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Study programme: Computer Science

Study branch: Discrete Models and Algorithms

Prague & Birmingham 2017





I declare that I carried out this doctoral thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this work as
a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In ............ date ................. signature of the author





Title: d-Frames as algebraic duals of bitopological spaces

Author: Tomáš Jakl

Department: Department of Applied Mathematics (Charles University) and School
of Computer Science (University of Birmingham)

Supervisor: Prof. Achim Jung, School of Computer Science
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1
Introduction

Achim Jung and Drew Moshier developed in [JM06] a Stone-type duality theory for
bitopological spaces mostly as a practical tool for solving a particular problem in
the theory of stably compact spaces. By doing so they discovered that the duality of
bitopological spaces and their algebraic counterparts, called d-frames, covers several
of the known dualities such as Stone duality, Priestley duality, and the duality of
topological spaces and frames. Furthermore, they also recognised that bitopological
spaces, or bispaces for short, permit a logical reading strikingly similar to the para-
consistent logic proposed by Nuel Belnap, designed as a logic suitable for computer
reasoning.

In this thesis we aim to take Jung’s and Moshier’s work as a starting point and
fill in some of the missing aspects of the theory. In particular,

1. we investigate basic categorical properties of d-frames. In particular, we show
that they are closed under forming colimits and develop a technique of free
constructions from generators and relations.

2. We give a Vietoris construction for d-frames and show that it generalises the
corresponding known Vietoris constructions for the categories (some of them
mentioned above) that can be naturally viewed as subcategories of our cate-
gory.

3. We investigate the connection between bispaces and a paraconsistent logic and
then develop a suitable (geometric) logic for d-frames based on those ideas.

The point of bitopological techniques is that very often topological spaces or
other structures come naturally, but often not explicitly, equipped with two topolo-

1



2 Chapter 1. Introduction

gies. Specifying the two topologies and expressing some of the properties in bitopo-
logical terms often sheds some light on the problem that we are trying to solve. To
demonstrate this

4. we give new bitopological proofs of some old results in the theory of stably
compact spaces and also, as an application of the d-frame Vietoris construc-
tion, obtain new results concerning powerspace constructions for stably com-
pact spaces.

Before we dive into the actual theory, let us recall some motivations behind the study
of duality theories and their connections to logics.

1.1 On algebraic dualities

Marshall Stone established, in his influential series of papers [Sto36; Sto37a], that
Boolean algebras are in a (dual) correspondence with what we now call Stone spaces.
At the same time, propositional logic is known to be sound and complete with re-
spect to Boolean algebras and so, as a result, Boolean algebras provide a bridge
between propositional logic and its topological semantics:

Stone spaces ←→ Boolean algebras ←→ propositional logic

Under this interpretation, models of the logic correspond to the points of a space
and formulas to the (clopen) sets of models where the formula holds. As we describe
shortly, Stone’s work was generalised in two important ways.

(1) By extending the classes of algebras and spaces: One direction of generalisa-
tions was taken by Stone [Sto37b], Priestley [Pri70] and Esakia [Esa85]. In Priestley’s
case, one replaced Boolean algebras by distributive lattices and obtained a topolog-
ical semantics for positive logic:

Priestley spaces ←→ distributive lattices ←→ positive logic

Because Priestley spaces are zero-dimensional, they do not include many impor-
tant spaces needed for computations, such as the unit interval of reals. This led to
another important generalisation carried out, in stages, by Smyth [Smy92b], Jung-
Sünderhauf [JS96] and Jung-Kegelmann-Moshier [Keg02; JKM99]

stably compact spaces ←→ strong proximity lattices ←→ MLS

where MLS stands for the multilingual sequence calculus.
Alternatively, one can give up finitarity of the algebras and extend the duality to

all topological spaces. Probably the most prominent example of such generalisation
is the dual adjunction between spaces and algebraic structures called frames, intro-
duced by Ehresmann and Bénabou [Bén59; Ehr58] and developed by Isbell, John-
stone, Banaschewski and many others [Isb72; Joh82]. In the dualities mentioned
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above, the link between spaces and algebras is made by a restriction to an appro-
priate collection of open sets; frames constitute an immediate approach to space of
places axiomatizing the lattice behaviour of all open sets. Such point-free spaces are
more general and hence we have, instead of a duality, an adjunction.

topological spaces
adj.

frames ←→ geometric logic

Geometric logic, in the diagram, is a logic with strong connections to theoretical
computer science. This comes from Smyth’s insight [Smy83] that open sets can be
viewed as observable properties or, from the point of view of computability theory,
semidecidable properties. These ideas motivated Abramsky [Abr87a; Abr87b] to
build his work around the duality of spaces and frames where he systematically
relates a topological semantics with a program logic.

(2) By strengthening the logic. The second approach to generalisations of Stone’s
work is by extending Stone duality so that it provides a topological semantics for a
more expressive logic. Jónnson and Tarski [JT51], gave an example of such extension
which in turn gives a topological semantics to modal logic (see also [BRV01]):

descriptive general frames1 ←→ modal Boolean algebras ←→ modal logic

This correspondence can be well explained in categorical terms; descriptive general
frames are equivalently represented as coalgebras of Vietoris functor V and modal
Boolean algebras as algebras of a functor M which, morally, is an algebraic counter-
part to V. This means that the duality between Stone spaces and Boolean algebras
lifts to a duality of coalgebras and algebras over those categories [Abr05b; KKV04]:

Coalg(V) ←→ Alg(M) ←→ modal logic

In fact, the appropriate reincarnations of V and M exist also for the other dualities
discussed in (1) and match modal extensions of the corresponding logics [VV14;
BBH12].

Apart from applications in modal logics, Vietoris constructions found many ap-
plications also in the semantics of programming languages for modelling non-de-
terminism [Abr87b; Plo76]. This comes from the fact that the Vietoris functor V

provides a topological variant of the powerset functor [Vie22] and so a (continuous)
step function X → V(X) represents a non-deterministic choice of the next state.

1.2 On d-frames

It was recognised by Jung and Moshier that all the above mentioned dualities have
a very natural bitopological description. They all embed into a larger duality be-
tween bitopological spaces and d-frames in such a way that this embedding reveals

1Note that descriptive general frames are a special kind of relational structures as opposed to
frames from point-free topology which are algebraic structures. This confusing use of terms is only
ad hoc; in this text we do not study the descriptive general frames.
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a precise relationship between those dualities [JM06]. Furthermore, as was the case
for frames, d-frames could be thought of as an algebraic realisation of the notion
of bispace. This means that, when reasoning in d-frames, we can fully rely on our
geometric intuition.

All the dualities mentioned in the previous section have something in common.
The algebras, in the middle, provide a bridge between a logic and its topological
semantics. This aspect of d-frames, although hinted at in [JM06], has not been for-
mally explored until now. It turns out that bispaces model – via d-frames – most of
the logic of bilattices2. Because, as we believe, bilattice logic does not fulfil the pro-
gram outlined by Belnap, we propose a different logic based on geometric logic of
frames and obtain a logic sound and complete with respect to d-frames. Diagram-
matically, we have:

bitopological spaces
adj.

d-frames ←→ geometric d-frame logic

As usual, the points of bispaces represent models of d-frame logic and the two
topologies correspond to the observably true and observably false properties, re-
spectively.

At the same time, we also explore modal extensions of d-frames, similar to those
explained in (2) of the previous section. For that we define a Vietoris construction
for bispaces and d-frames and show that the duality between bispaces and d-frames
lifts to the duality between the corresponding coalgebras and algebras. A neat fea-
ture of our construction is that all the standard categorical properties of Johnstone’s
Vietoris construction for frames [Joh85] are also satisfied. Moreover, we also show
that our d-frame Vietoris construction is a generalisation of all the other defined
Vietoris constructions on the categories mentioned above.

In order to define a Vietoris construction for d-frames and prove basic categorical
properties of it, we need to develop a lot of categorical machinery first. Namely,
we propose a technique for constructing d-frames from generators and relations, in
the manner of universal algebra. It turns out that our technique is fairly versatile
and many of the free frame constructions can be easily adapted to the context of
d-frames. Furthermore, our free construction turns out to be crucial in the proof of
completeness of geometric d-frame logic.

It has to be mentioned that, even though our main motivations come from logics
and semantics of programming languages, the main emphasis of this thesis is on the
categorical development of the theory of d-frames.

Constructivity disclaimer. Point-free topology is often praised for its constructiv-
ity. In particular, it is often the case that a statement about topological spaces which
relies on a choice principle, such as the Axiom of Choice, has a choice-free proof

2Bilattices are certain algebraic structures considered to model a Belnap-Dunn paraconsistent
logic.
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of the corresponding frame-theoretic reformulation. The same is expected to be the
case for d-frames. It was, however, beyond capabilities of the author to verify to
which extent the constructions and arguments in this text are constructive. We be-
lieve that most of the purely point-free arguments are entirely choice-free and even
do not rely on the law of excluded middle.

Some exceptions to this rule are the construction of coproducts of d-frames and
Lemma 4.2.5, which is essential for the d-frame Vietoris construction. The proofs
of those two statements we present here rely on the law of excluded middle. The
author believes that the problem might disappear by selecting the right notion of
finiteness. Moreover, although we use ordinals classically, we only need their uni-
versal property and so they could probably be replaced by a constructive notion of
ordinals such as Taylor’s ordinals [Tay96; Tay99].

Related publications. Some of the results in this thesis also appear elsewhere.
Namely, Chapter 3 is an extension of the results in the papers [JJP17] and [JJ17b],
Chapter 4 contains results of [JJ17a] and, lastly, Chapter 6 is based on the insights
presented in [JJP16].

1.3 Who is this text for?

Because of the span of the theory of d-frames and its connections to other disciplines,
we believe that this text has potentially three further target audiences, apart from the
point-free topologists.

1. For duality theorists and logicians: In Chapter 3 we show how the basic dual-
ities embed into the duality of bispaces and d-frames and then in Chapter 4
we present a common generalisation of Vietoris constructions on those dual-
ities. We also obtain new Jónnson-Tarski-like models of positive modal logic
(Corollary 4.5.9).

2. For paraconsistent logicians: In Chapter 6 we show that d-frames are of interest
for their connection with bilattices. Not only they interpret most of bilattice
logic, they also provide more (possibly non-symmetric) models and new, very
clean, bitopological semantics for bilattices.

3. For domain theorist: Chapter 5 includes a novel presentation of basics of the
theory of stably compact spaces from the bitopological perspective. It also
includes a new fact about Vietoris for stably compact frames.

Note that there are very few dependencies between the individual chapters. In
fact, Chapter 2 establishes the basics of the theory of d-frames and then all the other
chapters are, for the most part, independent of each other.
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2
Bispaces and d-frames

In this chapter we give a survey of basic properties of bitopological spaces and their
algebraic duals – d-frames. We prove that known dualities such as Stone duality or
Priestley duality embed into the duality of compact regular bispaces and d-frames.

Only basic knowledge of category theory and frame/locale theory is assumed.
Also, it is for the benefit of the reader to be aware of the dualities of Stone and
Priestley, but, their in-depth knowledge is not necessary and parts of this chapter
which rely on them can be skipped without any harm.

All results from this section except for Theorem 2.6.11 have been already known
and can be found, mostly, in one of [JM06; Kli12; Nac65; Kel63; Gou13; Sal83].

2.1 Bitopological spaces

Bitopological spaces, or bispaces for short, were introduced by Kelly in 1963 [Kel63]
and soon became a subject of study on their own. Our main motivation for studying
bispaces comes from the fact that many known mathematical structures are natu-
rally bitopological; although this often might not be mentioned explicitly. Obvious
examples include partially ordered spaces such as real line, unit interval or Priestley
spaces. The same way category theory is a neat organising tool for many mathemat-
ical structures, bitopological view also often offers a good language and organising
principle for our proofs and results.

Apart from practical benefits, studying bispaces has also good philosophical rea-
sons. They provide models of four-valued logics. This will be further explored in
Chapter 6.

7



8 Chapter 2. Bispaces and d-frames

2.1.1 Definition. (X, τ+, τ−) is a bitopological space if (X, τ+) and (X, τ−) are
topological spaces.

To demonstrate how common bispaces are we give some of the well known ex-
amples. First set of examples constitutes of situations when the two topologies can
be obtained as a refinement of the existing topology.

2.1.2 Example (A). 1. The usual topology of the real line R has the topology of
opens upsets τ+ and the topology of open downsets τ− as its refinements. In
fact, the join τ+ ∨ τ−1 gives us the standard topology of R back. Similarly, we
can decompose the topology of the unit interval [0, 1] into two.

2. Priestley space space is a structure (X, τ,⪯) where (X, τ) is a compact space
and (X,⪯) is a partially ordered set such that, whenever x ̸⪯ y, then there
exists a clopen upset U ∈ τ such that x ∈ U ̸∋ y.

The bispace (X, τ+, τ−) associated with (X, τ,⪯) is obtained by setting

τ+ = {U ∈ τ | ↑U = U} and τ− = {U ∈ τ | ↓U = U}.

3. The last construction generalises to partially ordered topological spaces (also called
pospaces), i.e. the structures (X, τ,⪯) where (X, τ) is a topological space and
(X,⪯) is a partially ordered set with⪯ closed in X×X. In fact also R and [0, 1]
are partially ordered spaces. Note that it is not true in general that the join
topology of the two topologies gives τ back, unless more is assumed about
(X, τ,⪯).

Another, quite common situation, is when we have a (mono)topological space
and its topology has a natural “mate” topology associated to it. Then, we can think
of the second topology as if it was a topology of “complex open sets” – by analogy
to complex numbers.

2.1.3 Example (B). 1. Stably compact spaces are topological spaces (X, τ) which are
sober, compact, locally compact and coherent, i.e. that any intersection of two
compact saturated subsets is compact again.

The second topology τd is generated from the base {X \ K | K is compact satu-
rated }. Then, the bispace associated with (X, τ) is (X, τ, τd).

2. Stone’s spectral spaces are those stably compact spaces which have a basis of
compact open subsets.

It is a well-known fact that stably compact spaces correspond exactly to compact
partially ordered spaces and that spectral spaces correspond to Priestley spaces. We
will see later that the Priestley/Stone duality for distributive lattices becomes much
more transparent under bitopological lenses.

1Join topology of two topologies is computed as the smallest topology containing both.
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The last list of examples constitutes of such mathematical structures that are not
equipped with any topology explicitly but which can be assumed to have one and,
moreover, again they are naturally bitopological.

2.1.4 Example (C). 1. Any dcpo (D,⊑) can be equipped with two topologies, the
Scott topology σD and weak lower topology ωD, and the join of those two
yields the famous Lawson topology.

2. Quasi-metric spaces, the generalisation of metric spaces by dropping the sym-
metry axiom (i.e. d(x, y) = d(y, x)), are also naturally bitopological. The two
topologies are generated from the sets of open balls:

B+(x, r) = {y ∈ X | d(x, y) < r} and B−(x, r) = {y ∈ X | d(y, x) < r}

In fact, a lot from the analogy between what metric spaces are for monotopo-
logical spaces transfers to quasi-metric spaces and bispaces. See for example,
[Wil31; MR93; Gou13].

2.1.1 Separation axioms and other topological properties

The theory of bispaces often mirrors many topological concepts. In the following
we list some of the most important definitions similar to those we know from the
monotopological setting.

Recall that every topology defines a specialisation order, i.e. for a bispace (X, τ+, τ−)
and for any x, y ∈ X we have

x ≤+ y
def≡ ∀U+ ∈ τ+. x ∈ U+ =⇒ y ∈ U+ and

x ≤− y
def≡ ∀U− ∈ τ−. x ∈ U− =⇒ y ∈ U−.

Then, all τ+-open sets are ≤+-upwards closed and, similarly, τ−-open sets are ≤−-
upwards closed. Specialisation order is often overlooked in monotopological setting
as it is trivial in more geometrical spaces, e.g. because (X, τ+) is T1 iff (≤+) = (=).
However, it has been well studied in the context of point-free topology or the theory
of computation where the non-T1 spaces are quite common. Furthermore, because
those two specialisation orders do not have to interact in any way, we define the
associated pre-order as the intersection

≤ def≡ ≤+ ∩≥−.

Apart from its occurrence in the definitions, the associated pre-order is necessary
for the development of our bitopological intuition. Under this order we can imagine
τ+-open sets as upsets and τ−-open sets as downsets.

Let us take a look at the bitopological versions of the separation axioms. We
make use of the associated pre-order to define the bitopological variant of the T2

axiom.
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2.1.5 Definition. A bispace (X, τ+, τ−) is order-separated if

1. the associated pre-order ≤ is a partial order2, and

2. x ̸≤ y implies that there is a pair of disjoint open
sets U+ ∈ τ+ and U− ∈ τ− such that x ∈ U+ and
y ∈ U−.

x
y

U+

U−

Clearly, the bispace of real numbers and the bispaces arising from Priestley spaces
are order-separated. In fact all examples we mentioned in the previous section ex-
cept for partially ordered spaces, when equipped with two topologies, are order-
separated. And, in order for this to be the case also for partially ordered spaces it is
enough to assume compactness:

2.1.6 Lemma. Let (X, τ,⪯) be a partially ordered space and let (X, τ+, τ−) be the
bispace of upper and lower opens (in the ⪯-order). Then,

1. ⪯ = ≤+ = ≥− and

2. if (X, τ) is compact, then (X, τ+, τ−) is order-separated.

Proof. (1) Clearly ⪯ ⊆ ≤+ as τ+ ⊆ τ. For the other direction, let x ̸⪯ y. Then,
x ∈ (X \ ↓y) ̸∋ y and we finish by realising that, for every z ∈ X, ↓z (or ↑z) is
closed.

(2) from (1) we know that ≤ = ≤+ ∩ ≥− = ⪯. Let x ̸⪯ y. By definition, ⪯ is
closed in (X, τ)× (X, τ) and so there exist open sets V+, V− ∈ τ such that (x, y) ∈
V+×V− and (V+×V−)∩ (⪯) = ∅. Moreover, V+ and V− are disjoint as = is a subset
of ⪯.

Set U+ = X \ ↓(X \ V+) and U− = X \ ↑(X \ V−). Clearly U+ ⊆ V+ and U− ⊆
V− and so U+ ∩U− = ∅. Finally U+ and U− are open because, for any closed subset
F ⊆ X, ↓F and ↑F are closed (see Lemma 9.1.13 in [Gou13], for example). □

The next stronger notion after Hausdorffness is regularity.

2.1.7 Definition. A bispace (X, τ+, τ−) is d-regular if

1. Whenever x ∈ V+ for some V+ ∈ τ+, then there is
an open set U+ ∈ τ+ such that x ∈ U+ ⊆ U+

τ− ⊆
V+ where U+

τ− is the τ−-closure of U+.

2. and symmetrically for y ∈ V− for some V− ∈ τ−.

x

U+
U−

F+

2This is equivalent to saying that, if x ̸= y, then there exists a U ∈ τ+ ∪ τ− such that x ∈ U ̸∋ y or
x /∈ U ∋ y. Notice the similarity with the monotopological: (X, τ+) is T0 iff ≤+ is a partial order.
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Similarly to the classical topology x ∈ U+ ⊆ U+
τ− ⊆ V+, for some τ+-open

U+, iff there is a pair of disjoint opens U+ and U− which separates x and F+
def≡

X \V+. However, we prefer to use the former definition because it exactly matches
the corresponding point-free definition.

Next, complete regularity can be also defined for bispaces and because we do
not need it for our investigations we proceed directly to normality.

2.1.8 Definition. A bispace (X, τ+, τ−) is d-normal if for
any two disjoint sets F+ and F−, where F+ is τ+-closed
and F− is τ−-closed, there exist a pair of disjoint opens
U+ ∈ τ+ and U− ∈ τ− such that F− ⊆ U+ and F+ ⊆ U−. U+

F−

U−

F+

2.1.9 Example. (A) Both the bispace of real numbers R and the bispace [0,1] are
trivially order-separated, d-regular and d-normal. This is not true in general
for bispaces arising from partially ordered spaces. However, it becomes true
by assuming compactness. We will give a proof of this in later.

(B) Checking that the bispaces arising from spectral spaces and stably compact
spaces are also order-separated, d-regular and d-normal is also true even though
the proof is a bit more involved (see Chapter 5).

(C) Under reasonable conditions all the examples in 2.1.4 also yield bispaces which
satisfy the separating conditions we just discussed.

These are all separation axioms that we are going to need. Next, we take a look
at other topological notions such as a disconectedness property and compactness.

2.1.10 Definition. A bispace (X, τ+, τ−) is d-zero-dimensional if

1. Whenever x ∈ V+ for some V+ ∈ τ+, then there is a τ+-open τ−-closed
U+ such that x ∈ U+ ⊆ V+.

2. and symmetrically for y ∈ V− for some V− ∈ τ−.

As in monotopological spaces, zero-dimensionality is stronger property than
regularity. Compare bitopological zero-dimensionality and regularity with the clas-
sical ones. The interplay of the two topologies is what makes many proofs in the
theory of bitopological spaces more involved and often also quite beautiful.

2.1.11 Definition. A bispace (X, τ+, τ−) is d-compact if whenever
⋃

i∈I Ui
+ ∪⋃

j∈J U j
− = X, for some {Ui

+}i ⊆ τ+ and {U j
−}j ⊆ τ−, then there exist finite

F⊆fin I and G⊆fin J such that
⋃

i∈F Ui
+ ∪

⋃
j∈G U j

− = X.



12 Chapter 2. Bispaces and d-frames

2.1.12 Example. As in the monotopological case, the unit interval [0,1] is d-compact.
Also, Priestley spaces give d-compact and also d-zero-dimensional bispaces. Anal-
ogously, bispaces of stably compact spaces are always d-compact and those arising
from spectral spaces are d-zero-dimensional. The last two cases will be explained in
Chapter 5.

Following the analogues from the classical topology, all the definitions from this
section interact the expected way. Let us denote order-separatedness by T2 and the
statement that “the associated pre-order≤+ ∩≥− is a partial order” by T0. Then we
get the following diagram of implications:

d-compact + T2 d-normal + T2 d-regular + T0 T2 T0

d-zero-dim. + T0

Figure 2.1: Implications of basic bitopological properties

The first part of the following proposition proves the second right-most implica-
tion in the diagram. All the other missing pieces will be addressed later by point-free
techniques.

2.1.13 Proposition. Let (X, τ+, τ−) be a bispace. Then,

1. if X is d-regular and T0, then X is order-separated, and

2. if X is d-compact and order-separated, then X is d-regular.

Proof. (1) Only the second condition of order-separated bispaces needs to be veri-
fied. Let x ̸≤ y. By definition, this means that x ̸≤+ y or x ̸≥− y. Assume the first.
Then, there exists a V+ ∈ τ+ such that x ∈ V+ ̸∋ y. By regularity there exists a
U+ ∈ τ+ such that x ∈ U+ ⊆ U+

τ− ⊆ V+. Set U− = X \U+
τ− . Clearly, U− ∈ τ−

and y ∈ U−. We have found disjoint U+ and U− such that x ∈ U+ and y ∈ U−. The
case for x ̸≥− y is analogous.

(2) Let x ∈ U+ for some U+ ∈ τ+. This means that, for all y ∈ X \U+, x ̸≤ y
as ≤ ⊆ ≤+ and every τ+-open set is upwards closed w.r.t. ≤+-order. From order-
separatedness, there exists a pair of disjoint sets Vy

+ ∈ τ+ and Vy
− ∈ τ− such that

x ∈ Vy
+ and y ∈ Vy

−. Then, U+ ∪ (
⋃

y∈X\U+
Vy
−) = X and so, by compactness, there

is a finite F⊆fin X \U+ such that U+ ∪ (
⋃

y∈F Vy
−) = X. Set V+ =

⋂
y∈F Vy

+ and V− =⋃
y∈F Vy

−. Then, clearly, x ∈ V+ ⊆ (X \V−) ⊆ U+ and so x ∈ V+ ⊆ V+
τ− ⊆ U+. The

case for x ∈ U− for some U− ∈ τ− is analogous. □

2.1.14 Remark. This is not an exhaustive list of separation axioms for bitopological
spaces. For more axioms and their comparison consult [Kop95; Sal83; Sae71]. Note
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that in the older literature all the “d-” properties are usually prefixed with “pair-
wise”, e.g. d-regular is called pairwise regular.

Convention. As we can see, because of the two sided nature of bispaces,
proving properties about the τ+-side usually mirrors to the τ−-side, and vice
versa. For that reason we often omit the proof of either of the side without
even mentioning it. Moreover, we introduce the symbol “±” to mean both “+”
and “-”. For example, saying that “U± have the property Q” means that “U+

and U− have the property Q”, or “there exist x± ∈ U±” translates as “there
exist x+ ∈ U+ and x− ∈ U−”.

2.1.2 Bicontinuous maps

2.1.15 Definition. A map f : (X, τ+, τ−) → (Y, σ+, σ−) is bicontinuous if both
maps f : (X, τ+) → (Y, σ+) and f : (X, τ−) → (Y, σ−) are continuous in the
usual sense.

We denote the category of bitopological spaces and bicontinuous maps by biTop.
In the classical topology, continuous maps are monotone with respect to the special-
isation order and the analogue of this for bicontinuous maps is:

2.1.16 Observation. Bicontinuous functions are monotone with respect to the asso-
ciated order ≤ = ≤+ ∩≥−.

The ≤ order is a natural part of the structure of bispaces. Not only it is essential
for the formulations of weaker separation axioms (T0 and order-separatedness, in
our case), it is also the largest order such that τ+-opens are upwards closed and
τ−-opens are downwards closed.

2.1.17 Example. 1. Negation seen as a function R×R → R, is not continuous
when R is equipped with the usual Euclid topology. On the other hand, nega-
tion is bicontinuous when seen as a function R×Rop → R where (X, τ+, τ−)op

is the bispace (X, τ−, τ+) and R is the bispace of real numbers, i.e. the bispace
of upper and lower-opens.

2. Lower upper semi-continuous functions correspond exactly to the bicontinu-
ous functions into the bispace R.

2.2 Comparison with compact partially ordered spaces

In this section we prove that the categories of compact partially ordered spaces and
d-compact order-separated bispaces are isomorphic. Lemma 2.1.6 already guaran-
tees that the assignment

bi : (X, τ,⪯) ↦−→ (X, τ+, τ−)
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where τ+ = {U ∈ τ | U = ↑U} and τ− = {U ∈ τ | U = ↓U}, always maps
a compact partially ordered space to an order-separated bispace. Moreover, since
(X, τ, ) is compact, (X, τ+, τ−) is d-compact.

There is also a mapping back (the −1 is only suggestive for now)

bi−1 : (X, τ+, τ−) ↦−→ (X, τ+ ∨ τ−, (≤+ ∩≥−))

If (X, τ+, τ−) is d-compact and order-separated, we know, by Alexander Subbase
Lemma, that (X, τ+ ∨ τ−) is compact. To show that ≤ = ≤+ ∩ ≥− is closed in
X×X take any x ̸≤ y. From order-separatedness of (X, τ+, τ−) we know that there
exist disjoint U+ ∈ τ+ and U− ∈ τ− such that x ∈ U+ and y ∈ U−. Moreover,
(U+×U−)∩ (≤) = ∅ as otherwise, if a ≤ b for some (a, b) ∈ U+×U−, since≤ ⊆ ≤+

and U+ is ≤+-upwards closed, it would follow that b ∈ U+.
In fact, going from compact partially ordered spaces to bispaces and back gives

the same space. Before we show that, we prove the following technical lemma:

2.2.1 Lemma. Let (X, τ,⪯) be a compact partially ordered space and let S+,S− ⊆ τ

be such that if x ̸⪯ y, for some x, y ∈ X, then there exist U+ ∈ S+ and U− ∈ S−
such that x ∈ U+, y ∈ U− and U+ ∩U− = ∅. Then, S+ ∪ S− is a subbase of τ.

Proof. Let U ∈ τ and let x ∈ U. For every y ̸∈ U, either x ̸≤ y or y ̸≤ x. In the first
case, there exist disjoint Uy

+ ∈ S+ and Uy
− ∈ S− such that x ∈ Uy

+ and y ∈ Uy
−. If, on

the other hand, y ̸≤ x, then we would have disjoint Uy
+ ∈ S+ and Uy

− ∈ S− but the
position of x and y swaps, i.e. y ∈ Uy

+ and x ∈ Uy
−. By M+ denote the set of all the

y’s such that y ̸≤ x and by M− denote the set of y’s where x ̸≤ y.
Then,

⋃
y∈M+

Uy
+ ∪

⋃
y∈M− Uy

− covers X \U and because (X, τ) is compact, X \
U is also compact. Therefore, there exist finite F+ ⊆fin M+ and F− ⊆fin M− such
that X \U ⊆ ⋃

y∈F+ Uy
+ ∪

⋃
y∈F− Uy

−. Clearly then, x ∈ ⋂
y∈F+ Uy

− ∩
⋂

y∈F− Uy
+ ⊆ U.

Therefore, topology τ is generated from the subbase S+ ∪ S−. □

2.2.2 Proposition (Proposition 2.11 in [JM06]). Let (X, τ,⪯) be a compact par-
tially ordered space. Then,

bi−1(bi(X, τ,⪯)) = (X, τ,⪯).

Proof. Set S+ and S− to be the sets of upper or lower-opens, respectively, that is
S+ = τ+ and S− = τ−. Since bi(X, τ,⪯) is order-separated, S+ and S− satisfy the
condition of Lemma 2.2.1 and so the topology of bi−1(bi(X, τ,⪯)) is equal to τ.
Moreover, also the orders agree as, by (1) of Lemma 2.1.6, ⪯ = ≤+ = ≥− and so
⪯ = ≤+ ∩≥−. □
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2.2.3 Lemma. Let (X, τ+, τ−) be order-separated. Then, ≤+ = ≥−.

Proof. Let x ̸≤+ y. Then, x ̸≤ y and so they can be separated by U+ ∈ τ+ and U− ∈
τ−. Therefore, x ̸∈ U− ∋ y and so x ̸≥− y. The reverse direction is analogous. □

The proof of the following Proposition is inspired by Theorem 9.1.32 in [Gou13],
although the true bitopological nature of the argument was not highlighted there.

2.2.4 Proposition. Let (X, τ+, τ−) be a d-compact order-separated bispace. Then,

bi(bi−1(X, τ+, τ−)) = (X, τ+, τ−).

Proof. Let us denote bi(bi−1(X, τ+, τ−)) by (X, τ2
+, τ2
−) with the corresponding spe-

cialisation orders ≤2
+ and ≤2

−. We know, by Lemma 2.2.3, that the associated order
≤ is equal to≤+ (resp.≥−) and so bi−1(X, τ+, τ−) = (X, τ+ ∨ τ−, ≤). Moreover, by
Lemma 2.1.6, ≤ = ≤2

+ = ≥2
−. This will help us to prove that τ+ = τ2

+ and τ− = τ2
−.

Clearly, τ+ ⊆ τ2
+ and τ− ⊆ τ2

−. To prove the other direction, let V+ ∈ τ2
+. Then,

for all y ∈ X \ V+, x ̸≤ y as V+ is an upper set in ≤-order. Because (X, τ+, τ−) is
order-separated, there exist Uy

+ ∈ τ+ and Uy
− ∈ τ− such that x ∈ Uy

+ and y ∈ Uy
−.

Since (X, τ2
+, τ2
−) is d-compact and τ− ⊆ τ2

−, the covering of X by V+ together with
all Uy

−’s has a finite subcover. Let F be a finite subset of X \ V+ such that V+ and⋃
y∈F Uy

− cover X. It is easy to see that x ∈ ⋂
y∈F Uy

+ ⊆ (X \⋃y∈F Uy
−) ⊆ V+. Hence,

τ+ generates τ2
+. The inclusion τ− ⊇ τ2

− is proved similarly. □

It is easy to check that if f : (X, τX
+ , τX

− ) → (Y, τY
+, τY
−) is bicontinuous, then

the map f : (X, τX
+ ∨ τX

− ) → (Y, τY
+ ∨ τY

−) is continuous. Moreover, by Observa-
tion 2.1.16,

f : bi−1(X, τX
+ , τX

− )→ bi−1(Y, τY
+, τY
−)

is also monotone. The reverse direction is trivially true as τ+ and τ− are coarser than
τ+ ∨ τ−. We obtain:

2.2.5 Theorem.
The category of compact partially ordered spaces and monotone continuous maps is
isomorphic to the category of d-compact order-separated bispaces and bicontinuous
maps.

This isomorphisms of categories restrict to the isomorphism of the category of
zero-dimensional compact partially ordered spaces and the category of d-zero-di-
mensional d-compact order-separated bispaces. Priestley spaces are exactly the
zero-dimensional compact partially ordered spaces and because order-separatedness
can be replaced by T0 under d-zero-dimensionality, we have:
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2.2.6 Corollary. The category of Priestley spaces is isomorphic to the category of d-
compact d-zero-dimensional T0 bispaces.

2.3 d-Frames

Classical point-free topology studies frames, i.e. complete lattices L = (L,
⋁

,∧, 0, 1)
satisfying the following distributivity law

(
⋁

A) ∧ b =
⋁
{a ∧ b | a ∈ A}

for all A ⊆ L and b ∈ L. The frame associated with a space (X, τ) is the lattice of
its open sets ordered by set-inclusion, i.e. it is the frame Ω(X, τ) = (τ,

⋃
,∩, ∅, X).

Frames are often thought of as the algebraic duals of (mono)topological spaces. In
this section we define d-frames to play the role of the point-free algebraic duals of
bispaces.

It is no surprise that, because bispaces consist of two topologies, we will have
two frames L+ and L− as the core of the structure of d-frames. Before we give
a full definition of d-frames, let us take a look at some consequences of this. It is a
general fact that a product of two lattices3 (or frames, in our case) L+×L− introduces
two orders which are somehow orthogonal to each other. Namely, for any α =

(α+, α−), β = (β+, β−) ∈ L+×L− define

• Information order: α ⊑ β if α+ ≤ β+ and α− ≤ β−,
and

• Logical order: α ⩽· β if α+ ≤ β+ and α− ≥ β−.
L− L+

(1, 1)

(0, 0)

(0, 1) (1, 0)

logical order ⩽·

in
fo

rm
at

io
n

or
de

r
⊑

2.3.1 Observation. Let L+, L− be two lattices. Then, (L+×L−,⊓,⊔,⊥,⊤) is a
lattice in⊑-order and (L+×L−,∧· ,∨· , ff, tt) is a lattice in⩽·-order where, for any α, β ∈
L+×L−,

α ⊓ β = (α+ ∧ β+, α− ∧ β−), α ⊔ β = (α+ ∨ β+, α− ∨ β−),

α ∧· β = (α+ ∧ β+, α− ∨ β−), α ∨· β = (α+ ∨ β+, α− ∧ β−)

and
⊥ = (0, 0), ⊤ = (1, 1), ff = (0, 1), tt = (1, 0).

Now we take a look at the remaining parts of the structure of d-frames. As
will soon become clear, most of topological properties of bispaces can in fact be ex-
pressed in terms of two relations between the two frame components. Take a bispace

3In this text we always assume that lattices are distributive and bounded.
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(X, τ+, τ−) and a pair of opens (U+, U−) ∈ τ+×τ−. We will say that (U+, U−) is total
if U+ ∪U− = X and that it is consistent if U+ ∩U− = ∅4. Consistency and totality
can, in fact, be accurately axiomatised in a purely point-free fashion and in terms of
the logical an information orders.

Notice that total pairs are upwards closed in the information order. Concretely,
if (U+, U−) is total and (V+, V−) ∈ τ+×τ− is such that (U+, U−) ⊑ (V+, V−), then
(V+, V−) is also total. Being consistent, on the other hand, is downwards closed in
the ⊑-order. Also, totality is closed under ∧· and ∨· , e.g. let (U+, U−) and (V+, V−)
be total, then (U+, U−) ∧· (V+, V−) = (U+ ∩V+, U− ∪V−) is also total; indeed

(U+ ∩V+) ∪ (U− ∪V−) = (U+ ∪ (U− ∪V−)) ∩ (V+ ∪ (U− ∪V−))

⊇ (U+ ∪U−) ∩ (V+ ∪V−) = X ∩ X = X.

The same is true about consistent pairs of opens. We are now ready to define d-
frames.

2.3.2 Definition. A d-frame is a quadruple L = (L+, L−, con, tot) where L+, L−
are frames, con ⊆ L+×L− is the consistency relation and tot ⊆ L+×L− is the
totality relation such that

• (in the information order:)

(tot-↑) α ⊑ β and α ∈ tot =⇒ β ∈ tot,
(con-↓) α ⊑ β and β ∈ con =⇒ α ∈ con,

(con-
⨆↑) ⊑-directed A⊆↑ con =⇒ ⨆↑ A ∈ con

• (in the logical order:)

(tot-∨· ,∧· ) α, β ∈ tot =⇒ α ∨· β, α ∧· β ∈ tot,
tt, ff ∈ tot,

(con-∨· ,∧· ) α, β ∈ con =⇒ α ∨· β, α ∧· β ∈ con,
tt, ff ∈ con,

• (interplay between con and tot:)

(con-tot) α ∈ con and β ∈ tot such that
(α+ = β+ or α− = β−) =⇒ α ⊑ β

ttff

⊥

⊤

con

tot

L− L+

In order theoretic terms, the information-order axioms say that con is Scott-closed
and tot is upwards closed in (L+×L−,⊑), and the logical-order axioms say that con
and tot are sublattices of (L+×L−,∧· ,∨· , ff , tt).

2.3.3 Example. Let (X, τ+, τ−) be a bispace. Define Ωd(X, τ+, τ−) to be the structure
(τ+, τ−, conX, totX) where

(U+, U−) ∈ conX
def≡ U+ ∩U− = ∅ and (U+, U−) ∈ totX

def≡ U+ ∪U− = X.

4The reason behind this naming convention will become clear in Chapter 6.
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Then, in the product τ+×τ−, tt = (X, ∅), ff = (∅, X), ⊥ = (∅, ∅) and ⊤ = (X, X).
From the discussion above, we already know that the axioms (tot-↑), (con-↓), (tot-
∨· ,∧· ) and (con-∨· ,∧· ) hold for Ωd(X, τ+, τ−). It is also immediate that (con-

⨆↑) is
satisfied because a ⊑-directed collection of disjoint sets has disjoint unions.

Finally, to justify (con-tot), let (U+, U−) ∈ conX and (V+, V−) ∈ totX be such that
U+ = V+. We see that x ∈ U− implies x /∈ U+ = V+ and by totality x ∈ V−;
therefore, U− ⊆ V−. Not only the axiom (con-tot) is there to express an interplay
between con and tot, it is absolutely crucial for any development of the theory of d-
frames. Namely, it makes sure that (�) ⊆ (≤) where the relation � is the well-inside
relation which we define below. On the other hand, (con-tot) it makes calculations
involving quotients and free constructions of d-frames more involved, as we will
see in Chapter 3.

U−

V+ = U+V−

Figure 2.2: The axiom (con-tot) geometrically

2.3.4 Example. To give at least one explicit example consider the one element bis-
pace 1 = ({⋆}, {∅, {⋆}}, {∅, {⋆}}). Both frame components of Ωd(1) are isomor-
phic to the two element frame 2 = {0 < 1}. The con and tot relations are defined
simply as (a, b) ∈ con iff a = 0 or b = 0, and (a, b) ∈ tot iff a = 1 and b = 1. Notice
that this is the only way the consistency and totality relations can be defined on the
product 2×2 to satisfy all the d-frame axioms.

2.3.5 Example. In fact the procedure form the previous example can be used to en-
dow a product of any two frames L+×L− with the trivial consistency and totality
relations contriv and tottriv, where (a, b) ∈ contriv iff a = 0 or b = 0, and (a, b) ∈ tottriv

iff a = 1 and b = 1.

2.3.1 Separation axioms and other topological properties

An essential notion of the theory of frames is the well-inside relation. Because d-
frame consist of two frames, we have two well-inside relations; one for each frame
component. Let a, x ∈ L+. We say that a is well-inside x (and write a �+ x) if there
exists a c ∈ L− such that (a, c) ∈ con and (x, c) ∈ tot. Define a �− x for L− sym-
metrically. Later in the text we drop the subscript ± whenever it does not lead to a
confusion.

By (con-tot), we can see that a �± x implies a ≤± x where ≤± is the order of L±.
For a bispace (X, τ+, τ−), U �+ V is true precisely whenever Uτ− ⊆ V.
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Following the same strategy as in classical point-free topology, we can directly
translate most of the bitopological notions we introduced in Section 2.1.1 to d-frames:

2.3.6 Definition. We say that a d-frame L is

• d-regular if, ∀x ∈ L±, x =
⋁{a ∈ L± | a �± x},

• d-normal if, ∀(x, y) ∈ tot, ∃(u, v) ∈ con such that (x, v) ∈ tot and (u, y) ∈
tot,

• d-zero-dimensional if, ∀x ∈ L±, x =
⋁{a ∈ L± | a �± a ≤ x}, and

• d-compact if whenever
⨆

A ∈ tot, then ∃A′ ⊆fin A s.t.
⨆

A′ ∈ tot.

Equivalently, compactness can be restated as

• L is d-compact iff whenever
⨆↑ A ∈ tot then A ∩ tot ̸= ∅.

It is also immediate to convince ourselves that these definitions mirror exactly
the definitions introduced in Section 2.1.1.

2.3.7 Observation. Let (X, τ+, τ−) be a bispace. Then, (X, τ+, τ−) is d-regular, d-
normal, d-zero-dimensional or d-compact if and only if Ωd(X, τ+, τ−) is.

As in classical point-free topology where T2 can not be directly translated, order-
separatedness does not have a counterpart for d-frames either. To overcome this,
frame theory introduces a separation property called subfit which then, plays the
role of T1 axiom for frames; in fact it is weaker than that. The d-frame variant is as
follows.

2.3.8 Definition. We say that a d-frame L is d-subfit, if whenever x ̸≤ y in L+,
then there exists a z ∈ L− such that (x, z) ∈ tot and (y, z) ̸∈ tot; and the same,
symmetrically, for x ̸≤ y in L−.

Again, as in classical point-free topology, we have the following relations be-
tween the definitions:

2.3.9 Proposition. Let L be a d-frame. Then,

1. if L is d-regular, then it is d-subfit,

2. if L is d-normal and d-subfit, then it is d-regular,

3. if L is d-compact and d-regular, then it is d-normal.

Proof. (1) If x ̸≤ y in L+, then there exists a a �+ x and a ̸≤ y. Then, by definition,
(x, c) ∈ tot for some c ∈ L− such that (a, c) ∈ con. On the other hand, (y, c) ̸∈ tot as
this would imply a ≤ y by (con-tot).

(2) Let x ∈ L+ and let us denote y =
⋁{a | a �+ x}. Clearly, y ≤ x. To prove

the other direction, let (x, z) ∈ tot. Since L d-normal, there is some (u, v) ∈ tot such
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that (x, v) ∈ tot and (u, z) ∈ tot. By definition, u �+ x and u ≤ y. Since (u, z) ∈ tot

and since tot is upwards closed, also (y, z) ∈ tot. Therefore, by subfitness, x ≤ y.
(3) Let (x, y) ∈ tot. By regularity x =

⋁{a | a �+ x}. The set {a | a �+ x} is, in
fact, directed. Indeed, let a �+ x and a′ �+ x and let c and c′ be the witnesses, i.e.
(a, c) ∈ con, (x, c) ∈ tot and (a′, c′) ∈ con, (x, c′) ∈ tot. From (con-∨· ) and (tot-∧· ) we
have that (a ∨ a′, c ∧ c′) ∈ con and (x, c ∧ c′) ∈ tot. Therefore (a ∨ a′)�+ x.

Finally, because L is d-compact, (a, y) ∈ tot for some a �+ x (as witnessed by c).
We are done because (x, c) ∈ tot, (a, y) ∈ tot and (a, c) ∈ con. □

Also, d-zero-dimensionality trivially implies d-regularity. To sum up, we have
the diagram of implications as shown in Figure 2.3. In comparison with Figure 2.1,
T0 is not present because it makes no sense for point-free spaces. Also, because
there is no point-free analogue of order-separatedness, in the left-most implication
in Figure 2.3 we needed to assume regularity.

d-compact + d-regular d-normal + d-subfit d-regular d-subfit

d-zero-dim.

Figure 2.3: Implications of basic d-frame properties

The missing implications to prove in Figure 2.1 are that d-compact + T2 implies
d-normal and that d-normal + T2 implies d-regular. However, these immediately
follow from Proposition 2.1.13, Proposition 2.3.9 and the following Lemma

2.3.10 Lemma. If (X, τ+, τ−) is order-separated, then Ωd(X, τ+, τ−) is d-subfit.

Proof. Let U, V ∈ τ+ such that U ̸⊆ V. Pick an x ∈ U \V. The set ↑x = {y | x ≤+ y}
is τ−-closed (this is easy to see, we will give a proof of this in Lemma 4.1.29). Since U
and V are τ+-opens, they are upwards closed in≤+-order and so, (U, X \ ↑x) ∈ totX
and (V, X \ ↑x) ̸∈ totX. □

2.3.2 Pseudocomplements

From the structure of d-frames one can define an operator (−)∗ which assigns to
each element x ∈ L±, the largest element in the other frame (i.e. x∗ ∈ L∓) which is
consistent with x. Then, x∗ is called the pseudocomplement of x.

To show that x∗ is well-defined, for any x ∈ L+, notice that the set {b | (a, b) ∈
con} is directed (by (con-∨· ,∧· )) and so, by (con-

⨆↑), (a,
⋁↑{b | (a, b) ∈ con}) ∈ con.

Set x∗ to be the join
⋁↑{b | (a, b) ∈ con}. To define (−)∗ for elements of L− proceed

symmetrically.
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2.3.11 Example. For d-frames arising from bispaces, U∗ (for
some U ∈ τ+) is computed as the τ−-interior of X \U. In other
words, it is the largest τ−-open disjoint with U.

UU∗

The formula which defines �± becomes much simpler with pseudocomplements:

a �+ x iff (x, a∗) ∈ tot and b �− y iff (b∗, y) ∈ tot.

Next, we summarise basic properties of �±, or simply just �.

2.3.12 Lemma (inspired by 5.2.1 in [PP12]). For all a, b, x, y ∈ L±:

1. a � b =⇒ a ≤ b

2. 0 � a � 1

3. x ≤ a � b ≤ y =⇒ x � y

4. a � b and x � y =⇒ (a ∧ x)� (b ∧ y) and (a ∨ x)� (b ∨ y).

Proof. (1) follows from (con-tot). (2) is true because we always have that (a, 1) resp.
(1, a) ∈ tot and (a, 0) resp. (0, a) ∈ con. (3) follows because of (con-↓) and (tot-↑). For
(4), by (con-∨· ,∧· ) and (tot-∨· ,∧· ), (b, a∗), (y, x∗) ∈ tot implies that (b∨ y, a∗ ∧ x∗) ∈ tot

and (a, a∗), (x, x∗) ∈ con implies that (a ∨ x, a∗ ∧ x∗) ∈ con. Therefore, (a ∨ x)� (b ∨
y). (a ∧ x)� (b ∧ y) is proved similarly. □

2.3.13 Lemma. Let L be a d-frame and a, c ∈ L±, {ai}i ⊆ L± and c ∈ L∓.

1. a ≤ a∗∗

2. (
⋁

i ai)
∗ =

⋀
i a∗i

(Interactions of (−)∗ with the rest of the structure:)

3. a � c =⇒ c∗ � a∗

4. (a, a∗) ∈ tot (resp. (a∗, a) ∈ tot) =⇒ a = a∗∗

5. (a, b) ∈ con (resp. (b, a) ∈ con) iff a ≤ b∗ iff b ≤ a∗.

Proof. For (a, b) ∈ L+×L−, (5) follows from the definition of pseudocomplements,
i.e.

a ≤ b∗ iff (a, b) ∈ con iff b ≤ a∗.

Therefore, pseudocomplement maps can be seen as two adjoint monotone maps
f

def≡ (−)∗ : L− → Lop
+ and g

def≡ (−)∗ : Lop
+ → L−. Because g is the right adjoint,

it preserves meets in Lop
+ , i.e. it transforms L+-joins into L−-meets, and, similarly, f
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also transforms L−-joins into L+-meets. This gives (2) and (1) follows from f · g ≤ id
and id ≤ g · f .

(3) Since a �+ c is equivalent to (c, a∗) ∈ tot it follows, by (1) and (tot-↑), that
(c∗∗, a∗) ∈ tot and so c∗ �− a∗. (4) is a consequence of (con-tot) as (a, a∗) ∈ tot

implies a∗∗ ≤ a and (1) implies the other inequality. □

Convention. In the rest of this text we will be using the properties of pseu-
docomplements that we derived in this subsection automatically and without
mentioning.

2.3.3 The dual adjunction Ωd ⊣ Σd

In order to define the category of d-frames we need to define what morphisms of
this category are. Let L and M be d-frames, we say that a pair of frame homomor-
phisms5 h = (h+, h−) : L → M, where h+ : L+ → M+ and h− : L− → M−, is a
d-frame homomorphism if, for all α ∈ L+×L−,

α ∈ conL =⇒ h(α) = (h+(α+), h−(α−)) ∈ conM

α ∈ totL =⇒ h(α) ∈ totM

These conditions can be also written more economically as

h[conL] ⊆ conM and h[totL] ⊆ totM.

2.3.14 Observation. For any bicontinuous map f : (X, τX
+ , τX

− )→ (Y, τY
+, τY
−). The

pair of frame homomorphism Ωd( f ) = (Ω( f+), Ω( f−)) where

Ω( f+) : τY
+ −→ τX

+ Ω( f−) : τY
− −→ τX

−

U+ ↦−→ f−1[U+] U− ↦−→ f−1[U−]

is a d-frame homomorphism Ωd( f ) : Ωd(Y)→ Ωd(X) where Ωd(X) and Ωd(Y) are
defined as in Example 2.3.3.

