HABILITAČNÍ PRÁCE

MUDr. František Novák, Ph.D.

Praha 2017
Zánět, malnutrice v nemoci a význam nutriční podpory -

od metabolismu živin ke klinické praxi

Obor: Vnitřní nemoci

MUDr. František Novák, Ph.D.

IV. interní klinika 1. LF UK a VFN,
U Nemocnice 2, Praha 2
128 08, tel.: 224962516, e-mail: fnova@lf1.cuni.cz
Děkuji pacientům, jejich blízkým a všem spolupracovníkům, kteří pomáhají rozvíjet léčebnou péči a výzkumné aktivity na poli malnutrice v nemoci a nutriční podpory na našem pracovišti. Také chci poděkovat své rodině za podporu a pochopení pro moji práci.
Obsah
1 Seznam zkratek ... 6
2 Úvod.. 7
3 Zánět a metabolizmus lipidů .. 10
 3.1 Syndrom systémové zánětlivé odpovědi a reakce akutní fáze 10
 3.2 Úloha oxidačního stresu a zánětlivá odpověď .. 11
 3.3 Lipidy plazmy, lipoproteiny a aktivita paraoxonázy 1 .. 13
 3.4 Složení mastných kyselin v lipidech plazmy a erytrocytů 15
 3.5 Publikované práce .. 16
 3.5.1 Zvýšená zánětlivá aktivita se změnami v antioxaídační rovnováze v průběhu sepsy..., .. 17
 3.5.2 Snížení aktivity paraoxonázy u kriticky nemocných v sepsi 19
 3.5.3 Změny spektra mastných kyselin v plazmatických fosfolipidech u kriticky nemocných ... 20
 3.5.4 Složení mastných kyselin a necholesterolových esterů u mentální anorexie..... 21
4 Diagnostika malnutrice a indikace nutriční péče v klinické praxi 23
 4.1 Nutriční skríning a vyšetření stavu výživy ... 23
 4.2 Nutriční intervence .. 26
 4.3 Publikované práce .. 26
 4.3.1 Implementace skríningu nutričního rizika NRS-2002 26
 4.3.2 Postpylorická aplikace enterální výživy a výskyt gastroezofageálního refluxu a mikroaspirací u kriticky nemocných ... 27
 4.3.3 Enterální výživa obohacená o imunomodulační složky u kriticky nemocných. 28
 4.3.4 Kritický komentář na téma enterální imunonutricie .. 30
 4.3.5 Podávání glutaminu u kriticky nemocných .. 30
 4.3.6 Péče o pacienty s dysfagií po cévní mozkové příhodě .. 31
 4.3.7 Vliv nutričního stavu na prognózu pacientů s pokročilým nádorem jícnu na multimodální léčbě ... 33
 4.3.8 Plazmatické hladiny stopových prvků u pacientů na domácí parenterální výživě 34
 4.3.9 Zvýšené dávky rybího oleje ovlivňují zánětlivou odpověď u pacientů na domácí
 parenterální výživě .. 35
5 Souhrn výsledků .. 37
6 Závěr ... 39
1 Seznam zkratek

AA – kyselina arachidonová
APACHE II score - Acute Physiology and Chronic Health Evaluation
ASPNEN - Americká společnost enterální a parenterální výživy
CI – konfidenční interval
CRP – C reaktivní protein
DHA - kyselina dokosahexaenová
DPV – domácí parenterální výživa
EPA - kyselina eikosapentaenová
ESPEN - Evropská společnost klinické výživy a metabolismu
GSH – redukovaný glutathion
HDL - lipoprotein o vysoké hustotě
HDL-C – HDL cholesterol
JIP – jednotka intenzivní péče
IL - interleukiny
LE – tuková emulze
LPS - lipopolysacharid
MA – mentální anorexie
MODS - syndrom multiorgánové dysfunkce
MUFA - mononenasycené mastné kyseliny
NRS - skríning nutričního rizika
PCT - procalcitonin
PON 1 – paraoxonáza 1
PUFA – vícenenasycené mastné kyseliny
ROS – reaktivní formy kyslíku
RR – relativní riziko
SFA – saturované mastné kyseliny
SCCM/ACCP - Society of Critical Care Medicine/American College of Chest Physicians
SIRS - syndrom systémové zánětlivé odpovědi
TAG – triacylglyceroly
TNF-α – tumor necrosis faktor-α
2 Úvod

Podvýživa, malnutrice, se vyznačuje alterací tělesných zásob a zhoršenými biologickými funkcemi (svalová slabost, kognitivní deficit a porucha obranyfického principu). Přítomnost malnutrice v nemoci (z angl. disease-related malnutrition) ovlivňuje výskyt komplikací a mortalitu bez ohledu na etiologii základního onemocnění. Zánět přispívá k dalšímu rozvoji malnutrice díky ztrátě chuti k jídlu, snížení příjmu per os, ale také díky změnám v energetickém metabolismu provázané vzestupem klidového energetického výdaje a mobilizací svalových proteinů (Jensen et al., 2010a). Zánětlivý proces snižuje efektivitu nutriční podpory vzhledem k tomu, že při rozvinuté malnutrice je řada léčebných postupů méně efektivních (Jensen et al., 2013). Časový průběh a intenzita přítomné zánětlivé odpovědi ovlivňuje charakter malnutrice. Mezinárodní výbor Evropské společnosti klinické výživy a metabolismu (ESPEN) a Americké společnosti enterální a parenterální výživy (ASPEN) pro přípravu doporučení, proto navrhl novou klasifikaci malnutrice, která je založena na etiopatogenetickém principu. Toto nové rozdělení zahrnuje: (1) prosté hladovění, nebo také hladověním navozenou malnutrici bez přítomné zánětlivé reakce organismu (např. mentální anorexie); (2) malnutrici chronických onemocnění, u které má zánět mírnou až střední intenzitu (orgánová nedostatečnost, nádorové onemocnění nebo sarkopenická obezita); (3) malnutrici akutních stavů nebo poranění s přítomností intenzivní zánětlivé odpovědi (sepse, popáleniny, nebo polytrauma) viz obr. 1 (Jensen et al., 2010a; Jensen et al., 2010b).

U malnutrice v nemoci jde patofyziologicky vždy o různé kombinace podvýživy nebo přeživování na straně jedné a přítomnost akutního nebo chronického zánětu na straně druhé. Rozsah a klinický význam této problematiky můžeme odhadnout z řady epidemiologických studií. Alespoň 1/3 pacientů je již ve stavu malnutrice při přijetí do nemocnice (Barker et al., 2011; Bistrian et al., 1974; Christensen and Gstundtner, 1985; Somanchi et al., 2011). Pokud se u těchto pacientů okamžitě nezahájí adekvátní nutriční intervence, dochází u 2/3 z nich k následnému zhoršení v dalším průběhu hospitalizace (Somanchi et al., 2011; Tappenden et al., 2013). Bohužel, díky těmto epidemiologickým studiím také víme, že při přijetí ani v dalším průběhu hospitalizace není malnutrice ve většině zdravotnických zařízení dostatečně diagnostikována. Přibližně 1/3 pacientů, kteří při přijetí měli dobrý nutriční stav, se zhorší v průběhu hospitalizace natolik, že začnou splňovat kritéria malnutrice (Braunschweig et al., 2000). Nedávno publikovaná studie, která sledovala výskyt malnutrice u seniorů při přijetí
Obr 1: Etiologie malnutrice podle přítomnosti a intenzity zánětu. Upraveno podle Jensen G. et al., JPEN, 2009 (Jensen et al., 2013).

na akutní nemocniční lůžko, zjistila malnutrici v 16%. Pokud se k tomu sledoval i výskyt nutričního rizika, trpělo podvýživu až 60% jedinců (Pereira et al., 2015). U hospitalizovaných pacientů, bez ohledu na BMI, dochází k rozvoji malnutrice v důsledku sníženého příjmu potravy, zaživacích obtíží a zvýšené zánětlivé aktivity (Guenter et al., 2015). Systém vyhledávání pacientů v nutričním riziku je zásadní pro včasnou prevenci komplikací malnutrice (poruchy hojení, imunosuprese, nozokomiální infekce, zvýšené náklady na zdravotní péči, prodloužená hospitalizace, vyšší úmrtnost) a identifikaci pacientů, kteří profitují z cílené nutriční péče (Barker et al., 2011).

Efektivní vyšetření nutričního stavu v sobě kombinuje za prvé posouzení příjmu potravy a tělesných zásob živin a za druhé posouzení závažnosti a průběhu zánětů. Intenzitu a fázi zánětu vyšetřujeme pomocí kombinace fyzikálního vyšetření a stanovení laboratorních ukazatelů. V současné době existuje celá řada standardních nástrojů a postupů, které se díky intenzivnímu epidemiologickému výzkumu a klinickým doporučením stále zdokonalují, zjednodušují a propagují k využití v klinické praxi (Kondrup et al., 2003; Mueller et al., 2011).

