, they trigger the Leave event. The events are strictly

ordered. The IE area has three AS mechanisms (Enter, Leave, Action Selection)

where the Action Selection runs the internal AS of the area, Enter and Leave are

triggered by NPCs. All the AS share the areas data and communication context to

store variables and send messages. ..86

Figure 37: The IE Mechanism providing a proxy for a Quest, which is a part of a

quest chain. The AS within the IE Mechanism can »cancel« the quest if for example

someone kills Jerry (see Scenario 4). The quest also informs the IE Mechanism about

specifics (e.g. the event’s timeout expires) so the IE Mechanism can react

accordingly (e.g. tell all NPCs to get back to work). ..87

Figure 38: Smart construct contains behaviors which can be provided for BI at host

AS. The behavior is identified by a name tag and there may be a limited amount

available to be injected at the same time. ...89

Figure 39: Requesting a BI from a Smart triggers the Requested event which is

handled within the Smart construct. When dropped, the injected behavior returns to

the Smart and the Returned event is invoked and handled90

 151

Figure 40: When the NPC enters the tavern it only requests the »Fun« behavior,

which further makes use of requesting behaviors from the mug and tavern. The NPC

does not know of any other behaviors except for Fun. ...91

Figure 41: The NPC walks along the planned path with a SNO (Door) being part of

it. The SNO provides the »Traverse« behavior to get through the door using specific

animations and handling issues like locked doors. ...92

Figure 42: Overlapping SA are ambiguous in respect to a TR for BI. Non-

overlapping areas can be used in a hierarchy, where »FOO« when not found at an

area, can be searched at its enclosing (i.e. parent) area. ...93

Figure 43: Exclusive strict ordering of SA provides the TR for a BI with a set of

areas to ask in a given order from the most bottom to the topmost SA94

Figure 44: The topological division of a part of the virtual world into a Land, City,

Districts within the City, and Taverns and Homes within each District. There is also

o Castle where only soldiers are. ...95

Figure 45: The SBT of the NPC seeking Fun in the City ...96

Figure 46: The Relation Knowledge Network annotates the semantic bindings

between entities. John has a binding (i.e. edge) to Jane and Jill. John is also married

to Jane but he likes Jill more. John also has two jobs and one house. John owns some

tools which are SO who annotate themselves with their available behaviors. John

also has a binding to himself, on how happy he is. ..99

Figure 47: The RKN annotating the NPC’s knowledge about the available shooting

spots for both Bow and Crossbow. Some of them are at a Tower, some of them are in

the open. ... 100

Figure 48: Depth First Search and Breadth First Search .. 101

Figure 49: The Subgraph from the RKN based on the Tag SubSelection of (A) and

(C) excludes all other edges (B) from the search. .. 101

Figure 50: Adding bridge separated components to the RKN graph provides the

search with an additional dimension to work with ... 103

Figure 51: Horizon of expanded edges which have not been evaluated by the Search

Mechanism’s predicate ... 105

Figure 52: Skalitz, Common day, frame time in millisecond measured over 10000

frames, standing in one place and looking around. Red line denotes 30ms............. 119

Figure 53: Skalitz, Common day, frame time measured over 6800 frames, roaming

around. Red line denotes 30ms. ... 120

Figure 54: City of Rataj, Common day, Frame time measured over 10000 frames,

standing and looking around. Red line denotes 30ms... 120

Figure 55: Battle of 30 soldiers, Frame time measured over 1200 frames, taking part

in the battl. Red line denotes 30ms .. 121

Figure 56: Long term game play running around in the country side, visiting villages

and talking to NPCs, occasionally engaging in a fight. Red line denotes 30ms. 122

Figure 57: Inbox congestion for Skalitz, Rataj and Battle scenarios. The battle is

short in comparision to other scenarios.. 123

 152

Figure 58: Message pickup and processing for 6800 frames at the Skalitz scenario

 ... 124

Figure 59: Message pickup and processing for 1200 frames at the Battle scenario for

1200 frames .. 124

Figure 60: Message pickup and processing for 8700 frames at Rataj 124

Figure 61:Message count exchanged over the messaging system 125

Figure 62: Active AI entities in different scenarios. All these entities receive an

update from our framework ... 126

Figure 63: NPC counts in various scenarios tracked over 9000 frames 127

Figure 64: Intelligent Environment Objects updated per frame 127

Figure 65: Intelligent Environment Areas updated per frame 128

Figure 66:: Total number of node instances aggregated over all SBTs 128

Figure 67: Node updates per frame.. 129

Figure 68: Active SBT which have at least one updated node 130

Figure 69: Unique solved RKN queries per frame ... 130

Figure 70: Traversed edges every frame by the RKN queries 131

Figure 71: Virtual Life in KCD (©Warhorse Studios 2017).................................. 138