In fact, if we denote the category of d-frames and d-frame homomorphisms by
d-Frm, then we get that Ωd : biTop → d-Frm is a well-defined contravariant func-
tor. We will show that Ωd has a right adjoint Σd.

To define the spectrum Σd(L) for a d-frame L, we need to establish what the
points of this bispace should be. In the category of bispaces, the set of points of a
bispace X is in a bijection with the set of bicontinuous maps 1 → X, where 1 is the
one-point bispace. If we instantiate X with Σd(L) we obtain that the set of points of
L should be the set biTop(1, Σd(L)) and for Σd to be the right adjoint to Ωd, that

5Frame homomorphism is any map between two frames that distributes over all joins and all
finite meets, e.g. it needs to preserve 0 and 1.
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means that this should be in a bijection with d-Frm(L, 2×2), as Ωd(1) ∼= 2×2 (see
Exercise 2.3.4).

We define Σd(L) to be the bispace (d-Frm(L, 2×2), Σ+[L+], Σ−[L−]) where, for
every a ∈ L+ and b ∈ L−,

Σ+(a) = {p : L→ 2×2 | p+(a) = 1} and Σ−(b) = {p : L→ 2×2 | p−(b) = 1}.

It is not difficult to check that

Σ±(a ∧ b) = Σ±(a) ∩ Σ±(b) and Σ±(
⋁

i
ai) =

⋃
i

Σ±(ai). (2.3.1)

Therefore, Σ±[L±] = {Σ±(x) | x ∈ L±} do define topologies. For simplicity, we
will often refer to the set of points and to the bispace itself by the same name, i.e. by
Σd(L). We will often refer to elements of Σd(L) as d-points (or simply points) of L.

To extend Σd to a functor we need to define how it acts on morphisms. For every
d-frame homomorphism h : L→M, set

Σd(h) : Σd(M) −→ Σd(L)

p : M → 2×2 ↦−→ p ◦ h : L→ 2×2

Proving that Σd(h) is bicontinuous is done by the standard argument; by checking
that h−1

± [Σ±(a)] = Σ±(h±(a)). We obtain a functor Σd : d-Frm→ biTop.

2.3.15 Example. • Since there is only one d-frame homomorphism 2×2→ 2×2,
the bispace Σd(2×2) has only one point and so it is bihomeomorphic to the
space 1 = ({⋆}, τ, τ) where τ = {∅, {⋆}}.

• Consider the d-frame 3×3 defined as (3+, 3−, contriv, tottriv) where the consis-
tency and totality relations are defined as in Example 2.3.5 and 3+ = {0 < a <

1} and 3− = {0 < b < 1}. A consequence of the triviality of the relations is
that all pairs of frame homomorphisms p+ : 3+ → 2 and p− : 3− → 2 define a
point (p+, p−) : 3×3 → 2×2. We see that Σd(3×3) has four points as shown
in the figure below.

x y

Σ+(a)

Σ−(b)

v

w

Furthermore, adding (a, b) to con removes the point x in the spectrum and
adding (a, b) to tot removes y. This is a consequence of the general fact that
making relations con and tot bigger corresponds to quotienting the d-frame
(see Chapter 3) which, in the spectrum, is the same as taking a subspace.
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2.3.3.1 An alternative description of Σd(L)

The fact that frame homomorphisms p : L → 2 are in a bijective correspondence
with completely prime filters P ⊆ L offers an alternative presentation of Σd(L).
For d-points of L we only consider those pairs of frame homomorphisms which
together constitute a d-frame homomorphism L → 2×2. To restrict the pairs of
completely prime filters (P+, P−) accordingly, we require, for any α ∈ L+×L−

(dp-con) α ∈ conL =⇒ α+ ̸∈ P+ or α− ̸∈ P−

(dp-tot) α ∈ totL =⇒ α+ ∈ P+ or α− ∈ P−

2.3.16 Observation. A pair of frame homomorphisms (p+, p−) : L → 2×2 is a
d-frame homomorphism iff (P+, P−) satisfies (dp-con) and (dp-tot) where P± equals
{x | p±(x) = 1}.

Then, the formula for the open sets of Σd(L) can be translated to

Σ+(a) = {(P+, P−) | a ∈ P+} and Σ−(b) = {(P+, P−) | b ∈ P−}

and the action on morphisms is then computed as

Σd(h) : (P+, P−) ↦−→ (h−1
+ [P+], h−1

− [P−])

2.3.3.2 The adjunction

Following the classical point-free topology, we will show that Ωd is the left adjoint
of Σd. First, for any bispace X, define the unit of adjunction

ηX : X −→ Σd(Ωd(X))

to be the map x ↦→ (U+(x),U−(x)) where U±(x) = {U ∈ τ± | x ∈ U}. Standard
argument shows that (U+(x),U−(x)) is a pair of completely prime filters. Observe
also that this pair satisfies (dp-con) and (dp-tot). Moreover, we have:

2.3.17 Lemma.

1. ηX is bicontinuous, for every bispace X.

2. η is a natural transformation Id =⇒ ΣdΩd.

Proof. (1) Let U ∈ τ±. Then, (ηX
±)
−1[Σ+(U)] = {x | U±(x) ∈ Σ±(U)} = {x | x ∈

U} = U which is τ±-open. (2) Let f : X → Y be bicontinuous. By definitions,
ΣdΩd( f )(ηX(x)) is equal to

ΣdΩd( f )(U+(x),U−(x)) = ((Ωd( f ))−1
+ [U+(x)], (Ωd( f ))−1

− [U−(x)]).

Since (Ωd( f ))−1
± (U) is equal to {V ∈ τY

± | f−1[V] = U}, then

(Ωd( f ))−1
± [U±(x)] = {V | f−1[V] ∈ U±(x)} = U±( f (x)).

Consequently, ΣdΩd( f )(ηX(x)) = (U+( f (x)),U−( f (x))). □
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Next, for any d-frame L, define the (co)unit of adjunction

εL : L −→ Ωd(Σd(L))

to be the mappings α ∈ L+×L− ↦→ (Σ+(α+), Σ−(α−)). From (2.3.1) it is immedi-
ate that ε± are onto frame homomorphisms. It is easy to check that ε is a d-frame
homomorphism.

2.3.18 Lemma. ε is a natural transformation Id =⇒ ΩdΣd.

Proof. Let h : L→M be a d-frame homomorphism. Then, for an α ∈ L+×L−,

ΩdΣd(h)(εL(α)) = (Σd(h)−1[Σ+(α+)], Σd(h)−1[Σ−(α−)])

and Σd(h)−1[Σ±(α±)] = {(P+, P−) | Σd(h)(P±) ∈ Σ±(αpm)} = {(P+, P−) | α± ∈
h−1
± [P±]}. Therefore, ΩdΣd(h)(εL(α)) = εL(h(α)). □

2.3.19 Proposition (Ωd ⊣ Σd). Ωd and Σd constitute a dual adjunction with Ωd to
the left, Σd to the right and units η and ε.

Proof. What is left to prove is that the triangle identities for the adjunction hold.
First, we check that

Σd(ε
L) · ηΣdL : Σd(L)→ Σd(Ωd(Σd(L)))→ Σd(L)

composes to the identity. Let p ∈ Σd(L). Let us compute an explicit formula for
ηΣdL(p) : ΩdΣd(L)→ 2×2:

ηΣdL(p) = (U+(p), U−(p)) = ({Σ+(a) | p+(a) = 1}, {Σ−(b) | p−(b) = 1})

or equivalently, when represented as a d-frame homomorphism, it is the function
(Σ+(a), Σ−(b)) ↦→ (p+(a), p−(b)). Then, Σd(ε

L)(ηΣdL(p)) = ηΣdL(p) ◦ εL is the
function

α ↦→ (Σ+(α+), Σ−(α−)) ↦→ (p+(α+), p−(α−)) = p(α).

Next, we compute that the following composition gives an identity

Ωd(η
X) · εΩdX : Ωd(X)→ Ωd(Σd(Ωd(X)))→ Ωd(X)

Again, we give an explicit formula for Ωd(η
X). Let U ∈ τ±, then Ωd(η

X)±(Σ±(U))

is equal to

η−1[Σ±(U)] = {x | η(x) ∈ Σ±(U)} = {x | U ∈ U±(x)} = {x | x ∈ U} = U.

Finally, Ωd(η
X)(εΩdX(U+, U−)) = Ωd(η

X)(Σ+(U+), Σ−(U−)) = (U+, U−). □
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2.3.3.3 Spatiality and sobriety

It is a remarkable feature of Stone-type adjunctions that they can be restricted to the
largest (non-trivial) subcategories where the adjunction is an equivalence. In case of
our adjunction between bispaces and d-frames, we have a subcategory of d-sober
bispaces and spatial d-frames which are dually equivalent.

Being d-sober then means that all information about the bispace is already present
in its d-frame of open sets. On the other hand, spatial d-frames have “enough
points” and they can be obtained form an actual bispace. Moreover, they have a
nice algebraic characterisation (Fact 2.3.21).

2.3.20 Fact (Theorem 4.1 in [JM06]). Let X be a bispace. Then, the following are
equivalent:

1. X is d-sober, i.e. X ∼= Σd(L) for some d-frame L.

2. ηX is a bijection.

2.3.21 Fact (Theorem 5.1 in [JM06]). Let L be a d-frame. Then, the following are
equivalent:

1. L is spatial, i.e. L ∼= Ωd(X) for some bispace X.

2. εL is injective and reflects con and tot.

3. L satisfies the following conditions

(s±) x ̸≤ y in L± =⇒
∃p : L→ 2×2 s.t. p±(x) = 1 and p±(y) = 0

(s-con) α ̸∈ con =⇒ ∃p : L→ 2×2 s.t. p(α) = ⊤
(s-tot) α ̸∈ tot =⇒ ∃p : L→ 2×2 s.t. p(α) = ⊥

2.3.22 Example. Let X be the bispace obtained from Σd(3×3) (defined in Exam-
ple 2.3.15) by removing the point v. Then, Ωd(X) ∼= 3×3 and so X is not d-sober.
This is in contrast with the classical topology where only infinite spaces are non-
sober.

On the other hand, the bispace of reals equipped with the upper and lower
topologies (R, τl, τu) is d-sober, even though neither (R, τu) nor (R, τl) is a sober
space.

2.4 The duality of the compact regular

In this section we show that the duality of d-sober bispaces and spatial d-frames
restrict further to the duality of d-compact order-separated bispaces and d-compact
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d-regular d-frames. This duality is the core of our investigations. Not only many
other known dualities embed into it, as we show in Sections 2.5, 2.6 and 2.7, later,
in Chapter 5, we also show that a well studied and important duality studied in the
context of domain theory is equivalent to this duality.

As we are used to by now, many phenomena from frame theory carry to the
context of d-frames. In the classical duality theory are all T2 spaces sober and here
our bitopological variant of T2 implies d-sobriety.

2.4.1 Fact (Theorem 4.13 in [JM06]). Order-separated bispaces are d-sober.

Recall that d-compact order-separated bispaces are d-regular and that every bis-
pace is d-compact and d-regular if and only if its Ωd-image is. Then, Fact 2.4.1 gives
us that d-compact order-separated bispaces are dually equivalent to the category of
spatial d-compact d-regular d-frames.

In what follows we show that d-compact d-regular d-frames are actually already
spatial. Before we do that we prove a few auxiliary lemmas.

2.4.2 Lemma. For any d-compact d-frame L and any y ∈ L−. The set S+ =

{x | (x, y) ∈ tot} is a Scott-open filter, i.e. it is a filter such that anytime
⋁↑

i∈I bi ∈
S+, then bi ∈ S+ for some i ∈ I.

Analogously, for any x ∈ L+ and S− = {y | (x, y) ∈ tot}.

Proof. By (tot-∨· ) and (tot-↑) we see that S+ is a filter. Next, if
⋁↑

i∈I bi ∈ S+, that
means that (x,

⋁↑
i∈I bi) ∈ tot. Since L is d-compact, there is an i such that (x, bi) ∈

tot. □

2.4.3 Lemma. Let L be a d-compact d-regular d-frame. Let P+ ⊆ L+ be a completely
prime filter. Then, (P+, P−) is a d-point where P− = {y | ∃x ∈ L+ \ P+. (x, y) ∈
tot}.

Proof. First, notice that because P+ is completely prime, the element p =
⋁
(L+ \ P+)

is not in P+. Therefore, by (tot-↑), P− = {y | (p, y) ∈ tot}. We check that P− is a
completely prime filter. Because L is d-compact, it is immediate that P− is a Scott-
open filter.

To see why it is a prime filter, let y ∨ z ∈ P−. By definition, (p, y ∨ z) ∈ tot.
By compactness and regularity of L, there must be some a � y and b � z such that
(p, a ∨ b) ∈ tot. Then, by (con-tot) and Lemma 2.3.13, a∗ ∧ b∗ ≤ p. As P+ is a filter, it
cannot be that both a∗ and b∗ ∈ P+ as otherwise p ∈ P+. Without loss of generality
assume that a∗ ̸∈ P+. Then, a∗ ≤ p and because (a∗, y) ∈ tot, (p, y) ∈ tot and so
y ∈ P−.

Next, we check that the pair (P+, P−) is a d-point. (dp-tot) by definition, if α ∈ tot

and α+ ̸∈ P+, then α− ∈ P−. To check (dp-con), let α ∈ con such that α+ ∈ P+. If it
were that α− ∈ P−, that would mean that (p, α−) ∈ tot and so, by (con-tot), α+ ≤ p
would imply that p ∈ P+, a contradiction. □
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Again, following the classical example we have:

2.4.4 Proposition. d-Compact d-regular d-frames are spatial.

Proof. We check the conditions of Fact 2.3.21. For (s-tot), let α ̸∈ tot. This means
that α+ ̸∈ S+ where S+ = {x | (x, α−) ∈ tot} is a Scott-open filter (Lemma 2.4.2).
By Zorn’s Lemma, S+ can be extended to a completely prime filter P+ such that
α+ ̸∈ P+ ⊇ S+ (see, for example, Proposition 6.2 in [PP12]). By Lemma 2.4.3, we
have a d-point (P+, P−). Now, assume that α− ∈ P−. Then, by the construction of
P−, there would be an x ∈ L+ \ P+ such that (x, α−) ∈ tot. Which would mean, by
(con-tot), that α+ ≤ x and so x ∈ P+, a contradiction.

For (s±) let a ̸≤ b in L+. By regularity, there exists a c � a and c ̸≤ b. By (con-tot),
also (b, c∗) ̸∈ tot. Then, by (s-tot) we know that there is a d-point (P+, P−) such that
b /∈ P+ and c∗ /∈ P−. However, (a, c∗) ∈ tot and (P+, P−) is a d-point and so, a ∈ P+.

Finally, to check (s-con), let α /∈ con. By regularity α− is the join of the directed set
{w | w � α−} and so, by (con-

⨆↑), there must be a w � α− such that (α+, w) ̸∈ con.
Then, α+ ̸≤ w∗ and, by (s±), there exists a d-point (P+, P−) such that α+ ∈ P+ ̸∋ w∗.
As (w∗, α−) ∈ tot it must be that α− ∈ P−. □

2.4.5 Theorem.
The categories of d-compact order-separated bispaces and d-compact d-regular d-frames
are dually equivalent.

Convention. Because a d-compact bispace is d-regular and T0 iff it is order-
separated, to mirror the situation in d-frames, we will refer to the d-compact
order-separated bispaces as d-compact d-regular bispaces, i.e. we will implic-
itly assume T0 without mentioning it.

With this convention, the theorem above proves the dual equivalence of the cate-
gory d-compact d-regular bispaces biKReg and the category of d-compact d-regular
d-frames d-KReg.

2.5 Embedding a frame duality

Recall that the category of compact regular (T0) spaces KRegSp is dually equivalent
to the category of compact regular frames KRegFrm. The functors witnessing this
duality are Ω : KRegSp ⇄ KRegFrm :Σ, where Ω(X, τ) = τ and Σ(L) is the space
of all completely prime filters.

This duality can be fully embedded into the duality of d-compact d-regular bis-
paces and d-frames. Namely, there are two functors

I : KRegSp→ biKReg and J : KRegFrm→ d-KReg
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defined as I(X, τ) = (X, τ, τ) and J(L) = L▷◁ where the consistency and totality
relations for the d-frame L▷◁ = (L, L, conL, totL) are defined as follows

(a, b) ∈ conL
def≡ a ∧ b = 0 and (a, b) ∈ totL

def≡ a ∨ b = 1

On morphisms they are define as expected, namely I( f ) = f and J(h) = (h, h). It is
immediate that I and J are well-defined faithful functors. It is also clear that I is full
and we can show that the same is true for J.

2.5.1 Lemma. J is a full embedding.

Proof. The last thing to check is that if a pair of frame homomorphisms h± : L → M
constitutes a d-frame homomorphism (h+, h−) : L▷◁ → M▷◁, then h+ = h−. Let
b ∈ L and let a be well-inside b in L, i.e. there is a c ∈ L such that a ∧ c = 0 and
b ∨ c = 1. Then, because (h+, h−) is a d-frame homomorphism

h+(a) ∧ h−(c) = 0 and h+(b) ∨ h−(c) = 1

and, because h− is a frame homomorphism

h−(a) ∧ h−(c) = 0 and h−(b) ∨ h−(c) = 1.

Because, M is a distributive lattice, x ∧ h−(c) = 0 with x ∨ h−(c) = 1 has a unique
solution, therefore h+(a) = h−(a). And, because h± are frame homomorphisms and
b is a join of all elements that are well-inside it, h+(b) = h−(b). □

As a consequence, since 2▷◁ = 2×2, the d-points of L▷◁ are in a bijection with the
points of L. Hence:

2.5.2 Proposition. The duality of compact regular spaces and frames embeds into
the duality of d-compact d-regular bispaces and d-frames:

biKRegop d-KReg
∼=

KRegSpop KRegFrm
∼=

Iop J

(This means that Σd ◦ J ∼= I ◦ Σ, or equivalently Ωd ◦ I ∼= J ◦Ω.)

2.6 Embedding the Priestley duality

Recall that Priestley duality is the dual equivalence of the category of Priestley
spaces (Example 2.1.2) and continuous monotone maps Pries and the category of
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distributive lattices and lattice homomorphisms DLat. The equivalence is witnessed
by the pair of functors Clp⪯ : Pries ⇄ DLat : spec⪯ where Clp⪯(X, τ,⪯) is the lat-
tice of clopen upsets and spec⪯(D) is the space of prime filters PFilt(D) ordered by
set-inclusion, with the topology generated by the sets

ΦD
+(a) = {P | a ∈ P} and ΦD

−(a) = {P | a /∈ P}, (2.6.1)

for all a ∈ D.
Recall also that Pries is isomorphic to the category of Priestley bispaces biPries,

i.e. d-compact d-zero-dimensional T0 bispaces (Corollary 2.2.6). We have the follow-
ing diagram of categories

Priesop DLat

biPriesop d-Pries

∼=

iso

∼=

where d-Pries is the category of Priestley d-frames, i.e. d-compact d-zero-dimensional
d-frames (d-Pries is dual to biPries by Theorem 2.4.5). From the composition of the
equivalences we see that d-Pries is equivalent to DLat. In the following we give a
constructive proof of this fact and, as a consequence, we will also prove that spec⪯
and Clp⪯ factor through d-Pries.

In order to define a functor d-Pries → DLat we examine what does the functor
Clp⪯ do bitopologically. Clopen upsets of a Priestley space are exactly the τ+-open
τ−-closed sets of the corresponding bispace (via bi : Pries → biPries from Corol-
lary 2.2.6). Moreover, τ+-open τ−-closed subsets of a bispace X are in a bijection
with the pairs of opens (U+, U−) ∈ τ+×τ− which are in totX and conX.

This is a general construction which works for any d-frame. Define the functor

Clpd : d-Frm→ DLat

as L ↦→ (con∩ tot,∧· ,∨· , ff , tt) on objects and h ↦→ h on morphisms. Observe that it is
well defined and, moreover, Clp⪯ ∼= Clpd ◦Ωd ◦ bi.

Conversely, it is not difficult to check the elements of the form (2.6.1) constitute
the sets of generators of τ+ and τ−, respectively, for the bispace bi(spec⪯(D)). Mo-
tivated by this observation, we define the functor

IF : DLat→ d-Frm

on objects D ↦→ (Idl(D),Filt(D); conD, totD) where Idl(D) and Filt(D) are the frames
of ideals and filters6, respectively, and

(I, F) ∈ conD
def≡ ∀i ∈ I ∀ f ∈ F. i ≤ f (I, F) ∈ totD

def≡ I ∩ F ̸= ∅.

6Both frames of ideals and filters are ordered by set-inclusion with the smallest elements {0} and
{1}, respectively.



2.6. Embedding the Priestley duality 31

On morphisms, for a lattice homomorphism h : D → E, define IF (h) : IF (D) →
IF (E) as

IF (h) : (I, F) ↦−→ (↓h[I], ↑h[F]).

2.6.1 Lemma. IF is well-defined.

Proof. We need to check that the structure (Idl(D),Filt(D); conD, totD) is a d-frame.
(con-↓) and (tot-↑) are immediate and tt, ff ∈ con ∩ tot since tt = (D, {1}) and ff =

({0}, D). For the rest:

(con-
⨆↑) Let {(Ij, Fj) : j ∈ J} be a directed subset of con. Let i ∈ ⋁↑

j Ij and
f ∈ ⋁↑

j Fj. By definition, i ∈ Ik for some k ∈ J and f ∈ Fl for some
l ∈ J. Let j be an upper bound for k and l in J.Then, both i ∈ Ij and
f ∈ Fj and, since (Ij, Fj) ∈ con, we know that i ≤ f .

(con-∨· ,∧· ) Let (I1, F1), (I2, F2) ∈ conD. Then, for any i ∈ I1 ∧ I2 = I1 ∩ I2 and
f1 ∧ f2 ∈ F1 ∨ F2 = { f1 ∧ f2 | f1 ∈ F1, f2 ∈ F2}, we have that i ≤ f1

and i ≤ f2 from our assumptions. Therefore, also i ≤ f1 ∧ f2 as
we wanted. To prove the second part, take any i1 ∨ ı2 ∈ I1 ∨ I2 =

{i1 ∨ i2 | i1 ∈ I1, i2 ∈ I2} and f ∈ F1 ∧ F2 = F1 ∩ F2. Then again,
i1 ≤ f and i2 ≤ f and so i1 ∨ i2 ≤ f .

(tot-∨· ,∧· ) Let (I1, F1), (I2, F2) ∈ totD. There must exist an ai ∈ Ii ∩ Fi for i =
1, 2. Therefore, we have a1 ∨ a2 ∈ (I1 ∨ I2) ∩ (F1 ∧ F2) and a1 ∧ a2 ∈
(I1 ∧ I2) ∩ (F1 ∨ F2).

(con-tot) Let (I, F1) ∈ conD and (I, F2) ∈ totD. From the second assumption
we know that there exists an x ∈ I ∩ F2 and from the first assump-
tion we know that x ≤ f for all f ∈ F1 . Therefore, F1 ⊆ ↑x ⊆ F2.
Proving that (I1, F) ∈ conD and (I2, F) ∈ totD implies I1 ⊆ I2 follows
the exactly same reasoning.

For functoriality, let h : D → E be a homomorphism. Clearly, both components
are frame homomorphisms. If (I, F) ∈ conD, then for every a ∈ h[I] and b ∈ h[F],
a ≤ b as h is monotone. Therefore, the same is true also for ↓h[I] and ↑h[F]. Finally,
if (I, F) ∈ totD, then for an x ∈ I ∩ F, also h(x) ∈ Idl(h)(I) ∩ Filt(h)(F). □

The next lemma convinces us that IF does have the potential to be the embed-
ding of DLat ↪−→ d-Frm:

2.6.2 Lemma. For a distributive lattice D, conD ∩ totD = {(↓a, ↑a) : a ∈ D}.
Consequently, Clpd(IF (D)) ∼= D.

Proof. Let (I, F) ∈ conD ∩ totD. Then, there exists an x ∈ I ∩ F since (I, F) ∈ totD
and, for all i ∈ I and f ∈ F, i ≤ x ≤ f since (I, F) ∈ conD. Therefore, I = ↓x and
F = ↑x. □
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2.6.3 The unit of coreflection. Let L be a d-frame. Since the lattice Clpd(L) is
isomorphic to the sublattice of L+ of complemented elements C+ = {x | (x, x∗) ∈
tot} (Lemma 2.3.13), we have two monotone maps:

v+ : Idl(C+) −→ L+ e+ : L+ −→ Idl(C+) (2.6.2)

I ↦−→
⋁

I x ↦−→ ↓x ∩ C+

A simple calculation shows that v+(e+(x)) ≤ x and I ⊆ e+(v+(I)) for all x ∈ L+

and I ∈ Idl(C+). Therefore, v+ is a left adjoint and it preserves all joins. It also
preserves finite meets because

v+(I) ∧ v+(J) = (
⋁

I) ∧ (
⋁

J) =
⋁
{i ∧ j | i ∈ I, j ∈ J}

≤
⋁
{a | a ∈ I ∩ J} = v+(I ∩ J) = v+(I ∧ J).

(Where the inequality holds because if i ∈ I and j ∈ J, then i ∧ i ∈ I ∩ J.) As a result,
we obtain that

2.6.4 Lemma. v+ : Idl(C+)→ L+, I ↦→ ⋁
I, is a frame homomorphism.

Next, Filt(Clpd(L)) ∼= Filt(C+) ∼= Idl(Cop
+ ) and Cop

+ is isomorphic to the lattice of
complemented C− = {y ∈ L− | (y∗, y) ∈ tot} (Lemma 2.3.13). The isomorphism
map Filt(C+) ∼= Idl(C−) is computed as

(−)⊛ : F ↦−→ F⊛ = {x∗ | x ∈ F}.

Then, by the same procedure as above we have a frame homomorphism Idl(C−) →
L− which, when precomposed with (−)⊛, gives:

2.6.5 Lemma. v− : Filt(C+)→ L−, F ↦→ ⋁
(F⊛), is a frame homomorphism.

In addition we also have:

2.6.6 Lemma. v = (v+, v−) : IF (Clpd(L))→ L is a d-frame homomorphism.

Proof. What is left to check is that v preserves con and tot. Let (I, F) ∈ conClpd(L). By
definition, for every i ∈ I and f ∈ F, i ≤ f and so (i, f ∗) ∈ conL. Then, v(↓i, ↑ f ) =
(i, f ∗) ∈ conL and, because con is closed under directed joins,

v(I, F) = v(
⋁↑{↓i | i ∈ I},

⋁↑{↑ f | f ∈ F}) =
⨆↑{v(↓i, ↑ f ) | i ∈ I, f ∈ F} ∈ conL.

Next, let (I, F) ∈ totClpd(L). By definition, there exists an x ∈ I ∩ F. Since (↓x, ↑x) ⊑
(I, F) and (x, x∗) ∈ tot, we have v(I, F) ⊒ v(↓x, ↑x) = (x, x∗) ∈ totL. □

Moreover, v has the following universal property:
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2.6.7 Proposition. Let L be a d-frame and let D be a distributive lattice. Then, for
any d-frame homomorphism h : IF (D) → L there exists a unique lattice homomor-
phism h : D → Clpd(L) such that the following diagram commutes

L IF (Clpd(L))

IF (D)

v

h IF (h)

Proof. With Clpd(L) ∼= C+ set h : d ↦→ h+(↓d). This is a well-defined lattice homo-
morphism as (↓d, ↑d) ∈ conD ∩ totD (Lemma 2.6.2) also (h+(↓d), h−(↑d)) ∈ conL ∩
totL. Let (I, F) ∈ IF (D). With IF (h) of the type Idl(D)×Filt(D)→ Idl(C+)×Filt(C+)

and, for any i ∈ I, f ∈ F, compute

v(IF (h)(↓i, ↑ f )) = v(↓h[↓i], ↑h[↑ f ]) = v(↓h(i), ↑h( f )) = v(↓h+(↓i), ↑h+(↓ f ))

Because h+(↓ f )∗ = h−(↑ f ) and, therefore, (↑h+(↓ f ))⊛ = ↓h−(↑ f ), the last term in
the calculation above is equal to (h+(↓i), h−(↑ f )). With this we see that h makes the
diagram above commute as I and F are the joins of such ↓i’s and ↑ f ’s, respectively.

To show uniqueness, let g : D → Clpd(L) also makes the diagram commute.
Then, for any d ∈ D, g(d) =

⋁ ↓g(d) =
⋁ ↓g[↓x] = v+(IF (g)+(↓d) = h+(↓d) =

h(d). □

As a result, IF is the left adjoint of Clpd with v : IF ◦ Clpd =⇒ Id the counit and
the unit λ : Id =⇒ Clpd ◦ IF is computed as

λD = 1IF (D) : a ∈ D ↦−→ (1Idl(D)(↓a), 1Filt(D)(↑a)) = (↓a, ↑a)

However, by Lemma 2.6.2, we know that this is an isomorphism. Therefore, DLat
is equivalent to a coreflective subcategory of d-frames.

In the next two lemmas we show that this coreflective subcategory is the category
of Priestley d-frames.

2.6.8 Lemma. IF (D) is a Priestley d-frame, for any distributive lattice D.

Proof. Checking zero-dimensionality is immediate as, by Lemma 2.6.2, all ↓a (resp.
↑a) are complemented and I =

⋁
a∈I ↓a (resp. F =

⋁
a∈F ↑a) for every every ideal I

(resp. filter F). To check compactness, let
⨆↑

j(Ij, Fj) ∈ tot. That means that, for some

x ∈ D, x ∈ ⋁↑
j Ij =

⋃
j Ij and x ∈ ⋁↑

j Fj =
⋃

j Fj. From directedness, there exists a j ∈ J
such that x ∈ Ij ∩ Fj. □

2.6.9 Corollary. IF : DLat→ d-Frm is full and faithful.
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Proof. Faithfulness follows from the fact that the functors Idl and Filt are faithful.
Next, let D and E be distributive lattices and h : IF (D) → IF (E) a d-frame homo-
morphism. Since conD ∩ totD = {(↓x, ↑x) | x ∈ D} and h[conD ∩ totD] ⊆ conE ∩ totE,
we see that h preserves principal ideals and filters. In other words, h+ = Idl(g1) and
h− = Filt(g2) for some lattice homomorphisms g1, g2 : D → E. Moreover, because
d-frame homomorphisms between d-regular d-frames are uniquely determined by
one of their components (as we will show in Lemma 5.3.10) and the plus coordinate
of IF (g1) is equal to h+, it must be that g1 = g2. □

2.6.10 Proposition. L is a Priestley d-frame if and only if v is an isomorphism.

Proof. The implication from right follows from Lemma 2.6.8. For the opposite direc-
tion, let L be a Priestley d-frame and recall the definition of v+ and e+ from (2.6.2).
Since L is d-zero-dimensional we see that v+(e+(x)) = x for all x ∈ L+. On the
other hand let I ∈ Idl(C+) and let c ∈ e+(v+(I)) (equivalently c ≤ ⋁

I). Because
c ∈ C+, (c, c∗) ∈ totL and because L is d-compact, c ≤ d for some d ∈ I. Therefore,
c ∈ I and so e+(v+(I)) ⊆ I. We have proved that v+ is a frame isomorphism and,
correspondingly, the same is true for v−.

What is left to prove is that v reflects conL and totL. Let (x, y) ∈ L+ × L−. From
the previous we know that v(I, F) = (x, y) where I = ↓x ∩ C+ and F⊛ = ↓y ∩ C−.
Assume (x, y) ∈ conL. Then, for every c+ ∈ I and c− ∈ F⊛, (c+, c−) ∈ conL and so
c+ ≤ c∗−. Therefore, (I, F) ∈ conClpd(L). Finally, assume (x, y) ∈ totL. Since (x, y) =
⊔(I, F⊛), by compactness, there are c+ ∈ I and c− ∈ F⊛ such that (c+, c−) ∈ tot. By
(con-tot), c∗− ≤ c+ and so c∗− ∈ I ∩ F. Therefore, (I, F) ∈ totClpd(L). □

We summarise our findings in the main theorem of this section.

2.6.11 Theorem.
The category of d-compact d-zero-dimensional d-frames is equivalent to the category
of distributive lattices and, moreover, the category of d-frames coreflects onto it.

Since Priestley d-frames are always spatial (Proposition 2.4.4), we also have that
the category of bispaces coreflects onto the category of Priestley bispaces. The re-
flection map is the composite, for any bispace X,

X
ηX

−−→ Σd(Ωd(X))
Σd(v)−−−−→ Σd(IF (Clpd(Ωd(X)))).

2.6.12 Remark. Banaschewski, in [Ban79], proved that frames coreflect onto coher-
ent frames and that (mono)topological spaces reflect onto spectral spaces. Then, in
[Pic94], Picado showed that the category of Priestley spaces is isomorphic to the
category of Priestley bispaces and, therefore, dually equivalent to the category of
Priestley biframes (defined correspondingly). Coreflectivity of biframes onto a cat-
egory of biframes equivalent to the category of distributive lattices is also showed
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therein. Theorem 2.6.11 is a version of both of those results in the context of d-
frames.

Note that our construction of IF (D) is simpler than the corresponding construc-
tion in [Ban79]. This is because we do not have to construct an ambient frame which
contains both Idl(D) and Filt(D) and is generated by them.

2.6.1 The bispace side

In this subsection we finally take a look at a variant of Proposition 2.5.2 but for
Priestley duality. We have the required functors ready

I : Pries bi−−→ biPries ⊆−→ biKReg and J : DLat IF−−→ d-Pries ⊆−→ d-KReg

(by Corollary 2.2.6 and Theorem 2.6.11) What is left to show is that they commute
with Ωd and Σd. We will define a functor specbi : DLat → biPries such that (1)
spec⪯ ∼= bi−1 ◦ specbi, and (2) specbi

∼= Σd ◦ IF . As a result we obtain:

2.6.13 Proposition. The duality of Priestley spaces and distributive lattices embeds
into the duality of d-compact d-regular bispaces and d-frames:

biKRegop d-KReg
∼=

Priesop DLat
∼=

Iop J

2.6.14 Spectra bitopologically. Define a functor

specbi : DLat→ biPries

on objects as D ↦→ (PFilt(D); τD
+ , τD

− ) where the plus topology is generated by
ΦD

+(a)’s and the minus topology by ΦD
−(a)’s (see (2.6.1)). On morphisms, for a lattice

homomorphism h : D → E, set specbi(h) to be the bicontinuous map P ↦→ h−1[P].

2.6.15 Observation.

1. Our condition (1) from above (i.e. spec⪯ ∼= bi−1 ◦ specbi) follows immediately
from the definitions.

2. The sets {ΦD
+(a) : a ∈ D} and {ΦD

−(a) : a ∈ D} are closed under finite
intersections and, therefore, form bases of τD

+ and τD
− , respectively.
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2.6.16 Lemma. Idl(D) ∼= τD
+ via the frame isomorphism U+ : I ↦→ {P | I ∩ P ̸=

∅}.

Proof. Observe that U+(↓a) = ΦD
+(a) for all a ∈ D. Since ΦD

+(a)’s form a basis we
get that U+ is an onto frame homomorphism from⋃

a∈M
ΦD

+(a) = {P | P ∩ (
⋁

a∈M
↓a) ̸= ∅}

for every set M ⊆ D. To check injectivity, let I, J ∈ Idl(D) such that I ̸⊆ J. Then,
there exists an x ∈ I \ J and, by (AC), we can extend ↑x to a prime filter P such that
P ∩ J = ∅. Therefore U+(I) ̸⊆ U−(J). □

2.6.17 Lemma. Filt(D) ∼= τD
− via the frame isomorphism U− : F ↦→ {P | F ̸⊆ P}.

Proof. The argument is almost the same as above: U−(↑a) = ΦD
−(a) for all a ∈ D

and, since a /∈ P iff ↑a ̸⊆ P, we also have that
⋃

a∈M ΦD
−(a) = {P | (⋁a∈M ↑a) ̸⊆ P}

which proves that U− is an onto frame homomorphism. Finally, U− is injective
because if F ̸⊆ G in Filt(G), then the (AC) gives us a prime filter P ⊇ G disjoint with
↓x for some x ∈ F \ G. □

2.6.18 Proposition. UD = (U+, U−) : IF (D) → Ωd(specbi(D)) is a d-frame iso-
morphism.

Proof. All we need to check is that UD preserves and reflects con and tot. The latter
is equivalent to, for all (I, F) ∈ IF (D),

U+(I) ∪U−(F) = X iff I ∩ F ̸= ∅.

For “⇐”, let x ∈ I ∩ F. Then x ∈ P implies that P ∈ U+(I) and x /∈ P implies that
F ̸⊆ P. For “⇒”, if I ∩ F = ∅, then, by (AC), there exists a prime filter P ⊇ F such
that I ∩ P = ∅. Therefore, P /∈ U+(I) ∪U−(F).

To show that UD preserves and reflects con, we need to show that

U+(I) ∩U−(F) = ∅ iff ∀i ∈ I, ∀ f ∈ F. i ≤ f .

For “⇐” notice that, for a prime filter P, P ∈ U+(I) iff ∃i ∈ P ∩ I but, from the
assumption, F ⊆ ↑i ⊆ P and therefore P /∈ U−(F). Conversely, if F ̸⊆ P, no such
i ∈ P ∩ I can exist. For “⇒”, if there exists i ∈ I and f ∈ F such that i ̸≤ f then, by
(AC), there exists a prime filter P such that i ∈ P ̸∋ f . Then, P ∈ U+(I)∩U−(F). □
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2.6.19 Lemma. UD is natural in D.

Proof. Let h : D → E be a lattice homomorphism. Then, UE ◦ IF (h) is the following
map

(I, F) ↦−→ ({R ∈ spec⪯(E) | R ∩ h[I] ̸= ∅}, {R ∈ spec⪯(E) | h[F] ̸⊆ R}),

and Ωd(spec⪯(h)) ◦UD is the map which sends (I, F) to

(spec⪯(h)
−1[{P ∈ spec⪯(D) | P ∩ I ̸= ∅}], spec⪯(h)−1[{P ∈ spec⪯(D) | F ̸⊆ P}]).

Both plus and minus coordinates can be further simplified to

{R ∈ spec⪯(E) | h−1[R] ∩ I ̸= ∅} and {R ∈ spec⪯(E) | F ̸⊆ h−1[R]}.

Hence UE ◦ IF (h) and Ωd(spec⪯(h)) ◦UD give the same map. □

As a corollary we obtain that IF ∼= Ωd ◦ specbi and that is equivalent to our
condition (2), i.e. that Σd ◦ IF ∼= specbi. This finishes the proof of Proposition 2.6.13.

2.6.20 Remark. We saw in this section that the duality for distributive lattices is
much more clear when expressed purely bitopologically. In fact, we believe that the
most natural picture of the duality is the commutative triangle:

DLat

biPries d-Pries

Clp
bisp

ec bi IF
Clp

d

Ωd

Σd

(Where Clpbi
def≡ Clpd ◦Ωd.) The isomorphism of categories bi : Pries ∼= biPries is

extraneous (as it requires the Axiom of Choice from its use of Alexander Subbase
Lemma in Theorem 2.2.5) and it is rather just a non-trivial fact about partially or-
dered spaces and bispaces.

2.7 Embedding Stone duality

Lastly, recall that the category of Stone spaces Stone, i.e. compact zero-dimensional
T0 spaces, is dually equivalent to the category of Boolean algebras Bool. The functors
witnessing this duality are Clp : Stone ⇄ Bool : Ult where Clp(X, τ) is the Boolean
algebra of clopen subsets of X and Ult(B) is the Stone space of ultrafilters.

2.7.1 Fact. The duality of Stone spaces and Boolean algebras embeds into Priestley
duality:
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Priesop DLat
∼=

Stoneop Bool
∼=

Iop J

with I the functor (X, τ) ↦→ (X, τ,=) and J is the inclusion.

2.7.2 Fact ([Ban79; Joh82]). The duality of Stone spaces and Boolean algebras em-
beds into Priestley duality:

KRegSpop KRegFrm
∼=

Stoneop Bool
∼=

Iop J

with I the inclusion and J the functor B ↦→ Idl(B).

All the mentioned embeddings from the previous three sections combine into
the following diagram:

biKReg

KRegSp

Pries

Stone

d-KReg

KRegFrm

DLat

Bool

∼=

∼=

∼=

∼=

To see why it commutes it is enough to prove that the right-hand side square of
embeddings commutes:

2.7.3 Lemma. Let B be a Boolean algebra. Then, IF (B) ∼= Idl(B)▷◁.

Proof. Since B is self-isomorphic via the homomorphisms ¬ : B→ Bop, also Idl(B) ∼=
Filt(B) via F ↦→ ¬F = {¬ f | f ∈ F}. This establishes the pair of frame isomor-
phisms Idl(B)×Filt(B) → Idl(B)×Idl(B). Let us check that it preserves and reflects
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the consistency relation, let (I, F) ∈ IF (B),

(I, F) ∈ conB iff ∀i ∈ I, f ∈ F. i ≤ f

iff ∀i ∈ I, j ∈ ¬F. i ∧ j = 0 iff I ∧ ¬F = {0}.

To check the same for the totality relation

(I, F) ∈ totB iff ∃x ∈ I ∩ F iff ∃i ∈ I, j ∈ ¬F. i ∨ j = 1 iff I ∨ F = B. □

We conclude this section with a classification of the subcategory of d-frames
which corresponds to the Boolean algebras with the embedding Bool ↪→ d-Frm.

2.7.4 Proposition. The category of Boolean algebras is equivalent to the category of
d-frames (L, L, conL, totL) such that L is compact and zero-dimensional, i.e. a Stone
frame.

Proof. By Lemma 2.7.3, IF (B) ∼= (Idl(B), Idl(B), conIdl(B), totIdl(B)) and Idl(B) are Stone
frames (see [Joh82]). Moreover, the embedding Idl(−)▷◁ : Bool ↪→ d-KReg is full
and faithful since both Idl(−) : Bool ↪→ KRegFrm and (−)▷◁ : KRegFrm ↪→ d-KReg
are as well. □
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3
The category d-Frm

In the recent literature there has been little, if any, account of an investigation of d-
frames from the categorical perspective. We aim to partially fill this hole with this
chapter by showing that the category of d-frames is complete and cocomplete and
that it has the extremal epi–mono factorisation system. Moreover, we also describe
a construction of free objects from their presentations by generators and relations.

In order to show all of that, it proved to be really useful to show that the cate-
gory of d-frames is a reflective subcategory of a category which is much easier to
work with. Then, this categorical gadget makes many of the constructions in d-
frames straightforward as they are often just a reflection of a construction in the less
restrictive setting.

3.1 The simple case, category pd-Frm

A category in which d-Frm is reflective is the category of so called proto-d-frames.
In this section we prove basic properties of the category of those. Then, after we
show the reflection, we explain how thanks to this d-Frm inherits some of the prop-
erties of the category of proto-d-frames.

3.1.1 Definition. The structure (L+, L−, con, tot) is a proto-d-frame if it satisfies
axioms (tot-↑), (con-↓), (tot-∨· ,∧· ) and (con-∨· ,∧· ) of d-frames.

By pd-Frm denote the category of proto-d-frames and d-frame homomor-
phisms.

In other words, proto-d-frames are like d-frames but we do not require the two
troublesome axioms (con-

⨆↑) and (con-tot) to hold (see Definition 2.3.2).

41



42 Chapter 3. The category d-Frm

3.1.1 Limits

The product ∏i L
i of a family of proto-d-frames {Li = (Li

+, Li
−, coni, toti)}i∈I is the

proto-d-frame (∏i Li
+, ∏i Li

−, con, tot) where ∏i Li
± are products of frames and

con = { ((αi
+)i, (αi

−)i) ∈∏
i

Li
+×∏

i
Li
− | ∀i. αi ∈ coni}

tot = { ((αi
+)i, (αi

−)i) ∈∏
i

Li
+×∏

i
Li
− | ∀i. αi ∈ toti}

3.1.2 Lemma. ∏i L
i is the product in pd-Frm.

Proof. It is immediate that ∏i L
i satisfies all axioms of proto-d-frames. From frame

theory we know that the projections πi
± : ∏i Li

± → Li
± are frame homomorphisms

and from the definition we see that all compounds πi = (πi
+, πi

−) : ∏i L
i → Li are

d-frame homomorphisms.
The universal property of products follows from the universal property of frame

products. Indeed, let M be a proto-d-frame and {δi : M → Li}i be a family of d-
frame homomorphisms. Then, we have two frame homomorphisms δ± : M± →
∏i Li

±, x ↦→ (δi
±(x))i, and, by definition, δ = (δ+, δ−) is a d-frame homomorphism.

□

Next, let h, g : L → M be two morphisms in pd-Frm. Define N to be the proto-
d-frame (N+, N−, conN, totN) where N± = {x ∈ L± | h±(x) = g±(x)} and

conN = conL ∩ (N+×N−) and totN = totL ∩ (N+×N−).

Clearly, N is a proto-d-frame. Since the embeddings e± : N± ⊆ L± are the equalisers
of h± and g± in the category of frames, the compound e = (e+, e−) : N → L is a
d-frame homomorphism and has the required universal property in pd-Frm. We
obtain:

3.1.3 Lemma. N L M
e

f

g
is the equaliser in pd-Frm.

Combining Lemmas 3.1.2 and 3.1.3 we conclude:

3.1.4 Proposition. The category pd-Frm is complete.

3.1.2 Quotients

Let us recall how quotients are formed in frame theory. Let R be a binary relation
on a frame L. An element x is said to be R-saturated if

∀a, b, c. (a, b) ∈ R and b ∧ c ≤ x =⇒ a ∧ c ≤ x
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By L/R denote the set {x ∈ L | x is R-saturated} which is a frame in order induced
by L. The quotient map is as follows

µR : L→ L/R, x ↦→
⋀
{s | x ≤ s and s is R-saturated }.

Quotients have the expected universal property: For any frame homomorphisms
h : L→ M such that

∀(a, b) ∈ R =⇒ h(a) ≤ h(b)

the restriction h↾L/R : L/R→ M is a frame homomorphism such that h = h↾L/R · µR.

3.1.5 The relation ≤R. For every R ⊆ L×L there exists the largest relation ≤R

such that L/R ∼= L/≤R. It is defined as ≤R def≡ {(x, y) | µR(x) ≤ µR(y)}1. Observe
that R ⊆ ≤R. Alternatively, ≤R can be defined from the graph of µR, i.e. the set
GR = {(x, µR(x)) : x ∈ L}, as follows

≤R = ≤ ;(GR)−1

where (−) ; (−) is the relation composition and (−)−1 is the reversed relation:

P ; Q = {(x, y) | ∃z. x P z Q y} and P−1 = {(y, x) | x P y}.

(Proof. If (x, y) is such that µR(x) ≤ µR(y) then x ≤ µR(x) ≤ µR(y) gives that
(x, y) ∈ ≤ ; (GR)−1. On the other hand if x ≤ µR(y)(GR)−1y, because µR(y) is
R-saturated, µR(x) ≤ µR(y).)

We will make a use of ≤R later in Sections 3.2.2 and 3.2.4 where we will also need
the following:

3.1.6 Lemma. The assignment R ↦→≤R is monotone (in the subset order).

Proof. Observe that x ≤R y is equivalent to: whenever y ≤ s and s is R-saturated,
then x ≤ s. Let R ⊆ S be subsets of L×L and let x ≤R y. Then, for a S-saturated
s such that y ≤ s, because every S-saturated element is also R-saturated, x ≤ s.
Hence, x ≤S y. □

3.1.7 Remark. Unlike as is in the standard literature of frames we have defined quo-
tients of frames non-symmetrically. For that reason we include a full proof that L/R
has the required universal property in Appendix, Section A.5.

A disadvantage of this reformulation is that the relation for coequalisers (in Sec-
tion 3.1.3) becomes a bit more complicated but, on the other hand, everything else
we needed to do in this text is simpler. An example when this slight modification
shines is when doing free constructions of frames. A quotient of an absolutely free
frame by R is definitionally equal to the frame of C-ideals (see, for example, [Joh82])
where the set of coverages C is generated from R.

1In fact ≤R is a quasi-congruence, i.e. it is a preorder which is also a subframe of L×L.
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3.1.8 Quotients of proto-d-frames are computed componentwise. Let L be a
proto-d-frame and R± two binary relations: R+ ⊆ L+×L+ and R− ⊆ L−×L−. Con-
sider µR = (µR

+, µR
−) : L+×L− → (L+/R+)×(L−/R−) where µR

± are the quotient
maps L± → L±/R±, and set

L/R = (L+/R+, L−/R−, µR[conL], µR[totL]).

3.1.9 Lemma. L/R is a quotient of L in pd-Frm. More precisely, L/R is a proto-
d-frame, and for every d-frame homomorphism h : L → N for which (a, b) ∈ R±
implies h±(a) ≤ h±(b), there is precisely one d-frame homomorphism h̃ : L/R→ N

such that h̃ · q = h.

Proof. Checking the axioms (con-∨· ,∧· ) and (tot-∨· ,∧· ) is straightforward. Now let
α ∈ con and β ⊑ µR(α). Since µR is onto we have a γ such that β = h(γ). Then
α ⊓ γ ∈ con, and h(α ⊓ γ) = β which proves (con-↓); similarly we see that (tot-↑)
holds and we obtain that (L+/R+, L−/R−, µR[con], µR[tot]) is a proto-d-frame.