Výzkum s cílem lepšího poznání zánětlivého procesu je velmi důležitý. Zánět je ve své podstatě prospěšný obranný proces, nezbytný pro přežití, ale při deregulaci může být život ohrožující např. v průběhu sepse (Singer et al., 2016). Přes stále dokonalejší metodické přístupy, které umožňují stanovení stopových koncentrací různých metabolitů a mediátorů
nebo dokonce sledování kinetiky jednotlivých metabolických a signálních procesů, jsme stále na začátku využití získaných poznatků při léčbě jednotlivých pacientů. Stále nám chybí dostatečně přesné ukazatele pro správné dávkování a časování léčebných intervencí, mezi které bezesporu patří i nutriční podpora.
3 Zánět a metabolizmus lipidů

3.1 Syndrom systémové zánětlivé odpovědi a reakce akutní fáze

Následkem infekce, traumatu, ischémie nebo jejich kombinace se rozvíjí nespecifický zánětlivý stav, který vede k celkovým tělesným příznakům, syndromu systémové zánětlivé odpovědi (SIRS). Sepse je systémovou zánětlivou odpovědi na infekci s těžkým průběhem a je nejčastější příčinou rozvoje syndromu multiorgánové dysfunkce (MODS; multiple organ dysfunction syndrome). U sepse je velmi důležitá včasná diagnóza a odlišení od neinfekčních příčin SIRS, tak aby mohla být u kriticky nemocného co nejdříve zahájena cílená léčba infekce a adekvátní podpora orgánových funkcí na jednotce intenzivní péče (Singer et al., 2016). Definice a diagnostické kategorie jsou shrnuty v Tab. 1. V situaci akutního zánětu, poškození tkání a/nebo infekce dochází v lidském těle k řadě biochemických a fyziologických adaptačních pochodů, kterým souhrnně říkáme reakce akutní fáze. Jak vrozené, tak adaptivní složky zánětlivé odpovědi jsou řízeny mediátory, které jsou po většině produkovány a současně vnímány samotným imunitním systémem. Klíčovou složkou reakce akutní fáze jsou změny syntézy řady proteinů v játrech, které nazýváme reaktanty akutní fáze. Reaktanty akutní fáze se uplatňují při hemostáze, metabolismu lipidů a mají funkci v imunitním systému (Gabay and Kushner, 1999). Mezi těmito proteiny jsou potenciálně užitečnými ukazateli sepse C-reaktivní protein (CRP), procalcitonin (PCT) a interleukiny (IL-6, IL-8, TNF-α) (Carlet, 1999).

U bakteriální sepse je zánětlivá odpověď spuštěna přítomností bakteriálních produktů a toxinů, které fungují jako exogenní mediátory zánětu. Je známo, že stavěbní komponenty buněčné stěny u gramnegativních (lipopolysacharid, LPS) i gram-pozitivních bakterií (kyselina lipoteichoová) indukují produkci tumor nekrosis faktor-α (TNF-α) a interferon-γ (INF-γ), stimuluji syntézu oxidu dusnatého (NO) v makrofázech cestou aktivace tyrozinkinázu a nukleárního faktoru kappa B (NF-kB) (Kengatharan et al., 1998).
Tabulka 1: Definice sepse a orgánového selhání /SCCM/ESICM Consensus Conference, Sepsis-3, upraveno podle (Singer et al., 2016).

<table>
<thead>
<tr>
<th>Diagnostická kategorie</th>
<th>Definice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infekce</td>
<td>Mikrobiální fenomén charakterizovaný zánětlivou odpovědí na přítomnost mikroorganismů nebo na jejich invazi do normálně sterilních tkání hostitele.</td>
</tr>
<tr>
<td>Bakterémie</td>
<td>Přítomnost životaschopných baktérií v krevním oběhu.</td>
</tr>
<tr>
<td>Syndrom systémové zánětlivé odpovědi (SIRS)</td>
<td>Systémová zánětlivá odpověď na různé klinické inzulty. Odpověď se vyznačuje přítomností 2 z následujících ukazatelů: (1) tělesná teplota >38°C nebo <36°C; (2) srdeční frekvence > 90/min; (3) dechová frekvence >20/min nebo PaCO₂ < 32 mm Hg; a (4) počet leukocytů v periferní krvi >12,000/mm³, nebo <4,000/ mm³, nebo >10% nezralých forem (tyčí) Často se jedná o adekvátní adaptivní reakci na insult</td>
</tr>
<tr>
<td>Sepse, podle starší terminologie před Sepsis-3 konsensus 2015, Těžká sepse</td>
<td>Infekce doprovázená dysregulací zánětlivé odpovědí, která způsobuje život ohrožující stav doprovázený orgánovou dysfunkcí (Sequential Organ Failure Assessment Score (SOFA) ≥2) (Ferreira et al., 2001; Vincent et al., 1998).</td>
</tr>
<tr>
<td>Septický šok</td>
<td>Sepse s hypoteni, která vyžaduje podávání vasopresorů k udržení středního arteriální tlaku ≥ 65 mmHg</td>
</tr>
<tr>
<td>Syndrom mnohočetné orgánové dysfunkce (MODS)</td>
<td>Zhoršení orgánových funkcí s nutností jejich podpory v rámci akutního stavu.</td>
</tr>
</tbody>
</table>

3.2 Úloha oxidačního stresu a zánětlivá odpověď

Aktivace imunitního systému vede k produkci reaktivních forem kyslíku a dusíku, které zánětlivou odpověď dále potencují. Výsledek SIRS mimo jiné, závisí na jeho intenzitě, době trvání, rovnováze mezi pro- a proti-zánětlivými signály a pro- a anti-oxidačními složkami. Oxidační stress je výsledkem buď nadbytečné tvorby oxidantů, a/nebo vyčerpání antioxidační ochrany.
Tyto oxidační reakce však s sebou nesou potenciál tvorby přechodných forem volných radikálů, které mají schopnost poškodit buňky a tkáně. Mezi takové reakce patří např. únik elektronů z dýchacího řetězce a meziprodukty metabolizmu membránových lipidů (Grune and Berger, 2007; Roth et al., 2004). Oxido-redukční nerovnováha má schopnost stimulovat zánětlivou odpověď pomocí aktivace tzv. stresových kináz (c-jun N-terminální kináza, mitogen-aktivovaná protein kináza, p38) a redox-sensitivních transkripčních faktorů jako např. NF-κB a aktivujícího proteinu-1. Glutathion je tripeptid (L-g-glutamyl-L-cysteinylglycine; GSH), který spolu se svojí oxidovanou formou glutathiondisulfidem (GSSG) představuje kvantitativně nejdůležitější intracelulární oxido-redukční pár (Deplancke and Gaskins, 2002). Ovlivnění oxidoredukčního stavu buňky může přispět k již probíhající produkci zánětlivých cytokinů a progresi SIRS, která může vest až k poškození orgánových funkcí (Bulger and Maier, 2001).

Antioxidanty lze dělit na dvě skupiny: enzymové a neenzymové. Mezi antioxidační enzymy patří superoxiddizmutáza (SOD), která katalyzuje konverzi O₂⁻ na H₂O₂; kataláza (CAT), která přeměňuje H₂O₂ na H₂O a O₂ a glutathionperoxidáza (GPX), která redukuje H₂O₂ na H₂O oxidováním GSH. Opětovná redukce oxidované formy glutathiondisulfidu (GSSG) je následně katalyzována glutathionreduktázou.

Neenzymové antioxidanty zahrnují v tucích rozpustné vitamíny (E a A) a ve vodě rozpustný vitamín C (kyselina ascorbová). Vitamín E byl popsán jako hlavní v tucích rozpustný antioxidant u lidí (Raederstorff et al., 2015). Vitamín E může přímo redukovat reaktivní formy kyslíku (ROS). Vitamin A je termín zahrnující skupinu retinolů, které jsou v dietě, zejména v mléčných výrobcích, vejcích, játrech a obohacených obilninách. Vitamin C se nachází zejména v ovocí a zelenině (Coelho et al., 2013) GSH je syntetizován intracelulárně z cysteinu, glycinu a glutamátu, má schopnost redukovat ROS buď přímo, nebo prostřednictvím GPX enzymovou cestou. GSH je navíc nezbytný pro udržení enzymů a dalších buněčných složek v redukovaném stavu. U všech typů akutních stavů, jako je například sepse, trauma, popáleniny, akutní pankreatitis, poškození jater, dekompenzovaný diabetes, syndrom dechové tísňové dospělých, AIDS a selhání ledvin, byl prokázán vyšší oxidační stress nebo snížená antioxidační kapacita. Výsledky těchto studií nejsou vždy zcela jednoznačné, avšak jako celek prokazují přítomnost zvýšeného oxidačního stresu a vyčerpání antioxidační ochrany u kriticky nemocných (Bulger and Maier, 2001). Řada studií zkoumala vliv podávání antioxidantů na průběh nemoci a výsledky pacientů v intenzivní péči. Výsledky těchto studií se suplementací antioxidantů u kriticky nemocných jsou sumarizovány v meta-analýzách (Coelho et al., 2013; Manzanares et al., 2012; Manzanares et al., 2015).
Zlatým standardem pro stanovení ROS je elektronová spinová resonance. Tato metoda však bohužel není, díky mimořádné nestabilitě volných radikálů, jejich nízké koncentraci a relativně komplikovanému procesu měření, použitelná v klinické praxi. Mezi klinicky relevantní patří metody založené na detekci produktů oxidace makromolekul nebo na stanovení koncentrace, případně aktivity, složek antioxidační ochrany organismu a/nebo na funkci zaměřené testy. Peroxidace lipidů se zkoumá pomocí širokého spektra metod. V klinické praxi jsou nejčastěji používané dvě metody: stanovení malondialdehydu (Grune et al., 1993) a F2-isoprostanů (Morrow et al., 1990). Alternativní možností je stanovení antioxidačního potenciálu plazmy nebo krevních buněk, především erytrocytů. Také lze určit funkci systému GSH/GSSH, včetně měření jeho redukované a oxidované složky (Siems et al., 2002) a stanovení aktivity GPX (Kodydkova et al., 2009; Siems et al., 1999). Protože určit míru oxidačního stresu je poměrně složité, zdá se vhodné použít k kombinaci měření několika parametrů včetně produktů oxidace (Grune and Berger, 2007). Naše práce prokázala těsnou spojitost mezi několika parametry: hladina cytokinů, peroxidace lipidů, hladina vitaminů, antioxidačních enzymů, koncentrace lipoproteinů a albuminu u pacientů v průběhu těžké sepse a po odeznění klinických příznaků sepse (Alonso de Vega et al., 2002; Vávrová et al., 2015, příloha 1).