 153

List of Tables

Table 1: Brian’s bindings (edges) to others. The Target represent the entity the edge

points to. Annotation represents the tag associated with that edge, Data represents the

associated variables ... 106

Table 2:The results of the quantitative evaluation. The table displays mean (left),and

.99 quantile and maximum times (right) .. 111

Table 3: Summarization of our experiments comparing the Behavior Trees and Smart

Areas .. 113

Table 4: Subjective qualification of the tasks difficulty when creating new SBTs/SA

or modifying existing ones. Scale is from 0 – 3, (easy – hard) 113

Table 5: First set of questions. Every question is stated in the upper part, where the

reasoning behind it is in the lower part .. 116

Table 6: Second set of questions aimed at feedback in respect to design problems

when creating the believable ambient environment ... 117

Table 7: Overall amount of entities and constructs within the KCD data 122

 154

List of Abbreviations

RPG Role Playing Game

FPS First Person Shooter

RTS Real Time Strategy

NPC Non-Player Character

CGE Computer Game Engine

OWG Open World Game

KCD Kingdom Come: Deliverance

FPS Frames Per Second

CFG Configuration

DMM Decision Making Mechanism

AS Action Selection

BDI Belief-Desire-Intentions

BOD Behavior Oriented Design

GOAP Goal Oriented Action Planning

TRD Transferable Design Reasoning

AI Artificial Intelligence

PC Personal Computer

AIF Artificial Intelligence Framework

BOD Behavior Oriented Design

OOD Object Oriented Design

OOP Object Oriented Programming

SBT Stateful Behavior tree

BDI Belief Desire Intentions

AM Action Manager

PAA Playing Animation Action

MA Movement Action

HTN Hierarchical Task Network

STRIPS Stanford Research Institute Problem Solver

SubB Sub Brain

CSubB Combat Sub Brain

BI Behavior Injection

SE Smart Entity

IE Intelligent Environment

SEnv Smart Environment

SO Smart Object

SA Smart Area

WSA World Smart Area

RKN Relational Knowledge Network

IGC Isolated Graph Components

LOD Level of Detail

ADT Advanced Data Types

PDT Primitive Data Types

POD Plain Old Type

IEVO Intelligent Environment Virtual Observer

BSA Brain-Sub Brain-Action Selection

 155

List of Author’s Publications

Publications relevant to this thesis

1. Cerny, M., Plch, T, Brom, C.: Beyond Smart Objects: Behavior-Oriented

Programming for NPCs in Large Open Worlds. In Lengyel, Eric (eds.) Game

Engine Gems 3. USA: CRC Press, 2016. pp. 267-280. ISBN 978-1-4987-5565-8.

2. Cerny, M., Plch, T.,Marko, M., Gemrot, J., Ondracek, P., Brom, C.: Using

Behavior Objects to Manage Complexity in Virtual Worlds. In IEEE Transactions

on Computational Intelligence and AI in Games, doi:

10.1109/TCIAIG.2016.2528499

3. Černý, M., Plch, T., Marko, M., Ondracek, P., Brom, C.: Smart Areas: A Modular

Approach to Simulation of Daily Life in an Open World Video Game. In:

Proceedings of 6th International Conference on Agents and Artificial Intelligence

(ICAART 2014). 2014, pp. 703-708

4. Plch, T., Marko, M., Ondracek, P., Cerny, M., Gemrot, J., Brom, C.: Modular

Behavior Trees: Lanuage for Fast AI in Open-World Video Games In: Proceedings

of 21st European Conference on Artificial Intelligence (ECAI 2014), pp. 1209-

1211.

5. Plch, T., Marko, M., Ondracek, P., Cerny, M., Gemrot, J., Brom, C.: An AI

System for Large Open Virtual World In: Proceedings of Tenth Annual AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE

2014), pp. 44-51.

6. Plch T.: Action selection for an animat, 2009, Master thesis

Other publications

1. Plch, T., Chomut, M., Brom, C., Bartak, R.: Inspect, Edit and Debug PDDL

Documents: Simply and Efficiently with PDDL Studio, In: 22nd International

Conference on Automated Planning and Scheduling - System Demonstrations and

Exhibits, (2012).