To check universality set h̃ = (h+↾L+/R+
, h−↾L−/R−). It is a pair of frame homo-

morphisms and the definition of L/R assures that h̃ preserves con and tot. □

3.1.10 Technical facts about quotients. For a proto-d-frame L and binary rela-
tions R± ⊆ L±×L±, define

(∀x, y ∈ L±) x ≤R
± y if µR

±(x) ≤ µR
±(y)

(∀α, β ∈ L+×L−) α ⊑R β if α+ ≤R
+ β+ and α− ≤R

− β−

α =R β if α ⊑R β and β ⊑R α

(∀P ⊆ L+×L−) ↓R P = {α | ∃β ∈ P. α ⊑R β}
↑R P = {α | ∃β ∈ P. α ⊒R β}

3.1.11 Observation.

1. If (α+, β+) ∈ R+ and (α−, β−) ∈ R−, then α ⊑R β.

2. If R± is a subset of ≤±, then L/R ∼= L and so ⊑R is the same as ⊑. Conse-
quently, ↓R P = ↓P and ↑R P = ↑P

(where ↓P and ↑P are the downwards and upwards closures in the ⊑-order, respec-
tively).

Let P ⊆ L+×L− be a any relation. We say that P is ∧· -closed (resp. ∨· -closed), if
for every α, β ∈ R, α ∧· β ∈ R (resp. α ∨· β ∈ R). Being ↓R -closed (resp. ↑R -closed)
means that ↓R P = P (resp. ↑R P = P). Similarly, define

⨆
-,

⋁· - and
⋀
· -closedness

where
⋁· and

⋀
· are infinitary versions of ∨· and ∧· .
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3.1.12 Lemma. Let P ⊆ L+×L− be a (∧· ,∨· )-closed relation. Then, ↓R P and ↑R P
are also (∧· ,∨· )-closed. In particular, ↓P is also (∧· ,∨· )-closed.

Proof. Let α, β ∈ ↓R P. This means that there are α′, β′ ∈ P such that α ⊑R α′ and
β ⊑R β′. Observe that (α ∧ β)+ = α+ ∧ β+ ≤R

+ α′+ ∧ β′+ = (α′ ∧ β′)+ and similarly
(α ∨ β)− ≤R

− (α′ ∨ β′)−. Therefore, α ∧· β ⊑R α′ ∧· β′ ∈ P and α ∧· β ∈ ↓P. Proving
closedness ↓RP under ∨· is similar. The same reasoning also shows that ↑P is (∧· ,∨· )-
closed. □

L is not the only proto-d-frame which yields L/R when taking a quotient by R.
The following lemma shows that the proto-d-frame (L+, L−, ↓R con, ↑R tot) has the
largest con and tot to still have the same quotient by R as L has, i.e. that

L/R = (L+, L−, ↓R con, ↑R tot)/R.

3.1.13 Lemma. ↓R con = (µR)−1[µR[con]] and ↑R tot = (µR)−1[µR[tot]].

Proof. We only prove the con part, the tot part is proved similarly. Let α ⊑R β ∈ con.
Then, µR(α) ⊑ µR(β). By definition, µR(β) ∈ µR[con] and, µR[con] is downwards
closed (Lemma 3.1.9), and so µR(α) ∈ µR[con]. Therefore, α ∈ (µR)−1[µR[con]]. For
the other direction, let µR(α) ∈ µR[con] for some α ∈ L+×L−. This means that
α =R β for some β ∈ con, and so α ∈ ↓R con. □

We can think of (L+, L−, ↓R con, ↑R tot) as of L with con and tot extended by the
“R-equal” elements. This extension has the following important lifting property.

3.1.14 Lemma. Let h : L → M be a morphism in pd-Frm which preserves R =

(R+, R−), i.e. (x, y) ∈ R± implies h±(x) ≤ h±(y). Then,

h : (L+, L−, ↓R conL, ↑R totL)→M

is a d-frame homomorphism.

Proof. Let α ⊑R β ∈ conL. Then, h(α) ⊑ h(β), because h preserves R, and h(β) ∈
conM because h preserves con. Therefore, h(α) ∈ conM. The tot case is similar. □

The relation ⊑R = (≤R
+,≤R

−) can be, again, expressed as a relation composition:
≤R
± = ≤± ;(GR

±)
−1 where GR

± is the graph of the function µR
±. With this representa-

tion we also have that

↓R con = ≤+ ; (GR
+)
−1 ; con ; GR

−; ≥−
↑R tot = GR

+; ≥+ ; tot; ≤− ;(GR
−)
−1.
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Convention. Unless specified otherwise, whenever we say that a set is down-
wards closed or that we close a set downwards, we always mean in ⊑-order.
Similarly, A ⊆↑ L+×L− means that A is a directed subset of L+×L− in the
⊑-order.

3.1.3 Colimits

Colimits of proto-d-frames are a bit more complicated but still quite simple when
compared to colimits of d-frames. The coproduct

⨁
i L

i of a family of proto-d-
frames {Li}i is the structure (

⨁
i Li

+,
⨁

i Li
−, con⊕, tot⊕) where con⊕ and tot⊕ are

generated from

con1 =
⋃

i

ιi[coni] and tot1 =
⋃

i

ιi[toti]

with ιi = (ιi+, ιi−) being the pairs of the frame inclusions ιi± : Li
± →

⨁
i Li
±. Con-

cretely, con is the smallest relation containing con1 which is downwards closed in
⊑-order and closed under ∨· and ∧· . Similarly, tot is the smallest upwards ⊑-closed
and (∨· ,∧· )-closed superset of tot1.

3.1.15 Observation. For any relation P, set P∧· ,∨· to be the algebraic closure of P
under all finite ∧· and ∨· . By Lemma 3.1.12, ↓P∧· ,∨· and ↑P∧· ,∨· are still (∧· ,∨· )-closed.
Then, in this notation:

con⊕ = ↓(con1)∧· ,∨· and tot⊕ = ↑(tot1)∧· ,∨· .

From the definition we see that
⨁

i L
i is a proto-d-frame and all ιi : Li → ⨁

i L
i

are d-frame homomorphisms. The universal property follows from the universality
of frame coproducts.

3.1.16 Lemma.
⨁

i L
i is the coproduct in pd-Frm.

3.1.17 Coequalisers. Let h, g : M → L be two morphisms in pd-Frm. Define two
relations R± ⊆ L±×L± as

R+ = {(g+(x), h+(x)), (h+(x), g+(x)) | x ∈ M+} and

R− = {(g−(x), h−(x)), (h−(x), g−(x)) | x ∈ M−}.

Consider any d-frame homomorphism k : L → N such that k · h = k · g, The com-
mutativity condition is equivalent to k±(a) ≤ k±(b), for all (a, b) ∈ R±, and so, by
Lemma 3.1.9, k can be uniquely lifted to k̃ : L/R → N such that k = k̃ · µR. In other
words, we have:
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3.1.18 Lemma. M L L/R
f

g

µR

is the coequaliser in pd-Frm.

Combining Lemmas 3.1.16 and 3.1.18 we conclude:

3.1.19 Proposition. The category pd-Frm is cocomplete.

3.2 Reflecting pd-Frm onto d-Frm

Observe that the same proof which showed that pd-Frm is complete can be also
adapted for d-Frm. Proving cocompleteness is not so straightforward. For this rea-
son, instead of giving a direct proof we show that the embedding

d-Frm pd-Frm⊆

has a left adjoint or, in other words, that d-Frm is a reflective subcategory of pd-Frm.
Then, d-Frm is, as a consequence, complete and cocomplete (we give a categorical
argument in Section 3.3.1).

The definition of proto-d-frames when compared to d-frames is missing two
axioms: (con-

⨆↑) and (con-tot). Before we give the full definition of the reflector
r : pd-Frm → d-Frm we consider two easier cases. We take a look at how to “cor-
rect” either of the missing axioms separately.

3.2.1 Case 1: correcting (con-
⨆↑)

Let L = (L+, L−, con, tot) be a proto-d-frame. If we only wanted to correct (con-
⨆↑),

then the reflection of L would be the structure (L+, L−, con′, tot) where con′ is the
smallest relation containing con and closed under all the required operations, i.e.

con′ =
⋂
{C ⊆ L+×L− | con ⊆ C and C is (↓,

⨆↑ ,∧· ,∨· )-closed}. (3.2.1)

For now we omit proving universality of this construction. Instead, we show that
con′ can be computed by an iterative procedure from below. Let P ⊆ L+×L− be any
relation and define

D(P) = {
⨆↑ A | A⊆↑ P}.

Note that D(P) is only a “one-step” closure under joins of directed subsets in⊑-order.
D(P) might still contain directed subsets which do not have suprema in D(P). To
close P under all directed suprema, one has to iterate the process.

3.2.1 Lemma. Let L+, L− be two frames and let P ⊆ L+×L− be a relation.

1. If P is (∧· ,∨· )-closed then the relation D(P) is still (∧· ,∨· )-closed.
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2. If P is downwards closed then the relation D(P) is still downwards closed.

Proof. For (1), let α, β ∈ D(P). From the definition α =
⨆↑

i αi and β =
⨆↑

j βj for some

αi’s and βj’s from P. Calculate:

α ∧· β = (
⋁↑

i αi
+ ∧

⋁↑
j β

j
+,

⋁↑
i αi
− ∨

⋁↑
j β

j
−)

= (
⋁↑

i

⋁↑
j (α

i
+ ∧ β

j
+),

⋁↑
i

⋁↑
j (α

i
− ∨ β

j
−))

= (
⋁↑

i,j(α
i
+ ∧ β

j
+),

⋁↑
i,j(α

i
− ∨ β

j
−))

Notice that the set {αi ∧· βj : i ∈ I, j ∈ J} is directed since {αi}i and {βj}j are and,
moreover, αi ∧· βj ∈ P for all i, j since P is closed under logical meets.

For (2), let β ⊑ ⨆↑
i αi where αi’s are from P. Then, β =

⨆↑
i (β⊓ αi) ∈ D(P) because

the set {β ⊓ αi}i is a directed subset of P. □

3.2.2 Lemma. Let h : L → M be a morphism in pd-Frm such that M satisfies
(con-

⨆↑). Then, h : (L+, L−,D(con), tot)→M is a d-frame homomorphism.

Proof. Let A⊆↑ con. Since h is a d-frame homomorphisms, h[A] ⊆ conM and, since
M satisfies (con-

⨆↑), h(
⨆↑ A) =

⨆↑ h[A] ∈ conM. □

Lemma 3.2.1 shows that one application of D does not destroy the property of
being (↓,∨· ,∧· )-closed. We obtain a growing sequence of (↓,∨· ,∧· )-closed relations
{Dγ(con) : γ ∈ Ord} where, for an ordinal γ and a limit ordinal λ,

D0(P) = P, Dγ+1(P) = D(Dγ(P)) and Dλ(P) =
⋃

γ<λ

Dγ(P) .

Moreover, because the size of Dγ(con) is bounded by the size of L+×L−, D(Dγ(con))

equals Dγ(con), for some ordinal γ. Write D∞(con) for such Dγ(con). Obviously,
Dγ(con) is

⨆↑-closed and, in fact, it is equal to con′ (defined in (3.2.1)).

Finally, we define the reflector. For a proto-d-frame L set

d(L) = (L+, L−, D∞(con), tot)

and κL = (id+, id−) : L→ d(L). Because D(−) is increasing, i.e. P ⊆ D(P), κL is a
d-frame homomorphism.

By a transfinite application of Lemma 3.2.2, we get that for any d-frame homo-
morphism h : (L+, L−, con, tot)→M with M satisfying (con-

⨆↑)
(L+, L−, con, tot) (L+, L−, Dγ(con), tot)

M

(id+,id−)

h h

commutes, for all γ ∈ Ord. Moreover, h : (L+, L−,Dγ(con), tot) → M is uniquely
determined for all γ ∈ Ord; in particular, for γ = ∞.
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3.2.3 Proposition. Proto-d-frames satisfying (con-
⨆↑) form a reflective subcategory

of pd-Frm, with the reflection given by κL : L→ d(L).

3.2.1.1 When is one step enough?

Before we continue with the (con-tot)-reflection, we would like to investigate some
sufficient (though not necessarily minimal) conditions under which D∞(con) =

D(con). This is going to have applications later in Section 3.4.3. Consider a fully gen-
eral scenario: Let L± be two frames which are generated from their bases B± ⊆ L±,
i.e. for every x ∈ L±, x =

⋁
(↓x ∩ B±). Instead of con consider any P ⊆ L+×L−

which is (↓,∧· ,∨· )-closed.

We start with an important definition. Two sets A+ ⊆ L+ and A− ⊆ L− are said
to be P-independent if ∀a+ ∈ A+ and ∀a− ∈ A−, (a+, a−) ∈ P. Equivalently, A+ and
A− are P-independent if A+×A− ⊆ P.

3.2.4 Observation. For every α ∈ P, the sets B+(α+) and B−(α−) are P-independent

where B±(α±)
def
≡ ↓α± ∩ B±.

It turns out that D(P) can be reformulated by using P-independent sets. Let
α ∈ D(P). From the definition, there is some directed A⊆↑ P such that α =

⨆↑ A.
Because B±(−) are monotone and A is directed, the sets {B+(α+) : α ∈ A} and
{B−(α−) : α ∈ A} are both also directed (in the subset order) and so we have:

∀A⊆↑ R =⇒
⋃

α∈A
B+(α+) and

⋃
α∈A

B−(α−) are P-independent (3.2.2)

Moreover, because L± is generated by B± and every x ∈ L± is equal to
⋁
B±(x), we

obtain that α = (
⋁↑

α∈A α+,
⋁↑

α∈A α−) = (
⋁
A+,

⋁
A−) where A± =

⋃
α∈A B±(α±).

It might seem that D(−) is just a special case of a more general construction:

Dind(P) = {(
⋁

A+,
⋁

A−) | A± ⊆ B± s.t. A+ and A− are P-independent}

What we have proved in the previous paragraphs is that D(P) ⊆ Dind(P). In fact,
both closures are equivalent:

3.2.5 Lemma. D(P) = Dind(P)

Proof. Only the right-to-left inclusion remains to be proved. Let A+ ⊆ B+ and
A− ⊆ B− be P-independent. Observe that for two finite sets F+ ⊆fin A+ and F− ⊆fin
A−, (

⋁
F+,

⋁
F−) ∈ P. This is because R is ∨-closed and so (

⋁
F+, f−) ∈ P for

every f− ∈ F− and, because R is ∧-closed, (
⋁

F+,
⋁

F−) ∈ P. Clearly, the set
A = {(⋁ F+,

⋁
F−) : F+ ⊆fin A+ and F− ⊆fin A−} is a directed subset of P and

(
⋁

A+,
⋁

A−) =
⨆↑A ∈ D(P). □
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Because D(P) is also downwards closed and closed under∧· and∨· (Lemma 3.2.1),
D(D(P)) = Dind(Dind(P)) and it might seem that this is already equal to Dind(P).
But this is not true in general. Take, for example, A+ = {a+} and A− = {a1

−, a2
−}

which are Dind(P)-independent. Each of (a+, a1
−) and (a+, a2

−) ∈ Dind(P) is wit-
nessed by a pair of P-independent sets A1

+ and A1
−, and A2

+ and A2
−, respectively,

such that a+ =
⋁

A1
+ =

⋁
A2
+ and a1

− =
⋁

A1
− and a2

− =
⋁

A2
−. However, because

there is no reason to believe that A1
+ and A2

+ are equal, there are no obvious candi-
dates for P-independent sets which would have (a+, a1

− ∨ a2
−) as their supremum.

To overcome this problem, we assume the following condition:

(P-ind) For all ∀α ∈ Dind(P), B+(α+) and B−(α−) are P-independent.

This guarantees, for every α ∈ Dind(P), a canonical choice of P-independent sets,
namely A± = B±(α±).

3.2.6 Lemma. D(Dind(P)) ⊆ Dind(P)

Proof. Let A ⊆↑ Dind(P). By (P-ind), for every α ∈ A, B+(α+) and B−(α−) are P-
independent. As in (3.2.2), because A is directed, the sets A+

def≡ ⋃↑
α∈A B+(α+)

and A−
def≡ ⋃↑

α∈A B+(α+) are P-independent and
⨆↑ A = (

⋁
A+,

⋁
A−). Hence,⨆↑ A ∈ Dind(P). □

A combination of the preceding lemmas yields the desired result:

3.2.7 Proposition. Let P ⊆ L+×L− be downwards closed, closed under logical
meets and joins. If (P-ind) holds for P, then D(D(P)) = D(P).

Proof. D(D(P))
(3.2.5)
= D(Dind(P))

(3.2.6)
⊆ Dind(P)

(3.2.5)
= D(P) ⊆ D(D(P)). □

3.2.8 Remark. Because D(P) = Dind(P) is downwards closed, for every α ∈ D(P)
and every (b+, b−) ∈ B+(α+)×B−(α−), also (b+, b−) ∈ D(P). Therefore, (P-ind)
can be reformulated in the following more compact way:

(P-ind) (B+×B−) ∩D(P) ⊆ P

3.2.9 Remark. Lemma 3.2.5 has applications even beyond this section. As a byprod-
uct it also proves that, for a d-frame L and A± ⊆ L±, if A+×A− ⊆ con, the join
(
⋁

A+,
⋁

A−) is in con, and vice versa.

3.2.2 Case 2: correcting (con-tot)

The next step that gets us closer to defining our desired left adjoint to the inclusion
d-Frm ↪→ pd-Frm is to show how to correct the axiom (con-tot). One can try to force
the equations that the axiom requires to hold when quotienting L by the relations

R+ = {(x, y) | ∃z ∈ L−. (x, z) ∈ con and (z, y) ∈ tot}
R− = {(x, y) | ∃z ∈ L+. (z, x) ∈ con and (y, z) ∈ tot}
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also equivalently written as (recall paragraph 3.1.5):

R+ = con ; tot−1 and R− = con−1 ; tot. (3.2.3)

By Lemma 3.1.9, we know that L/R is a proto-d-frame. However, it might still not
satisfy (con-tot) and so we have to iterate this procedure. Since, in every step the
frame components of the resulting proto-d-frame get smaller, this process eventu-
ally stops and yields a proto-d-frame satisfying (con-tot). Because the carrier frames
might be infinite it might require a transfinitely many steps before this process stops.

This iterative procedure would work but we would completely lose control over
the resulting proto-d-frame. Instead, we describe a procedure which keeps the
frame component intact and iteratively extends con, tot, R+ and R− and then, after it
finishes, we factor only once by the computed relations and obtain a proto-d-frame
satisfying (con-tot).

3.2.10 A sequence of quotient structures. Let us fix two frames L+ and L− and
define Q = (con, tot, R+, R−) to be a quotient structure (on (L+, L−)) if con, tot ⊆
L+×L− and R± ⊆ L±×L± are binary relations. (We do not require any axioms of
d-frames to hold for con and tot.)

We know that, if (L+, L−, con, tot) is a proto-d-frame, then it has the same quo-
tient by R as (L+, L−, ↓R con, ↑R tot) has (recall 3.1.10). In the next step, factoring
(L+, L−, con, tot)/R by the missing inequalities (as in (3.2.3)), is the same as factor-
ing (L+, L−, con, tot) by R+ extended by (↓R con) ; (↑R tot)−1 and similarly extended
R−. This motivates the following update operator on quotient structures:

b⋆(Q)
def≡ (↓R con, ↑R tot, (con ; tot−1) ∪ R+, (con−1 ; tot) ∪ R−)

A growing (transfinite) sequence of quotient structures bγ(Q)
def≡ (conγ, totγ, Rγ

+, Rγ
−),

for γ ∈ Ord, is then defined as follows

b0(Q)
def≡ (↓con∧· ,∨· , ↑tot∧· ,∨· , R+, R−)2

bγ+1(Q)
def≡ b⋆(bγ(Q))

For a limit ordinal λ: bλ(Q)
def≡ (

⋃
γ<λ con

γ,
⋃

γ<λ tot
γ,

⋃
γ<λ Rγ

+,
⋃

γ<λ Rγ
−).

Since b⋆ always increases the result and since the components of bγ(Q) are bounded
by the size of L+×L−, there exists the smallest ordinal γ such that bγ(Q) = bγ+1(Q).
Write b∞(Q) for this bγ(Q).

To compute the reflection of a proto-d-frame L = (L+, L−, con, tot) let Q be the
quadruple (con, tot, ∅, ∅) and define

b(L) = (L+, L−, con′, tot′)/R
2Here, we use the notation from Observation 3.1.15. The 0th step is included only to make sure

that (L+, L−, con0, tot0) is a proto-d-frame. Observe that if (L+, L−, con, tot) already was a proto-d-
frame, then b0(Q) = Q.
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where (con′, tot′, R+, R−) = b∞(Q). Set κL = (µR
+, µR

−) : L→ b(L).
Lemma 3.1.14 applied transfinitely gives that all (L+, L−, conγ, totγ)’s in the se-

quence for b(L) are proto-d-frames. Therefore, b(L) is also a proto-d-frame (by
Lemma 3.1.9).

3.2.11 Lemma. Let h : L → M be a morphism in pd-Frm such that M satisfies

(con-tot). Then, h preserves S+
def
≡ con ; tot−1 and S−

def
≡ con−1 ; tot, i.e. h±(x) ≤

h±(y) whenever (x, y) ∈ S±.

Proof. Whenever (x, y) ∈ conL ; tot−1
L , then also (h+(x), h+(y)) ∈ h[conL] ; h[tot−1

L ]

and, because h is a d-frame homomorphism, h[conL] ; h[tot−1
L ] = h[conL] ; h[totL]−1

is a subset of conM ; totM. Since M satisfies (con-tot), h+(x) ≤ h+(y). □

3.2.12 Proposition. Proto-d-frames satisfying (con-tot) form a reflective subcategory
of pd-Frm, with the reflection given by the homomorphisms κL : L→ b(L).

Proof. First, we check that b(L) satisfies (con-tot). Let α ∈ con′ and β ∈ tot′ be
such that µR

−(α−) = µR
−(β−). Then, (α+, β−) ∈ ↓R con′ and so (α+, β+) ∈ (↓R con′) ;

(↑R tot′)−1. Because b∞(Q) = q for Q = (con′, tot′, R+, R−), ↓R con′ ⊆ con′, ↑R tot′ ⊆
tot′ and con′ ; tot′−1 ⊆ R+. Therefore, (a, b) ∈ R+ and µR

+(α+) ≤ µR
+(β+).

Let h : L → M be a morphism in pd-Frm such that M satisfies (con-tot). If
h preserves bγ(Q) for some ordinal γ, i.e. that h[conγ] ⊆ conM, h[totγ] ⊆ totM and
(x, y) ∈ Rγ

± implies h±(x) ≤ h±(y), then it also preserves bγ+1(Q) by Lemmas 3.1.14
and 3.2.11.

By a transfinite induction, h : (L+, L−, con′, tot′) → M is a homomorphism pre-
serving R. Therefore, by Lemma 3.1.9, it can be uniquely extended to the homomor-
phism h̃ : b(L) ∼= L/R→M such that h = h̃ · κL. □

3.2.3 The reflection

Unfortunately, neither the (con-tot)-reflection (from Section 3.2.2) followed by the
(con-

⨆↑)-reflection (from Section 3.2.1) nor the vice versa application yields a reflec-
tion r : pd-Frm → d-Frm (see Counterexample 3.6.4). Instead, to make this work,
we have to combine both of them into one.

Fix two frames L+ and L−. Define, for a quotient structure Q = (con, tot, R+, R−)
on (L+, L−), an operator:

r⋆(Q)
def≡ (↓R D(con), ↑R tot, (con ; tot−1) ∪ R+, (con−1 ; tot) ∪ R−)

Then, rγ(Q), for every γ ∈ Ord, and r∞(Q) are defined as in Section 3.2.2. With this
is the reflection of a proto-d-frame L = (L+, L−, con, tot) computed as

r(L) = (L+, L−, con′, tot′)/R

where (con′, tot′, R+, R−) = r∞(con, tot, ∅, ∅). Set κL = (µR
+, µR

−) : L→ r(L).
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3.2.13 Lemma. Let L± be two frames and R± two relations on them. Then, for any
directed subset A⊆↑ (L+/R+)×(L−/R−), (µR)−1[A] is directed in L+×L−.

Proof. Let α1, α2 ∈ µ−1[A]. Since A is directed, there is a β ∈ A which is above µ(α1)

and µ(α2). Let α be an element of L that is mapped to β. We get that q(α⊔ α1 ⊔ α2) =

β and hence the element α ⊔ α1 ⊔ α2 belongs to µ−1[A]; it is clearly an upper bound
for the α1 and α2. □

3.2.14 Lemma. Let L± be two frames and Q = (con, tot, R+, R−) such that r∞(Q) =

Q. Then, (L+, L−, con, tot)/R is a d-frame. In particular, for any proto-d-frame L,
r(L) is a d-frame.

Proof. Because r0(Q) = Q, L
def≡ (L+, L−, con, tot) is a proto-d-frame. Moreover,

L/R satisfies (con-tot) because b(Q) = Q (Proposition 3.2.12). To check (con-
⨆↑), let

A⊆↑ µR[con]. By Lemma 3.2.13 we know that (µR)−1[A] is also directed in L. Since
Q is a fixpoint of r⋆ we have that

↓R con ⊆ con and D(con) ⊆ con (3.2.4)

The former and Lemma 3.1.13 imply that (µR)−1[µR[con]] ⊆ con and hence the di-
rected set (µR)−1[A] is contained in con. The second condition in (3.2.4) implies that
the supremum of (µR)−1[A] also belongs to con; clearly, it is mapped to the supre-
mum of A by the d-frame homomorphism µR which is in µR[con].

For the “in particular” part, a transfinite application of Lemma 3.1.12 and 3.2.1,
proves that (L+, L−, con′, tot′) is a proto-d-frame. Then, Q′ = (con′, tot′, R+, R−) is a
fixpoint of r∞ and so the reasoning above proves that r(L) is a d-frame. □

3.2.15 Theorem.
d-Frm forms a reflective subcategory of pd-Frm, with the reflection given by the
homomorphisms κL : L→ r(L).

Proof. Thanks to Lemma 3.2.14 we only need to prove the universal property of
κL. The proof follows the same lines as the proofs of Proposition 3.2.3 and 3.2.12.
Denote rγ(con, tot, ∅, ∅) by (conγ, totγ, Rγ

+, Rγ
−), for all γ ∈ Ord. By Lemma 3.2.2

and 3.1.14, a homomorphism h : L→M in pd-Frm such that M is a d-frame, makes
the following diagram commute

(L+, L−, con, tot) (L+, L−, conγ, totγ)

M

(id+,id−)

h h
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for all γ ∈ Ord. Moreover such h : (L+, L−, conγ, totγ) → M is unique and, by
Lemma 3.2.11, it preserves Rγ

±. This is true, in particular, for γ = ∞. Hence, h can
be uniquely lifted to h such that

L (L+, L−, con∞, tot∞) r(L) = (L+, L−, con∞, tot∞)/R∞ M
(id+,id−) µR∞

h

composes to h : L→M. □

3.2.4 Reflection from above

Let Q = (con, tot, R+, R−) be a quotient structure on (L+, L−). Notice that Q is a
fixpoint of r∞ if and only if the following list of conditions is satisfied for Q

(R1) con and tot are (∧· ,∨· )-closed

(R2) ↓Rcon ⊆ con and ↑Rtot ⊆ tot

(R3) con ; tot−1 ⊆ R+ and con−1 ; tot ⊆ R−

(R4) D(con) ⊆ con

Let us call the quotient structures which satisfy (R1)–(R4) reasonable quotient struc-
tures and denote by RS(L+, L−) (or just RS(L±)) the set of all such structures on
L±.

As we will see shortly we can define the functor r(−) only from the structure of
RS(L±). This gives us an alternative description of the reflection pd-Frm→ d-Frm
by a construction “from above”. This proved to be very useful as sometimes it fits
certain problems better then the iterative description.

3.2.16 Example. For any d-frame L, the quadruple Λ(L)
def≡ (con, tot,≤+,≤−) is a

reasonable quotient structure, i.e. Λ(L) ∈ RS(L±)3.

3.2.17 Proposition. Let (con, tot, R+, R−) ∈ RS(L±) and let µ± be the quotient
homomorphisms L± → L±/R±. Then,

L/R = (L+/R+, L−/R−, µ[con], µ[tot])

is a reasonable d-frame.

Proof. Follows from Lemma 3.2.14 as, by (R1) and (R2), is (L+, L−, con, tot) a proto-
d-frame and by (R2)–(R4) is Q a fixpoint of r⋆. □

3≤± are the orders on the frames L±. We hope that the reader will not confuse them with the
specialisation orders on bispaces (defined in Section 2.1.1), despite their same notation.
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3.2.18 Proposition. RS(L±) is closed under (coordinatewise) intersections.
Consequently, RS(L±) is a complete lattice when ordered by coordinatewise in-

clusions, i.e. by

Q ⊆ Q′
def
≡ con ⊆ con′, tot ⊆ tot′ and R± ⊆ R′±.

Proof. Let {(coni, toti, Ri
+, Ri

−)}i∈I be a collection of reasonable quotient structures.
If J is void we have the trivial intersection (more precisely, void meet)

(L+×L−, L+×L−, L+×L+, L−×L−)

which is reasonable. Hence we can consider the meets (
⋂

I con
i,
⋂

I tot
i,
⋂

I Ri
+,

⋂
I Ri
−)

with non-void I. Obviously this system satisfies (R1) and (R4).

(R2): We have ↓
⋂

I Ri
(
⋂

I con
i) = (≤

⋂
I Ri

+ ) ; (
⋂

I con
i) ; (≥

⋂
I Ri

− ) and, since ≤(−)
± is

monotone (Lemma 3.1.6), this is a subset of ↓Rj
(conj) = (≤Rj

+ ) ; (conj) ; (≥Rj
− ) ⊆ conj

for each individual j ∈ I, and hence (
⋂

I Ri
+) ; (

⋂
I con

i) ; (
⋂

I Ri
−) ⊆ (

⋂
I con

i).
(R4): As in (R2), we obtain that (

⋂
I con

i) ; (
⋂

I tot
i)−1 ⊆ Rj

+ for each individual
j ∈ I and so (

⋂
I con

i) ; (
⋂

I tot
i)−1 ⊆ (

⋂
I Ri

+). □

Now, let Q = (con, tot, R+, R−) be a quotient structure. We will show that r∞(Q)

is, in fact, the smallest reasonable quotient structure containing Q. One direction is
trivial: r∞(Q) belongs toRS(L±) and so the smallest one is smaller than r∞(Q). For
the other direction:

3.2.19 Lemma. If Q is a quotient structure on (L+, L−) and Q′ ∈ RS(L±) such
that Q ⊆ Q′. Then, r⋆(Q) ⊆ Q′.

Proof. Since Q′ is reasonable, it is a fixpoint of r⋆ and so con ⊆ con′ implies D(con) ⊆
con′ and, because ↓(−) is monotone, ↓R D(con) ⊆ ↓R′ D(con) ⊆ ↓R′ D(con′) ⊆ con′.
Similarly, show that ↑R tot ⊆ tot′. Also, (con ; tot−1) ∪ R+ ⊆ (con′ ; (tot′)−1) ∪ R′+ =

R′+ and (con−1 ; tot) ∪ R− ⊆ R′−. □

We have obtained:

3.2.20 Proposition. Let Q = (con, tot, R+, R−) be a quotient structure on (L+, L−)
such that (L+, L−, con, tot) is a proto-d-frame. Then,

r∞(Q) =
⋂
{Q′ ∈ RS(L±) | Q ⊆ Q′}.

Next, we prove an important technical proposition with applications later in the
text:

3.2.21 Proposition. Let Q = (con, tot, R+, R−) ∈ RS(M±) and let h± : L± →
M± be a pair of frame homomorphisms. Then

h−1[[Q]]
def
≡ (h−1[con], h−1[tot], (h+×h+)−1[R+], (h−×h−)−1[R−])
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is a reasonable quotient structure, i.e. h−1[[Q]] ∈ RS(L±).

Proof. (R1) immediately follows from the definitions of ff , tt and the lattice structure
of (L+×L−,⩽·), and from the fact that h± are frame, hence lattice homomorphisms.

(R2): Set S± = (h±×h±)−1[R±]. If (a, b) ∈ S+ ; h−1[con] ; S−1
− then we have

some a′, b′ such that h+(a) R+ h+(a′) con h(b′) R−1
− h(b) and hence, by (R2) for Q,

(a, b) ∈ h−1[con]. Similarly for tot.
(R3): Let (a, c) ∈ h−1[con] ; (h−1[tot])−1. Hence, (h+(a), h−(b)) ∈ con and (h+(c),

h−(b)) ∈ tot for some b ∈ L−. By (R3) for Q, (h+(a), h+(c)) ∈ R+, and hence
(a, c) ∈ S+.

(R4): Since (h+, h−) : L+×L− → M+×M− is a frame homomorphism in the or-
der ⊑, it is obviously Scott continuous and hence h−1[con] is closed since con is. In
particular, h−1[con] is closed under directed suprema. □

3.2.22 An alternative proof of Theorem 3.2.15. The proposition above allows us
to give an alternative proof of the universality r∞(−). Let h : L → M be a d-frame
homomorphism form a proto-d-frame L to a d-frame M. By Proposition 3.2.21,

h−1[[Λ(M)]] = (h−1[conM], h−1[totM], E(h+), E(h−))

where Λ(M) is defined as in Example 3.2.16, E(h±)
def≡ (h±×h±)−1[≤±] (i.e. the rela-

tion {(x, y) | h±(x) ≤ h±(y)}), is a reasonable quotient structure. From minimality
of,

con′ ⊆ h−1[con], tot′ ⊆ h−1[tot], R+ ⊆ E(h+) and R− ⊆ E(h−)

for (con′, tot′, R+, R−) = r∞(conL, totL, ∅, ∅). By the third and fourth inclusion and
by Lemma 3.1.9, there is a d-frame homomorphism h̃± : L/R → M such that h =

h̃ · κ. The first and second inclusions yield h[con′] ⊆ conM and h[tot′] ⊆ totM, and
since (recall Lemma 3.1.9 again) h̃± are restrictions of h± we conclude that h̃[con′] ⊆
conM and h̃[tot′] ⊆ totM. Therefore, the same h̃ is also a d-frame homomorphism
r(L)→M. Unicity is obvious since κ± are onto.

3.3 Consequences for d-Frm

3.3.1 Limits and colimits

Recall the standard extension of the reflector r to a functor: for a morphism h : L→
M in pd-Frm there is precisely one r(h) in d-Frm such that r(h) · κL = κM · h. Hence
we have commutative diagrams

L r(L)

M r(M)

κL

h r(h)

κM
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in other words, the system (κL)L is a natural transformation. Note that for L in
d-Frm we have r(L) = L and κL = id.

In Section 3.1 we proved that pd-Frm is a complete and cocomplete category.
From d-Frm being a reflective subcategory we see that d-Frm is also complete and
cocomplete, and how the limits and colimits look like. This is a consequence of the
following categorical fact.

3.3.1 Proposition. Let C be a reflective subcategory of a complete and cocomplete
category D. Then, for every diagram D in C,

1. the limit of D computed in D is isomorphic to its C-reflection, and

2. the C-reflection of the colimits of D computed in D is a colimit of D in C.

Consequently, C is also complete and cocomplete.

Proof (see [PP12], for example). Let κD : D → r(D) be the reflector and let D be a di-
agram in C, seen as a functor I → C. A colimit of D in D is a cocone ( fi : D(i) →
A)i∈I and its C-reflection (κA · fi : D(i) → r(A))i is also a cocone. Universal prop-
erty of A gives a ϕ : r(A) → A such that ϕ · κA = idA. Hence, κA is a section and
therefore an isomorphism. (This is a general fact: κA · ϕ · κA = κA and uniqueness
of the solution g · κA = g for g = κA, makes κA · ϕ = idr(A).)

For (2) denote by ( fi : B → D(i))i the limit of D in D. Then, for any cone
(gi : C → D(i))i there is a unique g† : B → C and if, moreover, C ∈ C then g† · κB =

g† for a unique g† : r(B)→ C. □

This gives a purely categorical proof that limits in pd-Frm and d-Frm are com-
puted exactly the same way. To sketch how colimits are computed we give explicit
formulas for quotients and coproducts.

3.3.2 Quotients in d-Frm. Let L be a d-frame and let R = (R+, R−) be a pair of
relations, R± on L±. Recall the proto-d-frame L/R and the quotient map µ : L →
L/R from 3.1.9. We set

µr = κL/R · µ : L→ r(L/R)

and get a morphism in d-Frm.

3.3.3 Proposition.

1. µr is a quotient of L by the relation R in d-Frm.

2. µr is an extremal epimorphism in d-Frm.

Proof. (1) Follows from Proposition 3.3.1 but we prove it explicitly. Let h : L→M be
a morphism in d-Frm for which (a, b) ∈ R± implies h±(a) = h±(b). By Lemma 3.1.9
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there is h′ : L/R → M in pd-Frm such that h′ · µ = h. Since M is in d-Frm there is
h̃ in d-Frm such that h̃ · κL = h′. Thus, h̃ · µr = h̃ · κL · µ = h′ · µ = h. Unicity is
obvious since µr is onto.

(2) Now let µr = m · f for some f : L → M and m : M → r(L/R) a monomor-
phism. For (a, b) ∈ R± we have m±( f±(a)) = m±( f±(b)) and hence f±(a) = f±(b).
Thus, there is an f ′ : L/R → M such that f ′ · µ = f , and since M is in d-Frm there
is f̃ : r(L/E) → M such that f̃ · κL = f ′. Consequently, m · f̃ · µr = m · f̃ · κL · µ =

m · f ′ · µ = m · f = µr and since µr is onto, m · f̃ = id. Finally, m · f̃ · m = m, and
since m is a monomorphism we see that also f̃ ·m = id. □

3.3.4 Coproducts in d-Frm. Let {Li}i∈I be a family of d-frames. By
⨁

i L
i de-

note the coproduct in pd-Frm together with the embeddings ιi : Li → ⨁
i L

i (as in
Section 3.1.3). The d-frame reflection gives the d-frame r(

⨁
i L

i) and the morphism
κ :

⨁
iL

i → r(
⨁

i L
i). Then, by Proposition 3.3.1,

Li ⨁
i L

i r(
⨁

i L
i)ιi κ

are the embeddings into a coproduct in d-Frm. Moreover, in Section 3.5.4, we show
that the frame components of κ are isomorphisms and also that only one application
of D(−) is enough to complete the consistency relation under directed suprema. In
other words:

3.3.5 Proposition. The coproduct {Li}i∈I of a family of d-frames in d-Frm is com-
puted as

(
⨁

i
Li
+,

⨁
i
Li
−, D(↓(con1)∧· ,∨· ), ↑(tot1)∧· ,∨· )

where con1 =
⋃

i ιi[coni] and tot1 =
⋃

i ιi[toti].

3.3.2 (Co)reflections

Olaf Klinke showed in [Kli12], among other things, two important coreflections for
the category of d-frames:

3.3.6 Proposition. d-Normal d-frames form a coreflective subcategory of d-frames.

Proof sketch (Theorem 2.4.4 in [Kli12]). Let L = (L+, L−, con, tot) be a d-frame. De-
fine <� to be the largest interpolative subrelation of �+.4 Then, (L+, L−, con, (<�
)−1 ; tot) is the normal coreflection of L. □

3.3.7 Proposition. d-Compact d-regular d-frames form a coreflective subcategory of
d-normal d-frames.

4By the Axiom of Countable Dependent Choice, <� can be computed as the smallest fixpoint of
P ↦→ P ; P. See [BP02] for further details.
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Proof sketch (Proposition 4.2.5 [Kli12]). Set Idl�(L) to be the set of such ideals I ∈ Idl(L)
such that if x ∈ I then there is some y ∈ I such that x � y. Then, for a d-normal d-
frame L, define the d-compact d-regular coreflection to be the d-frame

(Idl�+(L+), Idl�−(L−), con◦, tot◦)

where (I, J) ∈ con◦ iff (I×J) ⊆ conL and (I, J) ∈ tot◦ iff (I×J) ∩ totL ̸= ∅. □

Moreover, we can also adapt the standard proof that regular frames are coreflec-
tive in Frm [Pul03] to the d-frame context:

3.3.8 Proposition. d-Regular d-frames form a coreflective subcategory of d-frames.

Proof. Let L be a d-frame. Define L′ as (L′+, L′−, con′, tot′) where

L′± = {a | a =
⋁
{x | x �± a}}

and con′ = con ∩ L′+×L′− and tot′ = tot ∩ L′+×L′−. We prove that L′ is a d-frame
which follows from the fact that L′± are subframes of L±. Indeed, it is closed under
finite meets as 1 ∈ L′± and for a, b ∈ L′±, x � a and y � b, (x ∧ y)� (a∧ b). Therefore,
a ∧ b =

⋁{x ∧ y | x � a, y � b} ≤ ⋁{z | z � (a ∧ b)} ≤ a ∧ b and so a ∧ b ∈∈ L′±.
To check closeness under all joins let M ⊆ L′±. Then, since for an a ∈ M and x � a,
x � a ≤ ⋁

M and x �
⋁

M. Hence,
⋁

M ∈ L′± as⋁
M =

⋁
{x | ∃a ∈ M. x � a} ≤

⋁
{x | x �

⋁
M} ≤

⋁
M.

Next, define a decreasing sequence of d-frames {L(γ) = (Lγ
+, Lγ

−, conγ, totγ)}γ∈Ord

by a transfinite induction

L(0) def≡ L, L(γ+1) = (L(γ))′ and L(λ) = (
⋂

γ<λ

Lγ
+,

⋂
γ<λ

Lγ
−,

⋂
γ<λ

conγ,
⋂

γ<λ

totγ)

(where λ is a limit ordinal.) By L(∞) denote the L(γ) for which L(γ) = L(γ+1).
Clearly, L(∞) is d-regular. To check coreflectivity, let h : M → L be a homomor-
phism from a d-regular d-frame M. Because, for an a ∈ M±,

h±(a) =
⋁
{h±(x) | x � a} ≤

⋁
{y | y � h(a)} ≤ h(a)

we see that h±(a) ∈ L′±. Therefore, by a transfinite induction, h lifts to h : M → L(∞)

such that h = ι · h where ι is the inclusion L(∞) ⊆ L. □

Let C D and C D denote that the category D is a reflective and core-
flective subcategory of C, respectively. Then, we can summarise the relationship
between categories of d-frames given by the previous three propositions, Priestley
coreflection (Theorem 2.6.11) and the d-frame coreflection (Theorem 3.2.15) in the
following diagram:
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d-Reg d-Pries

pd-Frm d-Frm d-Norm d-KReg

Furthermore, by the dual version of Proposition 3.3.1, we have that all the core-
flective subcategories of d-frames in the diagram are complete and cocomplete and
that their colimits coincide with the colimits in the category d-frames. Moreover, we
have:

3.3.9 Lemma. If L and M are two d-compact, d-regular, d-zero-dimensional or d-
normal d-frames, then L×M also is.

Proof. To check compactness, if
⨆

i αi ∈ totL×M then, also πL(
⨆

i αi) =
⨆

i πL(αi) ∈
totL and

⨆
i πM(αi) ∈ totM where πL and πM are the projections. Because L and

M are d-compact there is a finite IL and IM such that
⨆

i∈IL∪IM αi ∈ totL×M.
d-Regularity and d-zero-dimensionality follow from the fact that (x, y)�± (a, b)

iff x �± a in L and y �± b in M. Checking d-normality is analogous. □

To emphasise all of this for the category of d-compact d-regular d-frames, be-
cause it plays an important role later in Chapter 6, we summarise the previous re-
sults in the following:

3.3.10 Corollary. The category of d-compact d-regular d-frames is closed under col-
imits and finite products (in the category of d-frames).

3.3.3 A factorisation system

It is well-known that the monomorphisms in Frm are precisely the injective frame
homomorphisms, [PP12, Lemma III.1.1.1]. An analogous result holds for pd-Frm
and d-Frm.

3.3.11 Proposition. Let L,M be proto-d-frames s (resp., d-frames). A d-frame ho-
momorphism h : L → M is a monomorphism in pd-Frm (resp., d-Frm) iff both h+
and h− are injective frame homomorphisms.

Proof. The right-to-left direction is immediate. Let h : L → M be a morphism such
that h(α) = h(β) for different α, β ∈ L+×L−. Without loss of generality assume
α+ ̸= β+. Then let 3 be the three element frame {0 < ∗ < 1}5 and let contriv

and tottriv be the minimal consistency and totality relations on 3×L−. From Exer-
cise 2.3.5, we know that I = (3, L−, contriv, tottriv) is a d-frame.

Since consistency and totality are chosen minimally, we have morphisms f and
f ′ of the type I → L, where f+(∗) = α+ and f ′+(∗) = β+. For the other component

5To avoid the usage of the law of excluded middle replace 3 by the free frame of one generator ∗.
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we may choose the identity on L− in both cases. It now holds that h · f = h · f ′

which shows that h is not a monomorphism. □

3.3.12 Lemma. If h : L →M is a monomorphism in pd-Frm and M satisfies (con-
tot), then so does L.

Proof. If α ∈ conL, β ∈ totL are elements such that α+ = β+ then h(α) ∈ conM,
h(β) ∈ totM, and h+(α+) = h+(β+). Since M is balanced, we have h(α) ⊑ h(β) or
equivalently, h(α) ⊓ h(β) = h(α). Since h is an injective homomorphism, it follows
that α ⊓ β = α or α ⊑ β. □

The easy observation in the preceding lemma has a rather surprising conse-
quence for the interplay between substructures and the reflection r.

3.3.13 Proposition. Let h : L →M be a monomorphism from a proto-d-frame L =

(L+, L−, con, tot) to a d-frame M. Then the reflection of L into d-Frm is given
by a reasonable quotient structure (D∞(con), tot, R+, R−) on (L+, L−) such that
R± ⊆ ≤±.

In other words, r(L) is carried by the original frames, the original totality relation,
and the DCPO-closure of the original consistency relation. The underlying homomor-
phism of κL is the identity.

Proof. Set R+ = D∞(con) ; tot−1 and R− = D∞(con)−1 ; tot. We will show that
(D∞(con), tot, R+, R−) is reasonable. Condition (R1) is satisfied by a transfinite
application of Lemma 3.2.1. Also, by a transfinite application of Lemma 3.2.2, all
h : (L±,Dγ(con), tot)→M are homomorphism and so, by Lemma 3.3.12,

Dγ(con) ; tot−1 ⊆ ≤+ and Dγ(con)−1 ; tot ⊆ ≤−.

In this case ↓R P and ↑R P are the same as ↓P and ↑P, respectively. Hence, (R2) holds
because it reduces to ↓D∞(con) ⊆ D∞(con) and ↑tot ⊆ tot. Finally, (R3) and (R4)
are true by construction. □

3.3.14 Theorem.
The category d-Frm admits the factorization system (E, M) with E consisting of all
extremal epimorphisms and M consisting of all monomorphisms.

Proof. Let h : L → M be a morphism in d-Frm and consider the kernels E± of h±.
By Lemma 3.1.9 we may factor L by E to obtain a proto-d-frame L/E together with
a decomposition of h into morphisms µ : L → L/E and j : L/E → M, where the
latter is injective. We apply the reflection and obtain the d-frame r(L/E) together
with the decomposition of j into κ : L/E→ r(L/E) and j̃ : r(L/E)→M. Consider
a commutative diagram (in pd-Frm):



62 Chapter 3. The category d-Frm

L M

L/E r(L/E)

h

µ
j

κ

j̃

We know from Proposition 3.3.3 that κ · µ is an extremal epimorphism in d-Frm, and
from Proposition 3.3.13 that the underlying functions for j and j̃ are the same; since
they are injective, j̃ is a monomorphism.

The unicity of the factorization (extremal epi, mono) is a standard categorical fact
(see the proof of Theorem 14.17. in [Cas+91]). □

3.3.15 Remark. 1. By Proposition 3.3.13 we know a little bit more about the im-
age factorization constructed above: The totality relation on r(L/E) is simply
the image of totL under µ and the consistency relation is the DCPO-closure of
µ[conL].

2. Extremal epimorphisms in the category d-Frm were recently characterised by
Imanol Carollo and M. Andrew Moshier [CM17]. They proved that h : L →
M is an extremal epimorphism iff both h+ and h− are surjective maps and,
moreover, D∞[h[conL]] = conM and h[totL] = totM.

3.4 Free constructions

3.4.1 Frames

The category of frames is known to be algebraic [Joh82] which, among other things,
means that the forgetful functor U : Frm→ Set has a left adjoint Fr⟨−⟩. To compute
the absolutely free frame Fr⟨G⟩ on the set of generators G, first, compute the free meet-
semilattice on G as the set of all finite subsets of G ordered by reverse inclusion
(F(G),⊇) with the meet being the set union. Then, set

Fr⟨G⟩ def≡ Down(F(G), ∪)

where Down(X,∧), for a semilattice (X,∧), is the set of all downward closed subsets
of X. We can think of elements of Fr⟨G⟩ as if they were frame terms of the form⋁

i(∧
ni
j=1 gi,j) with gi,j’s from G. This follows from the fact that the unit of adjunction

Fr ⊣ U is an embedding of the set of generators into the free frame:

ηG : G Fr⟨G⟩

written explicitly as g ↦→ ↓{g} = {F ∈ F(G) | g ∈ F}. Then, for example, the term
g1 ∨ (g2 ∧ g3) is represented by ↓{g1} ∪ ↓{g2, g3}.
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A free construction of a frame is computed from its presentation, written as ⟨G | E⟩,
where G is a set of generators and E ⊆ Fr⟨G⟩×Fr⟨G⟩ is a set of equations. Each ele-
ment of E is thought of as an inequality between freely generated frame terms:⋁

i

(∧j gi,j) ≤
⋁
i′
(∧j′ g′i′,j′). (3.4.1)

The data ⟨G | E⟩ then represents the freely generated frame Fr⟨G⟩/E which we also
denote by Fr⟨G | E⟩. Free constructions enjoy an important universal property. Let
L be a frame and f : G → L a map. By the adjunction Fr ⊣ U, there is a unique frame
homomorphism f̃ such that f = f̃ · ηG. If f preserves E, i.e. if for every inequality
x ≤ y in E, expressed as in (3.4.1), f̃ (x) ≤ f̃ (y) in L, then f can be extended to a
homomorphism f : Fr⟨G | E⟩ → L such that the following diagram commutes

G Fr⟨G⟩ Fr⟨G⟩/E

L

ηG

f

µE

f̃
f

The map µE, which we for its importance denote as J−K : Fr⟨G⟩ → Fr⟨G | E⟩,
gives an interpretation of the terms from Fr⟨G⟩ in the freely generated frame Fr⟨G | E⟩.
This also means that any element x ∈ Fr⟨G | E⟩ is expressible as a combination of
generators interpreted in Fr⟨G | E⟩. Concretely, by B denote the ∧-closure of JGK in
Fr⟨G | E⟩, then x =

⋁
(↓x ∩ B).