3.3 Lipidy plazmy, lipoproteiny a aktivita paraoxonázy 1

Změny koncentrace a složení lipoproteinů v průběhu sepse a následného zotavení byly poprvé podrobně studovány Alvarezem. Ten zjistil, že sepse působí snížení sérových koncentrací celkového cholesterolu, cholesterolu v lipoproteínu s vysokou hustotou (HDL-C) a apolipoproteinů A a B (apoA, ApoB), zatímco koncentrace triacylglycerolů (TAG) stoupala (Alvarez and Ramos, 1986; Green et al., 2016).

Lipidy byly dlouho považovány výlučně za zdroj energie, esenciálních mastných kyselin (FA), a v tucích rozpustných vitaminů. Až v poslední době je stále větší pozornost věnována jejich roli jako hlavních biologických regulátorů, které specificky ovlivňují strukturu a funkci buněčných membrán, aktivitu membránových receptorů, jsou prekurzorem pro syntézu eikosanoidů a dokosanoidů, ovlivňují produkci cytokinů a genovou expresi (Yaqoob, 2003). V důsledku toho, byla akceptována i jejich role ve farmakonutriční regulaci zánětlivé odpovědi s ovlivněním klinicky závažných výstupů (Hasselmann and Reimund, 2004).
Složení apolipoproteinů v HDL se v průběhu sepse mění. Sérovy amyloid A (SAA), jeden z hlavních reaktantů akutní fáze, se váže na HDL a zároveň z této částice vytešňuje ApoA-1 (Coetzee et al., 1986; Malle and de Beer, 1996; Steel and Whitehead, 1994). V průběhu těžké sepse se HDL mění na HDL akutní fáze, které jsou bohaté na SAA a mají nižší obsah cholesterolu a ApoA-1 (van Leeuwen et al., 2003). Obohacení SAA urychluje katabolismus HDL (Cabana et al., 2003). Rychlý pokles HDL v průběhu reakce akutní fáze má za následek výrazně sníženou schopnost organismu neutralizovat LPS. Myšlenka, že HDL může fungovat jako protizánětlivý činitel, vznikla jako výsledek pozorování v rámci velkých epidemiologických studií, které ukázaly negativní korelaci mezi prevalencí ischemické choroby srdeční (považované za chronický zánětlivý proces) a koncentrací HDL (Kitamura et al., 1994; Miller and Miller, 1975). Následně byl prokázán protizánětlivý účinek HDL in vitro a in vivo. Jedná se pravděpodobně o výsledek: (1) vazba a neutralizace LPS; (2) inhibice exprese (cyto)adhezních molekul; (3) stimulace produkce endotheliální syntézy NO; (4) ochrana lipoproteinů o nízké hustotě (LDL) před lipoperoxidačním poškozením (Wu et al., 2004).

Paraoxonáza (PON) [aryldialkylphosphatáza (EC 3.1.8.1)] je sérová arylesteráza, která hydrolytickým štěpí paraoxon, aktivní substanci insekticidů. Až dosud byly popsány tři izoenzymy PON: PON1, PON2, a PON3. PON1 a PON3 jsou převážně produkované v játrech a potom uvolňovány do plazmy a následně vázány na HDL (Reddy et al., 2001). PON1 je HDL-associovaná laktonáza, u které byly prokázány antioxidační vlastnosti (Aviram and Rosenblat, 2005; Ng et al., 2005).

V minulosti byla PON1 z hlediska oxidačního stresu klinicky studována především u neinfekčních onemocnění včetně kardiovaskulárních chorob (Chait et al., 2005; McElveen et al., 1986), diabetes mellitus (Mackness et al., 2006), chronického renálního selhání (Dirican et al., 2004), nespecifických střevních zánětů (Boehm D et al., 2009) a elektivních chirurgických výkonů (Kumon et al., 1998). Aktivita PON1 byla stanovena také u pacientů s chronickou infekcí HIV (Parra et al., 2007) nebo Helicobacter pylori (Aslan et al., 2008). U všech těchto stavů došlo ke snížení aktivity PON1. Co se týká sepse, byl popsán pokles aktivity na zvířecím modelu po aplikaci LPS (Feingold et al., 1998). My jsme jako první ukázali významný pokles aktivity PON1 u pacientů v sepsi a její návrat ke kontrolním hodnotám po odeznění klinických příznaků zánětu (Novak et al., 2010b, příloha 2).
3.4 Složení mastných kyselin v lipidech plazmy a erytrocytů

Složení mastných kyselin (FA) v lipidech se mění v průběhu celého života a v rámci specifických situací jako je např. hladovění, stárnutí, těhotenství, dietní zvyklosti a různé nemoci. Tyto změny ve složení FA a jejich metabolismu zároveň ovlivňují odpověď organismu na různé podněty. Jednoduché i složené lipidy plazmy a různých tkání se vyznačují charakteristickým složením FA s měnícím se zastoupením nasycených a nenasycených FA. Podle polohy první dvojné vazby od methylové koncové skupiny (ω pozice) uhlovodíkového řetězce nenasycených FA se odvozuje názvosloví řad n-7, n-9, n-6 a n-3. Řady n-6 a n-3 jsou označením pro polynenasycené FA (PUFA). Člověk a ostatní savci syntetizují pouze nasyčené FA (SFA) a mononenasycené FA (MUFA) řady n-7 a n-9, protože u nich nejsou přítomné enzymy Δ12 a Δ15 desaturázy (přítomné u rostlin), které zajišťují vznik dvojné vazby v pozicích n-6 a n-3 u PUFA. Z tohoto důvodu musí savci získávat esenciální n-6 (kyselina linolová, LA, 18:2n-6) a n-3 (kyselina α-linolenová, ALA, 18:3n-3) PUFA z diety. Z těch potom pomocí delta-5 (FADS1) a delta-6 desaturáz (FADS2) a elongáz jsou syntetizovány více nenasycené FA (Das, 2006).

PUFA obou řad (n-6, n-3) se přednostně nacházejí v sn-2 pozici membránových fosfolipidů a určují biofyzikální vlastnosti buněčných membrán (fluiditu, tloušťku a deformovatelnost), a tak ovlivňují aktivitu membránových proteinů (enzymů, přenašečů a receptorů). Membránové fosfolipidy také slouží jako prekurzory signálních molekul jako jsou např. diacylglyceroly, kyselina fosfatidová, inositol-1,4,5-trifosfát, ceramidy, sfingosin-1 fosfát ikosanoidy, dokosanoidy a endogenní kanabinoidy, které následně zprostředkují přenos buněčných signálů přes hydrofobní membránovou dvojvrstvu do jednotlivých buněčných kompártmentů. Esenciální PUFA řady n-6 a n-3 jsou po desaturaci a elongaci na 20 uhlikové molekuly metabolizovány za vzniku prostaglandinů (PG), thromboxanů (TX), hydroxyeikosatetraenových kyselin (HETE) a leukotrienů (LT) díky enzymově aktivitě cyklooxygenázy (COX) a lipoxygenázy (LOX) (Serhan, 2014). Kyselina arachidonová (AA; 20:4n-6) je hlavním substrátem pro syntézu eikosanoidů. Proto buněčné membrány obsahují ve srovnání s dalšími prekurzory eikosanoidů (např. eikosapentaenovou kyselinou (EPA, 20:5n-3) relativně velké množství AA. Je třeba zmínit, že eikosanoidy produkované z EPA jsou z hlediska zánětu méně potenciální ve srovnání s produkty z AA. EPA a kyselina dokosahexaenová (22:6n-3; DHA) jsou navíc také prekurzory pro syntézu tzv. resolvinů (protektinů, neuroprotektinů, maresinů), které se uplatňují v procesu tlumení zánětu. Když jsou v membránách n-6 PUFA resp. AA, nahrazeny n-3 PUFA, dojde ke kompetici desaturáz,
elongáz, COX a LOX o oba substráty (Mayer and Seeger, 2008; Ott et al., 2011; Poorani et al., 2016). Tato kompetence vede ke snížení syntézy prozánětlivých PGE₂, TXA₂ a LTB₄. Proto je substituce n-3 PUFA např. dietou, doprovázena snížením agregace destiček, prodloužením srážlivosti krve a ovlivněním syntézy zánětlivých eikosanoidů, cytokinů, a dalších zánětlivých a imunitních funkcí (Calder, 2009). Početné studie ukazují na významné změny ve složení FA u kriticky nemocných včetně pacientů se sepsí. Míra oxidace FA, jejich obrat a lipolýza se zvyšuje, což napovídá, že zvýšení mobilizace tukových zásob a zvýšená oxidace FA patří zřejmě mezi základní atributy metabolické odpovědi na stres (Ott et al., 2011; Wolfe et al., 1983; Wolfe et al., 1987). Bylo publikováno, že podíl PUFA v plasmatických lipidech je snížený, zatímco podíl SFA a MUFA je zvýšený u pacientů s popáleninami, prokázaného syndromu akutní dechové tísň (ARDS). Uvedené výsledky naznačují, že za těchto stavů dochází k nedostatku esenciálních FA, který vzniká zřejmě v důsledku zvýšeného oxidacního stresu zvýšeného oxidace eikosanoidů a dokosanoidů a nedostatečného přísunu PUFA v dietě (Kumar et al., 2000; Novak et al., 2010a; Pratt et al., 2001). My jsme pokles n-6 PUFA kompenzovaný MUFA prokázali v průběhu sepsis (Novak et al., 2010a). V další studii jsme publikovali změny v profilu FA u septických a neseptických kritických pacientů se SIRS. Toto srovnání ukázalo, že k poklesu n-6 PUFA a vzestupu MUFA dochází u obou skupin kriticky nemocných pravděpodobně v souvislosti s přítomností zánětu (Novak et al., 2016, příloha 3). Překvapivě jsme podobné změny v profilu FA plasmatických lipidů publikovali i u pacientek s mentální anorexií (Zak et al., 2005, příloha 4).