2. Plch, T.: Towards Believable Intelligent Virtual Agents with StateFull Hierarchical

Reactive Planning. In: Safrankova, J. and Pavlu, J. (eds.) WDS 2011, Part I -

Mathematics and Computer Sciences, Matfyzpress, Prague, pp. 119-124, ISBN

978-80-7378-184-2, 2011.

3. Gemrot, J., Brom, C., Plch, T.: A periphery of Pogamut: from bots to agents and

back again. In: Agents for Games and Simulations II, LNCS 6525, Springer, pp.

19--37 (2011). The short version of this paper also appeared in Proc. Agents for

Games and Simulations, AAMAS workshop pp. 1--19 (2010).

4. Plch, T., Brom, C.: Enhancements for reactive planning - tricks and hacks, In:

Proceedings of SOFSEM (2010) Czech Republic.

5. Plch, T., Jedlicka, T., Brom, C.: Utilizing HLA for Connecting Virtual Worlds to

Prototyping Tools, ITAT 2010, extende abstract. (2010).

 156

6. Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil, R., Havlicek, J., Zemcak, L.,

Simlovic, J., Vansa, R., Stolba, M., Plch, T., Brom C. Pogamut 3 Can Assist

Developers in Building AI (Not Only) for Their Videogame Agents. In: Agents for

Games and Simulations, LNCS 5920, Springer, pp. 1--15. (2009) The short version

of this paper also appeared in Proc. Agents for Games and Simulations, AAMAS

workshop (2009) 144--148.

7. Brom, C., Bida, M., Gemrot, J., Kadlec, R., Plch, T. Emohawk: Searching for a

"Good" Emergent Narrative. In: ICIDS 2009, Guimaraes, Portugal, LNCS 5915,

Springer, p. 86-91.

8. Plch, T., Jedlicka, T., Brom, C.: HLA Proxy: Towards Connecting Agents To

Virtual Environments by Means of High Level Architecture (HLA). In: Proc. of

Cognitive Agents for Virtual Environments, LNCS 7764, Springer, Heidelberg, pp.

1--16, (2013).

9. Brom, C., Bida, M., Klima, M., Gemrot, J., Pibil, R., Plch, T., Kadlec, R.:

Virtuální agenti In: Umelá inteligencia a kognitívna veda II, STU v Bratislavě, pp.

21-52 (2010).

 157

Appendices

 158

Appendix A – Attached Digital Content

 /video/ – videos showing mechanisms presented in this thesis in the

KCD game

 /stats/ – measured data for deployment evaluation

 thesis.pdf – text of this thesis

 readme.info – description of attached digital content

 159

Appendix B – Video commentary

 Video 1 – The Day-By-Day life of NPCs in a testing level. The left side

of the screen has working areas. At 0:05 the NPCs go Home (right side of

the screen) or to work (left side of the screen). At 0:25 and 0:40, a woman

on the right side goes to sleep. Men on the left side of the screen are

working on the fields. At 1:00, the farmer on the bottom right corner

decides to go home for a dinner. His wife (left bottom side) wakes up to

prepare dinner. They sit at the dining table together.

 Video 2 – The same situation as in Video 1 from a different angle.

We see the areas and the RKN of the world at the video’s start.

 Video 3 – Soldiers going to the Tavern for a beer. The tavern is a

Smart Area and has limited Behavior Injection to simulate the limited

places within the Tavern. One NPC at 0:05 can be seen to walk away from

the Tavern since he did not acquire a »guest« BI. Sitting at tables is

managed by the SA. At 0:07 we can see the waitress being called to the

first occupied table. She also greets the guests. This is a BI provided by the

Tavern to the waitress. Sitting at tables is managed by the SO Table and

the SO Bench. The SO Table provides a BI which asks the SO Bench for a

sitting BI. All other table activities are handled by BIs provided by the

table to both the waitress and the quests. At 0:22, there is a synchronized

behavior managed by the Table SO to pour beer to different NPCs. The

table has the information who sits where and provides the behavior to the

waitress how to synchronize with the NPCs sitting at the table. The

synchronization part on the guests is part of the BI provided by the Table

SO. At 0:39 the waitress has nothing else to do, so she cleans tables. The

BI to go and clean the tables is from the Tavern SO, but how to clean the

tables is provided by the Table SO. After she is done cleaning tables, she

goes on at 0:52 to sweep the floor. This BI originates from the SA Tavern

which knows where the broom is.