3.4.1 Example. Let G = {g} be a one-element set. Then, because F(G) = {∅, {g}},
the carrier of Fr⟨G⟩ contains three elements: ∅, {{g}} and {{g}, ∅}. Therefore,
Fr⟨G⟩ is isomorphic to the three element lattice 3 = {0 < ⋆ < 1} and JgK = ⋆.

3.4.2 d-Frames

For free constructions of d-frames we need to represent all four pieces of the struc-
ture of d-frames. Define a d-frame presentation to be the structure ⟨G± | E±, Econ, Etot⟩
where ⟨G± | E±⟩ are frame presentations and Econ, Etot ⊆ Fr⟨G+⟩×Fr⟨G−⟩ represent
the sets of pairs from which we intend to generate the consistency and totality rela-
tions.

Before we explain how to obtain a d-frame from its presentation we introduce an
auxiliary category. This category will help us to express the required universal prop-
erty of free constructions (similarly to what we just explained above for frames).

3.4.2 Definition. Let Pres be the category of presentations with objects the tuples
(L+, L−, Econ, Etot, E+, E−), or (L±, E) for short, where L± are frames and the
rest are any relations Econ, Etot ⊆ L+×L− and E± ⊆ L±×L±.

A morphism of presentations h : (L±, E) → (M±, F) is a pair of frame ho-
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momorphisms h± : L± → M± such that

h[Econ] ⊆ Fcon, h[Etot] ⊆ Ftot and (h±×h±)[E±] ⊆ F±.
Unlike in the category of d-frames, in Pres the two relations E± are not assumed

to satisfy any axioms of d-frames. One of technical advantages of having this cat-
egory is that, for a d-frame presentation ⟨G± | E±, Econ, Etot⟩ and a d-frame L, the
pairs of maps ( f+, f−) : (G+, G−) → (L+, L−) which preserve E±, Econ and Etot ex-
actly correspond to the morphisms

(Fr⟨G+⟩ , Fr⟨G−⟩ , Econ, Etot, E+, E−) −→ (L±, Λ(L)) in Pres.

where (L±, Λ(L))
def≡ (L+, L−, conL, totL,≤+,≤−),

3.4.3 Observation. The mapping i : d-Frm→ Pres, defined on objects as

L ↦→ (L±, Λ(L))

and on morphisms as h ↦→ h, is a functor. Moreover, d-Frm is isomorphic to the full
subcategory of Pres consisting of (L±, Λ(L))’s where L is a d-frame.

3.4.4 Functor dFr. On the other hand, we can use r∞(−) from Section 3.2.3 to
define a functor Pres→ d-Frm. For any (L±, E) from Pres, set

(L±, r∞(E))
def≡ (L+, L−, con, tot, R+, R−)

where (con, tot, R+, R−) = r∞(Econ, Etot, E+, E−). Observe that the quotient of the
structure (L±, r∞(E)) by its relations, i.e.

dFr(L±, E)
def≡ (L+, L−, con, tot)/R,

is always a d-frame (Propositions 3.2.17, 3.2.18 and 3.2.20).

3.4.5 Lemma. Let h : (L±, E) → (M±, Q) be a morphism in Pres where Q ∈
RS(M±). Then, the following is a commutative diagram in Pres

(L±, E) (L±, r∞(E))

(M±, Q)

(id+,id−)

h
h

Proof. All that we need to check is that h : (L±, r∞(E))→ (M±, Q) is a morphism in
Pres. By Proposition 3.2.21, h−1[[Q]] is a reasonable quotient structure on (L+, L−).
Because h : (L±, E) → (M±, Q) is a morphism in Pres, E ⊆ h−1[[Q]] and, because
r∞(E) is the smallest reasonable quotient structure containing E (Proposition 3.2.20),
r∞(E) ⊆ h−1[[Q]]. □
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3.4.6 Proposition. dFr defines the left adjoint to the embedding i : d-Frm→ Pres.

Proof. Let M be a d-frame and h : (L±, E) → (M±, Λ(M)) a morphism in Pres. By
Lemma 3.4.5, h lifts to (L±, r∞(E))→ (M±, Λ(M)). Set

L
def≡ (L+, L−, con, tot)

for (con, tot, R±)
def≡ r∞(E). On the whole, h is a d-frame homomorphism L → M

which preserves R± and, by Lemma 3.1.9, it uniquely lifts to a d-frame homomor-
phism h̃ : L/R → M such that h = h̃ · µR in pd-Frm. Finally, observe that the
quotient

ρ
def≡ (L±, E) (L±, r∞(E)) (L±/R±, Λ(L/R))

(id+,id−) µR

is a morphism in Pres. Thanks to h = h̃ · µR in pd-Frm,

(L±, E) (L±/R±, Λ(L/R)) (M±, Λ(M))
ρ i(h̃) = h̃

is equal to h : (L±, E) → (M±, Λ(M)) in Pres. Therefore, the embedding d-Frm →
Pres is a reflection with ρ being the unit of adjunction. □

3.4.7 Free d-frames from their presentations. Let ⟨G± | E±, Econ, Etot⟩ be a d-
frame presentation. Define the free d-frame to be the d-frame

dFr⟨G± | E±, Econ, Etot⟩
def≡ dFr(Fr⟨G±⟩ , E)

or, in other words,
(Fr⟨G+⟩ , Fr⟨G−⟩ , con, tot)/R

where (con, tot, R+, R−) = r∞(E).
Recall from Section 3.4.1 the interpretation of frame terms in the free frame, i.e.

the homomorphisms J−K± : Fr⟨G±⟩ → Fr⟨G± | E±⟩. Similarly we have two quo-
tients µR

± : Fr⟨G±⟩ → Fr⟨G±⟩/R± which, when restricted to the sets of generators,
define an interpretation map

L−M : (G+, G−)
(ηG+

,ηG− )−−−−−−→ (Fr⟨G+⟩ , Fr⟨G−⟩)
µR

−→ dFr⟨G± | E±, Econ, Etot⟩

Correspondingly to frames, L−M has the following universal property:

3.4.8 Theorem.
Let ⟨G± | E±, Econ, Etot⟩ be a d-frame presentation and f = ( f+, f−) : (G+, G−)→
L a pair of functions to a d-frame L. If f preserves E±, Econ and Etot, then there
is a unique d-frame homomorphism h : dFr⟨G± | E±, Econ, Etot⟩ → L such that
f = h · L−M
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Proof. Let us denote the object in Pres corresponding to the d-frame presentation
as (Fr⟨G±⟩ , E) and set (con′, tot′, R±)

def≡ r∞(E). We know that f corresponds to a
morphism f̃ : (Fr⟨G±⟩ , E)→ (L±, Λ(L)) (in Pres). By Proposition 3.4.6, f̃ uniquely
lifts to the d-frame homomorphism h of the required type such that f̃ = h · µ (here
µ is the pair of natural quotients Fr⟨G±⟩ → Fr⟨G±⟩/R). Since f± = f̃± · ηG± and
L−M = µ · ηG, we obtain the intended f = h · L−M. □

Convention. When giving a d-frame by its presentation we prefer to use
the “equational” form rather then writing out the relations E±, Econ and Etot

explicitly. For example, the d-frame presented as

dFr
⟨

a+; a−, b−, c−
⏐⏐⏐ a− ≤ b−, (a+, b−) ∈ con, (a+, c−) ∈ tot,

⟩
.

corresponds to the d-frame obtained from the presentation ⟨G± | E±, Econ, Etot⟩
where G+ = {a+}, G− = {a−, b−, c−}, E+ = ∅, E− = {(a−, b−)}, Econ =

{(a+, b−)} and Etot = {(a+, c−)}.

3.4.3 A special case

It turned out that in all of our applications in this text, the free d-frames generated
from their presentations ⟨G± | E⟩ = ⟨G± | E±, Econ, Etot⟩, are always of a special
form. This is because, in those cases, the reflection process stops after one step and
then

dFr⟨G± | E⟩ = (Fr⟨G+ | E+⟩ , Fr⟨G− | E−⟩ , D(↓con∧· ,∨· ), ↑tot∧· ,∨· ) (3.4.2)

where con1
def≡ JEconK and tot1

def≡ JEtotK6. In this subsection we outline sufficient
conditions under which this is the case. The starting point is the following general
fact.

3.4.9 Proposition. Let (L±, E) be an object of Pres. Then, dFr maps (L±, E) and

(L±/E±, µ[Econ], µ[Etot], ≤±) (3.4.3)

to isomorphic d-frames, where µ is the pair of frame quotients L± → L±/E±.

Proof. Denote (3.4.3) by P. We prove the statement by showing that dFr(P) satisfies
the same universal property as dFr(L±, E) does in Theorem 3.4.8. Let h : (L±, E) →
(L±, Λ(L)) be a morphism in Pres. Then, by the same proof as in Lemma 3.1.9, h
uniquely lifts to h̃ : P→ (L±, Λ(L)) such that h = h̃ · µ and, by Proposition 3.4.6, h̃
uniquely lifts to a d-frame homomorphism h : dFr(P)→ L such that

6For brevity, we prefer to write con∧· ,∨· and tot∧· ,∨· instead of (con1)∧· ,∨· and (tot1)∧· ,∨· to mean the
(∧· ,∨· )-closures of JEconK = {(Jα+K+, Jα−K−) : α ∈ Econ} and JEtotK in Fr⟨G+ | E+⟩×Fr⟨G− | E−⟩,
respectively.
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(L±, E) P i(dFr(P)) (L±, Λ(L))
µ ρ i(h)

is equal to h where ρ : P→ i(dFr(P)) is the unit of adjunction from Proposition 3.4.6.
□

An immediate consequence of Proposition 3.4.9 is that, for any P = (L±, E) such
that E± = ≤± (as in (3.4.3) above),

(L±, r0(E)) = (L+, L−, ↓(Econ)∧· ,∨· , ↑(Etot)∧· ,∨· ,≤+,≤−) = i(L)

where L is the proto-d-frame (L+, L−, ↓(Econ)∧· ,∨· , ↑(Etot)∧· ,∨· )7. In this case, dFr(P)

is by definition equal to r(L).
From this, the d-frame dFr⟨G± | E⟩ generated from ⟨G± | E⟩, is isomorphic to the

d-frame reflection of the freely generated proto-d-frame ⟨G± | E⟩. In other words,
we have proved the following:

3.4.10 Corollary. Let ⟨G± | E⟩ be a d-frame presentation. Then, dFr⟨G± | E⟩ is
isomorphic to the d-frame reflection of the proto-d-frame

L = (Fr⟨G+ | E+⟩ , Fr⟨G− | E−⟩ , ↓JEconK∧· ,∨· , ↑JEtotK∧· ,∨· )

(i.e. the d-frame r(L)).

Next, we take a look at the conditions which would guarantee that the reflection of
the L (given by the corollary above) stops after one step. To simplify the notation
set L± = Fr⟨G± | E±⟩, con1 = JEconK and tot1 = JEtotK. We would like r(L) to be
equal to

(L+, L−, D(↓con∧· ,∨· ), ↑tot∧· ,∨· ). (3.4.4)

In order for this to be the case it is necessary to meet the following two conditions:

1. The relation D(↓con∧· ,∨· ) is already
⨆↑-closed. We assure this by assuming (P-ind)

from Section 3.2.1.1 for P = ↓con∧· ,∨· and B± equal to the closure of JG±K ⊆ L±
under all finite meets (in L±). Then, by Proposition 3.2.7, the proto-d-frame in
(3.4.4) satisfies (con-

⨆↑).
2. The reflection keeps the frame components unchanged. In other words we require

that the proto-d-frame in (3.4.4) already satisfies (con-tot). We address this
requirement in the rest of this section.

3.4.11 Chasing down (con-tot). The axiom (con-tot) for the proto-d-frame in (3.4.4)
written explicitly is as follows

7Observe that (L+, L−, ↓(Econ)∧· ,∨· , ↑(Etot)∧· ,∨· ) is a well-defined proto-d-frame by Lemma 3.1.12.
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(con-tot) α ∈ D(↓con∧· ,∨· ) and β ∈ ↑tot∧· ,∨· such that

(α+ = β+ or α− = β−) =⇒ α ⊑ β

We can split it into two parts:

(λ0
+-con-tot) α ∈ D(↓con∧· ,∨· ), β ∈ ↑tot∧· ,∨· and α+ = β+ =⇒ α− ≤ β−

(λ0
−-con-tot) α ∈ D(↓con∧· ,∨· ), β ∈ ↑tot∧· ,∨· and α− = β− =⇒ α+ ≤ β+

Our aim now is to restrict α and β to smaller and smaller sets. First, we restate the
axioms such that the β’s come from tot∧· ,∨· and then from tot∧· (resp. tot∨· ). Then, we
do the same with α until we obtain a version of the (con-tot) axiom stated purely in
terms of formulas involving only elements from con∧· ,

⋁· (resp. con∨· ,
⋀· ) and tot∧· (resp.

tot∨· ). The individual stages are depicted in the diagram below (the λ superscripts
in the axiom name correspond to the stages as shown in the diagram):

D(↓con∧· ,∨· ) ↑tot∧· ,∨·

con∧· ,∨· ,
⋁· /con∧· ,∨· ,⋀· tot∧· ,∨·

con∧· ,
⋁· /con∨· ,⋀· tot∧· /tot∨·

0th

1st

2nd

3rd

4th

At every stage we introduce a pair of axioms (named (λi
±-con-tot), for i = 1, . . . , 4)

and show that they imply the previous axioms. Because the axioms (λi
+-con-tot) and

(λi
−-con-tot) are dual to each other, we will always only prove that, say, (λi

+-con-tot)
implies (λi−1

+ -con-tot) and leave out that (λi
−-con-tot) implies (λi−1

− -con-tot) as it is
proved dually.

3.4.12 Remark. Above we have used a notation similar to the one introduced earlier.
The relation con∨· is the algebraic closure of con1 under all finite logical joins (∨· ) in
L+×L−, and con∧· , tot∨· , tot∧· , tot∧· ,∨· and con∧· ,∨· are defined correspondingly. Like-
wise, con∧· ,

⋁· is the closure of con1 under finite meets followed by the closure under
all joins, both in logical order8, i.e.

con∧· ,
⋁· = {(⋁

i

αi
+,

⋀
i

αi
−) : {αi}i ⊆ con∧· }.

The other versions, such as con∨· ,
⋀· , con∧· ,∨· ,⋁· and con∧· ,∨· ,

⋀· , are defined correspond-
ingly.

8This makes sense because, in any d-frame (L+, L−, con, tot), {(⋁i αi
+,

⋀
i αi
−) : {αi}i ⊆ con} ⊆

con. Indeed, from (con–↓), all (αi
+,

⋀
i αi
−) ∈ con and, by ∨· and

⨆↑ -closedness, (
⋁

i αi
+,

⋀
i αi
−) ∈ con.
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1st stage.

We intend to simplify the elements in the tot relation. Consider the following ax-
ioms:

(λ1
+-con-tot) α ∈ D(↓con∧· ,∨· ), β ∈ tot∧· ,∨· , β+ ≤ α+ =⇒ α− ≤ β−

(λ1
−-con-tot) α ∈ D(↓con∧· ,∨· ), β ∈ tot∧· ,∨· , β− ≤ α− =⇒ α+ ≤ β+

Now, let α ∈ D(↓con∧· ,∨· ) and let β ∈ TOT⟨tot1⟩ with α+ = β+. That means that there
is some β′ ∈ tot∧· ,∨· such that β′ ⊑ β. We have that β′+ ≤ α+ and so we can now
apply (λ1

+-con-tot) and get that α− ≤ β′− and so α− ≤ β′− ≤ β−. To sum up, we
have proved the first part of the following:

3.4.13 Lemma. (λ1
±-con-tot) implies (λ0

±-con-tot), and vice versa.

For the converse assume β+ ≤ α+. Then the pair (α+, β−) belongs to ↑tot∧· ,∨· and by
(λ0
±-con-tot) we can conclude α− ≤ β−.

2nd stage.

We can simplify the elements in tot even further. Take the axioms:

(λ2
+-con-tot) α ∈ D(↓con∧· ,∨· ), β ∈ tot∧· , β+ ≤ α+ =⇒ α− ≤ β−

(λ2
−-con-tot) α ∈ D(↓con∧· ,∨· ), β ∈ tot∨· , β− ≤ α− =⇒ α+ ≤ β+

Let α ∈ D(↓con∧· ,∨· ) and let β ∈ tot∧· ,∨· with α+ ≤ β+. We can decompose β such
that β =

⋁n
k=1 βk where βk ∈ tot∧· , for every k = 1, . . . , n. Then, for every k, we

have that βk
+ ≤ β+ ≤ α and so α− ≤ βk

−. Because α− ≤ βk
− for every k, also

α− ≤ β− =
⋀n

k=1 βk
−.

3.4.14 Lemma. (λ2
±-con-tot) implies (λ1

±-con-tot), and vice versa.

Here the converse direction is trivial.

3rd stage.

Now we focus on the complexity of the elements α from con. To eliminate D(−)
consider the following auxiliary axioms:

(α+-con-tot) {(xk, y)}k ⊆ ↓con∧· ,∨· , β ∈ tot∧· , β+ ≤
⋁

k xk =⇒ y ≤ β−

(α−-con-tot) {(x, yk)}k ⊆ ↓con∧· ,∨· , β ∈ tot∨· , β− ≤
⋁

k yk =⇒ x ≤ β+

Let α ∈ D(↓con∧· ,∨· ). By Lemma 3.2.5, this means that there exist A± ⊆ B± which
are (↓con∧· ,∨· )-independent and such that α = (

⋁
A+,

⋁
A−). Let us fix a b− ∈ A−.

The (↓con∧· ,∨· )-independence of A+ and A− means that A+×{b} ⊆ ↓con∧· ,∨· . Because
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also β+ ≤ α+ =
⋁

A+, we can apply (α+-con-tot) and obtain that b− ≤ β−. Since
b− ∈ A− has been chosen arbitrarily, α− =

⋁
A− ≤ β−. We have proved that

(α+-con-tot) implies (λ2
+-con-tot).

Finally, we can get rid of the downwards closure of con∧· ,∨· . Consider the follow-
ing axioms:

(λ3
+-con-tot) α ∈ con∧· ,∨· ,

⋁· , β ∈ tot∧· , β+ ≤ α+ =⇒ α− ≤ β−

(λ3
−-con-tot) α ∈ con∧· ,∨· ,

⋀· , β ∈ tot∨· , β− ≤ α− =⇒ α+ ≤ β+

Let {(xk, y)}k ⊆ ↓con∧· ,∨· be such that β+ ≤
⋁

k xk. For every k, there exists
an αk ∈ con∧· ,∨· such that (xk, y) ⊑ αk. Clearly, β+ ≤

⋁
k xk ≤ ⋁

k αk
+, and α =

(
⋁

k αk
+,

⋀
k αk
−) ∈ con∧· ,∨· ,

⋁· . We can apply (λ3
+-con-tot) and obtain that y ≤ α− ≤ β−.

Together with the previous result we have that:

3.4.15 Lemma. (λ3
±-con-tot) implies (λ2

±-con-tot).

4th stage.

The final simplification is similar to the 2nd stage but this time acts on the con side:

(λ4
+-con-tot) α ∈ con∧· ,

⋁· , β ∈ tot∧· , β+ ≤ α+ =⇒ α− ≤ β−

(λ4
−-con-tot) α ∈ con∨· ,

⋀· , β ∈ tot∨· , β− ≤ α− =⇒ α+ ≤ β+

Distributivity of ∧· and ∨· gives us that

con∧· ,∨· ,
⋁· = con∧· ,

⋁· and con∧· ,∨· ,
⋀· = con∨· ,

⋀·
from which we have:

3.4.16 Lemma. (λ4
±-con-tot) implies (λ3

±-con-tot), and vice versa.

Furthermore, (λ4
±-con-tot) and (λ1

±-con-tot) are equivalent because

con∧· ,
⋁· ⊆ D(↓con∧· ,∨· ) and con∨· ,

⋀· ⊆ D(↓con∧· ,∨· ). (3.4.5)

To prove these inclusions, let α = (
⋁

k αk
+,

⋀
k αk
−) where {αk}k∈K ⊆ con∧· . Then, for

every k ∈ K, (αk
+, α−) ⊑ αk and so (αk

+, α−) ∈ ↓con∧· ⊆ ↓con∧· ,∨· . Because ↓con∧· ,∨· is
∨· -closed, {(⋁k∈F αk

+, α−) : F⊆fin K} is directed in ↓con∧· ,∨· and so α ∈ D(↓con∧· ,∨· ).
We can apply similar techniques to simplify (P-ind):

3.4.17 Lemma. (P-ind) for P = ↓con∧· ,∨· is equivalent to having the following two
conditions

(↓con∧· ,∨· -ind+) (B+×B−) ∩ ↓con∧· ,
⋁· ⊆ ↓con∧· ,∨·

(↓con∧· ,∨· -ind−) (B+×B−) ∩ ↓con∨· ,⋀· ⊆ ↓con∧· ,∨·
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where B± is the closure of JG±K in Fr⟨G± | E±⟩ under all finite meets.

Proof. The left-to-right implication holds immediately from (3.4.5) and the fact that
the relation D(↓con∧· ,∨· ) is downwards closed. For the other implication, let (b+, b−) ∈
(B+×B−)∩D(↓con∧· ,∨· ). By Lemma 3.2.5, there exist A± ⊆ B± such that b± =

⋁
A±

and A+×A− ⊆ ↓con∧· ,∨· . Fix an a− ∈ A−. Because A+×{a−} ⊆ ↓con∧· ,∨· , for every
ak
+ ∈ A+, there exists an αk ∈ con∧· ,∨· such that (ak

+, a−) ⊑ αk. Then,

(b+, a−) = (
⋁

A+, a−) ⊑ (
⋁
k

αk
+,

⋀
k

αk
−) ∈ con∧· ,∨· ,

⋁· = con∧· ,
⋁·

and because (b+, a−) ∈ B+×B−we can use (↓con∧· ,∨· -ind+) and obtain that (b+, a−) ∈
↓con∧· ,∨· .

Since a− ∈ A− has been chosen arbitrarily, {b+}×A− ⊆ ↓con∧· ,∨· . Similarly to
the above, for every ak

− ∈ A− there is an αk ∈ con∧· ,∨· such that (b+, ak
−) ⊑ αk,

and (b+, b−) ⊑ (
⋀

k αk
+,

⋁
k αk
−) ∈ con∨· ,

⋀· . Finally, by (↓con∧· ,∨· -ind−), (b+, b−) ∈
↓con∧· ,∨· . □

We sum up all the previous results into this proposition:

3.4.18 Proposition. If (λ4
±-con-tot) and (↓con∧· ,∨· -ind±) hold for a d-frame presen-

tation ⟨G± | E⟩, then dFr⟨G± | E⟩ is of the form (3.4.2) from page 66.

3.4.19 Further simplification. In our applications, even stronger and simpler con-
ditions hold for the presentations. Namely, consider the following “micro version” of
(con-tot):

(µ+-con-tot) α ∈ con∨· , β ∈ tot∧· , β+ ≤ α+ =⇒ α− ≤ β−

(µ−-con-tot) α ∈ con∧· , β ∈ tot∨· , β− ≤ α− =⇒ α+ ≤ β+

and the following (more powerful) version of conditions (↓con∧· ,∨· -ind±):

(Indep+) (L+×B−) ∩ ↓con∧· ,
⋁· ⊆ ↓con∨·

(Indep−) (B+×L−) ∩ ↓con∨· ,⋀· ⊆ ↓con∧·
3.4.20 Theorem.
If (µ±-con-tot) and (Indep±) hold for ⟨G± | E⟩, then dFr⟨G± | E⟩ results in the fol-
lowing

(Fr⟨G+ | E+⟩ , Fr⟨G− | E−⟩ , D(↓JEconK∧· ,∨· ), ↑JEtotK∧· ,∨· ).
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Proof. We use Proposition 3.4.18. Clearly, (Indep±) is a strengthening of (↓con∧· ,∨· -
ind+). To prove (λ4

±-con-tot), let α ∈ con∧· ,
⋁· and β ∈ tot∧· be such that β+ ≤ α+.

Moreover, fix a b− ∈ B− such that b− ≤ α−. Then, (α+, b−) ∈ ↓con∧· ,
⋁· . By, (Indep+),

(α+, b−) ∈ ↓con∨· and so there must be some γ ∈ con∨· such that (α+, b−) ⊑ γ.
Because β+ ≤ α+ ≤ γ+, by (µ+-con-tot), b− ≤ γ− ≤ β−. Finally, because b− ∈
↓α− ∩ B− has been chosen arbitrarily, then also α− =

⋁
(↓α− ∩ B−) ≤ β−. □

In this setting, we can make Theorem 3.4.8 more precise:

3.4.21 Proposition. Let ⟨G± | E⟩ be a d-frame presentation for which (µ±-con-tot)
and (Indep±) hold and let f = ( f+, f−) : (G+, G−) → L be a pair of functions to a
d-frame L preserving E±.

1. If, moreover, f preserves Econ and Etot then the necessarily unique homomor-
phism h : dFr⟨G± | E⟩ → L from Theorem 3.4.8 is equal to f = ( f+, f−).

2. f preserves Econ and Etot iff f preserves JEconK and JEtotK.

(The frame homomorphisms f± : Fr⟨G± | E±⟩ → L± are the lifts of f± from Sec-
tion 3.4.1.)

Proof. By Theorem 3.4.20 we know that the frame components of dFr⟨G± | E⟩ are the
frames Fr⟨G± | E±⟩. This means that the inclusion of generators L−M : (G+, G−) →
dFr⟨G± | E⟩ is equal to the restriction of J−K = (J−K+, J−K−) to (G+, G−) where
J−K± are the interpretation maps Fr⟨G±⟩ → Fr⟨G± | E±⟩.

(1) If f preserves Econ and Etot, by Theorem 3.4.8, there is an h : dFr⟨G± | E⟩ → L

such that f = h · L−M = h · J−K. However, f± are unique such f± = f± · J−K±.
Hence, h± = f±.

(2) Let f̃ : (Fr⟨G+⟩ , Fr⟨G−⟩) → (L+, L−) be the pair of frame homomorphisms
such that f̃±↾G± = f±. Since f̃ = f · J−K, if f preserves JEconK and JEtotK then
f̃ [Econ] = f [JEconK] ⊆ conL and similarly f̃ [Etot] ⊆ totL. The reverse implication
follows from 1. □

We will find this proposition especially useful in Section 4.3 where we check that
certain frame homomorphisms lift componentwise to d-frame homomorphisms and
all that will be needed to verify is that the lifted pair of frame homomorphisms
preserve JEconK and JEtotK.

3.4.4 Single-sorted d-frame presentations

Because of the symmetric nature of d-frames many presentations are symmetric as
well. We introduce an alternative and more compact representation of presentations
which, effectively, is just a shortcut for the d-frame presentations introduced earlier.
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3.4.22 Definition. The data ⟨G | S⊑, S⩽·, Scon, Stot⟩ or just ⟨G | S⟩ constitute a
single-sorted d-frame presentation if G is a set of generators, S⊑, S⩽· ⊆ Fr⟨G⟩×Fr⟨G⟩
are relations representing inequalities of the form α ⊑ β and α ⩽· β, respec-
tively, and Scon, Stot ⊆ Fr⟨G⟩ are predicates representing constrains of the form
α ∈ con and α ∈ tot, respectively.

Every single-sorted d-frame presentation ⟨G | S⊑, S⩽·, Scon, Stot⟩ yields an (ordi-
nary) d-frame presentation ⟨G± | E±, Econ, Etot⟩ in the following way. The sets of
generators are defined to be the sets

G+
def≡ {α+ | α ∈ G} and G−

def≡ {α− | α ∈ G}

(Here the terms “α+” and “α−” are defined purely syntactically.) Then, the quoti-
enting relations become

E+
def≡ {α+ ≤ β+ | α ⊑ β in S⊑} ∪ {α+ ≤ β+ | α ⩽· β in S⩽·} and

E−
def≡ {α− ≤ β− | α ⊑ β in S⊑} ∪ {α− ≥ β− | α ⩽· β in S⩽·},

and, finally, the relations generating con and tot are

Econ
def≡ {(α+, α−) | α ∈ Scon} and Etot

def≡ {(α+, α−) | α ∈ Stot}.

We write dFr⟨G | S⊑, S⩽·, Scon, Stot⟩ or just dFr⟨G | S⟩ for the free d-frame generated
from ⟨G± | E±, Econ, Etot⟩.

3.4.23 Proposition. The functors

1. d-Frm→ Set×Set, L ↦→ (L+, L−) and

2. d-Frm→ Set, L ↦→ L+×L−

have left adjoints.

Proof. Observe that, for any pair of sets (G+, G−), dFr⟨G±⟩ (which is a presentation
such that Econ, Etot and E± are all empty) equals L

def≡ (Fr⟨G+⟩ , Fr⟨G−⟩ , contriv, tottriv).
Indeed, L is a d-frame and we have a universal pair of maps L−M : (G+, G−) → L

in Set×Set as any pair of maps (G+, G−) → M into a d-frame M lifts to a d-frame
homomorphism L → M. Moreover, this is exactly the universal property of a re-
flection needed for (1). The left adjoin in (2), is the functor G ↦→ dFr⟨G⟩, which
generates a d-frame from its single-sorted presentation, with g ↦→ Lg+, g−M as the
unit of adjunction. □

3.5 Examples of free constructions

In this section we show that a number of free frame constructions have their d-frame
variants. Moreover, as we will also see, the conditions of Theorem 3.4.20 are satisfied
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for all of our examples. This then means that the frame components of our freely
generated d-frames are the same as the original freely generated frames.

Given a d-frame presentation as ⟨G± | E±, Econ, Etot⟩ or ⟨G | S⊑, S⩽·, Scon, Stot⟩
we will always follow the same procedure before we use Theorem 3.4.20:

1. Use Proposition 3.4.9 and transform the presentation into an object of the cat-
egory Pres of the form (Fr⟨G+ | E+⟩ , Fr⟨G− | E−⟩ , con1, tot1,≤+,≤−).

2. Examine Fr⟨G± | E±⟩.

3. Examine con∧· ,∨· and tot∧· ,∨· , i.e. the (∧· ,∨· )-closures of con1 and tot1, respectively.

4. Prove (µ±-con-tot) and (Indep±).

Consequently, Theorem 3.4.20 proves that the generated d-frame is of the form

(Fr⟨G+ | E+⟩ , Fr⟨G− | E−⟩ , D(↓con∧· ,∨· ), ↑tot∧· ,∨· ).

Notice that examining the structure of Fr⟨G± | E±⟩ is not a waste of time because
the frame components of the generated d-frame stay unchanged.

3.5.1 d-Frames 2×2 and 3×3

The first set of examples is actually even simpler and so we do not have to explic-
itly follow the procedure outlined above. In Proposition 3.4.23 we examined that
dFr⟨G⟩, for a set G, is the d-frame

(Fr⟨G⟩ , Fr⟨G⟩ , contriv, tottriv).

Since, classically9, Fr⟨∅⟩ ∼= 2 and Fr⟨{⋆}⟩ ∼= 3, the d-frame dFr⟨∅⟩ is isomorphic to
2×2 and dFr⟨{⋆}⟩ is isomorphic to 3×3 – two d-frames known from Example 2.3.15.
Adding ⋆ to con or tot corresponds to the other two cases also discussed therein.

3.5.2 The functor IF : DLat→ d-Pries

Let D be a distributive lattice. Consider the d-frame LD presented as follows

dFr
⟨
⟨d⟩ : d ∈ D

⏐⏐⏐ ⟨d⟩ ∨· ⟨e⟩ = ⟨d ∨ e⟩ , ⟨0⟩ = ff ,

⟨d⟩ ∧· ⟨e⟩ = ⟨d ∧ e⟩ , ⟨1⟩ = tt,

(∀d ∈ D) ⟨d⟩ ∈ con, ⟨d⟩ ∈ tot
⟩

.

The first step in the proposed procedure at the beginning of Section 3.5 yields
an object PD of the form (L+, L−, con1, tot1,≤+,≤−) such that LD

∼= dFr(PD). This
means that L± are the quotients of the free frames Fr

⟨
⟨d⟩± : d ∈ D

⟩
by the two-

sorted versions of the equations in the presentation of LD.

9By “classically” we mean that we use the Law of Excluded Middle.
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3.5.1 Lemma. The frame components of PD are isomorphic to the frames of ideals and
filter of D, respectively. The embedding d ↦→ ⟨d⟩ then corresponds to d ↦→ (↓d, ↑d).

Proof. Follows from the fact that Idl(D) is isomorphic to Fr⟨G | R⟩ where G = {[d] :
d ∈ D} and R are the equations [d] ∨ [e] = [d ∨ e], [d] ∧ [e] = [d ∧ e], [0] = ff and
[1] = tt (see Theorem 9.2.2 in [Vic89]). The presentation of L− is just the upside down
version of L+; or, in other words, L− ∼= Idl(Dop) which is isomorphic to Filt(D). □

As a result PD is actually of the form (Idl(D),Filt(D), con1, tot1,≤±) where both
con1 and tot1 are equal to the set {(↓d, ↑d) : d ∈ D}.

3.5.2 Lemma.

1. con∧· ,∨· = con1 and tot∧· ,∨· = tot1,

2. PD satisfies the axioms (µ±-con-tot) and (Indep±).

Proof. The first part is immediate. For (µ±-con-tot) let α ∈ con1 and β ∈ tot1. By
definition, α = (↓d, ↑d) and β = (↓e, ↑e) for some d, e ∈ D. Therefore, if β+ ≤ α+,
that means that e ≤ d, then α− ≤ β−.

Next, to check (Indep±), let α ∈ L+×B− such that α ⊑ β for some β ∈ con∧· ,
⋁· . By

definition, α is of the form (I, ↑b) and β is of the form
⋁· i(↓xi, ↑xi). Then, α− ≤ β−

means that xi ≤ b (for all i). Therefore, I ≤ ⋁
i(↓xi) ≤ ↓b and so α = (I, ↑b) ⊑

(↓b, ↑b) ∈ con1 ⊆ ↓con∨· . □

3.5.3 Proposition. LD is isomorphic to IF (D), defined in Section 2.6.

Proof. By Theorem 3.4.20 and the previous lemmas, LD is isomorphic to the d-frame
of the form (Idl(D),Filt(D),D(↓con1), ↑tot1). Hence, the carrier frames of LD and
IF (D) are the same. To see that their totality relations agree as well notice that
(I, F) ∈ ↑tot1 iff there exists a d ∈ D such that (↓d, ↑d) ⊑ (I, F) which is the same as
I ∩ F ̸= ∅.

Similarly, (I, F) ∈ ↓con1 iff there is a d ∈ D such that (I, F) ⊑ (↓d, ↑d) which
is equivalent to ∀i ∈ I, f ∈ F : i ≤ d ≤ f . Therefore, ↓con1 ⊆ conD where conD is
the consistency relation of IF (D) (see Section 2.6). Hence, also D(↓con1) ⊆ conD.
For the other direction let (I, F) ∈ conD. Since, for all i ∈ I and f ∈ F, i ≤ f and
(↓i, ↑ f ) ⊑ (↓i, ↑i) ∈ con1. We have that (↓i, ↑ f ) ∈ ↓con1. Moreover, (I, F) is a
directed union of such (↓i, ↑ f )’s and so (I, F) ∈ D(↓con1). □

3.5.3 The d-frame of reals

Now we will present the d-frame of reals L(R). The starting point of our definition
is a presentation of the biframe of lower and upper topologies of R [GP07]. We
rewrite Garcı́a-Picado’s presentation into the language of d-frames and obtain the
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d-frame L(R) presented as dFr⟨G± | E⟩ where G+ = {(−, q) : q ∈ Q}, G− =

{(q,−) : q ∈ Q} and E is the following set of equations

(for the plus side:)

(−, q) ∨ (−, q′) = (−, max(q, q′)), (−, q) =
⋁

q′<q

(−, q′),

(−, q) ∧ (−, q′) = (−, min(q, q′)), 1 =
⋁
q
(−, q),

(for the minus side:)

(q,−) ∨ (q′,−) = (min(q, q′),−), (q,−) =
⋁

q<q′
(q′,−),

(q,−) ∧ (q′,−) = (max(q, q′),−), 1 =
⋁
q
(q,−),

(for con and tot:)

((−, q), (q′,−)) ∈ con if q ≤ q′, ((−, q), (q′,−)) ∈ tot if q′ < q.

Each (−, q) and (q,−) is intended to abstractly represent the opens (−∞, q) and
(q,+∞), respectively. As before, we have an object PR of Pres such that L(R) ∼=
dFr(PR). The frame components of PR are the frames of upper and lower opens
Ll(R) and Lu(R) computed as the quotients of Fr⟨G±⟩ by the equations for the
plus or minus side, respectively.

3.5.4 Lemma. Ll(R) ∼= τQ
l and Lu(R) ∼= τQ

u (as frames) where (Q, τQ
l , τQ

u ) is the
bitopological space with the lower and upper topology on the set of rational numbers.

Proof. The proof is very similar to the proof of Lemma 3.5.1. We show that the em-
bedding ι : Q → τQ

l , q ↦→ {x ∈ Q | x < q}, has the universal property of Ll(R).
Clearly, ι preserves the defining equations of Ll(R). For example, ι(q) is equal to the
union

⋃
q′<q ι(q′). We need to verify that any f : Q → M into a frame M which pre-

serves E uniquely lifts to a frame homomorphism f : Down(Q) → M such that f =

f · ι. Define f as the map M ↦→ ⋁
f [M]. We check that f is a frame homomorphism.

Let {Mi}i ⊆ Down(Q). Then,
⋁

f [
⋃

i Mi] =
⋁
(
⋃

i f [Mi]) =
⋁

i(
⋁

f [Mi]) =
⋁

i f [Mi].
To check finite meets,

⋁
f [M1 ∩M2] =

⋁{ f (min(x1, x2)) : x1 ∈ M1, x2 ∈ M2} and,
since f preserves the equations LR(R),

⋁
f [M1 ∩M2] is equal to

⋁{ f (x1) ∧ f (x2) :
xi ∈ Mi} =

⋁
f [M1] ∧

⋁
f [M2]. For unicity, take an h : τQ

l → M such that f = h · ι.
Then, h(M) = h(

⋃{ι(q) : q ∈ M}) =
⋁{h(ι(q)) : q ∈ M} =

⋁
f [M] since

h(ι(q)) = f (x) = f (ι(q)). □

This means that PR is of the form (τQ
l , τQ

u , con1, tot1,≤±) with the consistency

and totality relations containing the pairs of (−∞, q)Q

def≡ {x ∈ Q | x < q} and

(q,+∞)Q

def≡ {y ∈ Q | q < y} for which q ≤ q′ and q′ < q, respectively.
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3.5.5 Lemma.

1. con∧· ,∨· = con1 ∪ {tt, ff} and tot∧· ,∨· = tot1 ∪ {tt, ff}.

2. The presentation of L(R) satisfies the axioms (µ±-con-tot) and (Indep±).

Proof. (1) tt appears in the relations as a consequence of closing them under all finite
⩽·-meets because tt =

⋀
· ∅ and, similarly, ff is the empty ⩽·-join.

(2) To check (µ±-con-tot), without loss of generality, let ((−∞, q+)Q, (q−,+∞)Q) ∈
con∨· and ((−∞, q′+)Q, (q′−,+∞)Q) ∈ tot∧· be such that (−∞, q′+)Q ⊆ (−∞, q+)Q.
Therefore, q′− < q′+ ≤ q+ ≤ q− and so (q−,+∞)Q ⊆ (q′−,+∞)Q. For (Indep±),
w.l.o.g., let (U, (q,+∞)Q) be ⊑-smaller than

⋁· n
i=1((−∞, qi

+)Q, (qi
−,+∞)Q) where

qi
+ ≤ qi

− for all i. Then, qi
− ≤ q and therefore also qi

+ ≤ q, for all i. Hence,
(U, (q,+∞)Q) ⊑ ((−∞, q)Q, (q,+∞)Q) ∈ con1 ⊆ ↓con∨· . □

From this and Theorem 3.4.20 we know that L(R) equals (τQ
l , τQ

u ,D(↓con∧· ,∨· ),
↑tot∧· ,∨· ). We also have an exact description of the consistency and totality relations.

3.5.6 Lemma. Let (Ul, Uu) ∈ τQ
l ×τQ

u . Then,

1. (Ul, Uu) ∈ conL(R) iff Ul ∩Uu = ∅ and

2. (Ul, Uu) ∈ totL(R) iff Ul ∩Uu ̸= ∅ or Ul = Q or Uu = Q.

Proof. Clearly con1 is a subrelation of the consistency of Ωd(Q) and so are its
⨆↑ , ↓, ∧·

and ∨· -closures, i.e. D(↓con∧· ,∨· ) ⊆ conQ. This proves the left-to-right implication in
(1). On the other hand, assume Ul ∩Uu = ∅. For all q+ ∈ Ul and q− ∈ Uu, q+ < q−
and ((−∞, q+)Q, (q−,+∞)Q) ∈ con1. Also, each of Ul and Uu are directed unions of
such opens, that is Ul =

⋃↑{(−∞, q)Q : q ∈ Ul} and Uu =
⋃↑{(q,+∞)Q : q ∈ Uu}.

Therefore, (Ul, Uu) ⊆ D(con1) ⊆ D(↓con1).
For (2), by definition, (Ul, Uu) ∈ totL(R) iff either Ul or Uu is equal to Q or

((−∞, q)Q, (q′,+∞)Q) ⊑ (Ul, Uu) for some q′ < q from Q. The latter case implies
that x ∈ Ul ∩Uu for some x ∈ (q′, q) ∩Q. Conversely, if x ∈ Ul ∩Uu then, because
Ul and Uu are open in Euclidean topology, (−∞, q)Q ⊆ Ul and (q′,+∞)Q ⊆ Up for
some rational numbers q′ < x < q. □

3.5.7 Proposition. Σd(L(R)) is bihomeomorphic to the bispace of reals (R, τR
+ , τR

− )
with the topologies of the lower and upper opens.

Proof. From [Ban97] we know that Σ(Ll(R)) is homeomorphic to the space R ∪
{+∞} with the topology of lower opens. Each r ∈ R corresponds to the completely
prime filter Pr

+ = {(−∞, q) | r < q} and +∞ corresponds to the completely prime
filter P+∞

+ of all non-empty intervals (The interval (−∞, q)Q is interpreted as the
interval of reals (−∞, q)). Similarly, Σ(Lu(R)) is homeomorphic to the space R ∪
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{−∞} with the topology of upper opens with Pr
− and P−∞

− defined accordingly.
We will use the description of points from Section 2.3.3.1 to show that (Pr

+, Pr′
−) ∈

Σd(L(R)) if and only if r = r′ (therefore, implicitly, neither r = +∞ nor r′ = −∞).
This then proves that there is a bijection between the points of Σd(L(R)) and real
numbers.

For “⇒”, let (Pr
+, Pr′

−) be a point of L(R). If r = +∞ and r′ ∈ R, then take a
rational number q from the interval (r′ − 1, r′). The pair ((−∞, q), (q,+∞)) belongs
to conL(R) but (−∞, q) ∈ P+∞

+ and (q,+∞) ∈ Pr′
−. Therefore, (dp-con) is violated

and (P+∞
+ , Pr′

−) /∈ Σ(Ll(R)). The same is true if r ∈ R and r′ = −∞ or r = +∞ and
r′ = −∞. Next, assume that r, r′ ∈ R but r < r′. Find two rational numbers q′ < q
lying in between r and r′. Then, the pair ((−∞, q), (q′,+∞)) belongs to totL(R)

but (−∞, q) ̸∈ Pr
+ and (q′,+∞) /∈ Pr′

−. Again, (dp-tot) is violated and (Pr
+, Pr′

−) /∈
Σ(Ll(R)). Similarly, r′ < r violates (dp-con).

For “⇐” direction, let r = r′ ∈ R. We prove that (Pr
+, Pr

−) satisfies (dp-con) and
(dp-tot). Let (Ul, Uu) ∈ conL(R). The cases when either Ul = ∅ or Uu = ∅ are
immediate. Assume that neither of them is empty, which also means that neither of
them is the whole space. Then, define l+ to be the least upper bound of Ul and l−
to be the largest lower bound of Uu. Since Ul and Uu are disjoint, l+ ≤ l−. Next,
either r ≤ l− or l+ ≤ r (or both). Assume the former. Then, since q ∈ Uu iff l− < q,
none of (q,+∞)’s is in Pr

−. Finally, because Pr
− is a completely prime filter and

Uu =
⋃

q∈Uu(q,+∞), also Uu /∈ Pr
−. To check (dp-tot) assume that (Ul, Uu) ∈ totL(R).

Again, the cases when either Ul = Q or Uu = Q are trivial. Let q ∈ Ul ∩Uu and
w.l.o.g. assume that q < r or r < q (if q was equal to r, there is a q′ < r in an open
neighbourhood of r still belonging to Ul ∩Uu). If q < r, then (q,+∞) ∈ Pr

− and also
Uu ∈ Pr

− as (q,+∞) ⊆ Uu. □

The last proposition suggest that the d-frame L(R) can be the algebraic dual
of the bispace of real numbers. Because, (Ul, Uu) ∈ totR iff Ul = R, Uu = R or
Ul ∩Uu ∩Q ̸= ∅, we get, by Lemma 3.5.6, also the other part of the equivalence:

3.5.8 Proposition. The d-frame L(R) is isomorphic to Ωd(R, τR
l , τR

u ).

3.5.9 Remark. 1. L(R) also has a single-sorted presentation. This is done sim-
ply by representing every pair ((−, q), (q,−)) as a single generator ⟨q⟩ and
rewriting all the equations correspondingly:

dFr
⟨
⟨q⟩ : q ∈ Q

⏐⏐⏐ ⟨q⟩ ∨· ⟨q′
⟩
=

⟨
max(q, q′)

⟩
, ⟨q⟩ ∧· ⟨q′

⟩
=

⟨
min(q, q′)

⟩
,

⟨q⟩ =
⨆

q′<q

(
⟨
q′
⟩
⊓ tt) ⊔

⨆
q<q′′

(
⟨
q′′
⟩
⊓ ff ), ⊤ =

⨆
q
⟨q⟩ ,

(∀q, q′ ∈ Q) ⟨q⟩ ⊓
⟨
q′
⟩
∈ con, if q ̸= q′ : ⟨q⟩ ⊔

⟨
q′
⟩
∈ tot

⟩
.
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2. L(R) is “almost” isomorphic to the d-frame Ωd(Q, τQ
+ , τQ

− ). The only differ-
ence is that totL(R) is missing the pairs of opens ((−∞, r)Q, (r,+∞)Q) where
r ∈ R \Q.

3. For a real number r, the pair (Pr
+, Pr

−) represents the Dedekind cut for r with
the intervals (q,+∞)Q in Pr

− being the rational lower bounds for r and the
intervals (−∞, q)Q in Pr

+ being the upper bounds.

4. Olaf Klinke defined the d-frame of the real interval [0,1] in his thesis [Kli12]
by an open ideal completion of the dyadic rational numbers (see Lemma 2.3.5
and Definition 4.1.5 therein). This can be easily extended to obtain a d-frame
of (all) reals. Then, because the dyadic numbers are dense in Q, his d-frame of
reals is isomorphic to our L(R).

3.5.4 Coproducts of d-frames explicitly

3.5.4.1 Coproducts of frames

Let {Li}i∈I be a family of frames. The coproduct of {Li}i in the category of frames
is the free frame

⨁
i Li def≡ Fr⟨G | E⟩ where G is equal to the disjoint union⋃̇

j∈I{a⊕j 1 | a ∈ Lj}

(defined syntactically) and E is the set of (in)equalities

(
n⋀

i=1

ai)⊕j 1 =
n⋀

i=1

(ai ⊕j 1)

(
⋁
k

bk)⊕j 1 ≤
⋁
k

(bk ⊕j 1)
(3.5.1)

for some j ∈ J, a1, a2, . . . , an ∈ Lj (allowing n = 0) and {bk}k∈K ⊆ Lj10. The frame
embeddings ιj : Lj → ⨁

i Li, a ↦→ a⊕j 1, factor through the coproduct of {Li}i in the
category of semilattices, i.e. through ∏′i Li which is the subset of ∏i Li consisting of
those elements with all but finitely many coordinates equal to 1. Concretely, ιj is
equal to the composition of the following meet-semilattice homomorphisms

κ j : Lj →∏′
i Li and J−K : ∏′

i Li →
⨁

i

Li

a ↦→ a ∗j 1 u ↦→
⋀

i

(ui ⊕i 1)

where a ∗j 1 is the vector with 1 in all coordinates except for the jth one, which is
equal to a. Note that, since all except for finitely many coordinates of u are finite,
JuK is just a finite meet.

10Because coproducts of frames correspond to products of spaces, a ⊕j 1 represents an open set
from the subbasis of the product, that is a⊕j 1 represents the inverse image of the open set a by the
jth projection.
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3.5.10 Definition. Let a ∈ Lj and u ∈ ∏′i Li. Define a ∗j u to be the element of
∏′i Li such that (a ∗j u)j = a and (a ∗j u)i = ui for i ̸= j.

Similarly, set a⊕j u to be element of
⨁

i Li defined as Ja ∗j uK.