3.5 Publikované práce

Cílem studií v přílohách 1 - 3 bylo sledovat průběh změn v koncentraci zánětlivých mediátorů, produktů lipidové peroxidace, lipidů plasmy, lipoproteinů, vitaminů, aktivity antioxidačních enzymů a PON1 a profil FA ve fosfolipidech plasmy a erytrocytů v průběhu těžké sepsis. Dále jsme porovnali infekční a neinfekční zánětlivý proces u kriticky nemocných se SIRS z hlediska výše uvedených ukazatelů.

V úvodní fázi studie, která probíhala v rámci Jednotky intenzivní péče (JIP) na 4. interní klinice Všeobecné fakultní nemocnice v Praze, bylo do studie zařazeno 30 pacientů v septickém stavu (SP), 17 neseptických pacientů se SIRS (NSP) párovaných podle věku, pohlaví a APACHE II score (Acute Physiology and Chronic Health Evaluation) a k nim bylo vyhledáno 30 zdravých kontrol párován podle věku a pohlaví (HC). Zdravé osoby byly
definované jako jedinci bez klinických a laboratorních příznaků sepse, zánětu nebo známého onemocnění. U SP byla stanovena diagnóza sepse podle definice Society of Critical Care Medicine/American College of Chest Physicians (SCCM/ACCP) (Levy et al., 2003) společně s následujícími vstupními kritérii: APACHE II skóre >10 (Knaus et al., 1985) a C-reaktivní protein (CRP) v séru >20 mg/l. Vylučovací kritéria platná pro obě sledované skupiny pacientů byla: terapie antioxidanty, chronická dialýza, diabetes mellitus, generalizovaná malignita, imunosupresivní léčba a chemoterapie. Skupina NSP kriticky nemocných pacientů měla jako další vylučovací kritéria přítomnost infekce podle CDC kritérií (Horan et al., 2008) a/nebo přítomnost sepse podle SCCM/ACCP (Levy et al., 2003). Všechna fyziologická a laboratorní data nezbytná pro APACHE II (Knaus et al., 1985) a sekvenční skóre orgánového selhávání (sequential organ failure assessment (SOFA) (Ferreira et al., 2001; Vincent et al., 1998) byla sbírána prospektivně. Pacienti v obou skupinách, SP a NSP, byli klasifikováni jako chirurgičtí a nechirurgičtí podle hlavní diagnózy.

Poslední studie (příloha 4) se týká složení mastných kyselin a non-cholesterol sterolů v plasmě pacientek s mentální anorexií (MA). Tato práce byla do této kapitoly vložena s cílem srovnat analýzy FA v plasmě pacientů se SIRS v akutním stresu při vzplanutí zánětu (příloha 3) a v podmínkách chronického stresu u hladovějících pacientek s MA, kde přítomnost zánětu nebyla dosud jasně prokázána (Solmi et al., 2015).

3.5.1 Zvýšená zánětlivá aktivita se změnami v antioxidační rovnováze v průběhu sepse

Publikační příloha 1

Úvod

Zánětlivý proces je přísně regulovanou, v zásadě prospěšnou obrannou odpovědí organismu na jakékoliv poškození. U pacientů v těžké sepsi, nebo septickém šoku se však proces zpravidla vymyká regulaci, což vede k vyčerpání funkčních rezerv až k vývoji...

Cíl a metodika

Tato studie popisuje zánětlivý proces u pečlivě vybraných pacientů v těžké sepsi nebo v septickém šoku během prvních 24 hod po přijetí na JIP, potom sedm dní po vzniku onemocnění a nakonec sedm dní po klinickém zotavení (odeznění klinických příznaků sepsi). Sledování pacientů v období po odeznění klinických příznaků SIRS nám umožnilo zachytit data od pacientů v podobné fázi rekonvalescence bez ohledu na délku trvání vlastní sepsi.

Analyzovali jsme změny v koncentraci oxidovaných LDL, stav antioxidační kapacity, spolu s produkcí zánětlivých cytokinů a koncentraci lipoproteinových částic. Jako kontrolu jsme použili věkově a pohlavím odpovídající zdravé jedince.

Výsledky

Ukázali jsme, že změny pozorované u pacientů v průběhu sepsi, přetrvávají v případě některých analyzovaných parametrů i v období po klinickém zotavení. Pokusili jsme se hledat korelace s klinicky dobře sledovatelnými a ekonomicky dostupnými parametry. Zvýšená koncentrace některých cytokinů a antioxidantů pozorovaná ve fázi po klinickém zotavení byla v těsné korelací s přetrvávající sníženou koncentrací HDL-C a albuminu.

Závěr

Konstatovali jsme, že u pacientů, u kterých po klinickém zotavení přetrvávají snížené koncentrace HDL-C a albuminu, existuje pravděpodobně vyšší riziko sekundárních infekcí. Ukázali jsme tak, že tyto běžně stanovované parametry by mohly být vhodným nástrojem k monitorování stavu, odhadu další prognózy a určení frekvence kontrol v následné péči.
3.5.2 Snížení aktivity paraoxonázy u kriticky nemocných v sepsi

Publikační příloha 2

Úvod

Enzym PON1 je syntetizován v játrech a uvolňován do krve, kde dochází k jeho asociaci s HDL, což je zásadní pro udržení jeho normální sèrové aktivity. Hlavní význam PON1 spočívá v tom, že chrání buňky a lipoproteiny proti oxidativnímu poškození (Precourt et al., 2011).

Cíl a metodika

Stanovit aktivitu PON1 u 30 septických pacientů během prvních 24 hod. po přijetí na JIP a po odeznění klinických příznaků sepse jako kontrola byly zdravé kontroly spárované podle věku a pohlaví.

Výsledky

Jako první jsme ukázali, že v sepsi aktivita PON1 je významně snížená a vrací se ke kontrolním hodnotám ve fázi regrese zánětu. V této studii jsme našli těsnou korelaci mezi poklesem aktivity PON1 a vzestupem CRP.

Závěr

V příloze 1 prezentujeme, že během akutní fáze ztrácí HDL apolipoprotein A1, který je nahrazován SAA. Zároveň se snížuje koncentrace cholesterolu. PON1 patří mezi proteiny akutní fáze zánětu. Změny v lipidovém a proteinovém složení HDL způsobené zánětem a oxidačním prostředím indukovaném sepsí jsou provázeny zvýšenou tvorbou volných radikálů v okolí PON1. To vede ke snížení její aktivity v oběhu. Z našich výsledků, prezentovaných v přílohách 1 a 2 vyplývá, že stanovení aktivity PON1 může být užitečným ukazatelem progrese a následně odeznění septického stavu u kriticky nemocných.
3.5.3 Změny spektra mastných kyselin v plazmatických fosfolipidech u kriticky nemocných

Publikační příloha 3

Úvod

U kriticky nemocných představují změny v lipidovém metabolismu sníženou absorpci lipidů a zvýšenou lipolýzou v tukové tkáni. Nízká koncentrace LDL-C a HDL-C může dokonce předpovídat přežití pacienta. Významnou roli hrají také změny v množství a kvalitě FA v lipidech plasmy a tkání.

Cíl a metodika

V této studii jsme analyzovali změny ve složení mastných kyselin ve fosfolipidech plasmy a erytrocytů u septických a neseptických kriticky nemocných se SIRS s podobnou závažností onemocnění. Chtěli jsme rozlišit dopad infekce a samotného zánětlivého procesu. Spárovali jsme 13 pacientů v těžké sepsi (SP) 13 kriticky nemocnými neseptickými pacienty se SIRS (NSP) podle věku, pohlaví a APACHE II skóre prvních 24 hod po přijetí na JIP. Jako kontrola bylo do studie zapojeno 13 zdravých jedinců párovaných podle věku a pohlaví (HC). Stanovili jsme koncentraci cytokinů, lipidů plasmy, HDL-C, albuminu, produktů lipidové peroxidace a složení FA ve fosfolipidech plasmy a erytrocytů.

Výsledky

Ukázali jsme, že u obou skupin pacientů došlo k snížení podílu n-6 PUFA ve fosfolipidech plasmy v negativní korelaci s MUFA, CRP, IL-6, konjugovanými dieny, HDL-C a albuminem. Pozorovaný pokles poměru AA/DHA v plazmatických fosfolipidech byl způsoben zvýšeným podílem DHA.

Závěr

Změny v profilu FA pozorované u obou skupin kritických pacientů korelují s intenzitou zánětu. Navíc, pokles n-6 PUFA pozorovaný ve fosfolipidech plasmy pozitivně koreloval s koncentrací HDL-C a albuminu. Tyto biochemické parametry lze tedy brát v úvahu při posouzení stavu PUFA u kriticky nemocných.
3.5.4 Složení mastných kyselin a necholesterolových esterů u mentální anorexie

Publikační příloha 4

Úvod

Mentální anorexie (MA) je model prostého hladovění, u kterého se vyskytuje sekundární hyperlipoproteinemie

Cíl a metodika

Stanovit u pacientek s MA zastoupení FA v hlavních třídách plasmatických lipidů koncentraci lanosterolu jako ukazatele de novo syntézy cholesterolu a β-sitosterolu jako ukazatele resorpce endogenního cholesterolu. U 16 pacientek s MA a 25 zdravých kontrol jsme stanovili koncentraci celkového cholesterolu, TAG, kampesterolu a β-sitosterolu, a složení FA v plasmatických TAG, cholesterolesterech a fosfatidylcholinu.