 Video 4 – Shows the RKN network in the Skalitz village. The links are

green lines between entities, where flying arrows denote the edge’s

direction and what tags annotate the semantic connection. At 0:04, we can

see sheep being linked to their home meadow. At 0:06 we can see the

hierarchy of links in Skalitz.

 Video 5 – Shows the virtual life in Skalitz, at 0:18, we can see farmers

working the nearby fields. At 0:26 the player commits an attack on NPC,

which drops the hoe. All other NPCs follow suit and evaluate the situation.

The woman when chased, runs way. The men will go and get help from a

local guard. At 1:08 the player scares some sheep around their meadow.

We can see how the sheep behave like a heard. At 1:29, the flock is

separated and creates 2 separate flocks which function independently. At

1:41 a guard finally finds the player and confronts him about the crime

committed earlier. After that the player is arrested.

 Video 6 – Shows the life in Skalitz. At 0:07 we can see a woman buying

groceries for dinner. At 0:28 we could see two women gossiping about

 160

what happened lately. At 0:30 there is a local guard on duty walking

around the village. At 0:34 a woman recognizes the player and greets him.

At 0:40 we can see local men being at the Tavern.

 Video 7 – Show how the environment reacts to crimes. At first 0:05 the

player has drawn a weapon and the guard tells him to put it away, since it

is a crime (in medieval times this was a capital offense). At 0:21 when the

NPC is attacked it defends itself but does not engage since he has no

weapon of his own or friends nearby. Another NPC runs for help. At 0:34

a guard arrives and directly engages the player since he saw him attacking

an NPC.

 Video 8 – Shows life in Skalitz. At 1:12 the player starts to follow

NPCs to work. We can see that the NPCs actually went to their field to

work on their farm. At 2:23 we can see two men talking daily news.

 Video 9 – Shows use of a »door« Navigational Smart Object. The door

connects two parts of a navigational mesh, where specific animations have

to be played (i.e. open and close) to traverse over the border created by the

door. At 0:08 we can see the door telling the first NPC that went through

to close the door behind it, since it (i.e. the door) had no knowledge of the

second NPC which wanted to go through. We can see that at 0:12 at the

upper door, the door instructed the NPC (via the BI behavior provided by

the NSO) to avoid closing the door (i.e. it played only the

»open door« animation since there are more NPCs in line. However, the

last NPC closes the door. Later, this process repeats in both direction. For

example, at 0:54 at the lower door the returning NPC does not close the

door since there is another one coming through.

 Video 10 – Shows us the synchronization mechanisms between NPCs.

In a simple labyrinth, NPCs wait for each other at 0:04 and go together to

the edge of the maze. At the edge, only one NPC passes through and does

not wait for its friends. Everybody goes to a different end location. This

repeat and at 0:20 we can see the NPCs again waiting to be at the same

spot together.

 Video 11 – Shows the tool chain within the KCD editor. At 0:05 we can

see the SBT visualized. Green nodes have succeeded and red nodes have

failed. Blue nodes are still running. At 0:08 we can see a Behavior

Injection into the running SBT. Yellow lines denote where the execution

already was. At 0:17 we can see continuous evaluation of conditions

which results in stopping branches and starting new ones which triggers BI

at their leaf nodes. This shows the basic principles of visualization and

Behavior Injection in practice.

 Video 12 – Shows a combination of NSO behavior and SA BI into

NPCs. The NSO provides the NPCs at first with a line to be in front of the

door. Within that behavior, the NPC tries to open the door but fails,

standing in front of the locked door for a while. After that, the NPCs asks

the World Smart Area what to do, and the provided BI sends the NPC

back to the end of the line.

	1 Introduction
	1.1 The Uncanny Valley of Believable Intellect
	1.2 Virtual Worlds
	1.3 Virtual Life
	1.4 Thesis Goals
	1.5 Thesis structure

	2 Analysis
	2.1 Computer Game Engine
	2.2 Basic Concepts
	2.2.1 Belief-Desire-Intention
	2.2.1.1 Summary

	2.2.2 Action Selection
	2.2.2.1 Reactive Action Selection
	2.2.2.2 Deliberative Action Selection
	2.2.2.3 Goal Oriented Action Planning

	2.2.3 Summary

	2.3 Transferable Design Reasoning
	2.3.1 Making a game
	2.3.2 Engineered Virtual Worlds
	2.3.2.1 World design principles
	2.3.2.2 Language Design principles
	2.3.2.3 Conceptual perspective
	2.3.2.4 Summary