If we denote by 1 the top element of ∏′i Li, i.e. (1)i = 1 for all i ∈ I, then the notation
we used above agrees with this newly introduced one.

3.5.11 The structure of
⨁

i Li. Before we switch back to d-frames we give a more
explicit description of the structure of coproducts since it will be essential later when
we prove axioms (µ±-con-tot) and (Indep±) for the coproduct of d-frames.

By definition,
⨁

i Li is equal to Down(F(G)) where F(G) is the absolutely free
semilattice on the set G (Section 3.4.1). Note that ∏′i Li is isomorphic to F(G)/E1,
where E1 represents the first equation in (3.5.1) The pair of meet-homomorphisms
establishing this isomorphism is

u ∈∏′
i Li ↦−→ {uj ⊕j 1 | uj ̸= 1} and

[F] ∈ F(G)/E1 ↦−→ u(F) where u(F)i =
⋀
{a : (a⊕i 1) ∈ F}.

3.5.12 Fact ([GPP14]). Let S be a semilattice and let E ⊆ S×S be a sets of equations

(i.e. a relation). Then, Down(S/E) ∼= Down(S)/Ẽ where Ẽ
def
≡ {(↓a, ↓b) : (a, b) ∈

E} is the set of equations E lifted to the frame Down(S).

Combining this fact and the isomorphism ∏′i Li ∼= F(G)/E1 we obtain that
⨁

i Li is
formed of (E2-)saturated downsets D ∈ Down(∏′i Li), where E2 is the second equation
in (3.5.1), i.e.⨁

i

Li ∼= {D ∈ Down(∏′
i Li) | {bk ∗j u : k ∈ K} ⊆ D =⇒ (

⋁
k∈K

bk) ∗j u ∈ D}.

It is immediate to check that the smallest element of
⨁

i Li is the downset

n = {u ∈∏′
i Li | ui = 0 for some i}.

Also, with this new representation, we have a new description of the maps from
above:

J−K : u ↦→ ↓u ∪ n ιj : a ↦→ ↓(a ∗j 1) ∪ n

This is valid because ↓u∪ n is the smallest saturated downset containing u. For this
reason, we will often interpret the generators a⊕j 1 as the downsets ιj(a).

Next we prove a few auxiliary lemmas.
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3.5.13 Lemma ([PP12]). Let a, b ∈ Lj, {ak}k ⊆ Lj and u, v ∈ B. Then,

1. If u /∈ n, JuK ≤ JvK iff u ≤ v.

2. J−K is injective on ∏′i Li \ n.

3. (a⊕j u) ∧ (b⊕j u) = (a ∧ b)⊕j u

4.
⋁

k(ak ⊕j u) = (
⋁

k ak)⊕j u

Proof. (1) JuK ≤ JvK iff ↓u ∪ n ⊆ ↓v ∪ n and, since u /∈ n, u ≤ v. The other direction
follows from monotonicity of J−K. (2) follows from (1). For (3), recall that J−K is
a meet-semilattice homomorphism, so (a ⊕j u) ∧ (b ⊕j u) = Ja ∗j uK ∧ Jb ∗j uK =

J(a ∗j u) ∧ (b ∗j u)K = J(a ∧ b) ∗j uK = (a ∧ b)⊕j u. Finally, we check (4):⋁
k

(ak ⊕j u) =
⋁
k

((ak ⊕j 1) ∧ (1⊕j u)) = (
⋁
k

(ak ⊕j 1)) ∧ (1⊕j u)

= ((
⋁
k

ak)⊕j 1) ∧ (1⊕j u) = (
⋁
k

ak)⊕j u

where the first and last equalities hold because ak⊕j u = (a⊕j 1)∧⋀
i ̸=j(ui⊕i 1). □

3.5.14 Lemma. Let αj = aj ⊕i(j) 1, for j = 1, . . . , n. Then,

n⋀
j=1

αj =
⋀
i∈I

(bi ⊕i 1) =
⋂
i∈I

(bi ⊕i 1)

where I = {i(j) : j = 1, . . . , n}, bi =
⋀{aj | i(j) = i}).

Moreover,
⋀n

j=1 αj = JuK = ↓u ∪ n where u ∈ ∏′i Li such that (u)i = bi for
every i ∈ I and (u)i = 1 otherwise.

Proof. By Lemma 3.5.13,
⋀n

j=1 αj =
⋀

i∈I(bi ⊕i 1) and, because meets of saturated
downsets are computed as their intersections,

⋀n
j=1 αj =

⋂
i∈I(bi ⊕i 1). The ‘More-

over’ part follows from this representation. □

3.5.15 Lemma. Let αj = aj ⊕i(j) 1, for j = 1, . . . , n. Then,

n⋁
j=1

αj =
⋁
i∈I

(bi ⊕i 1) =
⋃
i∈I

(bi ⊕i 1)

where I = {i(j) : j = 1, . . . , n} and bi =
⋁{aj | i(j) = i}.

Proof. Let βi def≡ bi ⊕i 1, for every i ∈ I. First, we will show that
⋃

i∈I βi is saturated.
Let X = {xk ∗l u}k∈K ⊆

⋃
i∈I βi. Without loss of generality, assume that X ∩ n = ∅,
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i.e. ui ̸= 0, for all i ̸= l, and that xk ̸= 0, for all k ∈ K. If X ⊆ βi, for some i, then
also

⋁
k∈K xk ∗l u ∈ βi because βi is saturated. Otherwise, there must exist an m ∈ K

which is different from l such that xm ∗l u ∈ βm. This means that (xm ∗l u)m = um ≤
bm. From this we have that, for all k ∈ K, (xk ∗l u)m = um ≤ bm and, therefore,
xk ∗l u ∈ βk. Again, because βk is saturated, (

⋁
k∈K xk) ∗l u ∈ βk.

Next, αj ⊆ βi(j), for all j = 1, . . . , n, and so
⋃

j αj ⊆ ⋃
i∈I βi. Because

⋁n
j=1 αj

is the smallest saturated containing
⋃

j αj and
⋃

i∈I βi is also saturated, we get that⋁n
j=1 αj ⊆ ⋃

i∈I βj. Finally, every βi ⊆ ⋁{αj | i(j) = i} ⊆ ⋁n
j=1 αj and so

⋃
i∈I βj ⊆⋁n

j=1 αj. □

3.5.4.2 Coproducts of d-frames

Let {Li = (Li
+, Li

−; coni, toti)}i∈I be a family of d-frames. In Section 3.1.3 we showed
that the coproduct {Li}i in the category of proto-d-frames is computed as⨁

i

Li = (
⨁

i
Li
+,

⨁
i
Li
−, ↓con∧· ,∨· , ↑tot∧· ,∨· )

where con1 = {(α+ ⊕i 1, α− ⊕i 1) : α ∈ coni} and tot1 = {(α+ ⊕i 1, α− ⊕i 1) : α ∈
toti}. ⨁i L

i comes with the d-frame embeddings ιj = (ι
j
+, ι

j
−) : Lj → ⨁

i L
i with

ι
j
± = Lj

± ∏′i Li
±

⨁
i Li
±

κ
j
± J−K±

Recall from Section 3.3.1 that the coproduct of {Li}i in d-Frm is computed as the
d-frame reflection of

⨁
i L

i. Equivalently, this is defined as the freely generated d-
frame dFr⟨G± | E±, Econ, Etot⟩ where ⟨G± | E±⟩ are the presentation of the coprod-
ucts (for

⨁
i Li
±), and Econ and Etot are the relations:

(a⊕j 1, b⊕j 1) ∈ Econ whenever (a, b) ∈ conj

(a⊕j 1, b⊕j 1) ∈ Etot whenever (a, b) ∈ totj

Corollary 3.4.10 proves that this is isomorphic to r(
⨁

i L
i) defined above.

In the rest of this subsection we aim to prove Proposition 3.3.5. We do that by
proving (µ±-con-tot) and (Indep±) from Theorem 3.4.20 which then shows that the
d-frame reflection of

⨁
i L

i is trivial; it is only the one-step DCPO-completion of the
consistency relation, i.e. D(↓con∧· ,∨· ).

To simplify our work to make sure that we can deal with indexes without wor-
ries, we prove the following lemma about normal forms of elements coming from
con∨· , con∧· , tot∨· and tot∧· :
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3.5.16 Lemma. Let α ∈ con∧· /tot∧· . Then, it is of the form (
⋀

i αi
+,

⋁
i αi
−) such that

1. for every i ∈ I: αi = (a+ ⊕i 1, a− ⊕i 1) for some (a+, a−) ∈ coni (resp. toti),
and

2. there exists a finite I(α)⊆fin I s.t. i ∈ I(α) iff αi ̸= tt

Similarly, every α ∈ con∨· (resp. tot∧· ) is of the form (
⋁

i αi
+,

⋀
i αi
−) where αi ∈

con1 (resp. tot1) and I(α) denotes the finite set of indexes for which αi ̸= ff.

Notice that (1) and (2) make sense together. Anytime αi = tt we have that tt =

(↓1∪ n+, n−) = (1⊕i 1, 0⊕i 1) and (1, 0) ∈ coni/toti. The case for αi = ff is similar.

Proof. We prove that, for every α ∈ con∨· , α =
⋁· i∈I αi for some I ⊆fin I and αi =

(bi
+ ⊕i 1, bi

− ⊕i 1) ∈ con1 (or tot1) and from this the lemma follows.
Let

⋁n
j=1 αj ∈ con∨· where αj = (aj

+ ⊕i(j) 1, aj
− ⊕i(j) 1) ∈ con1, for all j = 1, . . . , n.

From Lemma 3.5.14 and Lemma 3.5.15, we have that
n⋁·

j=1
αj = (

⋁
i∈I

(bi
+ ⊕i 1),

⋀
i∈I

(bi
− ⊕i 1))

where I = {i(j) : j = 1, . . . , n} and bi
+ =

⋁{aj | i(j) = i} and bi
− =

⋀{aj | i(j) = i}.
For every i ∈ I, because (con-∨· ) holds for Li, (bi

+, bi
−) ∈ coni and, therefore, also

(bi
+ ⊕i 1, bi

− ⊕i 1) ∈ con1. □

3.5.4.3 Strips, rectangles and crosses

Before we get to proving that
⨁

i L
i has a one-step reflection we look into the struc-

ture of con∨· , con∧· , tot∨· and tot∧· . It turns out that there is a nice geometrical intuition
that we can employ.

First, for an a ∈ Li
±, we call a ⊕i 1 an i-strip11. Then, anytime (a, b) ∈ coni, we

can think of the corresponding pair (a⊕i 1, b⊕i 1) ∈ con1 as of a pair of “disjoint”
i-strips and, similarly, (c, d) ∈ toti gives a pair of strips that are “covering the whole
space”, i.e. (c⊕i 1, d⊕i 1) ∈ tot1. This terminology is motivated by the case when
I = {1, 2}. Both cases are displayed in the picture below for L1 ⊕L2:

a⊕1 1b⊕1 1

ab

L1

L2 c⊕1 1d⊕1 1

cd

L1

L2

11We sometimes omit the index and call i-strips just strips whenever it does not lead to a confusion.
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Therefore, all elements of con1 and tot1 are pairs of strips. As a direct consequence
of Lemma 3.5.13 we see that the set of i-strips in the coproduct has exactly the same
structure as the d-frame Li:

3.5.17 Lemma. Let Si
± be the set of all i-strips in

⨁
i Li
±. If all Li

±’s are nontriv-
ial12then

(Si
+, Si

−; con1 ∩ (Si
+×Si

−), tot1 ∩ (Si
+×Si

−))
∼= Li.

Moreover, finite ∧· -combinations of pairs of strips is something that we can imag-
ine as a pair consisting of a rectangle and a cross. For example, let α ∈ con1 be a pair
of 1-strips and α′ ∈ con1 a pair of 2-strips. Then, as the picture below suggests, the
plus coordinate of α ∧· α′ in L1 ⊕L2 is a rectangle and the minus coordinate is a
cross. Notice also that the cross and rectangle are disjoint.

α+α−

L1

L2 ∧

α′+

α′−

L1

L2 = α− ∨ α′−

α+ ∧ α′+

L1

L2

The picture for two pairs of strips β, β′ ∈ tot1 is similar but this time the cross and
rectangle of β ∧· β′ cover the whole space.

This geometrical intuition builds up well for these formal definitions: γ =
⋀
· i γi,

where γi = ci ⊕i 1 (∀i ∈ I), is a rectangle if there exists a finite I(γ)⊆fin I such that
ci ̸= 1 iff i ∈ I(γ). Similarly, δ =

⋁· i δi, where δi = di ⊕i 1, is a cross if for some finite
I(δ)⊆fin I, di ̸= 0 iff i ∈ I(δ).

Notice that, by Lemma 3.5.16, every element of con∧· (resp. tot∧· ) is of the form
(
⋀

i αi
+,

⋁
i αi
−) with only finitely many nontrivial αi’s. In the present terminology, α

is a pair rectangle–cross and this exactly matches the geometrical intuition we have
just discussed.

3.5.18 Observation. Rectangles are exactly the elements of B±
def
≡ J∏′i Li

±K±.

Proof. Every γ ∈ B± is of the form JuK± for some u ∈ ∏′i Li
±. Because u has only

finitely many indexes different from 1, JuK± = J(a1 ∗i(1) 1) ∧ · · · ∧ (an ∗i(n) 1)K± =

Ja1 ∗i(1) 1K± ∧ · · · ∧ Jan ∗i(n) 1K± = (a1 ⊕i(1) 1) ∧ · · · ∧ (an ⊕i(n) 1). The reverse direc-
tion is similar. □

There is a nice interplay between rectangles and crosses:

12A frame is trivial if it is isomorphic to 1 = {0 = 1}.
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3.5.19 Lemma. Let γ =
⋀

i γi be a rectangle and let δ =
⋁

i δi be a cross such that
γ ≤ δ. Then, there exists an i ∈ I(γ) such that γi ≤ δi.

Proof. Let γi = ci ⊕i 1 and δi = di ⊕i 1, for every i ∈ I. By Observation 3.5.18,
γ = JuK± for some u ∈ ∏′i Li

± such that, for every i ∈ I, (u)i = ci. This means that
(u)i ̸= 1 iff i ∈ I(γ). Also, by Lemma 3.5.15, δ has a form of a finite union

⋃
i∈I(δ) δi.

If ci = 0 for some i ∈ I(γ), then ci ≤ di. Otherwise, ci ̸= 0 for all i ∈ I(γ) and,
since γ ≤ δ iff u ∈ δ, there must exist an i ∈ I(δ) such that u ∈ δi and then, by
Lemma 3.5.13.1, (u)i = ci ≤ di. Finally, because i ∈ I(δ), di ̸= 1 and so also ci ̸= 1
and i ∈ I(γ). □

3.5.4.4 Proof of (µ±-con-tot) and (Indep±)

To simplify our proofs, we can assume that all Li’s are nontrivial thanks to the
following lemma.

3.5.20 Lemma. If Li
+ = 1 or Li

− = 1 for some i ∈ I, then
⨁

i L
i is isomorphic to

the trivial d-frame (1, 1, contriv, tottriv).

Proof. Observe that, by (con-tot) for Li, if Li
+ = 1 then automatically also Li

− = 1,
and vice versa. Therefore,

⨁
i Li
± = {n±} and making

⨁
i L

i trivial. □

Finally, let us check that the conditions of the Theorem 3.4.20 (for B± = J∏′i Li
±K±)

are satisfied:

3.5.21 Lemma. (µ±-con-tot) holds for
⨁

i L
i:

Proof. Let α =
⋁· i αi ∈ con∨· and β =

⋀
· i βi ∈ tot∧· be in canonical forms, and assume

that β+ ≤ α+. From canonicity of α and β, know that α+ is a cross and β+ is a
rectangle. By Lemma 3.5.19, there is an i ∈ I(β) such that βi

+ ≤ αi
+. From (con-tot)

for Li, αi
− ≤ βi

− and so α− =
⋀

i αi
− ≤ αi

− ≤ βi
− ≤

⋁
i βi
− = β−. □

3.5.22 Lemma. (Indep±) holds for
⨁

i L
i.

Proof. Let (x, b−) ∈ (L+×B−) ∩ ↓con∧· ,
⋁· . Denote its upper bound (

⋁
k αk

+,
⋀

k αk
−)

where, for each k, αk = (
⋀

i αk,i
+ ,

⋁
i αk,i
− ) is a pair rectangle–cross from con∧· . Because

b− ∈ B−, it is a rectangle of the form b− =
⋀

i γi (Observation 3.5.18). Because, for
every k, b− ≤ αk

−, by Lemma 3.5.19, there exists an i(k) ∈ I(b−) such that γi(k) ≤
α

k,i(k)
− . Fix an i ∈ I(b−) and set K(i) = {k | i(k) = i}. By Lemma 3.5.20, we can

assume that all Li
±’s are non-trivial and because {αk,i : k ∈ K(i)} are all pairs of

i-strips and γi is an i-strip, by Lemma 3.5.17, we can carry the reasoning in the rest
of this paragraph in the d-frame Li. Since coni is downwards closed and γi ≤ αk,i
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(∀k ∈ K(i)), also (α
k,i(k)
+ , γi(k)) ∈ con1 and, therefore, by

⨆↑ and ∨· -closeness of coni,
(
⋁

k∈K(i) αk,i
+ , γi) ∈ con1.

Finally, because I(b−) is finite,⋁·
i∈I(b−)

(
⋁

k∈K(i)

αk,i
+ , γi) = (

⋁
i∈I(b−)

(
⋁

k∈K(i)

αk,i
+ ),

⋀
i∈I(b−)

γi) = (
⋁
k

α
k,i(k)
+ , b−) ∈ con∨· .

Because αk
+ =

⋀
i αk,i

+ ≤ α
k,i(k)
+ (∀k), x ≤ ⋁

k αk
+ ≤

⋁
k α

k,i(k)
+ and so (x, b−) ∈ ↓con∨· .

□

This concludes the proof of Proposition 3.3.5.

3.5.5 Vietoris constructions

Powerlocales are an important tool in frame/locale theory. For example, for a frame
L, consider the upper powerlocale (also known as Smyth powerlocale) construction:

V2(L)
def≡ Fr

⟨
2a : a ∈ L

⏐⏐⏐ 2(a ∧ b) = 2a ∧2b, 21 = 1, 2(
⋁↑

i ai) =
⋁↑

i (2ai)
⟩

.

Then, for a sober space (X, τ), the frame homomorphisms V2(Ω(X)) → 2 are in
a bijective correspondence with compact saturated subsets of X [Esc04; Vic97]13.
Similarly, for a d-frame L, define the upper Vietoris d-frame W2(L) to be the d-frame

dFr
⟨
2α : α ∈ L

⏐⏐⏐ 2(α ∧· β) = 2α ∧· 2β, 2tt = tt, 2(
⨆↑

i αi) =
⨆↑

i (2αi),

(∀α ∈ conL) 2α ∈ con, (∀α ∈ totL) 2α ∈ tot
⟩

Again, for a d-regular bispace (X, τ+, τ−), the
⨆↑ , ∧· , con and tot-preserving maps

Ωd(X) → 2×2 or, equivalently, the d-frame homomorphisms W2(Ωd(X)) → 2×2
are in a bijective correspondence with compact upwards-closed subsets of X [JM08,
Theorem 5.6].

Of a comparable importance is the lower powerlocale (also known as Hoare pow-
erlocale) construction:

V3(L)
def≡ Fr

⟨
3a : a ∈ L

⏐⏐⏐ 3(a ∨ b) = 3a ∨3b, 30 = 0, 3(
⋁↑

i ai) =
⋁↑

i (3ai)
⟩

.

The frame homomorphisms V3(Ω(X))→ 2 are in a bijection with closed subsets of
X [Esc04, Proposition 5.4.2]14. For a d-frame L, the lower Vietoris d-frame W3(L) is
defined as

dFr
⟨
3α : α ∈ L

⏐⏐⏐ 3(α ∨· β) = 3α ∨· 3β, 3ff = ff , 3(
⨆↑

i αi) =
⨆↑

i (3αi),

(∀α ∈ conL) 3α ∈ con, (∀α ∈ totL) 3α ∈ tot
⟩

.

13This has further consequences. As
⋁↑ and ∧-preserving maps Ω(X) → 2 and frame homomor-

phisms V2(Ω(X)) → 2 are in a bijective correspondence, saturated subsets can be thought of as
(continuous) universal quantifiers on X. For further details see Escardó’s Synthetic topology, Theorem
5.3.1 in [Esc04].

14In Escardó’s theory, closed subsets correspond to continuous existential quantifiers.
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Lastly, the Vietoris powerlocale (also known as Plotkin or Johnstone powerlocale) is
a combination of both the upper and lower constructions. Consequently, the set of
generators and the set of axioms get combined, plus two extra axioms are added to
express the relationship between the “boxed” and “diamonted” elements:

VFr(L)
def≡ Fr

⟨
2a, 3a : a ∈ L

⏐⏐⏐ (axioms of V2(L)), (axioms of V3(L)),

2a ∧3b ≤ 3(a ∧ b), 2(a ∨ b) ≤ 2a ∨3b
⟩

Correspondingly, the (full) Vietoris d-frame is defined as follows

Wd(L)
def≡ dFr

⟨
2α, 3α : α ∈ L

⏐⏐⏐ (axioms of W2(L)), (axioms of W3(L)),

2α ∧· 3β ⩽· 3(α ∧· β), 2(α ∨· β) ⩽· 2α ∨· 3β,
⟩

.

Each of the different versions of the powerlocale constructions has a different role
in the theory of computation and also in modal logic (see, for example, [Gou10]). We
leave examining properties and applications of the d-frame versions of powerlocale
constructions for Chapters 4, 5 and 6. For now, let us just take a look at how the
generated d-frames look like.

3.5.23 Two-sorted reformulation. First, we examine how the single-sorted rep-
resentation of W2(L) gets translated into the two-sorted one. Every generator 2α

becomes a pair of generators which we suggestively denote as 2α+ and 3α−. Then,
the axioms split into two symmetric sets of axioms as well. For example 2(α ∧· β) =

2α ∧· 2β becomes 2(α+ ∧ β+) = 2α+ ∧ 2β+ and 3(α− ∨ β−) = 3α− ∨3β−. We
see that the quotienting relations on the plus side agree with the defining equations
of V2(L+) and on the minus side, since they are dual, they agree with V3(L−). The
consistency and totality relations are, after the translation, seen to be generated from
the pairs (2α+, 3α−) where α ∈ conL and α ∈ totL, respectively.

Intuitively, this makes sense because α ∈ con represents “α+ ∧ α− = 0” and then,
from the axioms for the Vietoris powerlocale, “2α+ ∧3α− ≤ 3(α+ ∧ α−) = 30 =

0” suggesting that (2α+, 3α−) should be consistent. A similar intuitive reasoning
justifies why the pairs (2α+, 3α−), for α ∈ tot, should be total.

In Chapter 4 we show that the presentation of W2(L) satisfies the conditions of
Theorem 3.4.20 from which we derive that W2(L) is isomorphic to

(V2L+, V3L−, D(↓con∧· ,∨· ), ↑tot∧· ,∨· )

where con1 = {(2α+, 3α−) : α ∈ con} and tot1 = {(2α+, 3α−) : α ∈ tot}.
Similarly, the other two constructions satisfy the conditions of Theorem 3.4.20.

Therefore, W2(L) is isomorphic to (V3L+, V2L−,D(↓con∧· ,∨· ), ↑tot∧· ,∨· ) where con1 =

{(3α+, 2α−) : α ∈ con} and tot1 = {(3α+, 2α−) : α ∈ tot}, and the d-frame Vi-
etoris power-construction Wd(L) becomes

(VFr L+, VFr L−, D(↓con∧· ,∨· ), ↑tot∧· ,∨· )
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with

con1 = {(2α+, 3α−), (3α+, 2α−) : α ∈ con}, and

tot1 = {(2α+, 3α−), (3α+, 2α−) : α ∈ tot}.

3.6 Final remarks

3.6.1 Further free constructions. The method of constructing a free d-frame from
its presentation, that we described in this chapter, is quite flexible. In fact, whenever
we translated a free frame construction to d-frames, all that we often needed to do
was to specify the sets of generators for the consistency and totality relations. The
author of this text believes that it should not be difficult to translate other frame
constructions which can be given as a free construction, such as, Booleanization,
frame of congruences (see page 85 in [Vic89]), or function space construction by
Martin Hyland [Hyl81].

3.6.2 Quotienting twist d-frames. One may think that, if a d-frame is of the form
L▷◁ for some frame L, then the quotient of L▷◁ by (R, R) should yield a d-frame
isomorphic to (L/R)▷◁. This is, however, not the case. Consider the frame L and its
quotient shown below

L
def≡ a b

c

d

1

0

L/R ∼= a b

1

0

where R = {d ≤ 0, 1 ≤ c}. It is easy to check that quotients of d-frames with trivial
consistency and totalities relations also have those relations trivial. Therefore, the
quotient of L▷◁ = (L, L, contriv, tottriv) by (R, R) is equal to (L/R, L/R, contriv, tottriv).
On the other hand, the consistency and totality relations of (L/R)▷◁ are non-trivial.

3.6.3 Iterative reflection categorically. The construction of a free d-frame from
its presentation, seen as a functor dFr : Pres → d-Frm (defined in paragraph 3.4.4),
can be split into two separate constructions. First of all we have a functor f : Pres→
pd-Frm which assigns to a d-frame presentation (L±, E) the proto-d-frame

(L+, L−, ↓(Econ)∧· ,∨· , ↑(Etot)∧· ,∨· )/(E+, E−).
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(And is defined on morphisms as expected.) It is immediate to check that the embed-
ding i : pd-Frm → Pres is the right adjoint of f. Moreover, Pres reflects onto its full
subcategory cPres consisting of correct presentations, i.e. presentations (L±, E) such
that E is a reasonable quotient structure on (L+, L−) (in the sense of Section 3.2.4).
The reflection is computed as the morphism of presentations (id+, id−) : (L±, E) →
(L±, r∞(E)). Denote the corresponding functor as r̃ : Pres → cPres. We have the
following diagram of categories

d-Frm cPres

pd-Frm Pres

i

f

r

i

f

r̃

Consequently, dFr = f ◦ r̃ and r = f ◦ r̃ ◦ i where i is the embedding L ↦→ (L±, Λ(L))

as defined in Section 3.4.2. Moreover, r̃ can be seen as an iterative construction on
d-frame presentations. Define r̃⋆ : Pres→ Pres as follows

(L±, E) ↦−→ (L±, r⋆(↓(Econ)∧· ,∨· , ↑(Etot)∧· ,∨· , E+, E−))15

where r⋆ is as in Section 3.2.3. Then, r̃(L±, E) is the colimit of the transfinite se-
quence

(L±, E)
(id+,id−)−−−−−−→ r̃⋆(L±, E)

(id+,id−)−−−−−−→ r̃⋆ (̃r⋆(L±, E))
(id+,id−)−−−−−−→ · · ·

Moreover, if (L±, E) = i(L) for some proto-d-frame L, then this sequence in Pres,
when mapped back into pd-Frm by f, yields a sequence of quotients of proto-d-
frames

L ↠ f(̃r⋆(i(L))) ↠ f(̃r⋆ (̃r⋆(i(L)))) ↠ · · ·

It can be checked that the colimit of this sequence is again isomorphic to r(L).

3.6.4 Counterexample (by Achim Jung). We show that there is an onto frame homo-
morphism h : L ↠ M and a downset C ⊆ L, which is Scott-closed, such that h[C]
is not Scott-closed. Let L be the free frame Fr⟨A⟩ where A is the set {an : n ∈ N}.
Define C ⊆ L as the downset closure of A embedded into L. Next we show that
C is directed in L. Recall from Section 3.4.1 that L can be represented as the frame
Down(F(A),∪). Then, under this representation, C is equal to

{D ⊆ F(A) | D = ↓D (in (F(A),⊇)) and ∃n ∈N. A ⊆ ↓{an}}.

To see why is C directed, consider a function G : C → P(A), D ↦→ {an | D ⊆ ↓{an}}.
Then, for every D ∈ C, G(D) is either finite or the whole A and, moreover, U ⊆ U′

implies G(U) ⊇ G(U′). Hence, C is directed.

15This closure of Econ and Etot under logical operations and downwards or upwards is, in fact,
necessary only in the first application of r̃⋆.
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Next, consider the quotient of L by R = {an ≤ an+1 | n ∈ N}. Then, L/R is is
isomorphic to the chain a0 < a1 < · · · < ω, and the quotient map q : L ↠ L/R maps
C to the set which contains everything but ω, i.e. a not Scott-closed set.



4
Vietoris constructions for bispaces

and d-frames

Leopold Vietoris, in his celebrated paper [Vie22], motivated his construction to be
the powerset for metric spaces. The idea of having powerset-like constructions has
been adapted and generalised to other contexts many times since. Common ex-
amples are power-constructions for topological spaces and domains [Smy83; Plo76]
and frames [Joh85; Joh82; VV14]. Having a power-construction for a category, de-
spite being an interesting question on its own, showed to be a practical tool too.
For example, the Vietoris construction became a key construction in [Abr87b; Vic89;
KKV04].

In this chapter we take a look at how to generalise the Vietoris construction to
the categories of bispaces and d-frames.

4.1 Bispatial Vietoris constructions

To motivate the definition of our Vietoris construction for bispaces we first take a
look at two examples of power-constructions from which we took inspiration. Since
the bispaces we are the most interested in can be thought of as posets equipped with
two (compatible) topologies, we first take a look at the category of posets Pos and
the category of topological spaces Top and how power-constructions are defined for
those.

91
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4.1.1 Example 1: Partially ordered sets

Let (Z,≤) be a poset. A naive attempt to define a “powerposet” of Z can be to try
to define a partial order on the set of all subsets P(Z) of Z. Here we have (at least)
three reasonable options how to define an order on P(Z). For M, N ∈ P(Z), define

M ≤U N
def≡ ∀n ∈ N. ∃m ∈ M. m ≤ n

M ≤L N
def≡ ∀m ∈ M. ∃n ∈ N. m ≤ n

M ≤EM N
def≡ M ≤U N and M ≤L N

called upper, lower and Egli-Milner lifting of ≤, respectively. It is easy to verify
that (P(Z),≤U), (P(Z),≤L) and (P(Z),≤EM) are all preordered sets; however, they
might fail to satisfy antisymmetry and therefore being posets.

On the other hand, the assignment P′U : (Z,≤) ↦→ (P(Z),≤U) is functorial. For
a monotone f : (Y,≤) → (Z,≤), setting P′U( f ) : P′U(Y) → P′U(Z) to be the map
M ↦→ f [M] defines a (covariant) endofunctor on the category of preordered sets and
monotone maps PreOrd.

Moreover, P′U can be extended to a monad. Consider the following mappings

ηZ : Z → P′U(Z)
z ↦→ {z} and

µZ : P′U(P′U(Z)) → P′U(Z)
M ↦→ ⋃

M

Clearly, ηZ is monotone. To check that also µZ is consider M,N ∈ P′U(P
′
U(Z)) such

that M ≤U N. This means that for every N ∈ N there is a M ∈M such that M ≤U N.
Therefore, if n ∈ ⋃

N, then there is some N ∈ N such that n ∈ N and, then, for
some M ∈ M such that M ≤U N, there is some m ∈ M such that m ≤U n. Next,
the required categorical identities for the monad (P′U, η, µ) hold because η and µ

are computed exactly the same as the corresponding maps for the powerset monad
P(−) on Set.

Similarly, we extend the other two constructions to endofunctors P′L and P′EM

and, then, exactly the same reasoning applies. We obtain that:

4.1.1 Proposition. (P′U, η, µ), (P′L, η, µ) and (P′EM, η, µ) are monads on PreOrd.

However, our task was to define a power-construction for the category of posets.
We can reuse what we have just proved. Define the restrictions of the above endo-
functors to the category of posets as the following compositions of functors

Pos PreOrd PreOrd Pos⊆ P′U/P′L/P′EM r≤

Here, the first functor is the (full) inclusion and r≤ is the reflection of PreOrd into
Pos (defined on objects as Z ↦→ Z/∼ where a ∼ b iff a ≤ b and a ≥ b). We denote
such compositions as PU, PL and PEM, respectively.
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4.1.2 PU, PL and PEM explicitly. Let (Z,≤) be a poset. By M =U N denote M ≤U

N and N ≤U M. Since PU(Z) is defined as the quotient of P′U(Z) by =U, it is essential
to understand how the equivalence classes of =U look like.

4.1.3 Lemma. Let M, N ∈ P(Z). Then,

1. M ≤U N iff ↑M ⊇ N,

2. M =U ↑M, and

3. M =U N iff ↑M = ↑N.

Proof. (1) follows from the definition of ≤U and (2) is an immediate consequence of
(1). (3) M =U N implies, by (1), that ↑M ⊇ N and M ⊆ ↑N. Hence, ↑M = ↑N. On
the other hand, if ↑M = ↑N, then, by (2), M =U ↑M = ↑N =U N. □

We see that each =U-equivalence class has a canonical representative computed
as the upwards closure. Consequently, instead of quotienting P′U(Z), it is equivalent
to define PU(Z) as the poset of upsets (Up(Z),≤U). Moreover, ρU : M ↦→ ↑M is the
reflection map P′U(Z)→ PU(Z) in PreOrd.

Next, define =L and =EM similarly to =U. Again, the above reasoning can be
directly translated to identifying the representatives of =L and =EM-equivalence
classes:

4.1.4 Lemma. Let M, N ∈ P(Z). Then,

1. M ≤L N iff M ⊆ ↓N,

2. M =L ↓M,

3. M =L N iff ↓M =

↓N,

4. M ≤EM N iff ↑M ⊇ N and M ⊆ ↓N,

5. M =EM ↓M ∩ ↑M, and

6. M =EM N iff ↓M ∩ ↑M = ↓N ∩ ↑N.

Proof. (1), (2) and (3) are just the upside-down versions of Lemma 4.1.3. (4) and
(5) follow from the definition of ≤EM. Then, right-to-left implication in (6) follows
from (5) and for the reverse direction, observe that ↓(↓M∩ ↑M) = ↓M and ↑(↓M∩
↑M) = ↑M. Then, ↓M ∩ ↑M = ↓N ∩ ↑N implies that M =U N and M =L N. □

This time the unique representative of each equivalence =L-equivalence class is
computed as the downwards closure and for =EM it is the convex closure, i.e. ↓M ∩
↑M. Then, PL(Z) is isomorphic to the poset of downsets (Down(Z),≤L) and PEM(Z)
is isomorphic to the poset of convex subsets (Conv(Z),≤EM) of Z with the reflection
morphisms: ρL : M ↦→ ↑M and ρEM : M ↦→ ↓M ∩ ↑M.

4.1.5 Several key observations. All these constructions have something in com-
mon. For each π ∈ {U, L, EM}, the following composition is equal to the identity
on Pπ(Z)
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Pπ(Z) P′π(Z) Pπ(Z)⊆ ρπ

Categorically speaking, r
def≡ ρπ : P′π(Z) → Pπ(Z) is a retraction and the inclusion

map s
def≡ Pπ(Z) ⊆−→ P′π(Z) is a section. Each retraction–section pair defines a split

idempotent e
def≡ r ; s : P′π(Z)→ P′π(Z)1 which interacts nicely with the monad struc-

ture (P′π, η, µ):

4.1.6 Lemma. In the category of preordered sets, for any monotone f : P′π(Z) → Y
and g : P′π(P′π(Z))→ Y such that Y is a poset, the following two diagrams commute

(N1)
P′π(Z) P′π(Z)

Y

e

f
f

(N2)
P′π(P

′
π(Z)) P′π(P

′
π(Z))

Y

P′π(e)

g
g

Proof. (N1) For any M ∈ P(Z), M =π e(M) (Lemma 4.1.3 resp. 4.1.4). Because Y is
a poset and f is monotone, f (M) = f (e(M)).

(N2) Let M ∈ P(P(Z)). We will show that P′π(e)(M) = {e(M) : M ∈ M} is
=π-equal to M; which then gives that g(M) = g(P′π(e)(M)) because g is monotone
and Y is a poset. For π = U (i.e. e(M) = ↑M), P′π(e)(M) and M are =U-equal if

↑≤U {↑M : M ∈M} = {N | ∃M ∈M. ↑M ≤U N} and

↑≤U M = {N | ∃M ∈M. M ≤U N}

are equal and this follows from M =U ↑M. The case when π = L is similar. For
π = EM we need

{N | ∃Mi ∈M. ⟨⟨M1⟩⟩ ≤EM N ≤EM ⟨⟨M2⟩⟩} = {N | ∃Mi ∈M. M1 ≤EM N ≤EM M2}

where ⟨⟨M⟩⟩ def≡ ↓M ∩ ↑M. But, this holds because M =EM ⟨⟨M⟩⟩ (for all M ∈ P(Z)).
□

As we will see in the next section (Proposition 4.1.9) these conditions are power-
ful enough to make sure that Pπ is a monad, for every π ∈ {U,L,EM}. Moreover,
Proposition 4.1.9 also gives an explicit formula for the action of the endofunctor on
morphisms. For f : Z → Y a morphism in Pos, Pπ( f ) is defined as the composite
s ; P′π( f ) ; r which translates to

PU( f ) : M ↦→ ↑ f [M], PL( f ) : M ↦→ ↓ f [M] and PEM( f ) : M ↦→ ↓ f [M] ∩ ↑ f [M].

4.1.2 Restricting a monad to a subcategory

Let (M, η, µ) be a monad on category D and let (M, η, (̃−)) be its equivalent repre-
sentation as a Kleisli triple (recall A.3.12). Moreover, let C be a full subcategory of D
such that

1We use ; for function composition in the diagrammatic order.
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(RS-1) for every d ∈ D, there is an object N(d) ∈ C and a retraction–section
pair of morphisms: r : M(d) → N(d) and s : N(d) → M(d) such that
s ; r = idN(d).

(RS-2) for e
def≡ r ; s : M(d) → M(d) and any h : M(d) → M(d′) and g : d′ →

M(d):

(a) e ; h ; r = h ; r (b) g̃ ; e ; r = g̃ ; r

Condition (a) should formally be written as ed ; h ; rd′ = h ; rd′ (and similarly (b)) but
we choose to not write subscripts as they should be always clear from the context.

Next, for every c ∈ C and f : c→ N(c′), define

• ηN
c to be the composite c M(c) N(c)

ηc r , and

• f to be N(c) M(c) M(c′) N(c′)s f̃ ;s r .

Because C is a full subcategory of D, both ηN
c and f are in C. Therefore, for N seen

as a mapping on objects obj(C)→ obj(C) we get that it defines a monad:

4.1.7 Proposition. (N, ηN, (−)) is a Kleisli triple on C.

Proof. (M1) Let c ∈ C. ηN
c = ηc ; r = s ; η̃c ; r ; s ; r

(b)
= s ; η̃c ; r = s ; r = id because

η̃c = idM(c).

(M2) Let f : c→ N(c′). Then, ηN
c ; f = ηc ; r ; s ; f̃ ; s ; r

(a)
= ηc ; f̃ ; s ; r

(M2)
= f ; s ; r = f

where we applied (a) with h = f̃ ; s and in (M2) we used (M2) for the monad M.

(M3) Let f : c→ N(c′) and g : c′ → N(c′′). Then, f ; g = (s ; f̃ ; s ; r) ; (s ; g̃ ; s ; r)
(a)
=

s ; f̃ ; s ; g̃ ; s ; r
(M3)
= s ; f ; s ; g̃ ; s
:

; r
(b)
= s ; f ; s ; g̃ ; s ; r ; s
:

; r = s ; f ; g ; s
:

; r = f ; g. □

Next, we justify that the conditions from Lemma 4.1.6 are sufficient for N to be a
monad (with N being in the place of PU, PL or PEM). Instead of (RS-2) consider the
following

(RS-2’) for e
def≡ r ; s and any f : M(d)→ c and g : M(M(d))→ c where c ∈ C:

(N1) e ; f = f (N2) M(e) ; g = g

4.1.8 Lemma. The condition (b) from (RS-2) is equivalent to M(e) ; µ ; r = µ ; r.

Proof. Use the (M, η, µ) ↔ (M, η, (̃−)) translation: For “⇒” set g = idM(d). Then,˜id ; e ; r = ẽ ; r = M(e) ; µ ; r and, by (b), ˜id ; e ; r = ĩd ; r = µ ; r. For “⇐” g̃ ; e ; r =

M(g) ; M(e) ; µ ; r = M(g) ; µ ; r = g̃ ; r. □

Because (N1) implies (a) from (RS-2) by setting f = h ; r and (N2) implies M(e) ;
µ ; r = µ ; r by setting g = µ ; r, we see that (RS-2’) implies (RS-2). To sum up we
have obtained:
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4.1.9 Proposition. Let C be a full subcategory of D and let M be a monad on D. If
N : obj(D) → obj(C) is a mapping on objects satisfying (RS-1) and (RS-2’), then N
is a monad on D and its restriction to C is a monad on C. Moreover, the action of N
on morphisms is

N : f : c→ c′ ↦−→ s ; M( f ) ; r : N(c)→ N(c′)

Proof. Only the “moreover” part needs an explanation. By definition f : c → c′ is
mapped to f ; ηN

c′ = s ; f ; ηc′ ; e
:

; r = s ; f̃ ; ηc′ ; r = s ; M( f ; ηc′) ; µ ; r = s ; M( f ) ; r. □

Notice that we do not require that N is a functor. It suffices that it is a mapping
on objects. Functoriality is obtained by the translation from its Kleisli triple.

4.1.10 Remark. 1. Alternatively, (N2) can be replaced by M(e) ; r = r as then

g
(N1)
= r ; s ; g = M(e) ; r ; s ; g

(N1)
= M(e) ; g.

2. Just by (a) from (RS-2) it follows that N is a functor and that r is a natural
transformation M =⇒ N. On the other hand, s is not a natural transfor-
mation N =⇒ M but, in fact, in all of our applications of Proposition 4.1.9
our categories are Pos-enriched and s is a lax-natural transformation (in sense
of [Kel82]).

3. Let I : C → D be the embedding of the categories. Then, r seen as a natural
transformation MI =⇒ IN is a morphism of monads (in sense of [LS02]).
To see that, first, let us compute the multiplication of N: µN

c = idN(c) = s ;˜id ; s ; r = s ; M(s) ; µM
c ; r. Therefore, the following two diagrams of natural

transformations commute:

M2 I MNI N2 I

MI NI

M(r)

µM

r

µN

r

I

MI NI

ηM ηN

r

(The first diagram commutes by (RS-2) and the second commutes by the defi-
nition of ηN.)

4.1.3 Example 2: Spaces

Next, we take a look at how the power-constructions look like for spaces. Let us fix
a topological space (X, τ) for the rest of this section. Again, there are three main
possibilities how to define the topology on the subsets of X and they are related to
the corresponding constructions for posets.



4.1. Bispatial Vietoris constructions 97

4.1.3.1 Upper Vietoris topology

Let K(X) be the set of compact subsets of X. Define, for every U ∈ τ,

2×U
def≡ {K ∈ K(X) | K ⊆ U}.

The upper Vietoris topology V2×τ on K(X) is generated then from the basis {2×U : U ∈
τ}. The assignment on objects

V′2×(X)
def≡ (K(X), V2×τ)

extends to an endofunctor on the category of topological spaces: for a continuous
f : X → Y, define V′2×( f ) : V′2×(X)→ V′2×(Y) as K ↦→ f [K].

4.1.11 Lemma.

1. V′2× is a well-defined functor.

2. (V′2×, η, µ) is a monad where the unit is the mapping ηX : x → {x} and multi-
plication is µX : M ↦→ ⋃

M.

Proof. (1) Since the image of a compact set is compact only continuity of V′2×( f ) needs
to be checked:

V′2×( f )−1[2×U] = {K | f [K] ⊆ U} = {K | K ⊆ f−1[U]} = 2×( f−1[U]).

(2) Again, we only need to check continuity of η and µ; their naturality and com-
mutativity of the monad diagrams follows from the fact that V′2× is defined on mor-
phisms identically to the powerset monad on sets. Observe that η is continuous
because η−1

X [2×U] = {x | {x} ⊆ U} = U.
Next, we check that µ is well defined. Let M ⊆ K(X) be a compact subset of

V′2×(X). We need to show that
⋃
M is compact in X. Assume that

⋃
M ⊆ ⋃↑

i Ui.
Then, for every K ∈M, since K ⊆ ⋃

M ⊆ ⋃↑
i Ui and K is compact, there is an i such

that K ⊆ Ui. Consequently, M ⊆ ⋃↑
i 2×Ui and because M is compact there is an i

such that M ⊆ 2×Ui. Then,
⋃
M ⊆ Ui.

Finally, we check that µ is continuous. Compute:

µ−1
X [2×U] = {M |

⋃
M ⊆ U} = {M |M ⊆ 2×U} = {M |M ∈ 2×(2×U)} = 2×(2×U).

□

Notice that V′2×(X) need not be T0. Similarly to the upper power-construction for
posets, we can fix this by defining V2×(X) as the T0 reflection V′2×(X). That is, V2×(X)

is obtained from V′2×(X) by quotienting it by =2× where ≤2× is the specialisation pre-
order of V2×τ. As was the case for posets, =2× also has a more explicit description:



98 Chapter 4. Vietoris constructions for bispaces and d-frames

4.1.12 Lemma. Let K, H ∈ K(X). Then,

1. K =2× ↑K, and

2. K ≤2× H iff ↑K ⊇ H,

3. K =2× H iff ↑K = ↑H.

(Where ↑K is the upwards closure of K in the specialisation pre-order of (X, τ).)

Proof. (1) Because open sets are upwards closed in the specialisation order we have
that K ⊆ U iff ↑K ⊆ U for every U ∈ τ. (2) The right-to-left implication follows
from (1). For “⇒”, first notice that, for every subset M ⊆ X,

↑M =
⋂
{U ∈ τ | M ⊆ U}. (4.1.1)

The “⊇” is because M ⊆ U implies ↑M ⊆ U. For the other inclusion let x /∈ ↑M.
This means that for every m ∈ M there is a Um ∈ τ such that x /∈ Um ∋ m. Then,
x /∈ ⋃

m∈M Um ⊇ M. Therefore if, for every U ∈ τ, K ⊆ U implies H ⊆ U, then, by
(4.1.1), ↑H ⊆ ↑K. Finally, (3) follows from (1) and (2). □

We see that each =2×-equivalence class has a canonical representative computed
as the upwards-closure. Hence V2×(X) is homeomorphic to the space (K↑(X), V2×τ)

of compact upsets of X and the quotient map ρ2× : V′2×(X)→ V2×(X) is K ↦→ ↑K.

4.1.3.2 Lower Vietoris topology

The second construction gives a topological space on the set P(X) of all subsets of
the set X. For every U ∈ τ, define

3+U
def≡ {M ∈ P(X) | M ∩U ̸= ∅}

and set
V′3+(X)

def≡ (P(X), V3+τ)

where V3+τ is the lower Vietoris topology generated from the subbasis {3+U : U ∈ τ}.

4.1.13 Lemma.

1. V′3+ is functorial with V′3+( f ), for a continuous map f : X → Y, defined as
M ↦→ f [M].

2. (V′3+, η, µ) is a monad with the unit and multiplication defined as for V′2×.

Proof. (1) Only continuity of V′3+( f ) needs to be checked:

V′2×( f )−1[3+U] = {M | f [M] ∩U ̸= ∅} = {M | M ∩ f−1[U] ̸= ∅} = 3+( f−1[U]).
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(2) As before, only continuity of ηX and µX needs to be checked. First, η−1
X [3+U] =

{x | {x} ∩U ̸= ∅} = U ∈ τ and to check the former compute

µ−1
X [3+U] = {M |

⋃
M ∩U ̸= ∅} = {M |M ∩3+U ̸= ∅} = {M |M ∈ 3+(3+U)}.

Therefore, µ−1
X [3+U] = 3+(3+U) which is open in V′2×(V

′
2×(X)). □

Furthermore, since V′3+(X) might not be T0 we need to examine the specialisation
order ≤3+ of V3+τ too:

4.1.14 Lemma. Let M, N ∈ P(X). Then,

1. M =3+ M where M is the closure of M in X, and

2. M ≤3+ N iff M ⊆ N,

3. M =3+ N iff M = N.

Proof. (1) follows from the fact that M∩V ̸= ∅ iff M∩V ̸= ∅. (2) The “⇐” implica-
tion follows from (1) as M ⊆ N implies M ≤2× N =2× N. For the reverse implication,
let x ∈ M. For any neighbourhood U of x, M ∈ 3+U. Therefore, N ∈ 3+U or equiv-
alently N ∩U ̸= ∅ and, because U was an arbitrary neighbourhood of x, x ∈ N.
Finally, (3) is an immediate consequence of (2). □

We see that V3+(X) defined as the T0 reflection of V′3+(X) is homeomorphic to the
space of all closed subsets (Clos(X), V3+τ) of X and the reflection map ρ3+ : V′3+(X)→
V3+(X) is defined as M ↦→ M.

4.1.3.3 (Full) Vietoris topology

In Lemmas 4.1.12 and 4.1.14 we saw that the upper and lower Vietoris constructions
are tightly related to the upper and lower power-constructions on posets. It is then
no surprise that a combination of both gives a construction related to the Egli-Milner
lifting; set

V′(X)
def≡ (K(X), Vτ).

where Vτ is the (full) Vietoris topology generated from {2×U, 3+U : U ∈ τ}.

4.1.15 Lemma.

1. V′ is functorial with V′( f ) defined as M ↦→ f [M].

2. (V′, η, µ) is a monad with the unit and multiplication defined as for V′2× and
V′3+.