Výsledky

u pacientek s MA se podíl n-6 PUFA v plasmatických lipidech snížil a byl kompenzován zvýšeným zastoupením MUFA, eventuálně SFA. Koncentrace kampesterolu a β-sitosterolu se zvýšila a lanosterolu se neměnila.

Závěr

Konstatovali jsme, že změny v plasmatických lipidech a lipoproteinech pozorované u MA jsou pravděpodobně spojeny se zvýšenou lipogenezou a absorpcí exogenního cholesterolu, sníženým katabolismem lipoproteinů bohatých na TAG a normální syntézou cholesterolu. Pokud jde o změny v zastoupení FA v jednotlivých třídách plasmatických lipidů, pokles n-6 PUFA může být výsledkem sníženého příjmu PUFA v dietě. Přichází také v úvahu zvýšená lipoperoxidace (Tajiri et al., 2006), provázená zvýšenou delta-9 desaturací jako výsledek nutričních a hormonálních změn u AN. V předchozí studii (příloha 3) jsme podobné změny v profilu FA plasmatických lipidů jako u MA pozorovali také u pacientů se SIRS v prvních 24 hod. po přijetí na JIP. U těchto pacientů jsme změny ve složení FA diskutovali v souvislosti s akutním stresem spojeným se zvýšenou produkcí zánětlivých cytokinů, produktů lipidové peroxidace, s nerovnováhou jak enzymové, tak neenzymové antioxidační kapacity a malnutricí, spojenou se sníženou dostupností PUFA v dietě. V případě MA jde o chronický stres způsobený také malnutricí s nedostatečným příspěvem PUFA. Pokud jde o
ostatní parametry, meta-analýza 22 studií prokázala, že pacienti s MA měli ve srovnání se zdravými kontrolami zvýšené hladiny prozánětlivých cytokinů, (TNF-α, IL-6 and IL1-β), zatímco u nich byla snížená koncentrace CRP a receptoru pro IL6, exprese receptorů pro TNFα se neměnila. V dalších 11 studiích na MA nebyly změny v koncentracích prozánětlivých cytokinů pozorovány (Solmi et al., 2015). Pokud jde u MA o přítomnost oxidačního stresu, byla pozorována zvýšená koncentrace produktů lipidové peroxidace (Tajiri et al., 2006), redukce v aktivitě NO syntézy. Zároveň však byly publikovány konfliktní výsledky týkající se aktivity SOD a katalázy (Moyano et al., 1999; Rodrigues et al., 2010). I když se v poslední době stále častěji potvrzuje přítomnost zánětu u psychiatricky nemocných, výsledky publikované na pacientech s MA nejsou zatím jednoznačné.
4 Diagnostika malnutrice a indikace nutriční péče v klinické praxi

4.1 Nutriční skríninig a vyšetření stavu výživy

Vyhledávání osob v nutričním riziku, nutriční skríninig (angl. nutrition screening), hodnocení stavu výživy a nutriční intervence u pacientů s podvýživou tvoří hlavní součásti nutriční péče, viz obr. 2. Nutriční skríninig je proces identifikace pacientů, kteří již trpí malnutricí nebo jsou v riziku jejího rozvoje a u kterých je následně indikované podrobné vyšetření nutričního stavu.

Tento proces je v řadě zemí včetně České republiky součástí akreditačních standardů pro lůžka akutní péče do 24 hodin od přijetí pacienta k hospitalizaci (Guenter et al., 2015). Cílem následného vyšetření nutričního stavu je potvrzení přítomnosti malnutrice. Součástí tohoto vyšetření může být i doporučení opatření s cílem zlepšení nutričního stavu výživy (např. dietní opatření, enterální nebo parenterální výživa, další lékařské vyšetření nebo

Obr. 2: Algoritmus diagnostiky malnutrice a indikace nutriční péče. Upraveno podle (Mueller et al., 2011).
Intervence) nebo doporučení intervalu dalšího posouzení rizika rozvoje malnutrice. Vyšetření nutričního stavu má vždy obsahovat minimálně následující položky: osobní anamnéza, nutriční

Tab. 2: Standardizované nástroje pro nutriční skríning (upraveno podle (Kondrup et al., 2003; Mueller et al., 2011).

<table>
<thead>
<tr>
<th>Nástroj</th>
<th>Antropometrické parametry a/nebo příjem výživy</th>
<th>Závažnost onemocnění</th>
<th>Jiné (fyzikální nebo psychologické proměnné nebo příznaky)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birmingham Nutrition Risk Score (Reilly et al., 1995)</td>
<td>Ztráta tělesné hmotnosti, BMI, chuť k jídlu a schopnost se najíst</td>
<td>Stresový faktor, závažnost onemocnění</td>
<td></td>
</tr>
<tr>
<td>Malnutrition Screening Tool (Ferguson et al., 1999)</td>
<td>Chuť, nechtěný úbytek tělesné hmotnosti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malnutrition Universal Screening Tool (Stratton et al., 2004)</td>
<td>BMI, změna hmotnosti</td>
<td>Přítomnost akutního onemocnění</td>
<td></td>
</tr>
<tr>
<td>Maastricht Index (Kuzu et al., 2006)</td>
<td>Procento ideální tělesné hmotnosti</td>
<td>Albumin, prealbumin, počet lymfocytů</td>
<td></td>
</tr>
<tr>
<td>Nutrition Risk Classification (Kovacevich et al., 1997)</td>
<td>Ztráta tělesné hmotnosti, procento ideální tělesné hmotnosti, příjem potravy</td>
<td></td>
<td>Funkce GIT</td>
</tr>
<tr>
<td>Nutritional Risk Index (Veteran Affairs TPN Cooperative Study Group, 1991)</td>
<td>Aktuální a obvyklá tělesná hmotnost</td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td>Nutritional Risk Screening 2002 (Kondrup et al., 2003)</td>
<td>Ztráta tělesné hmotnosti, BMI, příjem potravy</td>
<td>Diagnóza (závažnost)</td>
<td>Věk</td>
</tr>
<tr>
<td>Prognostic Inflammatory and Nutritional Index (Ingenbleek and Carpentier, 1985)</td>
<td>Aktuální a obvyklá tělesná hmotnost</td>
<td>Albumin, prealbumin, C-reaktivní protein, orosomukoid</td>
<td></td>
</tr>
<tr>
<td>Prognostic Nutritional Index (Buzby et al., 1980)</td>
<td>Kožní řasa nad tricepsem</td>
<td>Albumin, transférin, testy kožní přecitlivosti</td>
<td></td>
</tr>
<tr>
<td>Simple Screening Tool (Laporte et al., 2001)</td>
<td>BMI, procento ztráty tělesné hmotnosti</td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td>Short Nutrition Assessment Questionnaire (Kruizenga et al., 2005)</td>
<td>Recentní změny tělesné hmotnosti, chuť k jídlu, indikace pitné nebo sondové enterální výživy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24
Z výsledků velké epidemiologické studie u chirurgických pacientů víme, že u pacientů, kteří jsou ve špatném nutričním stavu, dochází násobně častěji k výskytu komplikací (proleženiny 4x, infekce v ráně 2x, infekce intravaskulárních katétru a implantátů 16x a močové katérové infekce 5x) (Fry et al., 2010). Malnutrice má vliv i na potřebu opakovaných hospitalizací (Allaudeen et al., 2011; Kassin et al., 2012; Mudge et al., 2011). Velká retrospektivní studie provedená u 10 000 konsekutivních příjmů zaznamenala 17% výskyt opětovných přijetí do 30 dnů od propuštění. Mezi parametry, se kterými se pojilo významně vyšší riziko opakované hospitalizace, patřil především pokles tělesné hmotnosti (Allaudeen et al., 2011). Tyto poznatky mimo jiné potvrzují koncept tzv. posthospitalizačního syndromu na jehož vzniku se malnutrice podílí. Krumholz o něm hovoří jako o období zvýšeného rizika opakované hospitalizace před 30. dnem od propuštění (Krumholz, 2013).

<table>
<thead>
<tr>
<th>Nástroj</th>
<th>Antropometrické parametry a/nebo příjem výživy</th>
<th>Závažnost onemocnění</th>
<th>Jiné (fyzikální nebo psychologické proměnné nebo příznaky)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zařazenínutričního stavu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini Nutritional Assessment (Guigoz, 2006)</td>
<td>Tělesná hmotnost a výška, střední obvod paže a lýka, příjem potravy, chuť k jídlu, schopnost se najíst, resp. potřeba krmení</td>
<td>Albumin, prealbumin, cholesterol, počet lymfocytů</td>
<td>Vlastní pocit vnímání stavu výživy a zdraví</td>
</tr>
<tr>
<td>Subjective Global Assessment (Detsky et al., 1987)</td>
<td>Změny tělesné hmotnosti, změny příjmu potravy</td>
<td>Základní diagnóza, míra stresu</td>
<td>Fyzikální vyšetření (podkožní tuk, ztráta svalstva, přítomnost otoků kotníků nebo v sakrální oblasti anebo ascites), funkční kapacita, gastrointestinální obtíže</td>
</tr>
</tbody>
</table>
4.2 Nutriční intervence

Při neadekvátním příjmu per os je metodou volby enterální výživa a pouze v případech nefunkčního nebo nepřístupného gastrointestinálního systému volíme parenterální výživu (Bozzetti and Forbes, 2009; Lochs et al., 2006; McClave et al., 2016). Na druhou stranu při správné technice má parenterální výživa relativně málo komplikací a není třeba snížit komplikací a není třeba snížit komplikací v indikovaných případech těžších nutričních nedostatků váhat. Cévní přístup je u hospitalizovaných a zejména komplikovaných pacientů již většinou zaveden z jiné než nutriční indikace. Přesto je vhodné kvůli prevenci infekčních a trombotických komplikací vhodné vyčlenit u vícecestných centrálních žilních katetru jedno lumen pouze pro podávání výživy. U periferní parenterální výživy, která je omezena zejména osmolaritou podávané směsi se snažíme často měnit přístupy, používat tenké kanyly v žilách s dobrým průtokem krve. U lumen pro parenterální výživu, pokud možno zásadně neprovádíme krevní odběry a minimalizujeme i vstupy. Pro jednoduchost volíme většinou firemní vaky s nízkým poměrem obsahu energie [kcal] a bílkovinného dusíku [g] – okolo 100 : 1. Celkově je parenterální výživa ošetřovatelsky velmi jednoduchá a při zvládnutí rizika infekcí jsou hlavním problémem možné metabolické komplikace ve smyslu realimentačního syndromu s poklesem iontů (K, Mg, P). U výrazně katabolických pacientů případně může dojít k přeživení s hyperglykemii a hypertriglyceridemii a tím ke zvýšení oxidativního stresu.