	2.3.3 Managing Complexity and Context
	2.3.4 Summary

	3 Scenarios
	3.1 Life of Brian
	3.2 Tavern
	3.3 Death in the streets
	3.4 Poisoned Jerry
	3.4.1 Battle

	3.5 Summary

	4 Making Decisions
	4.1 Behavior Tree
	4.2 Stateful Behavior Tree
	4.2.1 Tree Nodes
	4.2.1.1 Summary

	4.2.2 Execution and Evaluation
	4.2.3 Budgeting
	4.2.3.1 Summary

	4.2.4 Parallelism
	4.2.4.1 External Parallelism
	4.2.4.2 Internal Parallelism
	4.2.4.3 Summary

	4.2.5 SBT Events
	4.2.5.1 Summary

	4.2.6 Data Model
	4.2.6.1 Primitive Data Types
	4.2.6.2 Structuring Types
	4.2.6.3 Inheritance
	4.2.6.4 Summary

	4.2.7 Data Storage and Access
	4.2.7.1 Variables
	4.2.7.2 Data Scopes
	4.2.7.3 References and Closures
	4.2.7.4 Summary

	4.3 Messaging
	4.4 The Message
	4.4.1 States
	4.4.2 Inboxes
	4.4.3 Timeouts
	4.4.4 Addressing
	4.4.5 Processing Schemas
	4.4.6 Summary

	4.5 Synchronization
	4.5.1 Locks
	4.5.2 Semaphores
	4.5.3 Barriers
	4.5.3.1 Summary

	4.6 SBT Actions
	4.6.1 Run an Action
	4.6.2 Asynchronous execution
	4.6.2.1 Summary

	4.6.3 Synchronized Actions
	4.6.3.1 Summary

	4.6.4 Action Chaining
	4.6.5 Move and Act
	4.6.6 Summary

	4.7 SBT Summary

	5 Decision Making Mechanism for NPCs
	5.1 Architecture
	5.2 Brain
	5.2.1 Day Plan

	5.3 SubBrain
	5.4 The Player
	5.5 Summary

	6 Smart World, Intelligent Environment
	6.1 Motivation
	6.2 Relevant work
	6.2.1 Smart Objects
	6.2.2 Smart Environments

	6.3 Analysis
	6.4 Behavior Injection
	6.5 Intelligent Environment
	6.5.1 IE Object
	6.5.2 IE Area
	6.5.3 IE Mechanism
	6.5.4 IE Virtual Observers

	6.6 Smart Constructs
	6.6.1 Smart Objects
	6.6.2 Smart Quests
	6.6.3 Smart Navigation Objects
	6.6.4 Smart Areas
	6.6.4.1 Trigger Area

	6.6.5 Summary

	7 Knowledge network
	7.1 Relation Knowledge Network
	7.2 Static, Dynamic and Virtual Links
	7.3 RKN Query
	7.4 Query Predicate
	7.4.1 Filter
	7.4.2 Logical Operator
	7.4.3 Analyzers
	7.4.4 Sub-queries

	7.5 Adding Dimension
	7.6 Search Mechanism
	7.7 Example
	7.8 Scenario 1 – Life of Brian
	7.8.1 Going to work
	7.8.2 Having some fun
	7.8.3 Player steals from the neighbor

	7.9 Summary

	8 Evaluation
	8.1 SBT Use Evaluation
	8.1.1 Qualitative Evaluation of MBTs
	8.1.2 Quantitative Evaluation of MBTs

	8.2 Comparing SA and SBT concepts
	8.2.1 Results

	8.3 Qualitative Evaluation
	8.3.1 KCD Integration and Deployment
	8.3.2 Personal Feedback via Interview

	8.4 Industrial Deployment Evaluation
	8.4.1 Frame Time
	8.4.2 Overall numbers
	8.4.3 Messaging
	8.4.4 Intelligent Environment and NPCs
	8.4.5 Updating SBTs
	8.4.6 RKN queries

	9 Summary
	9.1 Stateful Behavior Tree Language
	9.2 Three-Tier Deliberation Architecture
	9.3 Intelligent Environment
	9.4 Smart Constructs
	9.5 Semantic Network
	9.6 Evaluation and Integration

	1
	1
	10 Future work
	11 Conclusion
	1
	12 Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of Author’s Publications
	Publications relevant to this thesis
	Other publications

	Appendix A – Attached Digital Content
	Appendix B – Video commentary