Proof. Well-definedness of V′( f ) and µ follows from well-definedness of V′2×( f ) and
µ for V′2×. Continuity of V′( f ), η and µ follows from continuity of the corresponding
maps for V′2× and V′3+. □
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4.1.16 Lemma. Let K, H ∈ K(X). Then,

1. K =V ↑K ∩ K

2. K ≤V H iff ↑K ⊇ H and K ⊆ H,

3. K =V H iff ↑K = ↑H and K = H iff ↑K ∩ K = ↑H ∩ H.

Proof. (1) First, observe that ↑K ∩ K is in K(X). This is because ↑K ∈ K(X) and
a closed subset of a compact set is also compact. Next, K ⊆ ↑K ∩ K proves the
left-to-right implications of the following:

↑K ∩ K ⊆ U ⇐⇒ K ⊆ U and K ∩U ̸= ∅ ⇐⇒ ↑K ∩ K ∩U ̸= ∅

The first reverse implication is from K =2× ↑K and ↑K ∩ K ⊆ ↑K and the second
reverse implication follows from K =3+ K and because ↑K ∩ K ∩ U ̸= ∅ implies
K ∩U ̸= ∅. Consequently, for any open set U from the base of V′(X), i.e. an open
of the form 2×U ∩⋂n

i=1 3+Vi, we have that K ∈ U iff ↑K ∩ K ∈ U.
(2) The left-to-right implication follows from the fact that ≤V is a subrelation of

≤2× and ≤3+. For the reverse, if K ∈ 2×U ∩⋂n
i=1 3+Vi then, because ↑K ⊇ H, H ∈ 2×U

and because K ⊆ H, H ∈ ⋂n
i=1 3+Vi which is equivalent to H ∈ ⋂n

i=1 3+Vi.
(3) The first equivalence follows from (2) The left-to-right implication in the sec-

ond equivalence is immediate and the reverse is a consequence of the calculations:

↑K ⊆ ↑(↑K ∩ K) ⊆ ↑(↑K) = ↑K and K ⊆ ↑K ∩ K ⊆ K = K. □

Therefore, the T0-reflection V(X) of V′(X) is homeomorphic to the space of
Plotkin lenses (Lens(X), Vτ) where Lens(X) = {↑K ∩ C | K ∈ K(X), C ∈ Clos(X)}2.
The reflection ρV : V′(X)→ V(X) is the map K ↦→ ↑K ∩ K.

Notice that (3) in Lemma 4.1.16 proves that ρV(ρV(K)) = ρV(K). This is because
K =V ρV(K) and so ↑K = ↑ρV(K) and K = ρV(K). Consequently,

Lens(X) = {K ∈ K(X) | ↑K ∩ K = K}.

4.1.17 Remark. The fact that, for all V ∈ {V2×, V3+, V}, the T0-reflection of V′(X)

is homeomorphic to the space of compact upper sets, closed sets or Plotkin lenses,
respectively, is not new. This has been known since Smyth’s [Smy83, Theorem 2].

4.1.3.4 Categorical properties

Observe that, for all V ∈ {V2×, V3+, V}, as was the case for posets, V(X) is a sub-
space and reflection of V′(X) at the same time. Therefore, we have a pair of maps,
retraction r

def≡ ρV : V′(X) → V(X) and section s
def≡ V(X) ↪→ V′(X), defining a split

idempotent e
def≡ r ; s.

2The name is motivated by the original construction on domains made by Gordon Plotkin [Plo76].
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4.1.18 Lemma. In the category of all topological spaces, for any continuous f : V′(X)→
Y and g : V′(V′(X))→ Y such that Y is T0, the following two diagrams commute

(N1)
V′(X) V′(X)

Y

e

f
f

(N2)
V′(V′(X)) V′(V′(X))

Y

V′(e)

g
g

Proof. Recall that continuous functions are monotone w.r.t. the specialization order
and also that being T0 is equivalent to saying that the specialisation order is a poset.
Then (N1) commutes because M and e(M) are equal in the specialisation order and
so f (M) = f (e(M)). To show commutativity of (N2) it is enough to show that, for
any M ∈ V′(V′(X)), M and N

def≡ {e(K) : K ∈ M} are equal in the specialisation
order of V′(V′(X)).

Assume V′ = V′ (i.e. e(K) = ↑K ∩ K) and let U ∈ V′(X). Since U is a of the form⋃
i∈I(2×Ui ∩

⋂ni
j=1 3+Vij), for some Ui’s and Vij’s from τ,

M ∈ 2×U iff M ⊆ 2×U iff ∀K ∈M ∃i ∈ I. K ∈ 2×Ui ∩
⋂ni

j=1
3+Vij.

Moreover, K ∈ 2×Ui ∩
⋂ni

j=1 3+Vij iff e(K) ∈ 2×Ui ∩
⋂ni

j=1 3+Vij and so, M ∈ 2×U iff
N ∈ 2×U. Similarly, M ∈ 3+U iff N ∈ 3+U. This proves the commutativity of (N2)
for V = V. The proof for the other two Vietoris constructions is essentially the
same. □

This jointly proves, by Proposition 4.1.9, that V2×, V3+ and V are monads on the
category of T0 topological spaces and that their actions on morphisms are computed
as

V2×( f ) : K ↦→ ↑ f [K], V3+( f ) : M ↦→ f [M] and V( f ) : K ↦→ ↑ f [K] ∩ f [K].

4.1.19 Relationship with powerlocale constructions Johnstone showed in [Joh82]
that, for the functor Ω restricted to KRegSp → KRegFrm, Ω ◦V ∼= VFr ◦Ω and
similar results hold for the other Vietoris constructions, that is Ω ◦V2× ∼= V2 ◦ Ω
and Ω ◦V3+

∼= V3 ◦Ω [Vic97; Bf96].
This analogy goes even beyond compact regular spaces/frames. Points of V2(L)

are in a bijection with the Scott-open filters, or by the Hofmann-Mislove Theo-
rem, the compact upwards-closed subsets of Σ(L). On the other hand, the points
of V3(L) correspond to elements of L, or also the closed subsets of Σ(L) [Vic97].
Next, in Section 4.3.3 we will recall the fact that VFr L can be viewed as a quotient
of V2L⊕V3L [Vic09a]. As a result, any point p : VFr L → 2 pre-composed with the
quotient map V2L⊕V3L → VFr L gives two points V2L → 2 and V3L → 2. This
partially explains the definition of Plotkin lenses as the points of V(X).

For a different approach to powerspaces or powerlocales see [BK17], [VVV12]
and [Vic09b].
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4.1.4 Bispaces

To define a power-construction for the category of bispaces biTop we take inspi-
ration from both the power-construction on posets and on spaces. For a bispace
X = (X, τ+, τ−) set K+(X) and K−(X) to be the sets of all τ+ and τ−-compact sub-
sets of X, respectively. Then, define upper, lower and (full) Vietoris bispaces to be the
bispaces

W′
2×(X)

def≡ (K+(X), V2×τ+, V3+τ−), W′
3+(X)

def≡ (K−(X), V3+τ+, V2×τ−) and

W′(X)
def≡ (K+(X) ∩K−(X), Vτ+, Vτ−),

respectively. For a bicontinuous f : X → Y, define W′
2×( f ), W′

3+( f ) and W′( f ) all
as the map K ↦→ f [K]. All those constructions are endofunctors on biTop and,
moreover, by a combination of Lemmas 4.1.11, 4.1.13 and 4.1.15, we also have that:

4.1.20 Lemma. For every W′ ∈ {W′
2×, W′

3+, W′}, (W′, ηX : x ↦→ {x}, µX : M ↦→⋃
M) is a monad on the category of bispaces.

Proof. We only show that ηW′
X : X → W′(X) is bicontinuous; the other cases are

similar. It is enough to check that, for every U ∈ τ±, η−1[3+U] and η−1[2×U] are
τ±-open and this is true because ηV′

X : (X, τ±)→ V′(X, τ±) is continuous. □

Recall that the equations we used for defining the point-free Vietoris construc-
tions (Section 3.5.5) hold for 2×(−) and 3+(−).

4.1.21 Lemma ([Joh82, Lemma 4.2]). Let W′ ∈ {W′
2×, W′

3+, W′} and let M, N and
Mi’s be arbitrary subsets of a bispace X and {Uj}j ⊆ τ±. Then, in W′(X):

1. 2×X = K±(X) or K+(X) ∩K−(X), respectively, 2×(M ∩ N) = 2×M ∩2×N,

2. 3+∅ = ∅, M ⊆ N implies 3+M ⊆ 3+N,

3.
⋃↑

j∈J 2×Uj = 2×(
⋃↑

j∈J Uj),
⋃

i∈I 3+Mi = 3+(
⋃

i∈I Mi), and

4. 2×(M ∪ N) ⊆ 2×M ∪3+N, 2×M ∩3+N ⊆ 3+(M ∩ N).

As a consequence we see that the basis of Vτ± consists of the elements of the
form 2×U ∩ ⋂n

i=1 3+Vi. Also, an immediate consequence of the last item is a descrip-
tion of some elements in the consistency and totality relations of WX.

4.1.22 Lemma. Let U+ be a τ+-open and U− a τ−-open subsets of a bispace X, then:

1. If (U+, U−) ∈ conX then (2×U+, 3+U−) ∈ conWX and (3+U+, 2×U−) ∈ conWX.

2. If (U+, U−) ∈ totX then (2×U+, 3+U−) ∈ totWX and (3+U+, 2×U−) ∈ totWX.
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And, similarly, for conW2×X, conW3+X, totW2×X and totW3+X.

Proof. Let (U+, U−) ∈ conX. By (2) and (4) in Lemma 4.1.21, 2×U+ ∩3+U− ⊆ 3+(U+ ∩
U−) = 3+∅ = ∅ and so (2×U+, 3+U−) ∈ conWX. The other case is the same. For 2.,
we use (1) and (4) from Lemma 4.1.21. □

Recall, from Section 2.1.1, that each bitopological space has a preorder ≤ asso-
ciated to it. It is defined as the intersection of the specialisation order of the τ+
topology (≤+) and the reversed specialisation order of the τ− topology (≥−), i.e.
≤ = ≤+ ∩≥−. We say that a bispace is T0 if ≤ is a partial order. As was the case for
the power-constructions of spaces, W′(X)’s are hardly bitopologically T0. As before,
we fix this by a T0 reflection:

4.1.23 Definition. Set W2×(X), W3+(X) and W(X) to be the T0 reflections of
W′

2×(X), W′
3+(X) and W′(X), respectively.

Next, we examine what the T0-reflections look like.

4.1.24 Observation. Let K and H be from K+(X), K−(X) or K+(X) ∩K−(X).
Then,

1. K ≤ H in W′
2×(X) iff ↑+K ∩ Kτ− ⊇ H,

2. K ≤ H in W′
3+(X) iff K ⊆ ↑−H ∩ Hτ+ , and

3. K ≤ H in W′(X) iff ↑+K ∩ Kτ− ⊇ H and K ⊆ ↑−H ∩ Hτ+ .

(Where ↑±M is the upwards closure of M in the τ±-specialisation order.)

Proof. An immediate consequence of Lemmas 4.1.12, 4.1.14 and 4.1.16: (1) K ≤ H iff
K ≤2×

+ H and H ≤3+
− K where ≤2×

+ and ≤3+
− are the specialisation orders of V2×τ+ and

V3+τ−, respectively. Because K ≤2×
+ H iff ↑+K ⊇ H and H ≤3+

− K iff H ⊆ Kτ− , as in
(3) of Lemma 4.1.16, K ≤ H is equivalent to ↑+K ∩ Kτ− ⊇ H. The proof of (2) is the
same and (3) follows immediately from (2) of Lemma 4.1.16. □

4.1.25 Lemma. Let K ∈ K±(X) and M ⊆ X be such that K ⊆ M ⊆ ↑±K. Then,
M ∈ K±(X).

Proof. Let M ⊆ ⋃
i Ui
± for some {Ui

±}i ⊆ τ±. Since K ⊆ M, there is a finite F
such that K ⊆ ⋃

i∈F Ui
±. Because, for every U ∈ τ±, K ⊆ U iff ↑±K ⊆ U, also

M ⊆ ↑±K ⊆ ⋃
i∈F Ui

±. □

Notice that, for a K ∈ K+(X), both K =2×
+ ↑+K ∩ Kτ− and K =3+

− ↑+K ∩ Kτ− ,
where ≤2×

+ and ≤3+
− are the specialisation orders of V2×τ+ and V3+τ−, respectively.

This is because

K ⊆ ↑+K ∩ Kτ− ⊆ ↑+K, K ⊆ ↑+K ∩ Kτ− ⊆ Kτ−
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and so ↑+K ∩ Kτ− ∈ K+(X) (Lemma 4.1.25), K =2×
+ ↑+K and K =3+

− Kτ− . We see that
each equivalence class has a distinguished element computed by ρ : K ↦→ ↑+K ∩Kτ−

such that K =W′
2×(X) H iff ρ(K) = ρ(H). Consequently:

4.1.26 Lemma. W2×(X) is bihomeomorphic to (Lens+(X), V2×τ+, V3+τ−) and W3+(X)

is bihomeomorphic to (Lens−(X), V3+τ+, V2×τ−) where

Lens+ = {K ∈ K+(X) | K = ↑+K ∩ Kτ−} and

Lens− = {K ∈ K−(X) | K = ↑−K ∩ Kτ+}.

A similar reasoning also works for W(X). Let K ∈ K+(X) ∩K−(X) and set

M
def≡ ↑+K ∩ ↑−K ∩ Kτ+ ∩ Kτ− .

We know, by Lemma 4.1.16, that K =V
+ ↑+K∩Kτ+ and K =V

− ↑−K∩Kτ− and, because

K ⊆ M ⊆ ↑+K ∩ Kτ+ and K ⊆ M ⊆ ↑−K ∩ Kτ− ,

we see that K =V
± M. Again, by Lemma 4.1.25, M ∈ K+(X) ∩K−(X) and the

mapping ρ : K ↦→ ↑+K ∩ ↑−K ∩ Kτ+ ∩ Kτ− picks out the distinguished elements from
each equivalence class. We obtain:

4.1.27 Lemma. W(X) is bihomeomorphic to (Lensd(X), Vτ+, Vτ−) where

Lensd = {K ∈ K+(X) ∩K−(X) | K = ↑+K ∩ ↑−K ∩ Kτ+ ∩ Kτ−}.

4.1.28 Categorical properties. Exactly the same reasoning as in Section 4.1.3.4
applies for proving that W2×, W3+ and W are monads on the category of bispaces.
Then, for a bicontinuous f : X → Y, the corresponding action on morphisms is
computed as

W2×( f ) : K ↦→ ↑+ f [K] ∩ f [K]
τ− , W3+( f ) : K ↦→ ↑− f [K] ∩ f [K]

τ+ and

W( f ) : K ↦→ ↑+ f [K] ∩ ↑− f [K] ∩ f [K]
τ− ∩ f [K]

τ+ .

4.1.5 Order-separatedness and relation liftings

Recall that, by Lemma 2.2.3, for an order-separated bispace X, the specialisation
orders of both topologies are aligned, i.e. ≤+ = ≥−, and so the associated order
≤ is equal to ≤+ (or ≥−). As a result, the definitions of the Vietoris functors for
bispaces become significantly simpler for X. To start with, we have a lemma:

4.1.29 Lemma. Let (X, τ+, τ−) be an order-separated bispace and let K ⊆ X. Then,

1. K is convex (w.r.t ≤) iff K = ↓K ∩ ↑K iff K = ↓M ∩ ↑N for some M, N ⊆ X.

2. If K is τ+-compact and x /∈ ↑K, then ∃(U+, U−) ∈ conX s.t. K ⊆ U+ and
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x ∈ U−.

Consequently, if K is τ+-compact, then ↑K is τ−-closed and Kτ− = ↑K.

3. If K is τ−-compact and x /∈ ↓K, then ∃(U+, U−) ∈ conX s.t. x ∈ U+ and
K ⊆ U−.

Consequently, f K is τ−-compact, then ↓K is τ+-closed and Kτ+ = ↓K.

Proof. (1) is true for any partially ordered set. For (2) assume that K is τ+-compact
and x /∈ ↑K. From order-separateness, for every k ∈ K, as k ̸≤ x, there exists a
(Uk

+, Uk
−) ∈ conX such that k ∈ U+ and x ∈ U−. Since K is τ+-compact and {Uk

+}k∈K
covers K, there must be a finite F⊆fin K such that {Uk

+}k∈F still covers K. Then, by

(con-∨· ), U+
def≡ ⋃

k∈F Uk
+ is disjoint from U−

def≡ ⋂
k∈F Uk

− and, clearly, x ∈ U−. (3) is
proved symmetrically. □

With this, we can simplify the formulas for the points of the Vietoris bispaces,
for an order-separated X:

Lens+(X) = {K ∈ K+(X) | K = ↑K},
Lens−(X) = {K ∈ K−(X) | K = ↓K} and

Lensd(X) = {K ∈ K+(X) ∩K−(X) | K = ↑K ∩ ↓K}

which can be also written as

Lens+(X) = K+(X) ∩ Up(X,≤),
Lens−(X) = K−(X) ∩Down(X,≤) and

Lensd(X) = K+(X) ∩K−(X) ∩ Conv(X,≤).

Also, if f : X → Y is a bicontinuous function such that Y is order-separated then

W2×( f ) : K ↦→ ↑ f [K], W3+( f ) : K ↦→ ↓ f [K] and W( f ) : K ↦→ ↓ f [K] ∩ ↑ f [K].

The associated pre-orders on the Vietoris powerbispaces also simplify accordingly
so that they exactly match those for the corresponding power-constructions on posets:

(O2×) K ≤ H in W2×(X) iff ↑K ⊇ H,

(O3+) K ≤ H in W3+(X) iff K ⊆ ↓H, and

(OV) K ≤ H in W(X) iff ↑K ⊇ H and K ⊆ ↓H

4.1.30 Lemma. Let X be an order-separated bispace, K, H ∈ K−(X) and K′, H′ ∈
K+(X) . Then,

1. K ̸⊆ ↓H iff ∃(U+, U−) ∈ conX such that K ∈ 3+U+ and H ∈ 2×U−.

2. K′ ̸⊆ ↑H′ iff ∃(U+, U−) ∈ conX such that H′ ∈ 2×U+ and K′ ∈ 3+U−.
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Proof. For the implication from right to left, by Lemma 4.1.22, the sets 3+U+ and
2×U− are disjoint and, because K ∈ 3+U+, it must be that K /∈ 2×U− and therefore
K ̸⊆ U−. Because H ∈ 2×U−, H ⊆ U− and also ↓H ⊆ U− as U− is downwards
closed. That means that K ̸⊆ ↓H ⊆ U−.

For the other direction, let x ∈ K \ ↓H. By (3) of Lemma 4.1.29 there is some
(U+, U−) ∈ conX such that x ∈ U+ and H ⊆ U−. Therefore, K ∈ 3+U+ and H ∈
2×U−, as required. (This proof also works for H = ∅ as then U+ = X and U− =

∅.) □

A consequence of (O2×), (O3+) or (OV) is that the associated pre-order ≤ of W(X),
for a W ∈ {W2×, W3+, W}, is a partial order (i.e. it satisfies antisymmetry). Further-
more, by the last lemma, we also have the separation property needed for order-
separatedness. Indeed, assume K ̸⊆ ↓H, for example. Then, by Lemma 4.1.30, there
exists a pair (U+, U−) ∈ conX such that K ∈ 3+U+ and H ∈ 2×U− and, moreover,
3+U+ and 2×U− are disjoint (Lemma 4.1.22). In other words, K ̸≤ H in W(X) implies
that K and H can be separated by two disjoint opens. We obtain:

4.1.31 Proposition. If X is order-separated, then also W2×(X), W3+(X) and W(X)

are.

4.1.6 Topological properties

4.1.32 Theorem.
Let X = (X; τ+, τ−) be an bispace and let W ∈ {W2×, W3+, W}. Then:

1. WX is T0.

2. WX is order-separated if X is.

3. WX is d-regular if X is.

4. WX is d-zero-dimensional if X is.

5. WX is d-compact if X is.

Proof. (1) follows from Observation 4.1.24 and Lemmas 4.1.26 and 4.1.27. We have
already proved (2) in Proposition 4.1.31. Next, assume that X is d-regular. Let us
focus on the case when W = W first. We will prove that

∀K ∈W(X), ∀U ∈ Vτ+ s.t. K ∈ U, ∃V ∈ Vτ+ s.t. K ∈ V ⊆ V
Vτ− ⊆ U. (⋆)

First, we prove this for U coming from the subbasis of Vτ+. Let U = 2×U. Since X
is d-regular and K ⊆ U, for every k ∈ K, there exists a Vk

+ ∈ τ+ such that k ∈ Vk
+ ⊆
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Vk
+

τ− ⊆ U. Notice that the last inequality is equivalent to (U, (Vk
+)
∗) ∈ totX. Since K

is τ+-compact, there exists a finite F⊆fin K such that K ⊆ V+ where V+
def≡ ⋃

k∈F Vk
+.

Moreover, for V−
def≡ ⋂

k∈F(Vk
−)
∗, we have that (U, V−) ∈ totX, from (tot-∨· ), and

so, by Lemma 4.1.22, also (2×U, 3+V−) ∈ totWX and K ∈ 2×V+ ⊆ 2×V+
Vτ− ⊆ 2×U.

Similarly, let U = 3+U. Then, K ∈ U implies that there exists an x ∈ K ∩ U and,
from d-regularity, there is a V+ ∈ τ+ such that x ∈ V+ ⊆ V+

τ− ⊆ U. We have K ∈
3+V+ ⊆ 3+V+

Vτ− ⊆ 3+U where the last inequality holds because (3+U, 2×(W+)∗) ∈
totWX. Finally, we prove (⋆) for U = 2×U ∩ ⋂n

i=1 3+Vi by induction. We have the
basic cases covered and now assume that K ∈ U1 ∩ U2 such that there exists V1

and V2 such that K ∈ Vi ⊆ Vi
Vτ− ⊆ Ui, for i = 1, 2. Since (Ui, (Vi)

∗) ∈ totWX, for
i = 1, 2, by (tot-∧· ), also (U1 ∩U2, (V1)

∗ ∪ (V2)
∗) ∈ totWX. Moreover, by (con-∧· ),

(V1 ∩ V2, (V1)
∗ ∪ (V2)

∗) ∈ conWX and so we get the last inequality in K ∈ V1 ∩ V2 ⊆
V1 ∩ V2

Vτ− ⊆ U1 ∩U2. The cases when W = W2× or W = W3+ are similar.
For d-zero-dimensionality, the proof is the same but V+’s can always be chosen

so that V+
τ− = V+, or equivalently, (V+, (V+)∗) ∈ tot, and so also (2×V+, 3+(V+)∗) ∈

totWX resp. (3+V+, 2×(V+)∗) ∈ totWX.
Finally, assume that X is d-compact. Again, we only prove that W(X) is d-

compact as the other cases are similar. By Alexander’s subbasis lemma it is enough
to check the case when (

⋃
i∈I+ 2×Ui

+ ∪
⋃

j∈J+ 3+V j
+,

⋃
i∈I− 2×Ui

− ∪
⋃

j∈J− 3+V j
−) ∈ totWX.

Set
K

def≡ X \ (
⋃

j∈J+

V j
+ ∪

⋃
j∈J−

V j
−) = (X \

⋃
j∈J+

V j
+) ∩ (X \

⋃
j∈J−

V j
−).

Observe that K is d-compact because it is a complement of open sets (and X is d-
compact); so K ∈ K+(X) ∩K−(X). Set K′ to be the ≤-equivalent element to K in
Lensd(X), i.e.

K′
def≡ ↑+K ∩ ↑−K ∩ Kτ+ ∩ Kτ− .

Clearly, K is not in
⋃

j∈J+ 3+V j
+ ∪

⋃
j∈J− 3+V j

− (when interpreted in W′(X)) and so
neither K′ is (when interpreted in W(X)). Hence, there exists either an i ∈ I+ or
i ∈ I− such that K′ ∈ 2×Ui

+ or K′ ∈ 2×Ui
−, respectively. Without loss of generality

assume the former. Then, since K ⊆ K′ ⊆ Ui
+, (Ui

+ ∪
⋃

j∈J+ V j
+,

⋃
j∈J− V j

−) ∈ totX

and because X is d-compact, there must exist a finite sets F±⊆fin J± such that (Ui
+ ∪⋃

j∈F+ V j
+,

⋃
j∈F− V j

−) ∈ totX and so (2×(Ui
+ ∪

⋃
j∈F+ V j

+), 3+(
⋃

j∈F− V j
−)) ∈ totWX

(Lemma 4.1.22). However, the last pair of opens is componentwise smaller than
(2×Ui

+ ∪
⋃

j∈F+ 3+V j
+,

⋃
j∈F− 3+V j

−) (Lemma 4.1.21) by which

(2×Ui
+ ∪

⋃
j∈F+

3+V j
+,

⋃
j∈F−

3+V j
−) ∈ totWX. □

Observe that also the reverse of (3) and (4) in Theorem 4.1.32 hold. Indeed,
a bispace X is d-regular (resp. d-zero-dimensional) iff its T0 reflection X′ is and
W(X′) ∼= W(X). Moreover, if W(X) is d-regular (resp. d-zero-dimensional) then
also X′ is because X′ is embedded into W(X′) by the unit map ηX′ : X′ → W(X′).
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In the following we observe that order-separatedness together with d-compact-
ness allows for an even simpler description of the points of W(X)’s than the one we
had in the previous subsection:

4.1.33 Proposition. Let X be a d-compact d-regular (T0) bispace. Then,

1. W2×(X) ∼= (Clos−(X), V2×τ+, V3+τ−),

2. W3+(X) ∼= (Clos+(X), V3+τ+, V2×τ−) and

3. W(X) ∼= (Kc(X), Vτ+, Vτ−)

where Clos±(X) is the set of τ±-closed sets and Kc(X) is the set of all d-compact
convex subsets of X.

Proof. By Proposition 2.1.13 we know that X is order-separated and that Lens±(X)

and Lensd(X) are the sets of τ±-compact upwards/downwards closed sets and the
sets of τ+ and τ−-compact convex subsets of X, respectively.

(1) Because X is d-compact, every τ−-closed is d-compact and upwards closed.
On the other hand, by Lemma 4.1.29, each τ+-compact upset is τ−-closed. (2) is
dual. (3) Clearly, if K is d-compact convex, then it is also τ±-compact. For the other
direction, if K is τ+ and τ−-compact and convex, then, by Lemma 4.1.29, ↓K is τ+-
closed and ↑K is τ−-closed. Therefore, since X is d-compact, K must be d-compact
because it is the complement of two open set X \ ↑K and X \ ↓K. □

4.1.34 Example. d-Compactness is necessary for Proposition 4.1.33 to work. Let X
be the bispace [0, 1] \ { 1

2}with the upper and lower topologies. Then, for K = {1
4 , 3

4},
the ≤-equivalent element in W(X) is K′ = [1

4 , 3
4 ] \ {

1
2} which is τ+ and τ−-compact

and convex but not d-compact.

4.2 d-Frame Vietoris constructions

Recall Section 3.5.5 where we defined the upper, lower and (full) Vietoris d-frames
for a d-frame L = (L+, L−, con, tot). We assumed (without a proof) that their pre-
sentations satisfy the axioms (µ±-con-tot) and (Indep±) from Theorem 3.4.20, and
on this basis showed that the resulting d-frames can be written as follows:

W2(L) = (V2L+, V3L−, D(↓con2
∧· ,∨· ), ↑tot

2
∧· ,∨· )

W3(L) = (V3L+, V2L−, D(↓con3
∧· ,∨· ), ↑tot

3
∧· ,∨· )

Wd(L) = (VFr L+, VFr L−, D(↓con∧· ,∨· ), ↑tot∧· ,∨· )
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where

con2
1 = {(2α+, 3α+) | α ∈ con}, tot21 = {(2α+, 3α+) | α ∈ tot},

con3
1 = {(3α+, 2α+) | α ∈ con}, tot31 = {(3α+, 2α+) | α ∈ tot},

and

con1 = {(2α+, 3α+), (3α+, 2α+) | α ∈ con},
tot1 = {(2α+, 3α+), (3α+, 2α+) | α ∈ tot}.

In the following section we explore the structure of V2(L±), V3(L±) and VFr(L±)
to the level which is sufficient for proving the axioms (µ±-con-tot) and (Indep±) for
the presentations of W2(L), W3(L) and Wd(L), thus filling the gap left in Sec-
tion 3.5.5.

Convention. In the rest of this chapter we often prove properties that all three
power-constructions share by proving them only for Wd(L). This is justified
since the corresponding arguments for the other two are actually simpler.

4.2.1 The structure of VFr(L)

Let us fix a frame L. Just by examining the equations of VFr(L) we observe that the
set

B
def≡ {2a ∧

n⋀
i=1

3bi | a, b1, . . . , bn ∈ L}

is closed under finite meets in VFr(L). Also, we see that every element of VFr(L) is
of the form ⋁

k

(2ak ∧
nk⋀

i=1

3bk,i)

for some ak, bk,i ∈⊆ L. Said in other words, B generates VFr(L).
However, not much more can be said at the moment; equational reasoning alone

does not get us very far. We need a more concrete representation for VFr(L). To
begin with, let us state a general lemma about quotients of frames.

4.2.1 Lemma. Let L be a frame and let R1, R2 ⊆ L×L. Then,

L/(R1 ∪ R2) ∼= (L/R1)/(µ×µ)[R2]

where µ is the quotient map L→ L/R1.

Proof. Observe that the composition of the quotient maps

L −→ L/R1 −→ (L/R1)/(µ×µ)[R2]
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respects R1 and R1. Also, whenever there is a frame homomorphism h : L → M
respecting R1 and R2, it uniquely lifts to h : L/R1 → M and, because h = h · µ, h
respects (µ×µ)[R2]. Hence h uniquely lifts to h : (L/R1)/(µ×µ)[R2]→ M. □

Next, recall a useful fact about frames with finitary presentations:

4.2.2 Fact (Theorem 9.2.2 in [Vic89]). Let ⟨G | E⟩ be a frame presentation with no
infinite joins in its equations. Then,

Fr⟨G | E⟩ ∼= Idl(DL⟨G | E⟩)

where DL⟨G | E⟩ is the freely generated (bounded) distributive lattice from the pre-
sentation ⟨G | E⟩ and Idl(D) is the frame of ideals on D.

Lemma 4.2.1 together with Fact 4.2.2 suggest that we can obtain VFr(L) in two stages.
In the first stage we define a construction on distributive lattices which uses only the
finitary equations from the presentation of VFr(L); that is, for a lattice D, set

M(D)
def≡ DL

⟨
2̃a, 3̃a : a ∈ D

⏐⏐⏐ 2̃(a ∧ b) = 2̃a ∧ 2̃b, 2̃1 = 1,

3̃(a ∨ b) = 3̃a ∨ 3̃b, 3̃0 = 0,

2̃a ∧ 3̃b ≤ 3̃(a ∧ b), 2̃(a ∨ b) ≤ 2̃a ∨ 3̃b
⟩

.

Then, in the second stage, we factor Idl(M(L)) by the two missing infinitary equa-
tions of VFr(L). Namely, we consider a relation R⋁ ⊆ Idl(M(L))×Idl(M(L)) which
represents the equations “2(

⋁↑
i ai) ≤

⋁
i 2ai” and “3(

⋁↑
i ai) ≤

⋁
i 3ai” but mapped

into Idl(M(L)):

R⋁ def≡ {(↓2̃(
⋁↑

i

ai),
⋁

i

↓2̃ai), (↓3̃(
⋁↑

i

ai),
⋁

i

↓3̃ai) | {ai}i ⊆↑ L}.

Then, Lemma 4.2.1 implies that

VFr(L) ∼= Idl(M(L))/R⋁. (4.2.1)

Let us examine how this isomorphism works. By

S : Idl(M(L))→ Idl(M(L))/R⋁
denote the quotient map, also called R⋁-saturation. S(I), for an ideal I ∈ Idl(M(L)),
is computed as the smallest R⋁-saturated ideal containing I (Section 3.1.2). The
isomorphism in (4.2.1) then interprets every 2a and 3b from VFr(L) as S(↓2̃a) and
S(↓3̃b) in Idl(ML), respectively. Next, a general element of VFr(L), i.e. an element
of the form

⋁
j∈J(2ak ∧

⋀n
i=1 3bk,i), is interpreted as the R⋁-saturation of the ideal⋁

j∈J

(↓2̃ak ∧
⋀n

i=1
↓3̃bk,i) (4.2.2)
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This is because the join of ideals {Ii}i in Idl(M(L))/R⋁ is computed as the R⋁-
saturation of the join

⋁
i Ii in Idl(ML), that is S(

⋁
i Ii).

In fact, certain principal ideals such as ↓2̃a and ↓3̃b are already R⋁-saturated
and so S(↓2̃a) = ↓2̃a and S(↓3̃b) = ↓3̃b. We prove this in Lemma 4.2.5. Before
we see why this is the case, let us take a look at a fact by Jan Cederquist and Thierry
Coquand [CC00, Theorem 10] about the order in M(D):

4.2.3 Fact. Let D be a distributive lattice and let a =
⋀n

i=1 ai and c =
⋁n′

j=1 cj. Then,
in M(D):

n⋀
i=1

2̃ai ∧
m⋀

j=1

3̃bj ≤
n′⋁

j=1

3̃cj ∨
m′⋁

k=1

2̃dk iff ∃i. a ∧ bi ≤ c or ∃j. a ≤ c ∨ dj

As we will see later a variant of this fact is also true for VFr(L) (Proposition 4.2.6)
which is an essential tool for proving that the presentation of Wd(L) satisfies the ax-
ioms (µ±-con-tot) and (Indep±). Before we show that, let us first show that checking
R⋁-saturatedness reduces to checking it only for the elements of B:

4.2.4 Lemma. Let I ∈ Idl(M(L)). Then, I is R⋁-saturated (i.e. I ∈ Idl(M(L))/R⋁)
iff

(R2) {2̃ai ∧
⋀n

j=1 3̃bj}i ⊆ I =⇒ 2̃(
⋁↑

i ai) ∧
⋀n

j=1 3̃bj ∈ I.

(R3) {3̃ai ∧ 2̃b0∧
⋀n

j=1 3̃bj}i ⊆ I =⇒ 3̃(
⋁↑

i ai)∧ 2̃b0∧
⋀n

j=1 3̃bj ∈
I.

for all {ai}i∈I ⊆↑ L and b0, b1, . . . , bn ∈ L.

Proof. Recall that I is R⋁-saturated if, for all (J1, J2) ∈ R and K ∈ Idl(M(L)), J2 ∧K ⊆
I implies J1∧K ⊆ I. For the left-to-right implication it is enough to instantiate J2 and
K by the ideals

⋁
i ↓2̃ai and ↓(⋀n

j=1 3̃bj) (for (R2)) or
⋁

i ↓3̃ai and ↓(2̃b0 ∧
⋀n

j=1 3̃bj)

(for (R3)). In this case, J2 ∧ K ⊆ I iff the premise of (R2) or (R3) is satisfied.
For the reverse, let J2 stays the same and let K be any ideal. Then, J2 ∧ K ⊆ I is

equivalent to
∀i ∈ I ∀κ ∈ K. 2̃ai ∧ κ ∈ I

Let
⋁n(κ)

l=1 κl be the disjunctive normal form of κ. Then, by distributivity of M(L), the
above line can be rewritten as:

∀i ∈ I ∀κ ∈ K ∀l = 1, . . . , n(κ). 2̃ai ∧ κl ∈ I

Therefore, for a fixed κ ∈ K, since {2̃ai ∧ κl}i ⊆ I, 2̃(
⋁↑

i ai) ∧ κl ∈ I by (R2̃).
By distributivity, also 2̃(

⋁↑
i ai) ∧ κ ∈ I and, because κ ∈ K was chosen arbitrarily,

↓2̃(
⋁↑

i ai) ∧ K = {2̃(
⋁↑

i ai) ∧ κ : κ ∈ K} ⊆ I. The case for (R3) is similar. □
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4.2.5 Lemma. Let c0, c1, . . . , cm ∈ L. Then, the ideals ↓(3̃c0 ∨
⋁m

l=1 2̃cj) and
↓(2̃c0 ∧

⋀n
j=1 3̃cj) are R⋁-saturated.

Proof. We use Lemma 4.2.4 to show that ↓(3̃c0 ∨
⋁m

l=1 2̃cj) is R⋁-saturated. Let
b0, b1, . . . , bn ∈M(L) and let {ai}i∈I ⊆↑ L. To check (R3), assume

{3̃ai ∧ 2̃b0 ∧
n⋀

j=1

3̃bj}i∈I ⊆ ↓γ where γ
def≡ 3̃c0 ∨

m⋁
l=1

2̃cl.

By Fact 4.2.3, there are three options: 1. there is an l such that b0 ≤ c0 ∨ cl, 2. there
is a j such that b0 ∧ bj ≤ c0, or 3. b0 ∧ ai ≤ c0 for all i ∈ I. In the first two cases
2̃b0 ∧

⋀n
j=1 3̃bj ≤ γ and in the third case b0 ∧

⋁↑
i ai ≤ c0 and so 3̃(

⋁↑
i ai) ∧ 2̃b0 ∧⋀n

j=1 3̃bj ≤ 3̃(
⋁↑

i ai) ∧ 2̃b0 ≤ 3̃c0 ≤ γ.
Next, we aim to show (R2). Assume that

{2̃ai ∧
n⋀

j=1

3̃bj}i∈I ⊆ ↓γ.

By Fact 4.2.3, for all i ∈ I, either ai ∧ bj ≤ c0 for some j or ai ≤ c0 ∨ cl for some l. For

every i ∈ I set M(i) to be the minimal subset of M
def≡ {0, 1, . . . , m} such that

1. 0 ∈ M(i) if ai ∧ bj ≤ c0 for some j, and

2. l ∈ M(i) if ai ≤ c0 ∨ cl.

Observe that
⋂

i M(i) ̸= ∅. Indeed, if
⋂

i M(i) = ∅ then, for every m ∈ M, there
exists a i(m) such that m /∈ M(i(m)). Because M is finite and {ai}i directed there
exists a k such that ai(m) ≤ ak, for all m ∈ M. However, ai(m) ≤ ak implies M(i(m)) ⊇
M(k) and M(k) ̸= ∅, a contradiction.

Since
⋂

i M(i) ̸= ∅, let l ∈ ⋂
i M(i). If l ̸= 0, that means that, for all i ∈ I,

ai ≤ c0 ∨ cl. Then, also
⋁↑

i ai ≤ c0 ∨ cl and so 2̃(
⋁↑

i ai) ∧
⋀n

j=1 3̃bj ≤ 2̃(
⋁↑

i ai) ≤
3̃c0 ∨ 2̃cl ≤ γ. If, on the other hand, l = 0, then for every i ∈ I there is a j such
that ai ∧ bj ≤ c0. Set J(i) = {j | ai ∧ bj ≤ c0}. For the same reason as before,

⋂
i J(i)

is not empty. Let j ∈ ⋂
i J(i). Then,

⋁↑
i ai ∧ bj ≤ c0 and so 2̃(

⋁↑
i ai) ∧

⋀n
j=1 3̃bj ≤

2̃(
⋁↑

i ai) ∧ 3̃bj ≤ 3̃c0 ≤ γ.

We have proved that ↓γ, for every γ ∈ M(L) of the shape 3̃c0 ∨
⋁m

l=1 2̃cj, is
R⋁-saturated. A special case of this is when γ = 2̃e or γ = 3̃e, for some e ∈ L.
Consequently, because meets in Idl(M(L))/R⋁ are computed as in Idl(M(L)), i.e. as
intersections, ↓(2̃c0 ∧

⋀n
j=1 3̃cj) = ↓2̃c0 ∩

⋂n
j=1 ↓3̃cj is R⋁-saturated. □

An immediate consequence of Lemma 4.2.5 is that the quotient map/R⋁-satu-
ration

Idl(M(L)) Idl(M(L))/R⋁ ∼= V(L)S
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when restricted to the elements of the shape ↓(2̃a∧⋀n
i=1 3̃bi) and ↓(3̃c∨⋁m

j=1 2̃dj)

is injective and also that the isomorphism in (4.2.1) is indeed computed as 2a, 3b ↦→
↓2̃a, ↓3̃b on the generators. A consequence of this is a VFr(L) variant of Cederquist
and Coquand’s result:

4.2.6 Proposition. Let L be a frame. Then, in VFr(L):

2a ∧
n⋀

i=1

3bi ≤ 3c ∨
m⋁

j=1

2dj iff a ∧ bi ≤ c for some i or a ≤ c ∨ dj for some j.

Proof. Since 2a ∧⋀n
i=1 3bi ≤ 3c ∨⋁m

j=1 2dj in VFr(L) iff ↓(2̃a ∧⋀n
i=1 3̃bi) ⊆ ↓(3̃c ∨⋁m

j=1 2̃dj) in Idl(M(L))/R⋁ which is equivalent to 2̃a∧⋀n
i=1 3̃bi ≤ 3̃c∨⋁m

j=1 2̃dj in
M(L) and this, again, is equivalent, by Fact 4.2.3, to the right-hand-side. □

Equipped with Proposition 4.2.6 we can finally prove the axioms (µ±-con-tot)
and (Indep±) from Theorem 3.4.20 for Wd(L):

4.2.7 Lemma. The presentation of WdL satisfies the axiom (µ±-con-tot).

Proof. Let, α =
⋁· m

j=0 αj where αj ∈ con1, for all j, and β =
⋀
· n

i=0 βi where βi ∈ tot1, for
all i, be such that β+ ≤ α+. Because 3x ∨2y = 3x ∨2(x ∨ y) and 2x ∧3y = 2x ∧
3(x ∧ y), we can assume that α0 = (3c+, 2c−) and αj = (2dj

+, 3dj
−) are such that

c+ ≤ dj
+ and dj

− ≤ c−, for all j = 1, . . . , m. Similarly, assume that β0 = (2a+, 3a−)
and βi = (3bi

+, 2bi
−) are such that bi

+ ≤ a+ and a− ≤ bi
−, for all i = 1, . . . , n.

Then, β+ ≤ α+, by Proposition 4.2.6, implies that either bi
+ ≤ c+, for some i,

or a+ ≤ dj
+, for some j. Assume the first is the case. Since (bi

+, bi
−) ∈ totL and

(c+, c−) ∈ conL, from (con-tot) for L, c− ≤ bi
− and so α0

− = 2c− ≤ 2bi
− = βi

−.
Therefore, α− =

⋁m
j=0 α

j
− ≤ α0

− ≤ βi
− ≤

⋀n
i=0 βi

− = β−. The case when a+ ≤ dj
+ is

similar. □

4.2.8 Lemma. The presentation of WdL satisfies the axiom (Indep±).

Proof. Recall that the elements of B−, which is the ∧-closure of the set {2a, 3a :
a ∈ L−} in VFr(L−), are of the form 2a ∧ ⋀n

i=1 3bi. Let (γ+, β−) ∈ (VFr L+×B−) ∩
↓con∧· ,

⋁· . This means that there is some {αk}k∈K ⊆ con∧· such that (γ+, β−) ⊑
(
⋁

k∈K αk
+,

⋀
k∈K αk

−). We want to show that (γ+, β−) ∈ ↓con∨· .
From the definition we have that, for every k ∈ K,

αk = (2ak,0
+ ∧

mk⋀
j=1

3ak,j
+ , 3ak,0

− ∨
mk⋁
j=1

2ak,j
− )

where (ak,j
+ , ak,j

− ) ∈ conL for all j ∈ {0, 1, . . . , mk}. Also, β− ∈ B− means that β− =

2b0 ∧⋀n
i=1 3bi for some b0, b1, . . . , bn ∈ L−. As in the proof of Lemma 4.2.7, assume

that ak,0
− ≤ ak,j

− , for all j = 1, . . . , mk, and that bj ≤ b0, for all i = 1, . . . , n.
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For every k ∈ K, β− ≤
⋀

k αk
− ≤ αk

−, by Proposition 4.2.6, there exist an i(k) ∈
{1, . . . , n} such that bi(k) ≤ ak,0

− or there exists a j(k) ∈ {1, . . . , mk} such that b0 ≤
ak,j(k)
− . Set j(k) = 0 in the first case and i(k) = 0 in the second case. We obtain that

∀k ∈ K. bi(k) ≤ ak,j(k)
−

Combining this with (ak,j(k)
+ , ak,j(k)

− ) ∈ conL we obtain, by (con-↓), that (ak,j(k)
+ , bi(k)) ∈

conL for all k ∈ K. Fix an i ∈ {0, . . . , n} and set K(i) = {k | i(k) = i}. Then, by (con-
∨· ) and (con-

⨆↑), (⋁k∈K(i) ak,j(k)
+ , bi) ∈ conL. Next, set

δi def≡

⎧⎪⎨⎪⎩
(3(

⋁
k∈K(i) ak,j(k)

+ ), 2bi) if i = 0

(2(
⋁

k∈K(i) ak,j(k)
+ ), 3bi) if i ̸= 0

By the definition, we see that δi ∈ con1, for all i ∈ {0, 1, . . . , n}. Therefore,

n⋁·
i=0

δi = (2(
⋁

k∈K(i)

ak,j(k)
+ ) ∨

n⋁
i=1

3(
⋁

k∈K(i)

ak,j(k)
+ ), β−) ∈ con∨· .

Lastly, notice that, if j(k) = 0, αk
+ ≤ 2ak,j(k)

+ and αk
+ ≤ 3ak,j(k)

+ otherwise. Also,

because for every k ∈ K : k ∈ K(i(k)), 3ak,j(k)
+ resp. 2ak,j(k)

+ is smaller than δ
i(k)
+ and

so γ+ ≤ αk
+ ≤

⋁n
i=0 δi

+. Therefore, (γ+, β−) ∈ ↓con∨· . □

4.2.9 Proposition. The d-frames W2(L), W3(L) and Wd(L) are of the form de-
scribed at the beginning of Section 4.2.

4.2.2 Topological properties

Next, we prove a d-frame variant of the Theorem 4.1.32. Before we do so we take a
look at two purely frame-theoretic results:

4.2.10 Lemma. Let h : L ↠ M be an onto d-frame homomorphism. If L is d-regular
or d-zero-dimensional, then M is as well.

In particular, if L is d-regular or d-zero-dimensional, then any of its quotients also
is.

Proof. Let y ∈ M±. Since, h is onto, there is an x ∈ L± such that h±(x) = y. Then, if
L is d-regular, since z � x implies h±(z)� y, y =

⋁{h±(z) | z � x} ≤ ⋁{v | v � y} ≤
y. Proving d-zero-dimensionality is similar.

In Section 3.3.1 we have established that the quotient map µr : L → r(L/R) is a
composition of two onto maps, which proves the second part. □



4.2. d-Frame Vietoris constructions 115

In the following technical lemma we show that the saturation process, which we
use to compute joins in VFr(L±), has an explicit (non-iterative) description in the
case when L+ and L− come from a d-compact d-regular d-frame. The statement is
inspired by Johnstone’s Theorem 4.4 in [Joh82].

4.2.11 Lemma. Let L be a d-compact d-regular d-frame. For any I ∈ Idl(M(L±)),
the R⋁-saturation S±(I) of I is the ideal

{α ∈M(L±) | ∀β 4 α. β ∈ I}

where β 4 α, for α written in a disjunctive normal form as
⋁n

i=1(2̃ai,0 ∧
⋀ni

j=1 3̃ai,j),
if there exist bi,j � ai,j, for all i, j, such that β =

⋁n
i=1(2̃bi,0 ∧

⋀ni
j=1 3̃bi,j).

Proof. It is immediate that K
def≡ {α ∈ M(L) | ∀β 4 α. β ∈ I} is closed under finite

joins. To show that it is also downwards closed take a γ ≤ α for some α ∈ K. Let
δ 4 γ and set β =

⋁n
i=1(2̃0∧⋀ni

j=1 3̃0), i.e. set all bi,j’s to 0. Since β 4 α, δ∨ β 4 γ∨ α =

α. Hence, δ ∨ β ∈ I and because I is downwards closed also δ ∈ I.
Next, we show that K is R⋁-saturated and we do that by checking the conditions

of Lemma 4.2.4. To show (R2) let {2̃ai ∧
⋀n

j=1 3̃bj}i ⊆ K. This is equivalent to
saying that

∀i ∈ I ∀a′i � ai, b′j � bj. 2̃a′i ∧
n⋀

j=1

3̃b′j ∈ I. (⋆)

Now, let a′ �
⋁↑

i ai. By d-compactness, there is some ai such that a′ � ai. Therefore,
by (⋆), 2̃a′ ∧ ⋀n

j=1 3̃b′j ∈ I for all b′j � bj. Since a′ �
⋁↑

i ai was chosen arbitrarily,
2̃(

⋁↑
i ai) ∧

⋀n
j=1 3̃bj ∈ K. The proof of (R3) is exactly the same.

Since β 4 α implies β ≤ α, I is a subset of K. On the other hand, clearly K ⊆
S±(I) and because we proved that K is R⋁-saturated and S±(I) is the smallest such
containing I it must be that S±(I) = K. □

4.2.12 Theorem.
Let L be a d-frame and let W ∈ {W2, W3, Wd}. Then we have that,

1. W(L) is d-regular iff L is,

2. W(L) is d-zero-dimensional iff L is; and

3. W(L) is d-compact if L is d-regular and d-compact.

Proof. Before we prove (1) and (2) first observe that if a �+ b then also 2a �+ 2b. In-
deed, we have (a, a∗) ∈ conL and (b, a∗) ∈ totL. Therefore, (2a, 3(a∗)) ∈ conWd(L)

and (2b, 3(a∗)) ∈ totWd(L). Similarly, a �+ b implies 3a �+ 3b. This means that
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whenever a ∈ L+ is complemented then also 2a and 3a are because a �+ a implies
2a �+ 2a and 3a �+ 3a.