4.3 Publikované práce

4.3.1 Implementace skríninku nutričního rizika NRS-2002

Publikační příloha 5

Úvod

Dosavadní výsledky studií ukázaly, že 20-50% hospitalizovaných pacientů trpí podvýživou. Podvýživa má tendenci se zhoršovat i po přijetí do nemocnice a má vztah ke zvýšené morbiditě a mortalitě, prodlouženému pobytu v nemocnici a zvýšeným výdajům za léčbu. Nemocniční podvýživa může být úspěšně intervenována se zlepšením klinických
výstupů. Problémem je časté přehlédnutí této diagnózy. Dalším problémem je také často neadekvátní nutriční intervence.

Cíl a metodika

Vyhodnotili jsme skríning nutričního rizika (NRS-2002) ve vztahu ke klinickým výstupům.

Metody: V rámci mezinárodní studie byl NRS-2002 prováděn na 26 nemocničních odděleních (chirurgie, interna, onkologie, intenzivní péče, gastroenterologie, geriatrie) v Rakousku, České republice, Egyptu, Německu, Maďarsku, Libanu, Libyi, Polsku, Rumunsku, Slovensku Španělsku a Švýcarsku. Prospektivním způsobem vybraní pacienti byli sledováni od přijetí a dále během hospitalizace. Byla sbírána data nutričního rizika, komplikací, mortality a délky pobytu v nemocnici. Byly analyzovány korelace mezi nutričním rizikem a klinickými výstupy včetně testování na ovlivňující faktory (věk, komorbidity, diagnóza, chirurgický zákrok, nádor a jeho oblast) pomocí regresní analýzy.

Výsledky

Z 5051 pacientů bylo 32,6% v nutričním riziku podle NRS-2002. U těchto pacientů bylo více komplikací, měli vyšší mortalitu a delší pobyt v nemocnici než pacienti bez tohoto rizika.

Závěr

Jednotlivé komponenty NRS-2002 jsou nezávislými prediktory zhoršené prognózy.

4.3.2 Postpylorická aplikace enterální výživy a výskyt gastroezofageálního refluxu a mikroaspirací u kriticky nemocných

Publikační příloha 6

Heyland D.K., Drover J.W., MacDonald S., Novák F., Lam M.: Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: Results of a randomized controlled trial. Critical Care Medicine 29(8), 2001, 1495-1501

Úvod

Nozokomiální infekce jsou vážným problémem v péči o kriticky nemocné pacienty. Dysfunkce horní části gastrointestinálního traktu má zásadní vliv na patogenezi nozokomiální pneumonie. Gastrická paréza s poruchou vyprazdňování žaludku zvyšuje v kombinaci s podáváním enterální výživy riziko kolonizace žaludečního obsahu patogenními mikroorganismy. Tento mechanismus hraje významnou úlohu při kontaminaci tracheálního
sekretu a rozvoji nozokomiální pneumonie. Je otázkou, zda podávání enterální výživy postpyloricky do tenkého střeva sníží gastroezofageální reflux a plicní mikroaspirace.

Cíl a metodika

Cílem bylo určit do jaké míry postpylorická aplikace výživy ve srovnání s prepylorickou redukuje výskyt gastroesofageálního refluxu a mikroaspiraci do dolních dýchacích cest u kriticky nemocných pacientů.

Jde o randomizovanou studii na smíšené JIP univerzitní nemocnice. Bylo zařazeno 33 pacientů, kteří byli náhodně rozděleni do 2 intervenčních skupin, pre- a postpylorické sondové enterální výživy. Podmínkou zařazení do studie byl předpoklad, že doba umělé plicní ventilace více než 72 hod. Pacientům se v enterální výživě aplikovalo technecium 99 (99Tc) koloid každých 6 hod po dobu prvních tří dnů studie. Během aplikace radioaktivně značené výživy byly každých 6 hodin odebrány vzorky vzorky aspirátu z orofaryngu a trachey a měřena radioaktivita. Gastroezofageální reflux a mikroaspirace byly definovány jako zvýšení radioactivity nad 100 impulsů/min/g aspirátu.

Výsledky

Pacienti živení do žaludku měli více epizod regurgitací do jícnu (39.8% vs. 24.9%) a trend k více mikroaspiracím (7.5% vs. 3.9%) ve srovnání s pacienty živenými pospyloricky. Pacienti, kteří měli gastroesofageální reflux měli i vyšší výskyt aspirací, než pacienti bez refluxu (poměr rizik 3.2; p< 0.05).

Závěr

Postpylorická enterální výživa je spojena s redukcí výskytu gastroenzoofageálního refluxu a trendem ke snížení mikroaspirací. Lze předpokládat, že tento druh výživy snižuje výskyt pneumonie. Tento předpoklad by však bylo nezbytné potvrdit na v dostatečně velkém souboru pacientů.

4.3.3 Enterální výživa obohacená o imunomodulační složky u kriticky nemocných

Publikační přílohy 7 a 8 (v těchto přílohách jsou publikovány výsledky jedné studie).

Úvod

Cíl a metodika

Cílem bylo zkoumat vztah mezi podáváním enterální výživy doplněné o nutrienty s imunomodulačními účinky, výskytem infekčních komplikací a mortalitou u kriticky nemocných pacientů.

Zdrojem dat byly články vybrané z databází MEDLINE, EMBASE, Biosis a CLINICAL, které byly publikované mezi roky 1990 a 2000. Dalšími zdroji dat byly „Cochrane Controlled Trials Register“ (1990 – 2000), osobní složky autorů, abstrakta, a relevantní citace z článků. Bylo identifikováno celkem 326 titulů, abstraktů a článků, ze kterých byla prováděna další selekce. Do analýzy byly zahrnuty primární studie, pokud se jednalo o randomizované intervenční studie u kriticky nemocných nebo chirurgických pacientů, kterým byla podávána enterální výživa doplněná argininem, glutaminem, nukleotidy a n-3 PUFA, nebo jejich kombinace. Testovali jsme vliv na infekční komplikace a mortalitu ve srovnání se standardní enterální výživou. Metodologická kvalita jednotlivých studií byla skórována a potřebná data byla vybrána dvěma nezávislými výzkumníky.

Výsledky

Ve 22 randomizovaných studiích s celkovým počtem pacientů 2419 byla aplikována imunonutrice ve srovnání se standardní enterální výživou u chirurgických a kriticky nemocných pacientů. Vliv imunonutrice na mortalitu (poměr rizik; RR 1,10; 95% konfidenční interval (CI) 0,93-1,31). Imunonutrice byla asociována s nižší frekvencí infekčních komplikací (RR, 0,66; 95% CI, 0,54-0,80). Zjistili jsme, že studie používající komerční formule s vysokým obsahem argininu vykazovaly signifikantní redukci infekčních komplikací a trend k nižší mortalitě. Studie na chirurgických pacientech ukázaly nižší počet infekčních komplikací ve srovnání se studiemi na kriticky nemocných pacientech. Vysoce kvalitní studie u kriticky nemocných pacientů ukázaly vyšší mortalitu, ale současně nižší frekvenci infekčních komplikací než studie s nižší metodologickou kvalitou.
Závěr

Imunonutrice může snížit výskyt infekčních komplikací, ale nemá vliv na zlepšení celkové mortality. Avšak tento efekt závisí na typu výživy, na populaci pacientů a na metodologické kvalitě studie.

4.3.4 Kritický komentář na téma enterální imunonutrice

Publikační příloha 9

Heyland DK., Novák F.: Enteral immunonutrition reduces infection risk, days on ventilation, and hospital stay in critically ill patients. ACP Journal Club 133(1), 2000, 9

Úvod

Tento článek představuje kritický komentář k meta-analýze výsledků studií enterální imunonutrice publikované kolektivem autorů Beale et al. (Beale et al., 1999). Autoři při sběru dat identifikovali studie z období let 1967 – 1998. Byly zařazeny pouze randomizované, kontrolované studie v angličtině u kriticky nemocných na enterální výživě do sondy, ve kterých byla srovnávána standardní enterální výživa s enterální výživou obohacenou o kombinace argininu, glutaminu, nukleotidů a omega-3 PUFA a které zaznamenávaly klinicky významné výstupy. V závěrech doporučili indikaci imunonutrice u široké populace kriticky nemocných.

Závěr

Náš komentář vychází z faktu, že autoři meta-analýzy opřeli své závěry pouze o výsledky pozitivního vlivu na délku pobytu pacientů v nemocnici a snížený výskyt infekčních komplikací, přičemž úplně ignorovali nejasné výsledky týkající se úmrtnosti. Navíc jsme podrobili kritice použitou metodiku z hlediska nedostatečně širokého výběru relevantních publikací. V závěru jsme varovali před nekritickým doporučením této výživy pro všechny kriticky nemocné pacienty bez dalších studií.

4.3.5 Podávání glutaminu u kriticky nemocných

Publikační příloha 10

Úvod

Aminokyselina glutamin hraje ústřední úlohu v transportu dusíku v těle a je zdrojem energie pro rychle se dělící buňky střeva a imunitního systému. Glutamin má mnoho dalších zásadních metabolických funkcí. Byla publikována řada malých studií s podáváním glutaminu u kriticky nemocných, které však nedosáhly signifikantních výsledků.

Cíl a metodika

Sledovali jsme vztah mezi suplementací glutaminem, dělkou hospitalizace, frekvencí komplikací a mortalitou u kriticky nemocných pacientů a u pacientů, kteří byli po chirurgickém zákroku.

Vyhledávání v elektronických a osobních databázích, konferenčních abstraktech, relevantních časopisech a přehledech literatury. Do základního výběru jsme získali 550 titulů, abstrakt a článků. Primární studie byly zahrnuty, pokud se jednalo o randomizované intervenční studie u kriticky nemocných nebo chirurgických pacientů, které hodnotily vliv glutaminu ve srovnání se standardní nutriční podporou ve vztahu ke klinickým výstupům.

Výsledky

Bylo analyzováno 14 randomizovaných studií, které srovnávaly suplementaci glutaminem u chirurgických nebo kriticky nemocných pacientů. Když byly agregovány výsledky úmrtnosti, ukázalo se, že suplementace glutaminem je spojena s relativním rizikem (RR) 0,78; 95% konfidenční interval (CI) 0,58-1,04). Suplementace glutaminem byla spojena s nižší frekvencí výskytu infekčních komplikací (RR, 0,81; 95% CI, 0,64-1,00) kratší hospitalizací (-2,6 dní; 95% CI, -4,5 až -0,7).

Závěr

Suplementace glutaminem je u chirurgických pacientů asociovaná s redukcí frekvence infekčních komplikací a zkrácením pobytu v nemocnici. Současně nebyl prokázán nežádoucí vliv na mortalitu. Suplementace glutaminem u kriticky nemocných pacientů by mohla být asociována s redukcí komplikací a frekvence úmrtí. Největší přínos byl pozorován u pacientů, kteří dostávali vyšší dávky glutaminu v parenterální výživě.

4.3.6 Péče o pacienty s dysfagií po cévní mozkové příhodě

Publikační příloha 11
Úvod

Cěvní mozkové příhody často doprovází rozvoj většinou přechodné poruchy polykání, dysfagie. Tato porucha, pokud není včas rozpoznána, významně zvyšuje riziko vzniku nozokomiálních komplikací, zejména infekcí a má i vliv na přežití pacientů (Wirth et al., 2013). V současné době existuji kvalitní standardizované nástroje pro vyhledávání pacientů s dysfagii, které umožňují včas rozpoznat riziko komplikací a zahájit adekvátní léčebná opatření (Trapl et al., 2007). Péče o pacienty s CMP je soustředěna na specializovaná pracoviště, optimálně v rámci tzv. iktových center. Dosud neexistoval soubor doporučení pro skrínin, vyšetření a péči o pacienty s dysfagí po cévní mozkové příhodě v České republice.

Cíl a metodika

Na základě konsenzu multiprofesní pracovní skupiny zdravotníků vytvořit standard léčebného plánu pro pacienty po akutní CMP. Práce ve skupině se účastnili zástupci Cerebrovaskulární sekce České neurologické společnosti ČLS JEP, Společnosti klinické výživy a intenzivní metabolické péče ČLS JEP, České společnosti otorinolaryngologie a chirurgie hlavy a krku ČLS JEP a Asociace klinických logopedů ČAS.

Výsledky

Podařilo se vymezit věcný rámec problematiky a stanovit předpoklady pro poskytování péče u pacientů po cévní mozkové příhodě. V další části je popsán proces péče od přijetí pacienta až předání do následné péče. Léčebný plán obsahuje detailní postup skríninu, vyšetření a algoritmus postupu u pacientů s detekovanou poruchou polykání včetně vyšetření stavu výživy a zavedení nutriční péče.

Závěr

Podařilo se vypracovat standard léčebného plánu péče o pacienty s dysfagí po cévní mozkové příhodě, který obsahuje souhrn doporučení na základě konsenzu odborníků několika lékařských specializací a zdravotnických profesí. Klíčovým prvkem je systém spolupráce ošetřujícího lékaře a sestry s klinickým logopedem a nutričním terapeutem.
4.3.7 Vliv nutričního stavu na prognózu pacientů s pokročilým nádorem jícnu na multimodální léčbě

Publikační příloha 12

Úvod

Pacienti s pokročilým nádorem jícnu mají velmi špatnou prognózu, i když se podaří provést radikální chirurgický zákrok. Meta-analýza potvrdila zlepšení výsledků přežití u těchto pacientů po neoadjuvantním podání chemoradioterapie (CRT) s rozdílem 13% po 2 letech. Nicméně bylo zaznamenáno vyšší riziko pooperačních úmrtí (Gebski et al., 2007).

Cíl a metodika

Cílem bylo sledovat dopad klinických a nutričních faktorů na celkové přežití a časový průběh progrese nemoci u pacientů s karcinomem jícnu léčených neoadjuvantní CRT a chirurgickou resekcí.

Retrospektivně jsme zaznamenávali a analyzovali klinické a nutričních parametry (performance status, změna tělesné hmotnosti a nutriční faktory) před a po CRT. Dále jsme sledovali těži dysfagie, potřebu a způsob nutriční podpory a sérum albumin. Analyzovali jsme vliv těchto parametrů na přežívání a dobu do progrese nemoci.

Výsledky

Průměrná ztráta hmotnosti sledovaná od nástupu nemoci do zahájení terapie u 107 pacientů byla 9,7% a v průběhu CRT se zvýšila o další 3%. Negativní vliv na přežití byl prokázán s horším performance status, těžké dysfagie, nezbytnosti zavedení nasogastrické sondy, vyšší než průměrné ztráty hmotnosti před zahájením léčby, > 5% ztráty hmotnosti během CRT a hladin sérového albuminu < 35 g/l kdykoli v průběhu sledování. Pacienti, kteří dostávali perorální nutriční doplňky, lépe snášeli plné dávky CRT a radikální resekcí než ti, kteří dostali pouze výživová doporučení. Nízká hladina sérového albuminu, nutnost zavedení nasogastrické sondy a ztráta hmotnosti před zahájením léčby byly nezávislými prognostickými faktory přežití. Zatímco hladina sérového albuminu a nutnost aplikace nasogastrické sondy po CRT byly prognostickými faktory pro čas do progrese nádorového onemocnění.
Závěr
Hladina sérového albuminu může sloužit jako vhodný prognostický faktor pro posouzení prognózy pacientů s karcinomem jícnu, kteří jsou léčeni neoadjuvantní CRT a chirurgickým výkonem. Vhodná nutriční podpora těchto pacientů zvyšuje pravděpodobnost absolvovat plnou dávku CRT a následný radikální chirurgický výkon.

4.3.8 Plazmatické hladiny stopových prvků u pacientů na domácí parenterální výživě

Publikační příloha 13

Úvod
Základním předpokladem pro domácí parenterální výživu (DPV) je dobře vyvážené složení jednotlivých nutričních komponent, které pacientům zabezpečí fyziologické potřeby. Jedná se zejména o množství tekutin, makronutrientů v podobě sacharidů, aminokyselin a tuků, dále biogenních prvků, stopových prvků a vitaminů. Zatímco dosažení rovnováhy mezi dodávkou a potřebami v případě tekutin, zdrojů energie a biogenních prvků ve směsných (all-in-one) váčích nečiní problém, v případě stopových prvků vitaminů, které jsou k dispozici jen ve směsných preparátech, může být poměrně obtížné nastavit správnou substituci podle individuálních potřeb.

Cíl a metodika
Stanovili jsme koncentrace zinku (Zn), mědi (Cu), železa (Fe), selenu (Se) v krevní plasmě a manganu v celé krvi u pacientů na dlouhodobé DPV.

Analyzevali jsme vzorky 68 pacientů na dlouhodobé DPV (4-96 měsíců). Nejčastější indikací k DPV v souboru byl syndrom krátkého střeva. Byly zaznamenány denní dávky Zn, Cu, Fe, Se a Mn v posledních 3 měsících. Laboratorní hodnoty pacientů jsme srovnávali se zdravými kontrolami (HC).

Výsledky
Koncentrace Mn v celé krvi byly zvýšené, zatímco koncentrace Se v krevní plasmě snížené u pacientů na DVP ve srovnání s HC. Mezi pacienty a kontrolami jsme nepozorovali
signifikantní rozdíly v koncentracích Zn, Cu a Fe. Pacienti s cholestázou (n=16), měli signifikantně vyšší koncentraci Mn ve srovnání s pacienty bez cholestázy.

Závěr

Hladiny stopových prvků u pacientů na DPV je třeba průběžně dlouhodobě monitorovat a současně upravovat denní dávky substituce těchto mikronutrientů. Zejména u pacientů s cholestázou by mělo být dávkování pečlivě upravováno. Diskuze o optimálních denních doporučovaných dávkách Mn u DPV pacientů je velmi důležitá. Z hlediska klinické praxe by byla velmi užitečná dostupnost substitučních preparátů stopových prvků bez mangangu.