Define (̃−) : B± → M(L±) as the injective map 2a ∧ ⋀n
i=1 3ai ↦→ 2̃a ∧ ⋀n

i=1 3̃ai
(injectivity follows from the discussion below Lemma 4.2.5). Observe that α̃′ 4 α̃

implies α′ �+ α, for all α ∈ B+. This is because for an α = 2a ∧ ⋀n
i=1 3bi and α′ =

2a′ ∧⋀n
i=1 3b′i where a′�+ a and b′i �+ bi, for the element α⋆ = 3(a′)∗ ∨⋁n

i=1 2(b′i)
∗

is (α′, α⋆) ∈ conWd(L) and (α, α⋆) ∈ totWd(L) by (con-∧· ) and (tot-∧· ).
If L is d-regular, we know that a =

⋁↑{x : x � a}, and because 2 distributes over
directed suprema we have that 2a =

⋁↑{2x : x � a} ≤ ⋁↑{2x : 2x � 2a} ≤ 2a
and also that 3a =

⋁↑{3x : 3x � 3a}. The same is true for any α ∈ B±, because
finite meets distribute over joins, α =

⋁↑{α′ | α̃′ 4 α̃} ≤ {x | x � α} ≤ α. Since B±
generates VFr(L±) we see that VFr(L±) is also d-regular.

The d-zero-dimensional case is proved similarly and the right-to-left implica-
tions of (1) and (2) follows from Lemma 4.2.10 and the fact that we have an onto
homomorphism Wd(L)→ L as we are going to show in Lemma 4.3.1.

To prove (3) let {I j = (I j
+, I j
−)}j∈J be a directed subset of VFr(L+)×VFr(L−) such

that
⨆↑

j I j ∈ totWd(L). Recall that we can view VFr(L±) as Idl(M(L±))/R⋁ and

I j
±’s as R⋁-saturated ideals. By definition, there is a K = (K+, K−) ∈ tot∧· ,∨· such

that K ⊑ ⨆↑
j I j. Because tot1 consists of pairs (↓2̃a+, ↓3̃a−) and (↓3̃a+, ↓2̃a−) for

(a+, a−) ∈ totL, the pair (K+, K−) is equal to (S+(↓α+), S−(↓α−)) where

α = (
n⋁

k=1

(2̃ak,0
+ ∧

mk⋀
l=1

3̃ak,l
+ ),

n⋀
k=1

(3̃ak,0
− ∨

mk⋁
l=1

2̃ak,l
− )).

for some (ak,l
+ , ak,l

− ) ∈ totL. Next, we find a β ∈ M(L+)×M(L−) such that β 4 α

and H
def≡ (S+(↓β+), S−(↓β−)) ∈ tot∧· ,∨· . Indeed, from d-regularity of L, each ak,l

± is
equal to

⋁↑{b | b � ak,l
± } and, because L is also d-compact, there are some bk,l

± � ak,l
±

such that (bk,l
+ , bk,l

− ) ∈ totL. Finally, set

β
def≡ (

n⋁
k=1

(2bk,0
+ ∧

mk⋀
l=1

3bk,l
+ ),

n⋀
k=1

(3bk,0
− ∨

mk⋁
l=1

2bk,l
− )).

Because K± ⊆
⋁↑

j I j
± = S±(

⋃
j I j
±) and because α± ∈ K±, by Lemma 4.2.11,

β± ∈
⋃

j I j
±. Therefore, there are some j± ∈ J such that β± ∈ I j±

± . Because J is
directed, there is some j such that I j+ , I j− ⊆ I j. As β± ∈ I j and I j is R⋁-saturated,
H± = S±(↓β±) ⊆ I j

±. Therefore, I j ∈ ↑tot∧· ,∨· = totWd(L). □

4.3 Categorical properties

In this section we study basic categorical properties of the Vietoris constructions for
d-frames. We show that all the basic properties of the functors V2, V3 and VFr are
also valid for their corresponding d-frame variants, that is for W2, W3 and Wd.
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4.3.1 Comonad structure

Johnstone proved that VFr is a comonad on the category of frames [Joh85, Propo-
sition 1.1]. For a frame homomorphism h : L → L′, the frame homomorphism
VFr(h) : VFr L→ VFr L′ is uniquely determined by its action on generators

2a ↦→ 2(h(a)) and 3a ↦→ 3(h(a)).

The comonad (VFr , ηFr, µFr) has as its counit ηFr
L : VFr L → L the map 2a, 3a ↦→ a,

and comultiplication µFr
L : VFr L→ VFr(VFr L) is the map determined by 2a ↦→ 2(2a)

and 3a ↦→ 3(3a). Alternatively, one describes this comonad as a co-Kleisli triple
(VFr , ηFr

L , (−)). For frame homomorphisms h : VFr L → L′ and g : VFr L′ → L′′, it has
to satisfy:

(C1) ηFr
L = idVFr L

(C2) h ; ηFr
L′ = h

(C3) h ; g = h ; g

where the lifting h : VFr L → VFr L′ of h is the frame homomorphism uniquely deter-
mined by the mapping on generators: 2a ↦→ 2(h(2a)) and 3a ↦→ 3(h(3a)) (use
the dual of Theorem A.3.13).

Based on this we define a co-Kleisli triple (Wd, ηd
L, (−)) for Wd. For a d-frame

L, set ηd : WdL → L to be the pair of maps (ηFr
L+

, ηFr
L−) : VFr L+×VFr L− → L+×L−

and, for a d-frame homomorphism h : WdL → M define the lifting h : WdL →
WdM also pairwise, that is as the pair (h+, h−). Because ηd

L and the lifting (−) are
defined in terms of the corresponding parts of the frame co-Kleisli triple, it is clear
that the axioms (C1), (C2) and (C3) hold. The only thing we need to do, in order to
show that this co-Kleisli triple is well defined, is to prove that ηd

L and h are d-frame
homomorphisms.

4.3.1 Proposition. ηd
L is a d-frame homomorphism. Moreover, it embeds L into

WdL.

Proof. By Proposition 3.4.21 it is enough to check that ηd
L = (ηFr

L+
, ηFr

L−) preserves Econ

and Etot. Let, for example, (2a, 3b) be from Econ. By definition, this only happens if
(a, b) ∈ conL. Then, η(2a, 3b) = (a, b) ∈ conL. The other cases for Econ and Etot are
the same.

Next is the “moreover” part. It is clear that both frame homomorphism compo-
nents of ηd

L are onto such that f [conWdL] = conL and f [totWdL] = totL. This makes
ηd
L an extremal epimorphism in the category of d-frames (see Remark 3.3.15). □
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4.3.2 Proposition. Let h : WdL → M be a d-frame homomorphism. Then, h is also
a d-frame homomorphism.

Proof. Again, we use Proposition 3.4.21 and only check that the componentwise lift
h = (h+, h−) preserves Econ (resp. Etot) of WdL. Let (a, b) ∈ conL (resp. totL). Then,
because h is a d-frame homomorphism, (h+(2a), h−(3b)) ∈ conM (resp. totM) and
so h maps (2a, 3b) to (2(h+(2a)), 3(h−(3b))) ∈ conWdM (resp. totWdM). □

We have proved that (Wd, ηd
L, (−)) is a co-Kleisli triple and so, by Theorem A.3.13,

is Wd a functor and we also get:

4.3.3 Theorem.
W2, W3 and Wd are comonads on the category of d-frames.

One can also compute how Wd acts on morphisms. Let h : L →M be a d-frame
homomorphism. Then, Wd(h) = h ◦ ηd

L and so on generators it is defined as follows

Wd(h)± : 2a, 3a ↦−→ 2h±(a), 3h±(a)

for all a ∈ L±.

4.3.2 Intrinsic co-semilattice structure of Wd(L)

Johnstone proved in [Joh85] that VFr L carries a co-semilattice structure, for any
frame L. First, he shows that the quotient of the frame VFr L by the equation 30 = 1
is isomorphic to 2; the quotient map

p : VFr L −→ VFr L/(30=1)
∼= 2

is defined as 2a ↦→ 0 and 3a ↦→ 1. Another ingredient Johnstone needs is the fact
that VFr(L×M) ∼= VFr L⊕VFr M as witnessed by the frame homomorphism q and its
inverse q−1 def≡ q−1

L ⊕ q−1
M :

q : VFr(L×M) −→ VFr L⊕VFr M
2(l, m) ↦→ 2l ⊕2m
3(l, m) ↦→ 2l ⊕ 1∨ 1⊕2m

q−1
L : VFr L −→ VFr(L×M)

2l ↦→ 2(l, 0)
3l ↦→ 3(l, 1)

q−1
M : VFr M −→ VFr(L×M)

2m ↦→ 2(0, m)

3m ↦→ 3(1, m)

where α ⊕ β is the shortcut for J(α, β)K = (α ⊕1 (1, 1)) ∧ (β ⊕2 (1, 1)) from Sec-
tion 3.5.4.1. With this, the frame co-semilattice structure on VFr L3are the morphisms

p : VFr L −→ 2 and q ·VFr(∆) : VFr L −→ VFr L⊕VFr L, (4.3.1)
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where ∆ is the diagonal map L → L×L, a ↦→ (a, a). Furthermore, this extends to all
coalgebras of the comonad:

4.3.4 Fact ([Joh85]). The forgetful functor from the category of coalgebras of the
comonad (VFr , ηFr, µFr) to Frm factors through the category of frame co-semilattices.

The functor assigns to every coalgebra (L, ξ : L→ VFr L) a co-semilattice (L, xξ , sξ)

such that

xξ
def
≡ L VFr L 2α p

sξ
def
≡ L VFr L VFr(L×L) VFr L⊕VFr L L⊕ Lα VFr(∆) q ηFr

L ⊕ηFr
L

Moreover, a VFr-coalgebra structure that gives rise to this frame co-semilattice is
uniquely determined.

4.3.5 Remark. The co-semilattice structure assigned to the free coalgebra (VFr L,
µFr : VFr L → VFr(VFr L)), for a frame L, is equal to the co-semilattice structure we
computed for VFr L in (4.3.1). Moreover, if L = Ω(X) for a compact regular space
X, since VFr L ∼= Ω(VX), we can interpret Σ(x) : Σ(2) → Σ(L) as a map that picks
the empty subset of X, and the binary map Σ(s) : Σ(L⊕ L)→ Σ(L) as the operation
that computes the union of two compact subsets of X [Joh82; Rob86].

Inspired by the previous lines, we show a similar result to Fact 4.3.4 but for the
comonad Wd. First we observe that the maps p and q from above have their d-frame
counterparts:

4.3.6 Lemma. Let L be a d-frame. The pair of frame homomorphisms (p+, p−) forms
a d-frame homomorphism WdL→ 2×2.

Proof. It is enough to check that p = (p+, p−) : (VFr L+, VFr L−) → (2, 2) preserves
Econ and Etot (Proposition 3.4.21). Let α ∈ conL (resp. totL). Then, p(2α+, 3α−) =
(0, 1) ∈ con2×2 (resp. tot2×2) and p(3α+, 2α−) = (1, 0) ∈ con2×2 (resp. tot2×2). □

4.3.7 Lemma. Wd(L ×M) ∼= WdL ⊕WdM as witnessed by the d-frame homo-
morphisms (q+, q−) and (q−1

+ , q−1
− ).

Proof. Again, we only check that q = (q+, q−) and q−1 = (q−1
+ , q−1

− ) are d-frame
homomorphisms; then, q · q−1 = id and q−1 · q = id follows from the corresponding
identities for q± and q−1

± .
Let α ∈ conL×M. We can view α = (α+, α−) as a quadruple where α± =

(αL± , αM±) ∈ L±×M±. Then, since (αL+ , αL−) ∈ conL and (αM+ , αM−) ∈ conM,

(2αL+⊕ 1, 3αL−⊕ 1) ∈ conWdL⊕WdM and (1⊕2αM+ , 1⊕3αM−) ∈ conWdL⊕WdM.

3Frame co-semilattices are the triples (L, x : L→ 2, s : L→ L⊕ L) which satisfy the co-semilattice
equations when written as categorical diagrams in the opposite category.
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Therefore, q(2α+, 3α−) = (2αL+ ⊕ 2αM+ , 3αL− ⊕ 1 ∨ 1⊕3αM−) ∈ conWdL⊕WdM

by (con-∧· ). The cases q(3α+, 2α−) ∈ con and q[tot1] ⊆ totWdL⊕WdM are proved
similarly.

Next, we show that also q−1 = (q−1
+ , q−1

− ) is a d-frame homomorphisms by show-
ing that qL = (q−1

L+
, q−1

L−) : WdL → Wd(L ×M) and qM = (q−1
M+

, q−1
M−) : WdM →

Wd(L×M) are d-frame homomorphisms. Let α ∈ conL. Then, q−1
L (2α+, 3α−) =

(2(α+, 1), 3(α−, 0)) which is in conWd(L×M) since ((α+, 1), (α−, 0)) ∈ conL×M. The
remaining cases are proved similarly. □

4.3.8 Theorem.
The forgetful functor from the category of coalgebras of the comonad (Wd, ηd, µd) to
d-Frm factors through the category of d-frame co-semilattices.

Moreover, a Wd-coalgebra structure that gives rise to a d-frame co-semilattice is
uniquely determined.

Proof. Lemmas 4.3.6 and 4.3.7 establish that the construction from Fact 4.3.4 extends
to d-frames. Namely, for every d-frame coalgebra (L, ξ : L → WdL) we have a
co-semilattice (L, xξ , sξ) such that

xξ
def≡ L WdL 2×2α (p+,p−)

sξ
def≡ L WdL VFr(L×L) WdL⊕WdL L⊕L

α Wd(∆) (q+,q−) ηd
L⊕ηd

L

The fact that all the required equations hold and that this is unique is a consequence
of Fact 4.3.4 and because all the constructions we made are componentwise the same
as for frames. □

4.3.3 A relationship between W2, W3 and Wd

Another known fact about Vietoris constructions for frames and DCPO’s/domains
is that, for a frame L, VFr L can be seen as the quotient of V2L⊕V3L by the equations
RV [Vic09a], [Gie+80, Theorem IV-8.14]:

2a⊕3b ≤ 1⊕3(a ∧ b)
2(a ∨ b)⊕ 1 ≤ (2a⊕ 1) ∨ (1⊕3b)

(4.3.2)

This is because the frame homomorphism i = i2 ⊕ i3 : V2L⊕V3L → VFr L, where
i2 : V2L→ VFr L and i3 : V3L→ VFr L are the inclusions, preserves the equations in
(4.3.2) and uniquely lifts to

k : (V2L⊕V3L)/RV → VFr L.
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On the other hand, by Lemma 4.2.1 we know that (V2L⊕V3L)/RV can be given
by a presentation where G = {2a⊕ 1, 1⊕3a : a ∈ L} is the set of generators and the
equations are obtained as a combination of equations for both Vietoris constructions,
the coproducts, and RV. Then, the map G → VFr L defined as 2a ⊕ 1 ↦→ 2a and
1⊕3a ↦→ 3a preserves all the equations of (V2L⊕V3L)/RV and it is the universal
such. This proves that the frame homomorphism

l : VFr L→ (V2L⊕V3L)/RV,

defined as 2a ↦→ 2a ⊕ 1 and 3a ↦→ 1⊕ 3a, is inverse to k, proving that VFr L ∼=
(V2L⊕V3L)/RV. To summarise, we have a diagram

V2L⊕V3L VFr L

V2L⊕V3L/RV

i

q l
k

This result can be immediately adapted to the theory of d-frames:

4.3.9 Proposition. Let L be a d-frame. Then, WdL is isomorphic to the d-frame
quotient of W2L⊕W3L by R = (R+, R−), defined as

R+ :
2a⊕3b ≤ 1⊕3(a ∧ b)

2(a ∨ b)⊕ 1 ≤ (2a⊕ 1) ∨ (1⊕3b)

R− :
3a⊕2b ≤ 3(a ∧ b)⊕ 1

1⊕2(a ∨ b) ≤ (3a⊕ 1) ∨ (1⊕2b)

Proof. By L⊕ denote the d-frame W2L ⊕W3L and by con⊕ and tot⊕ denote its
consistency and totality relations, respectively. Since R+ and R− introduce a pair of
frame quotients

q+ : V2L+ ⊕V3L+ ↠ V2L+ ⊕V3L+/R+

q− : V3L− ⊕V2L− ↠ V3L− ⊕V2L−/R−

we have the corresponding quotient homomorphism in the category of proto-d-
frames q = (q+, q−) : L⊕ ↠ q[L⊕] where

q[L⊕] = ((V2L+ ⊕V3L+)/R+, (V3L− ⊕V2L−)/R−, q[con⊕], q[tot⊕]).

In the following we show two things at once: (1) the d-frame reflection of q[L⊕],
denoted as L⊕/R, is obtained from q[L⊕] by the

⨆↑-completion of the consistency
relation (the rest of the structure stays unchanged), (2) L⊕/R is isomorphic to WdL.
To follow the frame construction, consider the pairs of frame isomorphisms

k = (k+, k−) : ((V2L+ ⊕V3L+)/R+, (V3L− ⊕V2L−)/R−)→ (VFr L+, VFr L−)
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and

l = (l+, l−) : (VFr L+, VFr L−)→ ((V2L+ ⊕V3L+)/R+, (V3L− ⊕V2L−)/R−)

defined componentwise as above. (In fact, because k− and l− are witnessing the
isomorphism VFr L− ∼= (V3L−⊕V2L−)/R−, they are defined symmetrically). First,
we check that k (seen as a pair of frame homomorphisms q[L⊕] → WdL) is a d-
frame homomorphism, i.e. that it preserves q[con⊕] and q[tot⊕]. Let α ∈ conL. Then,
i(2α+⊕ 1, 3α−⊕ 1) = (2α+, 3α−) ∈ conWdL and, similarly, i(2α+⊕ 1, 3α−⊕ 1) ∈
conWdL. Checking that i also preserves the generators of tot⊕ is the same. Because
k is a monomorphism, Proposition 3.3.13 gives that the d-frame reflection of q[L⊕],
i.e. the d-frame L⊕/R, is computed as a

⨆↑-completion of the consistency relation.
Consequently, k : L⊕/R→WdL is a d-frame homomorphism.

Finally, we check that l : WdL → L⊕/R preserves the generators of conWdL and
totWdL. Let α ∈ conL. Then, (2α+, 3α−) is mapped by l to (2α+ ⊕ 1, 3α− ⊕
1), which is an element in the presentation of con⊕. Similarly, one proves that
l(3α+, 2α−) is in con and that l also preserves the totality relation. □

This explains why the proof that the presentation of WdL satisfies (µ±-con-tot)
and (Indep±) (in Propositions 4.2.7 and 4.2.8) looks so much like the corresponding
proof for the presentation of a coproduct of two d-frames (Section 3.5.4.4).

4.3.4 A comparison with constructions in DLat

Recall, from Section 4.2.1, the Vietoris-like construction M for distributive lattices.
It is immediate to see that M is functorial; with the action on a morphisms defined
as

M(h) : M(D) −→ M(E)

2̃a, 3̃b ↦−→ 2̃h(a), 3̃h(b)

where h : D → E is a lattice homomorphism.
Johnstone proved in [Joh82] that the functor Idl(−) : DLat→ Frm, which assigns

to a distributive lattice D its frame of ideals Idl(D), relates VFr and M. Concretely,
the compositions of functors VFr ◦ Idl and Idl ◦M are naturally isomorphic.

4.3.10 Fact. VFr ◦ Idl ∼= Idl ◦M with the components of the natural isomorphisms
uniquely determined by

l+ : VFr(Idl(D))
∼=−−→ Idl(MD)

2I ↦−→ ⋁{↓2̃d : d ∈ I}
3I ↦−→ ⋁{↓3̃d : d ∈ I}

k+ : Idl(MD)
∼=−−→ VFr(Idl(D))

↓2̃a ↦−→ 2(↓a)
↓3̃a ↦−→ 3(↓a)
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4.3.4.1 Comparison with Wd

Moving on to d-frames, recall the functor IF : DLat → d-Frm from Section 2.6
defined as

D ↦−→ (Idl(D),Filt(D), conD, totD)

where (I, F) ∈ conD iff ∀i ∈ I ∀ f ∈ F. i ≤ f , and (I, F) ∈ totD iff I ∩ F ̸= ∅.
We will see that IF relates Wd and M. Notice that, for a lattice D, the plus-frame

in Wd(IF (D)) is isomorphic to the plus-frame of IF (MD). Moreover, consider the
isomorphism

i : (MD)op ∼=−−−−→M(Dop)

defined on generators as 2̃a, 3̃b ↦→ 3̃a, 2̃b. Then, we have

VFr(Filt(D)) ∼= VFr(Idl(Dop)) ∼= Idl(M(Dop)) ∼= Idl((MD)op) ∼= Filt(MD)

which is computed as

l− : VFr(Filt(D))
∼=−−→ Filt(MD)

2F ↦−→ ⋁{↑3̃d : d ∈ F}
3F ↦−→ ⋁{↑2̃d : d ∈ F}

k− : Filt(MD)
∼=−−→ VFr(Filt(D))

↑2̃a ↦−→ 3(↑a)
↑3̃a ↦−→ 2(↑a)

This shows that also the minus-frames of Wd(IF (D)) and IF (MD) are isomor-
phic.

4.3.11 The d-frame isomorphism. Next, we show that the pairs of frame homo-
morphisms k = (k+, k−) and l = (l+, l−) actually establish a (natural) isomorphism
of the d-frames Wd(IF (D)) and IF (M(D)). To see that, let (I, F) ∈ conD. Then,
(2I, 3F), which is in conWd(IF (D)), gets mapped by l to (

⋁{↓2̃a : a ∈ I}, ⋁{↑2̃b :
b ∈ F}). Next, let A⊆fin I and B⊆fin F. We have that⋁

a∈A
2̃a ≤ 2̃(

⋁
A) ≤ 2̃b for all b ∈ B

because
⋁

A ∈ I and a ≤ b for every a ∈ A and b ∈ B. Hence,
⋁

a∈A 2̃a ≤ ⋀
b∈B 2̃b

proving that l(2I, 3F) ∈ conMD. A similar argument also proves that l(3I, 2F)
is in conMD. Let, on the other hand, (I, F) be from totD. The pair (2I, 3F) from
totWd(IF (D)) gets mapped by l into totMD because, for an x ∈ I ∩ F, 2̃x ∈ l+(2I) ∩
l−(3F). We have proved that the images by l of the generators of the consistency
and totality relations of Wd(IF (D)) are also consistent and total in IF (MD), re-
spectively. Therefore,

l[conWd(IF (D))] ⊆ conMD and l[totWd(IF (D))] ⊆ totMD

In Section 3.5.2 we showed that conMD and totMD are both generated from the
elements of the form (↓x, ↑x) for x ∈ MD. Hence, to show that k is a d-frame
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homomorphism, it is enough to check that (↓x, ↑x)’s are mapped to con ∩ tot of
Wd(IF (D)). Let

⋁n
i=1(2̃ai ∧

⋀mi
j=1 3̃bi,j) be a disjunctive normal form of x. We see

that

k+(↓x) = k+(
n⋁

i=1

(↓2̃ai ∧
⋀mi

j=1
↓3̃bi,j)) =

n⋁
i=1

(2↓ai ∧
⋀mi

j=1
3↓bi,j)

k−(↑x) = k−(
n⋀

i=1

(↑2̃ai ∨
⋁mi

j=1
↑3̃bi,j)) =

n⋀
i=1

(3↑ai ∨
⋁mi

j=1
2↑bi,j)

Then, because (2↓ai, 3↑ai) and (3↓bi,j, 2↑bi,j) are in conWd(IF (D)) and totWd(IF (D)),
also their (∧· ,∨· )-combinations are; proving k(↓x, ↑x) ∈ conWd(IF (D)) ∩ totWd(IF (D)).
Consequently:

k[conMD] ⊆ conWd(IF (D)) and k[totMD] ⊆ totWd(IF (D)).

Because i and k are componentwise natural in D we obtain:

4.3.12 Theorem.
The functor Wd ◦ IF is naturally isomorphic to the functor IF ◦M.

It should be no surprise that, for the following two lattice constructions

M2(D)
def≡ DL

⟨
2̃a : a ∈ D

⏐⏐⏐ 2̃(a ∧ b) = 2̃a ∧ 2̃b, 2̃1 = 1
⟩

M3(D)
def≡ DL

⟨
3̃a : a ∈ D

⏐⏐⏐ 3̃(a ∨ b) = 3̃a ∨ 3̃b, 3̃0 = 0
⟩

we have that
V2 ◦ Idl ∼= Idl ◦M2 and V3 ◦ Idl ∼= Idl ◦M3

and, since M2(D)op ∼= M3(Dop), also

V3 ◦ Filt ∼= Filt ◦M2 and V2 ◦ Filt ∼= Filt ◦M3.

By the same reasoning as above, we obtain:

4.3.13 Proposition. W2 ◦ IF ∼= IF ◦M2 and W3 ◦ IF ∼= IF ◦M3.

As a consequence of these natural isomorphisms, we obtain, by a general dia-
gram chasing argument:

4.3.14 Corollary. For W2, W3 and Wd restricted to the category of Priestley d-
frames:

1. Alg(W2) ∼= Alg(M2),
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2. Alg(W3) ∼= Alg(M3) and

3. Alg(Wd) ∼= Alg(M).

4.3.5 Initial algebra construction

Consider the following countable sequence in the category of d-frames

2×2 Wd(2×2) W2
d (2×2) W3

d (2×2) · · ·! Wd(!) W2
d (!) W3

d (!) (4.3.3)

where ! : 2×2 → Wd(2×2) is the unique morphism from the initial object 2×2 of
d-Frm. Observe that 2×2 is a Priestley d-frame because 2×2 ∼= IF (2), where
IF : DLat → d-Frm is the functor from Section 2.6 mapping distributive lattices
into the equivalent category of Priestley d-frames. Consequently, repeated applica-
tion of Theorem 4.2.12 proves that Wn

d (2×2) is a Priestley d-frame, for every n ∈N.
Define Wω

d (2×2) to be the colimit of the sequence in (4.3.3). Since d-Pries closed
under colimits in d-Frm (Section 3.3.2), Wω

d (2×2) is a Priestley d-frame. Further,
since Wn

d (2×2) ∼= Wn
d (IF (2)) ∼= IF (M

n(2)) by Theorem 4.3.12, we have the fol-
lowing sequence in DLat

2 M(2) M2(2) M3(2) · · ·! M(!) M2(!) M3(!)

Where, this time, ! : 2→M(2) is the morphism from the initial object 2 in DLat. Set
M∞(2) to be the colimit of this sequence in DLat. Since IF is a left adjoint (Theo-
rem 2.6.11) it preserves colimits and so it must be that W∞

d (2×2) ∼= IF (M∞(2)).
Lastly, it is a well-known fact ([Joh82]) that M(M∞(2)) ∼= M∞(2)4or, in other

words, that M has an initial algebra such that its initial sequence stops after |N|-
many steps. Consequently,

Wd(W
∞
d (2×2)) ∼= Wd(IF (M∞(2))) ∼= IF (M(M∞(2))) ∼= IF (M∞(2)) ∼= W∞

d (2×2).

Observe that there was nothing specific about Wd and the same argument would
also work for W2 and W3. We have proved:

4.3.15 Theorem.
Every W ∈ {W2, W3, Wd} has an initial algebra and its initial sequence stops after
|N|-many steps.

4The map M∞(2) → M(M∞(2)) is the unique morphism for the cocone {Mn(2)
Mn(!)−−−→

M(M∞(2))}n.
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4.4 Connecting the constructions

The functors V : Top → Top and VFr : Frm → Frm are thought of as the same
constructions, but acting on different categories. To make this precise, consider their
restrictions to dually equivalent categories, that is to the category of compact regular
(T0) spaces and frames, respectively. The situation is as follows:

KRegSp ∼= KRegFrm

Ω

Σ

V VFr

To establish that V and VFr are related constructions constructions (on the compact
regular part) one proves that there is a natural isomorphism of functors Ω ◦V ∼=
VFr ◦Ω or, equivalently,

V ◦ Σ ∼= Σ ◦VFr . (4.4.1)

To compute this, Johnstone (in [Joh82]) fully exploited the fact that the points
of V(X) for a compact regular space X have a direct frame-theoretic description.
Namely, each compact subset K ∈ K(X) is closed and so the mapping K ↦→ X \ K
establishes a bijection between the points of V(X) and open sets of X. Therefore, we
can rephrase the definition of V(X) with the points being open subsets instead of
compact subsets of X; basic opens generating the topology Vτ are then interpreted
as:

2×U = {V ∈ τ | U ∪V = X} and 3+U = {V ∈ τ | U ̸⊆ V}.

This way we have expressed V entirely in terms of open sets. Consequently, for
a compact regular frame L, V(Σ(L)) can be computed directly from the structure
of L. Define an auxiliary contravariant construction Ṽ : KRegFrm → KRegSp,
L ↦→ (L, ṼL), where the topology ṼL is generated from the basic open sets 2×x and
3+x, for every x ∈ L, where

2×x = {a ∈ L | x ∨ a = 1} and 3+x = {a ∈ L | x ̸≤ a}.

We see that Ṽ(L) is homeomorphic to V(Σ(L)).
With this, the last step in showing (4.4.1) is to prove that Ṽ(L) ∼= Σ(VFr(L)). The

bijection between the elements of L and homomorphisms VFr(L)→ 2 is established
by maps a ↦→ Pa and P ↦→ aP, with Pa defined on generators as

Pa(2x) = 1 iff x ∨ a = 1 and Pa(3x) = 1 iff x ̸≤ a (4.4.2)

and aP defined as

aP def≡
⋁
{x ∈ L | P(3x) = 0}.
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To explain the intuition behind the last formula consider a compact regular space X
such that L ∼= Ω(X). The open set X \ K, corresponding to a compact subset K, of
X is computed as the union of all V ∈ τ such that K ∩ V = ∅. Alternatively, since
V(X) is sober, K uniquely determines a frame homomorphism PK : Ω(V(X)) →
2. Because PK is the characteristic function of the neighbourhood of K in V(X),
V ∩ K = ∅ iff P(3+V) = 0. Therefore,

X \ K =
⋃
{V ∈ τ | P(3+V) = 0}.

As we will see, we can pretty much follow the same methodology as Johnstone
outlined to show that W and Wd are also intimately bound together. Namely, for
their restrictions in the diagram

biKReg ∼= d-KReg

Ωd

Σd

W Wd

we show, in the following subsections, that

W ◦ Σd
∼= Σd ◦Wd.

4.4.1 Remark. Ṽ can be extended to a functor. For a frame homomorphism h : L →
M between two compact regular frames, set Ṽ(h) : Ṽ(M) → Ṽ(L) to be the right
adjoint h• : M→ L of h; it is the (localic) map

Ṽ(h) : a ∈ M ↦−→
⋁
{x ∈ L | h(x) ≤ a}

The intuition for this formula comes again from the spatial interpretation. For a
continuous function f : X → Y and a compact K ⊆ X, the open set Y \ f [K] is equal
to⋃
{W ∈ τY |W ∩ f [K] = ∅} =

⋃
{W | f [W] ∩ K = ∅} =

⋃
{W | f [W] ⊆ X \ K}.

4.4.1 Frame-theoretic points of W(X)

Let X = (X, τ+, τ−) be a d-compact d-regular bispace. We would like to redefine
W(X) such that it is expressed only in terms of open sets and their relationships,
i.e. in the language of Ωd(X). The crucial step is to be able to express the points this
way. Recall that by Proposition 4.1.33 we can characterise the points of W(X) as the
d-compact convex subsets of X.
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K K

UK
+

K

UK
−,

Figure 4.1: Computing UK
±’s

As a starting point we reuse the intuition behind the reformulation of the mono-
topological Vietoris construction where we used that every compact subset of a
compact regular space is identified with an open in its complement. Now, for a
d-compact convex subset K ⊆ X we have two such candidates: the largest τ+-open
UK
+ and τ−-open UK

− which are disjoint with K (see Figure 4.1). Lemma 4.1.29 sug-
gests how to compute them. Because ↓K and ↑K are τ+-closed and τ−-closed, re-
spectively,

UK
+ = X \ ↓K and UK

− = X \ ↑K.

On the other hand, every pair of opens (U+, U−) ∈ τ+×τ− determines a d-
compact convex subset of X in the complement of U+ and U−, i.e. set

KU def≡ X \ (U+ ∪U−).

However, this mapping is not injective. We might have (U+, U−), (V+, V−) ∈ τ+×τ−
such that KU = KV . Moreover, the d-compact convex computed from (U+ ∪ V+,
U− ∪ V−) is the same as KU and KV . In other words, we need to restrict to those
(U+, U−) ∈ τ+×τ− which are “the largest such”. Ultimately, this will give us that
UKU
+ = U+ and UKU

− = U−.
Assume that (U+, U−) does not have the property of being “the largest such”, for

example U+ ⫋ UK
+ for K = X \ (U+ ∪U−). By Lemma 4.1.29, for an x ∈ UK

+ \U+,
there exists (W+, W−) ∈ conX such that x ∈W+ and K ⊆W−. But, then

U+ ∪U− ∪W− = X and U+ ∪W− ̸= X (4.4.3)

where the inequality holds because neither U+ nor W− contain x. Moreover, K is still
the complement of the larger pair (U+ ∪W+, U−). This is illustrated in Figure 4.2.

In fact, preventing (4.4.3) from happening gives us exactly “the largest such”
pairs with bonus that it is stated in the language of d-frames. For a d-compact d-
regular d-frame L, denote by Kc(L) the set of all pairs α ∈ L+×L− such that

(K+) ∀u+ ∈ L+: if (α+ ∨ u+, α−) ∈ tot then (u+, α−) ∈ tot

(K−) ∀u− ∈ L−: if (α+, α− ∨ u−) ∈ tot then (α+, u−) ∈ tot

In the following statements we show that this exactly identifies the points of W(X).
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K

UK
+

U+

x

K

W−

W+

x

Figure 4.2: (K−) violated

4.4.2 Lemma. Let X be an order-separated bispace and U = (U+, U−) ∈ Kc(Ωd(X)).
Then, ↓KU = X \U+ and ↑KU = X \U−, where KU = X \ (U+ ∪U−).

Proof. Let x ≤ k for some k ∈ KU. Since k /∈ U+ and X \U+ is downwards closed,
x ∈ X \U+. For “⊇”, let x ∈ X \U+. Assume x /∈ ↓KU. By Lemma 4.1.29, there
exists a (V+, V−) ∈ conX s.t. x ∈ V+ and K ⊆ V−. Then, (U+, V− ∪U−) ∈ totX and
by (K−) also (U+, V−) ∈ totX. But, this yields a contradiction because x /∈ U+ and
x /∈ V−. □

4.4.3 Proposition. Let X be a d-compact d-regular bispace. Then, the mapping
(U+, U−) ↦→ X \ (U+ ∪ U−) is a bijection between Kc(Ωd(X)) and Kc(X), i.e.
the set of points of WX.

Proof. Let U = (U+, U−) satisfies (K+) and (K−). It is clear that KU = X \ (U+ ∪
U−) is d-compact and convex. For the way back, let K be a d-compact convex subset
of X. Set UK = (UK

+, UK
−) and observe that, for every V− ∈ τ+,

UK
+ ∪V− = X iff K ⊆ V−. (⋆)

We will show that UK satisfies (K−); let UK
+ ∪UK

− ∪ V− = X. Assume, for a contra-
diction, that UK

+ ∪V− ̸= X. From (⋆) we know that K ̸⊆ V−, therefore there exists an
x ∈ K \V−. Then, UK

+ ∪UK
− ∪V− ̸= X because none of the sets contains x.

Now, we show that K = KUK
: x ∈ KUK

iff x /∈ UK
+ ∪UK

− iff x ∈ ↓K and x ∈ ↑K
iff x ∈ K. To show U = UKU

, observe that x ∈ (UKU
)+ iff x ∈ X \ ↓KU iff, by

Lemma 4.4.2, x ∈ X \ (X \U+) iff x ∈ U+. □

4.4.4 Auxiliary functor W̃. For a d-compact d-regular d-frame L, we can now
define W̃(L) to be the bispace (Kc(L), Ṽ(L+), Ṽ(L)) where Ṽ(L±) are generated
by the sets 2×x± and 3+x±, for every x± ∈ L+, where

2×x+ = {α ∈ Kc(L) | (x+, α−) ∈ tot} and 3+x+ = {α ∈ Kc(L) | x+ ̸≤ α+},

and, similarly,

2×x− = {α ∈ Kc(L) | (α+, x−) ∈ tot} and 3+x− = {α ∈ Kc(L) | x− ̸≤ α−}.
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4.4.5 Observation. W̃(L) ∼= W(Σd(L))

Proof. From spatiality is L ∼= Ωd(X) for some d-compact d-regular bispace X. In
Proposition 4.4.3 we established that there is a bijection between Kc(Ωd(X)) and
Kc(X), i.e. between the points of W̃(Ωd(X)) and W(X). Next we show that this is
both-ways continuous. For a K ∈ Kc(X) we have

K ∈ 2×U+ iff K ⊆ U+ iff ↑K ⊆ U+ iff (U+, X \ ↑K) ∈ totX

and, similarly,

K ∈ 3+U+ iff K ∩U+ ̸= ∅ iff ↓K ∩U+ ̸= ∅ iff U+ ̸⊆ X \ ↓K. □

Next, we extend W̃ to a functor d-KReg→ biKRegop. As in Remark 4.4.1, for a
d-frame homomorphism h : L→M, define

W̃(h) : α ∈ Kc(M) ↦−→ h•(α) =
⨆
{ β ∈ L+×L− | h(β) ⊑ α}.

4.4.6 Lemma. W̃ is a well-defined functor.

Proof. All we need to check is well-definedness and continuity of such W̃(h)’s.
Functoriality follows from the fact that the translation h ↦→ h• from frame homo-
morphisms to localic maps is functorial.

Let β = h•(α) for some α ∈ Kc(M) and let u ∈ L+ be such that (β+ ∨ u, β−) ∈
totL. Because h is a frame homomorphism and h ⊣ h•, (h+(β+)∨ h+(u), h−(β−)) =
(hh•(α)+ ∨ h+(u), hh•(α)−) ∈ totM and, therefore, (α+ ∨ h+(u), α−) ∈ totM. By
(A+) for α, (h+(u), α−) ∈ totM. Next, because u =

⋁↑{x | x � u} and M is d-
compact, there is an x � u such that (h+(x), α−) ∈ totM. Also, since (h+(x), h(x∗)) ∈
conM, h(x∗) ≤ α− and, by adjointness, x∗ ≤ h•(α)− = β−. Therefore, (u, β+) ∈ totL
as (u, x∗) ∈ totL.

To check continuity let z ∈ L+. We will show that the sets

W̃(h)−1[2×z] = {α ∈ Kc(M) | h•(α) ∈ 2×z} and

W̃(h)−1[3+z] = {α ∈ Kc(M) | h•(α) ∈ 3+z}

are equal to 2×h(z) and 3+h(z), respectively. First, we check the former:

W̃(h)−1[2×z] = {α | (z, h•(α)−) ∈ totL} = {α | ∃x. h−(x) ≤ α− and (z, x) ∈ totL}

where the last equality holds because L is d-compact and the set {x | h−(x) ≤ α−}
is directed. Moreover, if x is such that h−(x) ≤ α− and (z, x) ∈ totL, then also
(h+(z), α−) ∈ totM and so α ∈ 2×h+(z). Conversely, from regularity and compact-
ness, if (h+(z), α−) ∈ totM, then there is some l � z such that (h+(l), α−) ∈ totM.
With x

def≡ l∗, clearly, (z, x) ∈ totL and also h−(x) ≤ α−. We have proved that
W̃(h)−1[2×z] = {α | (h+(z), α−) ∈ totM} = 2×h(z).

Finally, W̃(h)−1[3+z] = {α | z ̸≤ h•(α)+} = {α | h+(z) ̸≤ α+} = 3+h(z). □
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4.4.7 Proposition. The functors W̃ and W ◦ Σd are naturally isomorphic.

Proof. What is left to check is that the bihomeomorphism in Observation 4.4.5 is
natural in L. Let h : L→M be a d-frame homomorphism. By f : Y → X denote the
bicontinuous map such that Ωd( f ) = h. Then, the naturality square that we need to
check for commutativity is the following:

W̃(Ωd(Y)) W(Y)

W̃(Ωd(X)) W(X)

K(−)

W̃(Ωd( f )) W( f )

K(−)

Let (V+, V−) ∈ Kc(Ωd(Y)). Set K to be the image of (V+, V−) under K(−), that is the
set Y \ (V+ ∪V−) such that V+ = Y \ ↓K and V− = Y \ ↑K. By definition

W̃(Ωd( f ))+(V+) =
⋃
{U+ ∈ τX

+ | f−1[U+] ⊆ V+}.

However, f−1[U+] ⊆ V+ = Y \ ↓K iff f−1[U+] ∩ ↓K = ∅ and, because f−1[U+] is
upwards closed, it is equivalent to f−1[U+] ∩ K = ∅ and U+ ∩ f [K] = ∅. Similarly,
U+ ∩ f [K] = ∅ iff U+ ∩ ↓ f [K] = ∅ iff U+ ⊆ X \ ↓ f [K]. Finally, since ↓ f [K] is τ+-
closed (Lemma 4.1.29), X \ ↓ f [K] is τ+-open and so W̃(Ωd( f ))+(V+) = X \ ↓ f [K].
Correspondingly, W̃(Ωd( f ))−(V−) = X \ ↑ f [K]. Finally, K(−) maps

(X \ ↓ f [K], X \ ↑ f [K])

to X \ ((X \ ↓ f [K])∪ (X \ ↑ f [K])) = X \ (X \ (↓ f [K]∩ ↑ f [K])) = ↓ f [K]∩ ↑ f [K]. □

4.4.2 Natural equivalence between W̃ and Σd ◦Wd

Next, we would like to establish a bijection between the points of the bispaces W̃(L)

and Σd(Wd(L)), for a fixed d-compact d-regular d-frame L.
In Lemma 4.4.9 we will show how to construct an element of Kc(L) from a

d-frame homomorphism P : Wd(L) → 2×2 but, before we do that, we prove the
following auxiliary lemma about η : Wd(L)→ L from Proposition 4.3.1:

4.4.8 Lemma.

1. Let κ ∈Wd(L), then (3η+(κ+), 3η−(κ−)) ⊑ κ.

2. η[Kc(Wd(L))] ⊆ Kc(L).

Proof. (1) Recall from Section 4.2.1 that κ± is a join of the form
⋁

k(2ak ∧
⋀nk

i=1 3bk,i).
Since η± is a frame homomorphism and 3 distributes over all joins,

3η±(κ±) = 3(
⋁
k

(ak ∧
nk⋀

i=1

bk,i)) =
⋁
k

3(ak ∧
nk⋀

i=1

bk,i).
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Moreover, for every k, 3(ak ∧
⋀nk

i=1 bk,i) ≤ 2ak ∧ 3(
⋀nk

i=1 bk,i) ≤ 2ak ∧
⋀nk

i=1 3bk,i.
Hence, 3η±(κ±) ≤ κ.

(2) Let κ ∈ Kc(Wd(L)), we show that η(κ) satisfies (K+) and (K−). Let u ∈ L+

be such that (η+(κ+) ∨ u, η−(κ−)) ∈ totL. Then, (2(η+(κ+) ∨ u), 3η−(κ−)) ∈
totWd(L) and thanks to 2(η+(κ+)∨ u) ≤ 3η+(κ+)∨2u and (1), also (κ+∨2u, κ−) ∈
totWd(L). Finally, by (K+) for κ, (2u, κ−) ∈ totWd(L) and, because η is a homomor-
phism, (u, η−(κ−)) ∈ totL. □

4.4.9 Lemma. Let L be a d-compact d-regular d-frame, P : WdL → 2×2 be a d-
frame homomorphism and define αP as

⨆{γ ∈ L+×L− | P(3γ+, 3γ−) = ⊥}.
Then,

1. αP ∈ Kc(L).

2. P±(3αP
±) = 0, and

Proof. It is immediate to check that Kc(2×2) = {⊥,⊤}. We will show that αP =

η(P•(⊥)) from which (1) follows by Lemmas 4.4.8 and 4.4.6. Because P•(⊥) =⨆{δ | P(δ) = ⊥} we immediately get that αP ⊑ η(P•(⊥)). For the other direction,
let δ ∈Wd(L) be such that P(δ) = ⊥. Because P(3η+(δ+), 3η−(δ−)) ⊑ P(δ) = ⊥,
η(δ) ⊑ αP. Consequently,

η(P•(⊥)) = η(
⨆
{δ | P(δ) = ⊥}) =

⨆
{η(δ) | P(δ) = ⊥} ⊑ αP.

To show (2) we use Lemma 4.4.8: (3αP
+, 3αP

−) = (3η(P•(⊥))+, 3η(P•(⊥))−)
⊑ P•(⊥). Then, from adjointness, P(3αP

+, 3αP
−) ⊑ ⊥. □

In fact, Lemma 4.4.9 can be proved directly without any reference to Kc(Wd(L))

but then, for the first item, one needs to use a trick similar to the one we used in the
proof of Lemma 4.4.6.

In the following, we use a similar formula as we had in (4.4.2) to give us a map-
ping from W̃(L) to Σd(Wd(L)).

4.4.10 Lemma. Let L is a d-compact d-regular d-frame and let α ∈ Kc(L). Then,
Pα : Wd(L) → 2×2 is a d-frame homomorphism, where Pα is defined on generators
as follows:

∀x ∈ L+ : Pα
+(2x) = 1 iff (x, α−) ∈ tot, and Pα

+(3x) = 1 iff x ̸≤ α+,

∀x ∈ L− : Pα
−(2x) = 1 iff (α+, x) ∈ tot, and Pα

−(3x) = 1 iff x ̸≤ α−.

Proof. We need to prove that Pα defined this way is well-defined, i.e. that it preserves
the defining equations of VFr(L±), con1 and tot1 and, therefore, can be uniquely
extended to a d-frame homomorphism Wd(L) → 2×2 by Theorem 3.4.8. First, we
check the equations of VFr(L±):
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1. Pα
+(2x ∧ 2y) = Pα

+(2(x ∧ y)) is equal to 1 iff Pα
+(2x) = 1 and Pα

+(2y) = 1
because (x ∧ y, α−) ∈ tot iff (x, α−) ∈ tot and (y, α−) ∈ tot. The latter follows
from the tot being upwards and ∧· -closed.

2. Pα
+(21L+) = 12 = Pα

+(1VFr L+) because (1, α−) is always in tot and, correspond-
ingly, Pα

+(30) = 0 = Pα
+(0).

3. For a non-empty directed subset {xi}i of L+,⋁↑
i Pα

+(2xi) = 1 iff ∃i. (xi, α−) ∈ tot

(⋆)

iff (
⋁↑

i xi, α−) ∈ tot iff Pα
+(2(

⋁↑
i xi)) = 1.

Where the right-left implication of (⋆) follows from compactness of L.

4. For any non-empty subset {xi}i of L+, because ∃i. xi ̸≤ α+ is equivalent to the
negation of ∀i. xi ≤ α+,⋁

i
Pα
+(3xi) = 1 iff ∃i. xi ̸≤ α+ iff

⋁
i
xi ̸≤ α+ iff Pα

+(3(
⋁

i
xi)) = 1.

5. To see why Pα
+(2x ∧ 3y) ≤ Pα

+(3(x ∧ y)), assume Pα
+(3(x ∧ y)) = 0 (i.e.

x ∧ y ≤ α+) and Pα
+(2x) = 1 (i.e. (x, α−) ∈ tot). Then, for every z � y, since

(y, z∗) ∈ tot also (x ∧ y, α− ∨ z∗) ∈ tot. Therefore, also (α+, α− ∨ z∗) ∈ tot

and, by (K−), also (α+, z∗) ∈ tot. But, this together with (con-tot) implies that
z ≤ α+ and so y =

⋁{z | z � y} ≤ α+ and Pα
+(3y) = 0.

6. For Pα
+(2(x ∨ y)) ≤ Pα

+(2x ∨ 3y), let (x ∨ y, α−) ∈ tot. If y ≤ α+ (i.e.
Pα
+(3y) = 0) then (x∨ α+, α−) ∈ tot. From (K+) then follows that (x, α−) ∈ tot

and also Pα
+(2x) = 1.

Finally, we check that Pα preserves con1 and tot1. Let (2x, 3y) ∈ conWdL for
some (x, y) ∈ con. If (x, α−) ∈ tot (i.e. Pα

+(2x) = 1) then from (con-tot) for L we
know that y ≤ α−, therefore Pα

−(3y) = 0 and Pα(2x, 3y) = (1, 0) ∈ con2×2. Simi-
larly, if (x, y) ∈ tot and so (2x, 3y) ∈ totWdL, then y ≤ α− implies that (x, α−) ∈ tot

as tot is upwards closed and so Pα(2x, 3y) = (1, 0) ∈ tot2×2. □

Notice that each of the assumptions of Lemma 4.4.10 was needed precisely once
in its proof. Compactness was used only in (3), regularity in (5) and the fact that
α ∈ Kc(L) was needed in (6).

4.4.11 Lemma. Let L be a d-compact d-regular d-frame and P : WdL → 2×2 a
d-frame homomorphism. Then,

1. P+(3x) = 1 iff x ̸≤ αP
+,

2. P+(2x) = 1 iff (x, αP
−) ∈ tot
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and similarly for P−.

Proof. (1) If P+(3x) = 1, then it has to be that x ̸≤ αP
+ because otherwise 3x ≤ 3αP

+

which gives a contradiction with P+(3αP
+) = 0 (Lemma 4.4.9).

(2) If P+(2x) = 1 then P+(2y) = 1 already for some y �+ x because x =
⋁↑{y ∈

L+ | y � x} and 2 distributes over directed joins. Because (y, y∗) ∈ con, we know
that P−(3(y∗)) = 0 and so, by 1., y∗ ≤ αP

−. Since (x, y∗) ∈ tot and tot is upwards
closed, (x, αP

−) ∈ tot. On the other hand, if (x, αP
−) ∈ tot then (P+(2x), P−(3α−)) ∈

tot2×2 because P is tot-preserving and, since P−(3αP
−) = 0, necessarily P+(2x) =

1. □

4.4.12 Proposition. Let L be a d-compact d-regular d-frame. Then, the map P ↦→ αP

is a bijection between the set of points of ΣWdL and Kc(L).