4.3.9 Zvýšené dávky rybího oleje ovlivňují zánětlivou odpověď u pacientů na domácí parenterální výživě

Publikační příloha 14

Úvod

Intravenózní lipidové emulze (LE) jsou důležitou komponentou dlouhodobé domácí parenterální výživy (DPV). Systematické přehledy intervenciálních klinických studií u pacientů na DPV, které srovnávají původně používanou LE se sójovým olejem (Intralipid) s LE, která obsahovala olivový olej (ClinOleic), nebo LE obohacené rybími oleji (Lipoplus, SMOFLipid). Z těchto dat vyplývá možný benefity při používání těchto alternativních LE. Navzdory novým poznatkům, dosud neexistují jasná klinická doporučení pro specificky cílenou aplikaci LE pro DPV. Zejména jsou potřebné další studie tkající se eskalace n-3 PUFA.

Cíl a metodika

Sledovat vliv LE s různým podílem n-3 PUFA na složení mastných kyselin ve fosfolipidech erytrocytů, koncentraci pro-zánětlivých cytokinů v séru a na in vitro produkci cytokinů u pacientů na DPV s chronickým střevním selháním.

Použili jsme cross-over uspořádání viz obr. 3. V náhodně určeném pořadí 12 pacientů na DPV podstoupilo tři 10-týdenní cykly izokalorické DPV s LE (ClinOleic™, Lipoplus™, SMOFLipid™ - základní LE). Po 6 týdnech základní LE byl přidán Omegaven™ (rybí olej 10%) po další 4 týdny v každém cyklu. Pacienti byli párováni podle věku a pohlaví s 12
zdravými kontrolami (HC). Stanovili jsme profil FA ve fosfolipidech erytrocytů, koncentraci cytokinů (IL-1β, IL-6, IL-8, TNF-α) v séru a cytokinů v eluátu po in vitro stimulaci lipopolysaccharidem (LPS) v průběhu kultivace leukocytů v celé krvi.

Obr. 3: Schéma uspořádání studie.

Výsledky

U pacientů na DPV jsme pozorovali nižší poměr n-6/n-3 PUFA ve fosfolipidech erytrocytů, zatímco koncentrace IL-6 a TNFα v séru byly vyšší ve srovnání s HC, nezávisle na použité LE. Srovnání základních LE mezi sebou ukázalo, že poměr n-6/n-3 byl ve fosfolipidech erytrocytů nižší u Lipoplus ve srovnání s ClinOleic. Přidání Omegavenu snížilo poměr n-6/n-3 u všech tří cyklů. U pokusu s in vitro stimulaci LPS v průběhu kultivace leukocytů v celé krvi, přidání Omegavenu snížilo produkci IL-1β v případě SMOFlipid a ClinOleic, zatímco produkce IL-6 a TNF-α se snížila jen u režimu se SMOFlipid.

Závěr

Pacienti na DPV měli ve srovnání s HC nižší poměr n-6/n-3 ve fosfolipidech erytrocytů a mírný pro-zánětlivý stav bez ohledu na podávanou LE. Reaktivita leukocytů byla rovněž nezávislá na podávané základní LE a u jednotlivých režimů se nelišila. Teprve eskalovaná dávka n-3 PUFA po podání Omegavenu potlačila produkci pro-zánětlivých cytokinů po in vitro stimulaci LPS. Podávání všech použitých emulzí bylo bezpečné a bylo pacienty dobře tolerováno. Klinická relevance těchto nálezů však zatím není jasná. Jsou potřeba další studie, které by lépe definovaly dávky rybího oleje a načasování jeho podávání v průběhu zánětlivého procesu.
5 Souhrn výsledků

- Sledovali jsme (přílohy 1 a 2) různé parametry v průběhu zánětu u septických pacientů (zanětlivé mediátorý, produkty lipidové peroxidace, lipidy plasmy, lipoproteinì, vitamíny, aktivity antioxidačních enzymů a PON1). Zvýšená koncentrace některých cytokinů a antioxidantů, pozorovaná ve fázi po klinickém zotavení, byla v těsné korlaci s přetrvávající sníženou koncentrací HDL-cholesterolu a albuminu.

- U pacientů se SIRS (příloha 3) jsme v prvních 24 hod. po přijetí na JIP pozorovali snížené zastoupení n-6 PUFA kompenzované zvýšením MUFA ve fosfolipidech plazmy. Tyto změny v profilu mastných kyselin jsme diskutovali v souvislosti s akutním stresem spojeným se zvýšenou produkce zánětlivých cytokinů, produktů lipidové peroxidace, s nerovnováhou jak enzymové, tak neenzymové antioxidační kapacit, spojenou se sníženou dostupností PUFA v dietě. Podobné změny v profilu mastných kyselin plasmatických lipidů jako u pacientů se SIRS (příloha 3) jsme pozorovali také u mentalní anorexie (příloha 4). Ačkoliv se mentalní anorexia považuje za model prostého hladování, nelze vyloučit určité paralely s chronickými onemocněními, které provází oxidační stres s nižší intenzitou než u malnutricí u akutních onemocnění.

- Přispěli jsme k validaci nutričního skríningu NRS-2002 (příloha 5) v rámci mezinárodní studie. Jednotlivé parametry velmi dobře korelovaly s klinickými výsledky pacientů napříč diagnostickými skupinami.

- Ukázali jsme, že postpylorická enterální výživa je spojena s redukcí výskytu gastroenzofageálního refluxu a trendem ke snížení mikroaspiraci ve srovnání s prepylorickou (příloha 6). Na základě těchto výsledků jsme vyslovili hypotézu, že tento druh výživy snižuje výskyt ventilátorové pneumonie u kriticky nemocných.

- Vypracovali jsme dva systematické přehledy s meta-analýzami imunomodulační (imunonutriční) enterální a parenterální výživy u kriticky nemocných a elektivních chirurgických pacientů (přílohy 7 - 10). Naše výsledky pomohly formulovat další směř výzkumu. V této oblasti. Díky výsledkům následně provedených klinických studií se výrazně zúžily původně velmi široké indikace pro tento druh výživy. Toto významně ovlivnilo i současná doporučení pro klinickou praxi.
• Spolu s kolegy z ostatních odborných lékařských společností a zdravotnických profesi jsme se podíleli na přípravě aktuálně platných doporučení pro péči o pacienty s dysfagí po cévní mozkové příhodě (příloha 11).

• Pomocí klinického sledování jsme ověřili, že hladina sérového albuminu může sloužit jako prognostický faktor u pacientů s karcinomem jícnu na multimodální terapii (příloha 12). Cílená nutriční podpora u těchto pacientů zvyšuje pravděpodobnost absolvování kompletního léčebného programu.

• U pacientů na domácí parenterální výživě jsme potvrdili problémy se suplementací stopovými prvky, zejména manganu (příloha 13). Tento problém byl výrazný zejména u jedinců s hepatopatií.

• V recenzním řízení je rukopis studie s podáváním různých tukových emulzi u pacientů s chronickým intestinálním selháním na domácí parenterální výživě. U těchto pacientů jsme zjistili mírný pro-zánětlivý stav bez ohledu na podávanou tukovou emulzi. Teprve změněná dávka n-3 PUFA ve formě rybího oleje potlačila produkci pro-zánětlivých cytokinů po in vitro stimulaci lipopolysacharidem. Podávání všech použitých emulzí bylo bezpečné a bylo pacienty dobře tolerováno.
6 Závěr

Ukázali jsme, že běžně stanovované parametry jako je albumin a HDL-cholesteol, které jsou všeobecně uznávanými prognostickými faktory, těsně korelují s mediátory zánětu a produkty oxidačního stresu v různých fázích zánětu. Mohou tak dobře sloužit k dlouhodobému sledování pacientů po zánětlivém inzultu, k odhadu klinického rizika a nastavení frekvence nezbytných kontrol v další péči. Cíleným sledováním a včasnou intervencí těchto rizik i s pomocí vhodně zvolené nutriční podpory pak můžeme zlepšit prognózu pacienta. Tento poznatek jsme ověřili jak u pacientů v akutní péči, tak u chronicky nemocných.

U pacientů s pozitivním nutričním skriningem je vyšetření nutričního stavu nezbytným dalším krokom pro plánování nutriční intervence. Vyšetřovací proces by měl obsahovat hodnocení tělesného složení, funkční diagnostiku svalové síly, test kognitivních funkcí a posouzení obranyschopnosti organismu včetně stanovení intenzity a fáze zánětlivé odpovědi.

Pokud je zjištěna malnutrice a současně existuje předpoklad, že nutriční intervence bude účinná, má tato být neprodleně zahájena. Vždy když je to možné, dáváme přednost zachování přirozeného způsobu příjmu potravy ve formě kvalitní a chutné diety. Další formy nutriční podpory indikujeme podle individuálních potřeb.
7 Použitá literatura

78. Pratt VC, Tredget EE, Clandinin MT, and Field CJ. Fatty acid content of plasma lipids and erythrocyte phospholipids are altered following burn injury. Lipids. 2001;36(7):675-682.

8 Přílohy prací in extenso

8.1 Příloha č.1

8.4 Příloha č.4

Sorensen J., Kondrup J., Prokopowicz J., Schlesser M., Krähenbühl L., Meler R., Libeida M.

and EuroOOPS study group (Novák F.): EuroOOPS: An international, multicentre study to
implement nutritional risk screening and evaluate clinical outcome. Clinical Nutrition 27(3),
2008, 340-349
8.6 Příloha č.6

8.7 Příloha č. 7

8.8 Příloha č.8

8.9 Příloha č. 9

8.10 Příloha č.10

8.11 Příloha č. 11

8.12 Příloha č.12

8.13 Příloha č. 13

8.14 Příloha č. 14

Publikace s IF

Heyland DK., Novák F.: Enteral immunonutrition reduces infection risk, days on ventilation, and hospital stay in critically ill patients. ACP Journal Club 133(1), 2000, 9. **IF = 0.530**

Publikace in extenso bez IF

Novák F.: Enterální a parenterální výživa v prevenci a léčbě malnutrice. Remedia 13(Suppl.1), 2003, S5-S17.

Kapitoly v monografiích