Proof. We need to show that α = αPα
and that P = PαP

. For the first one, let α ∈
Kc(L) and compute: αPα

± =
⋁{x ∈ L± | Pα

±(3x) = 0} = ⋁{x ∈ L± | x ≤ α±} = α±.
For the latter, take a d-frame homomorphism P : WdL → 2×2. By Lemma 4.4.11,
PαP

and P agree on generators and, therefore, must be equal. □

4.4.13 Proposition. The functors W̃ and Σd ◦Wd are naturally isomorphic.

Proof. We need to show that the bijection from Proposition 4.4.12 is a bihomeomor-
phism and that it is natural in L. Bicontinuity follows from Lemma 4.4.11 as, for
any x ∈ L+ and homomorphism P : Wd(L)→ 2×2,

P ∈Σ+(2x) iff P(2x) = 1 iff (x, αP
−) ∈ totL iff αP ∈ 2×x, and

P ∈Σ+(3x) iff P(3x) = 1 iff x ̸≤ αP
− ∈ totL iff αP ∈ 3+x.

To check naturality, let h : L → M be a d-frame homomorphism. We have the
diagram

Σd(WdM) W̃(M)

Σd(WdL) W̃(L)

α(−)

Σd(Wdh) W̃(h)

α(−)

For a homomorphism P : Wd(M)→ 2×2, compute

α(−) ·Σd(Wdh)(P) = α(−)(P ◦Wdh) = αP◦Wdh =
⨆
{β | (P ◦Wdh)(3β+, 3β−) = ⊥}

and, because (P ◦Wdh)(3β+, 3β−) = P(3h+(β+), 3h−(β−)), we see that α(−) ·
Σd(Wdh)(P) is equal to W̃(αP) = h•(αP) =

⨆{β | h(β) ⊑ αP} (recall that h(β) ⊑ αP

iff P±(3β±) = 0). □
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The composition of the isomorphisms in Propositions 4.4.7 and 4.4.13 proves the
anticipated result:

4.4.14 Theorem.
The functors W ◦ Σd and Σd ◦Wd are naturally isomorphic.

4.4.15 Remark. The bihomeomorphisms from the natural isomorphism in Theo-
rem 4.4.14 can be written explicitly in a single formula. The bihomeomorphism
between W̃(L) and W(Σd(L)) is witnessed by the map (U+, U−) ↦→ (ΣdL) \
(U+ ∪ U−). Because Ωd(Σd(L)) ∼= L, every τ±-open in ΣdL (e.g. U±) is of the
form Σ±(a) = {p : L→ 2×2 | p±(a) = 1}. Therefore, the formula above reduces to

(a+, a−) ↦→ {p : L→ 2×2 | p /∈ Σ+(a+) and p /∈ Σ−(a−)} = {p | p(a+, a−) = ⊥}.

Next, we pre-compose this with the bihomeomorphism ΣdWd(L)
∼=−→ W̃(L) (Propo-

sition 4.4.12) and obtain

P ↦→ {p : L→ 2×2 | p(αP) = ⊥}

as the bihomeomorphism ΣdWd(L)
∼=−→WΣd(L).

4.4.16 An adaptation to W2 and W3. Since the points of W2×(X) for a d-compact
d-regular bispace X are in a bijection with τ−-closed subsets of X (Proposition 4.1.33),
W2×(Σd(L)), for a d-compact d-regular d-frame L, has an immediate point-free
description. Namely, it is bihomeomorphic to the bispace (L−, Ṽ2(L+), Ṽ3(L−))
where Ṽ2(L+) is generated by 2×x’s and Ṽ3(L−) by 3+y’s, for x ∈ L+ and y ∈ L−,
such that

2×x = {a ∈ L− | (x, a) ∈ tot} and 3+y = {a ∈ L− | y ̸≤ a}.

Furthermore, Σd(W2(L)) is also bihomeomorphic to this bispace via the bihomeo-
morphism

P : W2(L)→ 2×2 ↦−→ aP def≡
⋁
{b | P−(3b) = 0}.

Consequently, W2×(Σd(L)) ∼= Σd(W2(L)) and, correspondingly, also W3+(Σd(L))
∼= Σd(W3(L)).

Moreover, by a general diagram chasing argument (Proposition A.3.16):

4.4.17 Corollary.

1. Coalg(W2×)op ∼= Alg(W2),

2. Coalg(W3+)op ∼= Alg(W3) and

3. Coalg(W)op ∼= Alg(Wd).
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(The base category for coalgebras and algebras is the category of d-compact d-regular
bispaces and d-frames, respectively.)

4.4.18 Theorem.
For every W ∈ {W2×, W3+, W}, W restricted to the category of d-compact d-regular
(T0) bispaces has a final coalgebra.

4.5 W, Wd and other Vietoris-like functors

In Sections 2.5, 2.6 and 2.7 we showed that three famous dualities embed into the
duality of d-compact d-regular bispaces and d-frames. Concretely, we have com-
mutative diagrams of categories

biKRegop d-KReg
∼=

Xop A
∼=

Iop J (4.5.1)

where Xop ∼= A is either Stone duality, duality of compact regular spaces and
frames, or Priestley duality.

In all of those instances, we also have a pair of Vietoris(-like) functors V : X →X

and M : A → A such that M ◦ Q ∼= Q ◦ V (or, equivalently, S ◦M ∼= V ◦ S) where
Q : X ⇄ A : S are the (contravariant) functors witnessing the duality Xop ∼= A.
Concrete instantiations of the functors V, M, Q and S with respect to X and A are
summarised in the following table:

X A V M Q S M ◦Q ∼= Q ◦V
Stone Bool V M Clp Ult Fact 4.3.10 + VFr ◦Ω ∼= Ω ◦V

KRegSp KRegFrm V VFr Ω Σ Proposition 4.6 in [Joh82]
Pries DLat VP M Clp⪯ spec⪯ [Pri70]

biKReg d-KReg W Wd Ωd Σd Theorem 4.4.14

Table 4.1

The only previously not mentioned functor in Table 4.1 is the Vietoris functor for
Priestley spaces VP : Pries→ Pries [Pal04; Pal03]

VP : (X, τ,⪯) ↦−→ (Kc(X), V(τ), ⪯EM)

Frederik Lauridsen proved in his thesis [Lau15, Proposition 10 and 11] that bi ◦VP
∼=

W ◦ bi. Moreover, in Section 4.3.4 we also showed that Wd ◦ IF ∼= IF ◦M.
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In fact, similar equations hold for the other constructions as well. That is, for the
diagram (4.5.1) extended to

biKRegop d-KReg
∼=

Xop A
∼=

Iop J

MV

W Wd

we have that I ◦ V ∼= W ◦ I and J ◦M ∼= Wd ◦ J for all instantiations mentioned in
Table 4.1. We will show that this is indeed the case for the remaining two cases, for
the Stone and frame dualities, in Propositions 4.5.1 and 4.5.3. Moreover, we only
prove the latter equation as the former one follows from it by a simple diagram
chasing:

IV ∼= ISMQ ∼= Σd JMQ ∼= ΣdWd JQ ∼= ΣdWdΩd I ∼= WI

This justifies that we can think of W and Wd as generalisations of all the other Vietoris
constructions mentioned in Table 4.1.

Now, we show that the embedding J : KRegFrm ↪→ d-KReg, dubbed (−)▷◁
from Section 2.5, transforms VFr into Wd:

4.5.1 Proposition. Let L be a compact regular frame. Then, Wd(L▷◁) = (VFr L)▷◁.

Proof. We see from the definition that the frame components of both d-frames are
identical. We will show that also their consistency and totality relations are the
same. Let a∧ b = 0 or, in other words, (a, b) ∈ conL. Then, the generator (2a, 3b) of
conWd(L▷◁) is also an element of conVFr L as 2a ∧3b ≤ 3(a ∧ b) = 30 = 0. Similarly,
whenever a ∨ b = 1, the generator (2a, 3b) of totWd(L▷◁) is also in totVFr L as 2a ∨
3b ≥ 2(a ∨ b) = 21 = 1.

For the other inclusions, first, let (U, V) ∈ conVFr L. In Remark 3.2.9 we under-
stood that this is equivalent to the statement:

∀α ∈ ↓U ∩ B and ∀β ∈ ↓V ∩ B. (α, β) ∈ conVFr L

where B ⊆ VFr L is the basis of VFr L from Section 4.2.1 (and so U =
⋁
(↓U ∩ B)

and V =
⋁
(↓V ∩ B)). Namely, such α is of the form 2a ∧ ⋀n

i=1 3bi and β is of the
form 2c ∧ ⋀m

j=1 3dj for some a, b1, . . . , bn, c, d1, . . . , dm from L. And, (α, β) ∈ conVFr L
translates as α ∧ β ≤ 0 = 30. By Proposition 4.2.6, this must be because either
a ∧ c ∧ bi ≤ 0, for some i, or a ∧ c ∧ dj ≤ 0, for some j. W.l.o.g. assume the former.
Then, (3(a∧ b), 2c) ∈ conWd(L▷◁) and the same is true for (α, β) since α ≤ 2a∧3b ≤
3(a ∧ b) and β ≤ 2c.
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Finally, let (U, V) ∈ totVFr L. Since VFr L is compact ([Joh82]), there is a finite
F ⊆fin B and G ⊆fin B such that (

⋁
F,

⋁
G) ⊑ (U, V) and (

⋁
F,

⋁
G) ∈ totVFr L (we

again use that U =
⋁
(↓U ∩ B) and V =

⋁
(↓V ∩ B)). Next, we express

⋁
F and

⋁
G

as a combination of generators of VFr L in their conjunctive-normal form, i.e.

⋁
F =

n⋀
i=1

αi for some αi = 3ai ∨
mi⋁

j=1

2bi,j and

⋁
G =

n′⋀
p=1

βp for some βp = 3cp ∨
m′p⋁

q=1

2dp,q.

Since 2̃1 = 1VFr L ≤ (
⋀

i αi) ∨ (
⋀

p βp) =
⋀

i,p(αi ∨ βp) ≤ αi ∨ βp (∀i, p), by Propo-
sition 4.2.6, we have, for every i and p, either a j such that 1 ≤ ai ∨ cp ∨ bi,j or a q
such that 1 ≤ ai ∨ cp ∨ dp,q. W.l.o.g. assume the former. Then, because (ai ∨ bi,j, cp) ∈
totL▷◁ , (2(ai ∨ bi,j), 3cp) ∈ totWd(L▷◁) and, consequently, also (αi, βp) ∈ totWd(L▷◁) as
2(ai ∨ bi,j) ≤ 2(ai ∨ bi,j) ≤ αi and 3cp ≤ βp.

We have proved that, for all i and p, (αi, βp) is total in Wd(L▷◁). From this it
follows that also (

⋁
F,

⋁
G) is since, by (tot-∧· ), (⋀i αi, βp) is total, for all p’s, and

then, by (tot-∨· ), also (
⋀

i αi,
⋀

p βp) ∈ totWd(L▷◁). Therefore, (U, V) ∈ totWd(L▷◁) as the
totality relation of Wd(L▷◁) is upwards closed. □

4.5.2 Remark. This time, there is no hope for the same to be true for the other
two Vietoris constructions. Namely, we will not get that (V2L)▷◁ ∼= W2(L▷◁) or
(V3L)▷◁ ∼= W3(L▷◁) as already their frame components differ. However, we will see
in Chapter 5 that (V2L)bi ∼= W2(L∧) and (V3L)bi ∼= W3(L∧) where (−)bi and (−)∧

are also defined therein.

Next, we prove that the embedding J : Bool ↪→ d-KReg also transforms one
Vietoris construction into the other. Moreover, since J is equivalently expressible
as IF and Idl(−)▷◁ (Section 2.7) we show that in both cases we get the same result.

4.5.3 Proposition. Let B be a Boolean algebra. Then,

1. M(B) is a Boolean algebra which can be equivalently presented as

BA
⟨
2̃a : a ∈ B

⏐⏐⏐ 2̃(a ∧ b) = 2̃a ∧ 2̃b, 2̃1 = 1
⟩

2. IF (MB) ∼= Wd(IF (B)) and Idl(MB)▷◁ ∼= Wd(Idl(B)▷◁).

Proof. (1) 2̃a ∧ 3̃(¬a) ≤ 3̃(a ∧ ¬a) = 3̃0 = 0 and 2̃a ∨ 3̃(¬a)) ≥ 2̃(a ∨ ¬a) =

2̃1 = 1. We proved that each generator 2̃a of M(B) has a complement and a similar
argument would show the same for 3̃a’s. Since each element of M(B) is a (∧,∨)-
combination of 2̃a’s and 3̃a’s, M(B) is a Boolean algebra. Moreover, 3̃a = ¬2̃(¬a)
giving that generators 3̃a are expressible from 2̃a’s. For details see [Abr05b].



4.5. W, Wd and other Vietoris-like functors 139

(2) The first natural equivalence is the same as for distributive lattices and the
second follows from Fact 4.3.10 and Proposition 4.5.1: Idl(MB)▷◁ ∼= (VFr Idl(B))▷◁ ∼=
Wd(Idl(B)▷◁). □

For the sake of completeness we also give a direct proof of Lauridsen’s result but
in a bit more general setting:

4.5.4 Proposition. For every compact partially ordered space X = (X, τ,⪯),

bi(VP(X)) = W(bi(X))

where VP is an endofunctor on the category of compact partially ordered spaces defined
exactly the same way as Vietoris endofunctor for Priestley spaces from Table 4.1.

Proof. We show VP(X) = bi−1(W(bi(X))), which is equivalent by Theorem 2.2.5.
Recall that the associated order≤ of a bispace bi(X) is the same as⪯. In Section 4.1.5
we showed that the associated order of W(bi(X)) is the Egli-Milner lifting of ≤,
therefore, it is equivalent to ⪯EM.

Moreover, also VFrτ = VFr τ+ ∨VFr τ−. To right-to-left inclusion is trivial and the
reverse inclusion is true because W(bi(X)) is order-separated and, as we showed
in Section 4.1.5, the assignment S+ = VFrτ+ and S− = VFrτ− satisfies the conditions
of Lemma 2.2.1. □

4.5.1 Applications to modal and coalgebraic logics

Boolean algebras are often seen as algebraic models or an algebraization of propo-
sitional logic. Stone spaces then, via Stone duality, provide a topological semantics
for propositional logic. This is important because Stone spaces are defined purely
in topological terms as opposed to Boolean algebras which can be seen as a transla-
tion of the syntactic description of propositional logic to universal algebra. In other
words, this demonstrates how fundamental propositional logic is because it has a
natural description in a seemingly unrelated discipline of mathematics.

Jónnson and Tarski extended Stone duality to the duality of so called descrip-
tive general frames and Boolean algebras with (modal) operators [JT51; BRV01]. Because
Boolean algebras with operators are sound and complete with respect to finitary
modal logics, this way Jónsson-Tarski duality demonstrates that the same is true for
the category of descriptive general frames. Further, Ghilardi observed in [Ghi95]
that the category of Boolean algebras with operators is isomorphic to the category of
M-algebras on Bool and, a bit later, it was showed by Kupke, Kurz and Venema
that the category of descriptive general frames is isomorphic to the category of VFr-
coalgebras on Stone [KKV04]5. In other words, VFr-coalgebras and M-algebras pro-
vide an adequate semantics for finitary modal logic. Again, this suggests that modal

5In the paper, Kupke et al. attribute this result to Abramsky in [Abr05a], although, [KKV04] is
clearly the first paper which spells this categorical fact in full details.
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logic is somehow fundamental since it admits a very natural and non-syntactic de-
scription by some independently studied topological objects.

The link between the model theory of modal logic and VFr-coalgebras goes even
further. For example, the canonical model of modal logic is equivalently repre-
sented as the final coalgebra of VFr + C on Stone (here C represents the set of con-
stants) [BK07]. In categorical terms, the connection between propositional logic and
(finitary) modal logic is expressed as the following diagram of categories (where U
and U′ are the obvious forgetful functors):

Stoneop Bool∼=

Clp

Ult

Coalg(V)op Alg(M)∼=

Uop U′

Vop M

For a more complete account of the history of the subject we refer the reader to
[VV14; BK07], [Vos10] and [Rob86].

4.5.1.1 Positive modal logic

Distributive lattices are an algebraization of the negation free fragment of proposi-
tional logic. Therefore, all of the topological duals we talked about earlier, that is
Priestley spaces, spectral spaces or Priestley bispaces, provide topological seman-
tics for positive propositional logic. A simple adaptation of Ghilardi’s observation
[Ghi95] gives that M-algebras on DLat provide an algebraic semantics for positive
modal logic [Dun95; Jan02]. In the following we list the appropriate constructions
on the categories of spaces which give topological semantics for positive modal log-
ics:

1. A combination of results by Celani and Jansana [Cel99] and Palmigiano [Pal03;
Pal04] shows that Coalg(VP)op ∼= Alg(M) making positive modal logic sound
and complete with respect to VP-coalgebras on the category of Priestley spaces.

2. Johnstone showed in [Joh82; Joh85] that VFr is an endofunctor on the category
of spectral frames, which are exactly the frame theoretic duals of spectral spaces
(see Chapter 5). Moreover, the fact that Σ ◦VFr

∼= V ◦Σ for the spectral spaces–
spectral frames part of the duality is also presented therein. Consequently,
for a distributive lattice D, specs(MD) ∼= Σ(Idl(MD)) ∼= Σ(VFr(Idl(D))) ∼=
V(Σ(Idl(D))) ∼= V(specsD) where specs is the functor assigning to a distribu-
tive lattice its spectral space. This proves that positive modal logic is sound
and complete with respect to V-coalgebras on the category of spectral spaces.
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3. Lastly, Frederik Lauridsen proved in his thesis that VP-coalgebras on Priestley
spaces and W-coalgebras on biPries are isomorphic categories [Lau15] which
shows that positive modal logic is sound and complete with respect to W-
coalgebras on Priestley bispaces.

All three items in the list are consequences of the general theory that we have
developed in this text. In particular, a combination of Corollaries 4.3.14 and 4.4.17
yields Coalg(W)op ∼= Alg(Wd) ∼= Alg(M) for Wd restricted to d-Pries and W re-
stricted to biPries. The picture of categories is as follows (with U, U′ and U′′ being
the obvious forgetful functors):

biPriesop d-Pries∼=

Ωd

Σd

DLat∼=

Clpd

IF

Coalg(W)op Alg(Wd)∼= Alg(M)∼=

Uop U′ U′′

Wop

Wd

M

This proves that not only Wd-algebras on d-Pries but also W-coalgebras on
Priestley bispaces are adequate models of positive modal logic and, by Proposi-
tion 4.5.4, the same follows for VP-coalgebras on Priestley spaces. Likewise, Propo-
sition 5.2.14 together with Theorem 5.4.1 (which we prove in Chapter 5) imply that
also V-coalgebras on spectral spaces provide an adequate semantics for positive
modal logic.

In the following proposition we compute the components of the natural isomor-
phism W ◦ specbi

∼= specbi ◦M explicitly.

4.5.5 Proposition. The map specbi(MD)→W(specbi(D)) defined as

P : MD → 2 ↦−→ {h : D → 2 | h[IP] = {0} and h[FP] = {1}}

where IP = {d ∈ D | P(3̃d) = 0} and FP = {d ∈ D | P(2̃d) = 1}, determines the
bihomeomorphism W ◦ specbi

∼= specbi ◦M. Moreover, its inverse is computed by the
formula

K ↦−→ PK : MD → 2 defined as
PK(2̃a) = 1 iff a ∈ FK

PK(3̃a) = 0 iff a ∈ IK

where IK = {d ∈ D | ∀h ∈ K. h(a) = 0} and FK = {d ∈ D | ∀h ∈ K. h(a) = 1}.

Proof. Let us first establish how the bihomeomorphism specbi(E)→ Σd(IF (E)), for
a lattice E, looks like (recall Proposition 2.6.18). It sends a lattice homomorphism
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p : E→ 2 to a d-frame homomorphism p̂ : IF (E)→ 2×2, uniquely determined by

p̂+(I) = 1 iff p ∈ U+(I) and p̂−(F) = 1 iff p ∈ U−(F)

where U+(I) = {p : E→ 2 | 1 ∈ p[I]} and U−(F) = {p : E→ 2 | 0 ∈ p[F]}.
Let P : MD → 2 be a lattice homomorphism and consider the composition of

bihomeomorphisms:

specbi(MD) Σd(IF (MD)) Σd(Wd(IF (D))) W(Σd(IF (D))) W(specbi(D))
1 2 3 4

(The middle two maps are from Theorems 4.3.12 and 4.4.14.) We compute how P
gets send to W(specbi(D)) in a step-by-step application of those maps:

1 : P is send to P̂ : IF (MD)→ 2×2.

2 : P̂ gets precomposed with the isomorphism l : Wd(IF (D)) → IF (MD) from
Section 4.3.4. In the following, we need to know how P̂ · l behaves in the
following two cases, for an a ∈ D:

P̂+(l+(3↓a)) = P̂+(↓3̃a) = 0 iff P(3̃a) = 0

P̂−(l−(3↑a)) = P̂+(↑2̃a) = 0 iff P(2̃a) = 1

3 : P̂ · l is send to K0
def≡ {q : IF (D)→ 2×2 | q(αP̂·l) = ⊥}. Moreover,

αP̂·l =
⨆
{(I, F) | P̂(l(3I, 3F)) = ⊥} =

⨆
{(↓a, ↑b) | P̂(l(3↓a, 3↑b)) = ⊥}

which means that αP̂·l = (IP, FP).

4 : K0 is sent to the convex closure of {h : D → 2 | h[IP] = {0} and h[FP] = {1}}.
However, this set is easily seen to be convex.

For the inverse map, let K be a convex d-compact subset of specbi(D). It is im-
mediate to verify that a P : MD → 2 is mapped to K if and only if P = PK. □

4.5.6 Remark. With the formula for the natural isomorphism from Proposition 4.5.5
one can prove W ◦ specbi

∼= specbi ◦M directly and without the detour to d-frames.
In order to do that, it is useful to notice that the set Kc(IF (D)) can be equiva-
lently expressed in simpler terms. Namely, for (I, F) ∈ Idl(D)×Filt(D), (I, F) is in
Kc(IF (D)) if and only if it satisfies:

(A+) ∀i ∈ I ∀y /∈ F. i ∨ y /∈ F (A−) ∀x /∈ I ∀ f ∈ F. x ∧ f /∈ I

4.5.7 Remark. By a similar argument we get that the adequate algebraic semantics
for the 2 and 3 fragments of positive modal logic are the M2 and M3-algebras and
consequently also W2× and W3+-coalgebras on Priestley bispaces, respectively.

This was explored in the context of spectral spaces by Bonsangue, Kurz and Re-
witzky in [BKR07].
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4.5.1.2 Jónnson-Tarski-like models of positive modal logic

Coalgebras of VP on the category of Priestley spaces are known to be in a cor-
respondence with so called K+-spaces. These are the tuples ⟨X,≤, R,A⟩ satisfy-
ing a list of conditions such that ⟨X,≤,A⟩ uniquely determines a Priestley space.
Moreover, ≤ and R are required to be compatible, to make sure that the mapping
x ↦→ {y | (x, y) ∈ R} is monotone and that the image of every point is convex and
compact (see [Pal04] for details).

When starting from W-coalgebras on biPries as models of positive modal logic,
an alternative description can be given. An advantage of this, when compared to
K+-spaces (or VP-coalgebras), is that the result is much more combinatorial and
closer to the original Jónsson-Tarski duality.

4.5.8 Proposition. Bicontinuous maps X → W(X) in biPries are in a bijective
correspondence with the triples ⟨X, R,A+⟩, where R ⊆ X×X is a relation and A+ is
a set of subsets of X, such that

(JT-1) A+ is closed under finite unions and intersections,

(JT-2) A+ is closed under 2(−) and 3(−).

(JT-3) x ̸= y in X iff x ∈ A ̸∋ y for some A ∈ A+ ∪A−,

(JT-4) if ∀A ∈ A+ ∪A−, y ∈ A implies x ∈ 3A, then (x, y) ∈ R,

(JT-5) for any M ⊆ A+ ∪A− with finite intersection property,
⋂
M ̸= ∅,

where A− = {X \ A | A ∈ A+} and, for a subset M ⊆ X,

2M = {x ∈ X | ∀y. (x, y) ∈ R implies y ∈ M},
3M = {x ∈ X | ∃y s.t. (x, y) ∈ R and y ∈ M}.

Proof (inspired by [KKV04]). First, we notice that, for a fixed set X, Priestley bispaces
(X, τ+, τ−) and the pairs ⟨X,A+⟩, which satisfy (JT-1), (JT-3) and (JT-5), are in a
bijective correspondence. In one direction, define A+ to be the set of τ+-open
τ−-closed subsets of X and, conversely, define XA to be the bispace (X, τA

+ , τA
− ),

where τA
± is the smallest topology containing A±. It is immediate that A+ obtained

from a bispace satisfies (JT-1) (by (con-∨· ,∧· ) and (tot-∨· ,∧· )) and that XA is always
d-zero-dimensional. Moreover, d-compactness and (JT-5) are equivalent notions un-
der those translations. A combination of T0 and being d-zero-dimensional implies
that A+ obtained from a bispace satisfies (JT-3). Conversely, if x ̸= y in a bispace
XA , then there is some A ∈ A+ such that x ∈ A ̸∋ y or x ̸∈ A ∋ y by (JT-3).
Therefore, the specialisation order ≤+ of τA

+ is antisymmetric. Moreover, ≤+ = ≥−
also makes ≤+ ∩ ≥− antisymmetric. Finally, it is easy to see that the translations
(X, τ+, τ−)↔ ⟨X,A+⟩ are inverse to each other.
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Let us fix a Priestley bispace (X, τ+, τ−) and the corresponding ⟨X,A+⟩. Observe
that a bicontinuous map

ξ : (X, τA
+ , τA

− )→W(X, τA
+ , τA

− )

determines a relation R ⊆ X×X by (x, y) ∈ R iff y ∈ ξ(x), which satisfies (JT-4).
Indeed, if (x, y) ̸∈ R then, because ξ(x) is d-compact convex, either y /∈ ↓ξ(x) or
y /∈ ↑ξ(x). W.l.o.g. assume the former. By Lemma 4.1.29, there is an U ∈ τ+ such
that y ∈ U and U ∩ ξ(x) = ∅. Because X is d-zero-dimensional, y ∈ A ⊆ U for
some τ+-open τ−-closed A and, also, x /∈ 3A = {x | ξ(x) ∩ A ̸= ∅}.

Conversely, assume that R ⊆ X×X satisfies (JT-4). We show that the set ξ(x)
def≡

{y | (x, y) ∈ R} is a d-compact convex subset of XA , for every x ∈ X. If y /∈ ξ(x), for
some y, then by (JT-4) there is some Ay ∈ A+ ∪A− such that y ∈ Ay and x /∈ 3Ay,
where the latter is equivalent to ξ(x) ∩ Ay = ∅. Hence ξ(x) is in the complement of
U+ ∪U− for some U± ∈ τA

± . Because XA is a Priestley bispace, ξ(x) is d-compact
and convex.

Before we show that ξ is bicontinuous iff (JT-2) holds for ⟨X, R,A+⟩, let us prove
that (JT-2) is equivalent to its minus-version: A− is closed under 2(−) and 3(−).
This is because, for an A ∈ A+,

2(X \ A) = {x | ξ(x) ⊆ (X \ A)} = {x | ξ(x) ∩ A = ∅} = X \3A, and

3(X \ A) = {x | ξ(x) ∩ (X \ A) ̸= ∅} = {x | ξ(x) ̸⊆ A} = X \2A.

Further, observe that VτA
+ is generated from the elements 2×A and 3+A, for A ∈

A+. Therefore, it is enough to check continuity for such opens. By a simple compu-
tation we have that

ξ−1[2×A] = {x | ξ(x) ⊆ A} = 2A ξ−1[3+(X \ A)] = 3(X \ A) = X \2A

ξ−1[3+A] = {x | ξ(x) ∩ A ̸= ∅} = 3A ξ−1[2×(X \ A)] = 2(X \ A) = X \3A

Therefore, if (JT-2) holds, ξ is bicontinuous. Conversely, if ξ is bicontinuous, 2A has
to be τ+-open and X \ 2A and τ−-open. Then, 2A is τ+-open and τ−-closed, i.e.
2A ∈ A+. Similarly, we see that 3A ∈ A+. □

4.5.9 Corollary. Positive modal logic is sound and complete with respect to the class
of triples ⟨X, R,A+⟩ satisfying the conditions (JT-1), . . . , (JT-5) of Proposition 4.5.8.

4.5.10 Remark. A remarkable feature of this representation is that it brings us closer
to Canonical (Kripke) Models as defined by Dunn in his original paper [Dun95].
When proving completeness he needed to consider sets of theories and counter-theories.
In our setting, those are some collections of elements in A+ and in A− or, more
specifically, ideals of MD and filters of MD (for some lattice D). Also, a theory
and a counter-theory is disjoint in Dunn’s terms iff the corresponding ideal and fil-
ter are consistent in IF (MD). There is also an apparent similarity between maxi-
mally disjoint pairs representing points of Dunn’s Canonical Model and points of our
specbi(MD) ∼= Σd(IF (MD)).



4.5. W, Wd and other Vietoris-like functors 145

4.5.1.3 Coalgebraic logic

In the recent years some people have noticed that the fact that certain modal log-
ics have semantics given by a class of coalgebras is not just an interesting fact but
there is actually more to it. Namely, it is now widely accepted that the same way
equational logic is closely connected to universal algebra, modal logics are closely
connected to coalgebras [Kur01; Cir+09].

Because of the generality of our approach, it is now possible to set up modal
logics such that the base category for coalgebras would be biKReg, a much broader
category than Priestley (bi)spaces or even compact regular spaces. Moreover, since
d-KReg is complete and cocomplete (Section 3.3.2) also biKReg is. Thanks to this,
all Vietoris polynomial functors, i.e. functors recursively given by the grammar

T ::= Id | X | T1 + T2 | ∏
a∈A

Ta |WT, (where A ∈ Set and X ∈ biKReg)

when restricted to the category of d-compact d-regular bispaces are endofunctors.
(Recall that products and finite coproducts of d-compact d-regular bispaces agree
with products and finite coproducts in biTop thanks to Corollary 3.3.10.)

Furthermore, every such Vietoris polynomial endofunctor T has a “mate” endo-
functor on d-KReg associated to it. Namely, there is a Vietoris copolynomial endofunc-
tor on d-KReg recursively given by the following grammar

L ::= Id | Ωd(X) | L1 × L2 |
⨁
a∈A

La |WdL, (where A ∈ Set and X ∈ biKReg)

such that

Coalg(T)op ∼= Alg(L). (4.5.2)

As a result, we have set up all the basic machinery of the framework of coalge-
braic logics [BK05; Kli07; KKV04; Jac01]. In that setting the category Coalg(T) plays
the role of semantics and one can think of T-coalgebras as if those were “T-shaped”
Kripke frames or, alternatively, step based models of computation (for example, au-
tomata). The category Alg(L) are algebraic presentations of a geometric (intuitionis-
tic) modal logic (because of the equivalence with stably compact frames, see Chap-
ter 5) or a geometric paraconsistent modal logic (see Chapter 6). The equivalence of
categories in (4.5.2) then guarantees that such a logic will be sound, complete, and
expressive with respect to T-coalgebras [BK06; KKP04].
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5
Stably compact spaces

In many ways, stably compact spaces are the T0 analogues of compact Hausdorff
spaces. They arise naturally in the theory of computation where most spaces are
not even T1. The key feature of stably compact spaces is that compact sets enjoy
essentially the same properties as compact sets of compact Hausdorff spaces.

The purpose of this chapter is to highlight some of the applications of the the-
ory of bitopological spaces and d-frames to the theory of stably compact spaces.
We believe that our bitopological reorganisation of the material leads to shorter and
arguably more transparent proofs of some of the known results. In Section 5.4 we
reuse results from Chapter 4 and as a by-product get new results concerning pow-
erspace constructions of stably compact frames (Theorem 5.4.2).

Unless stated otherwise, the author does not claim novelty of the results pre-
sented in this chapter. Standard literature of stably compact spaces includes [Jun04],
[JS96], [Law10], [Gou10], [Gie+80], and many more. For other sources treating sta-
bly compact spaces bitopologically see [JM06] and [Law10].

Convention. In this chapter, we assume that every topological space (X, τ)

automatically comes equipped with a preorder ≤τ (or simply just ≤) defined
as the specialisation preorder of τ. Note that this preorder is a partial order iff
X is T0.

Further, upsets in the specialisation orders are traditionally called saturated
sets. We stick to this terminology even though it conflicts with what we call the
elements of a quotient of a frame (from Section 3.1.2), but these never occur in
this chapter.

147
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5.1 Frame duality for stably compact spaces

In this section we recapitulate the well known duality between stably compact spaces
and stably compact frames. First, we recall a few basic definitions and facts.

5.1.1 Definition.

1. A space X is sober if X ∼= Σ(L) for some frame L.

2. A space X is locally compact if for every U ∈ τ and x ∈ U there exists a
compact saturated K ⊆ X such that x ∈ K◦ ⊆ K ⊆ U where K◦ is the
interior of K.

3. A frame L is locally compact (or continuous) if x =
⋁{a ∈ L | a ≪ x} for

every x ∈ L, where≪ is the way below relation on L defined as

a≪ x
def≡ ∀D directed s.t. x ≤

⋁↑ D =⇒ a ≤ d for some d ∈ D

5.1.2 Observation. If L is locally compact then≪ interpolates and has the following
property:

a≪
⋁↑ D =⇒ a≪ d for some d ∈ D

Proof. To show that a ≪ b interpolates we use local compactness twice. Since b =⋁↑{x | x ≪ b} = ⋁↑{y | y≪ x ≪ b}, a ≤ y≪ x ≪ b for some x and y.
Next, let a≪ ⋁↑ D. Interpolate a≪ x ≪ ⋁↑ D and, by definition, a≪ x ≤ d for

some d ∈ D. □

A result that connects the topological and frame-theoretic definitions stated above
is the famous Hofmann-Lawson Theorem:

5.1.3 Fact ([HL78]). The restriction of adjoint functors Σ ⊣ Ω : Top ⇄ Frm to
the categories of sober locally compact spaces and locally compact frames, respectively,
constitutes a dual equivalence of categories.

For a more recent proof see Theorem 6.4.3 in [PP12]. In the core of the argument
behind the Hofmann-Lawson Theorem is the Hofmann-Mislove Theorem:

5.1.4 Fact ([HM81; KP94]). Let (X, τ) be a sober space. There is a bijection between
Scott-open filters1of the frame τ and compact saturated sets of X, as defined by the pair
of antitone maps

S ⊆ τ ↦→
⋂

S and K ⊆ X ↦→ {U ∈ τ | K ⊆ U}

Not only are Scott-open filters essential for the duality of locally compact spaces
and frames, their importance spans throughout this whole chapter. For this reason

1For the definition of Scott-open filters see Lemma 2.4.2.
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we explore some of the basic properties of the poset L∧ which consists of all Scott-
open filters of a frame L ordered by set inclusion:

5.1.5 Lemma. Let L be a frame.

1. L∧ is closed under directed joins and finite meets in Filt(L) or, in other words,
L∧ is a sub-preframe of Filt(L).

2. If L is locally compact: a≪ b iff there exists a Scott-open filter S ⊆ L such that
b ∈ S ⊆ ↑a.

3. If L is locally compact: L∧ is closed under binary joins in Filt(L) iff L is coher-
ent, that is, whenever a≪ b and a≪ c in L, then also a≪ b ∧ c.

4. If L is compact: {1} is the smallest element of L∧.

Consequently, L∧ is a subframe of Filt(L) if L is compact, locally compact and coher-
ent.

Proof. (1) Let Si be a directed subset of L∧. Then,
⋁↑ D ∈ ⋃↑

i Si if
⋁↑ D ∈ Si for some

i. Since Si is Scott-open, d ∈ Si ⊆
⋃↑

i Si for some d; which proves that
⋃↑

i Si ∈ L∧.
Let S,T ∈ L∧. If

⋁↑ D ∈ S ∩ T, then there are d1, d2 ∈ D such that d1 ∈ S and
d2 ∈ T. From directedness find a d ∈ D such that d1, d2 ≤ d. Then, d ∈ S ∩T. Also,
the empty meet of filters, i.e. L, is Scott-open.

(2) We borrow a proof from [PP12, Lemma 6.3.2]. In Observation 5.1.2 we proved
that≪ interpolates. Therefore, we have a sequence

a≪ . . .≪ xn ≪ xn−1 ≪ . . .≪ x2 ≪ x1 ≪ x0 = b.

Define S = ↑{xi : i ∈ N}. Clearly, b ∈ S ⊆ ↑a. S is a filter as xi ≤ z and xj ≤ z′

implies xmin(i,j) ≤ z∧ z′, and it is Scott-open because, if xi ≤
⋁↑ D, then xi+1 ≤ d for

some d ∈ D. The reverse direction is immediate from local compactness.
(3) Assume that L∧ is closed under binary joins in Filt(L). If a ≪ b and a ≪

c, then by (2) there are S,T ∈ L∧ such that b ∈ S ⊆ ↑a and c ∈ T ⊆ ↑a. By
the assumption S ∨ T = {s ∧ t | s ∈ S, t ∈ T} is Scott-open and contains b ∧ c.
Therefore, by (2) again, a≪ b ∧ c.

For the other direction, first, observe that, for a filter F ⊆ L,

↠F = {x | f ≪ x for some f ∈ F}

is a Scott-open filter. Clearly, ↠F is upwards closed and also Scott-open as
⋁↑ D ∈ ↠F

implies that f ≪ d for some d ∈ D (Observation 5.1.2). By coherence it is also a filter
since, if f ≪ a and g≪ b for some f , g ∈ F, then also f ∧ g≪ a ∧ b and f ∧ g ∈ F.

Next, let S,T ∈ L∧. We show that their join in Filt(L) is Scott-open by showing
that S ∨T = ↠(S ∨T). Indeed, let s ∈ S and t ∈ T. By local compactness of L, there
are x ≪ s and y ≪ t such that x ∈ S and y ∈ T. Then, by coherence, x ∧ y ≪ s ∧ t
and so s ∧ t ∈ ↠(S ∨T). The other inclusion is obvious.
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(4) Because 1≪ 1, the smallest filter {1} is Scott-open. □

5.1.6 Lemma. Let h : L→ M be a frame homomorphism between two locally compact
frames. If h preserves the way-below relation, i.e. h(x)≪ h(y) whenever x ≪ y in L,
then the map

h∧ : L∧ → M∧, S ↦→ ↑h[S]

is a preframe homomorphism.
If, moreover, L and M are coherent and compact, then h∧ is a frame homomor-

phism.

Proof. First, we compute that h∧(S) is a Scott-open filter. Clearly it is a filter. To
verify Scott-openness let

⋁↑ D ∈ ↑h[S]. This means that h(x) ≤ ⋁↑ D for some
x ∈ S. Because L is locally compact and S Scott-open, there is a y ∈ S such that
y ≪ x. Since h preserves the way-below relation, h(y) ≪ h(x) ≤ ⋁↑ D. Therefore,
h(y) ≤ d for some d ∈ D.

Next, we verify that h∧ is a preframe homomorphism. Observe that h∧ preserves
finite meets as ↑h[S ∩T] = ↑h[S] ∩ ↑h[T] and ↑h[L] = M. Also, directed joins are
preserved:

⋃↑
i ↑h[Si] = ↑h[

⋃↑
i Si].

For the “moreover” part, clearly, h∧ preserves the smallest element as ↑h[{1L}] =
↑1 = {1M}. Lastly, we check that it preserves binary joins: ↑h[S ∨T] = ↑{h(s) ∧
h(t) | s ∈ S, t ∈ T} = ↑{x ∧ y | x ∈ h[S], y ∈ h[T]} = {a ∧ b | x ∈ h[S], y ∈
h[T], x ≤ a, y ≤ b} = ↑h[S] ∨ ↑h[T]. □

In the next statement we explore the property which exactly mirrors coherence
of frames in the theory of (sober locally compact) topological spaces.

5.1.7 Proposition.

1. Let U and V be open sets of a sober locally compact space. Then, U ≪ V iff
there exists a compact saturated set K such that U ⊆ K ⊆ V.

2. For A sober locally compact space X: Ω(X) is coherent iff X is (topologically)
coherent, that is, any intersection of two compact saturated sets is compact too.

Proof. (1) For the right-to-left implication, by Fact 5.1.3, S
def≡ {W ∈ τ | K ⊆ W} is a

Scott-open filter such that V ∈ S ⊆ ↑U. Therefore, by (2) of Lemma 5.1.5, U ≪ V.
Conversely, if U ≪ V, then there is a Scott-open filter S ⊆ τ such that V ∈ S ⊆ ↑U.
Then, for its associated saturated set K

def≡ ⋂
S, U ⊆ K ⊆ V.

(2) For “⇒” direction, let U ≪ V and U ≪ W. From (2) there are two compact
saturated K and Q such that U ⊆ K ⊆ V and U ⊆ Q ⊆ W. Because K ∩ Q is
compact, U ⊆ K ∩Q ⊆ V ∩W implies U ≪ V ∩W.

For the reverse direction, let K and H be two compact saturated subsets of X. Set
S = {U ∈ τ | K ⊆ U} and T = {V ∈ τ | H ⊆ V} be the Scott-open filters associated
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to K and H, respectively. Observe that K ∩ H = (
⋂
S) ∩ (

⋂
T) =

⋂
(S ∨ T) and

by (3) of Lemma 5.1.5, S ∨T is a Scott-open filter. Therefore, by Hofmann-Mislove
Theorem,

⋂
(S ∨T) is compact. □

This proposition establishes that the dual equivalence between sober locally com-
pact spaces and locally compact frames restricts to the duality of those which are
coherent (in their respective categories). Moreover, this duality also restricts to the
subcategories which consist of important classes of morphisms:

5.1.8 Lemma. For a continuous map f : (X, τ)→ (Y, σ) between sober locally com-
pact spaces, the following are equivalent:

1. f is a perfect map, that is, f−1[K] is compact for every compact saturated K ⊆
Y, and

2. Ω( f ) is a perfect frame homomorphism, that is, Ω( f )(U)≪ Ω( f )(V) when-
ever U ≪ V in Ω(Y).

Proof. (1)⇒ (2) follows from Proposition 5.1.7: U ≪ V in Ω(Y) whenever there is
a compact saturated K such that U ⊆ K ⊆ V. By the assumption f−1[K] is compact
and so f−1[U]≪ f−1[V] because f−1[U] ⊆ f−1[K] ⊆ f−1[V].

Conversely, let K ⊆ Y be compact saturated and let S = {U | K ⊆ U} be the asso-
ciated Scott-open filter by Hofmann-Mislove Theorem. By Lemma 5.1.6, ↑Ω( f )[S]
is also a Scott-open filter and so

⋂
(↑Ω( f )[S]) is compact. Moreover, this compact

set is equal to f−1[K] as
⋂
(↑Ω( f )[S]) =

⋂
(Ω( f )[S]) =

⋂{ f−1[U] | U ∈ S} =

f−1[
⋂
S]. □

5.1.9 Definition.

1. A space is stably compact if it is sober, compact, locally compact and co-
herent.

2. A frame is stably compact if it is compact, locally compact and coherent.

Denote by SCTop the category of stably compact spaces and perfect maps,
and SCFrm the category of stably compact frames and perfect frame homo-
morphisms.

Because a topological space is compact if and only if its Ω-image is compact, it is
a corollary of Proposition 5.1.7 and Lemma 5.1.8 that the equivalence of categories
given by Hofmann-Lawson Theorem restricts further to those two categories of sta-
bly compact spaces and frames:

5.1.10 Corollary. The restriction of adjoint functors Σ ⊣ Ω : Top ⇄ Frm to the cat-
egories SCTop and SCFrm, respectively, constitutes a dual equivalence of categories.
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This result is by no means new, although a direct proof of coherence is not so
easy to find. It first appeared in [Hof84], it is also indirectly proved in [Gie+03] and
Smyth included a proof sketch in [Smy92b].

5.1.11 Remark. Stably compact spaces can be alternatively defined as T0, compact,
locally compact, coherent and well-filtered spaces where the last property means that,
for an open set U and a filtered set of compact saturated sets F (i.e. directed in the
reverse ⊆-order), if

⋂
F ⊆ U, then F ⊆ U for some F ∈ F.

This is equivalent to the previous definition because a locally compact space is
T0 and well-filtered if and only if it is sober [Gie+03, Theorem II-1.21].

5.1.12 Definition.

1. A frame L is spectral2if it is compact, its compact elements are closed un-
der finite meets (i.e. k≪ k and h≪ h implies k∧ h≪ k∧ h) and, for each
x ∈ L, x =

⋁↑{k | k≪ k ≤ x}.

2. A space X is spectral if it is sober and Ω(X) is a spectral frame.

3. By SpecTop denote the categories of spectral spaces and perfect maps
and by and SpecFrm denote the category of spectral frames and perfect
frame homomorphisms.

This is a slightly different definition from the one originally given by Stone in [Sto37b].
He defined spectral spaces as topological spaces which are (when written in modern
parlance),

1. T0, compact, well-filtered, such that
2. their compact open sets are closed under finite intersection and
3. their topology is generated by compact open sets.

Our definition is equivalent to Stone’s because (3) implies local compactness and
then T0 together with well-filteredness is equivalent to sobriety (see Remark 5.1.11).

5.1.13 Proposition. The categories SpecTop and SpecFrm are dually equivalent.

Proof. We use Corollary 5.1.10. It is enough to show that every spectral frame is
stably compact. It is immediate that being spectral implies being compact and lo-
cally compact. For coherence, let x ≪ a and x ≪ b. Since a is a directed join
of compact elements below a, x ≤ k ≪ k ≤ a and, similarly, x ≤ h ≪ h ≤ b
for some compact k and h. Then, because closed elements are closed under meets:
x ≤ k ∧ h≪ k ∧ h ≤ a ∧ b and so x ≪ a ∧ b. □

2The adjective “spectral” for frames is non-standard and it does not exist in the literature. Instead,
it common to use “coherent” (as in [Joh82] and [Vic89]) but that would cause confusion with co-
herence from Lemma 5.1.5. Also, coherent spaces in [JS96] is what we call stably compact spaces
here.
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5.2 Stably compact spaces and bispaces

An important construction in the theory of T0 spaces is the de Groot dual of a space.
Namely, for a space X = (X, τ), define the dual of X to be the space Xd def≡ (X, τd)

where τd is generated from the basis {X \ K | K is compact saturated}3.
The reason why Xd is called the dual space of X is because its specialisation order

is reverse to the one of X:

5.2.1 Observation. For a locally compact space X, x ≤τ y iff x ≥τd y.

Proof. If x ̸≤τ y, then there is an open U such that x ∈ U ̸∋ y. By local compactness,
let K be compact saturated such that x ∈ K◦ ⊆ K ⊆ U. Then, x /∈ X \ K ∋ y.

Conversely, let y ∈ X \ K ̸∋ x for some compact saturated K. From K being
saturated, K =

⋂{U | K ⊆ U} and so y /∈ U for some U ⊇ K. Because x ∈ K, also
x ∈ U whereas y /∈ U. □

If we put our bitopological lenses on, then there is an obvious question we
should ask: Can wan classify the class of bitopological spaces that arise as Xbi def≡
(X, τ, τd) for some stably compact space X? First, we examine what properties do
the bispaces arising this way have:

5.2.2 Lemma. If X is T0 and locally compact, then Xbi = (X, τ, τd) is order-separated.

Proof (inspired by [Gou10]). By the previous observation we know that ≤τ = ≥τd

and so the associated order ≤ def≡ ≤τ ∩≥τd of Xbi is equal to ≤τ; hence, it is a partial
order. Next, if x ̸≤ y, because x ̸≤τ y, there is some U ∈ τ such that x ∈ U ̸∋ y and,
from local compactness, x ∈ K◦ ⊆ K ⊆ U. Therefore, K◦ ∩ (X \ K) = ∅, x ∈ K◦ and
y ∈ X \ K. □

5.2.3 Lemma. If X is compact, coherent and well-filtered, then Xbi is d-compact.

Proof (inspired by [XL17]). We use Alexander Subbasis Lemma. Let
⋃

i Ui ∪
⋃

j(X \
Kj) = X for some {Ui}i∈I ∈ τ and {X \ Kj}j∈J ⊆ τd. If J is empty, then a finite
sub-cover of {Ui}i exists from compactness of X. Otherwise, since

⋃
j(X \ Kj) =

X \⋂j Kj, we have that
⋂

j Kj ⊆
⋃

i Ui. Because X is coherent, every finite intersection
of Kj’s is compact saturated and so

⋂
j Kj is equal to the filtered family of all finite

combinations of intersections of elements in {Kj}i. By, well-filteredness, Kj1 ∩ · · · ∩
Kjn ⊆

⋃
i Ui for some j1, . . . , jn ∈ J. Because Kj1 ∩ · · · ∩ Kjn is compact, Kj1 ∩ · · · ∩

Kjn ⊆ Ui1 ∪ · · · ∪Uim for some i1, . . . , im ∈ I. In other words, Ui1 ∪ · · · ∪Uim ∪ (X \
Kj1) ∪ · · · ∪ (X \ Kjn) = X. □

3This set is a basis because it is closed under finite intersections: (X \ K) ∩ (X \ H) = X \ (K ∪ H)

and K ∪ H is compact saturated whenever K and H are.
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To summarise, we have proved the following (recall Convention from page 28
and Remark 5.1.11):

5.2.4 Proposition. Let X be a stably compact space. Then, Xbi = (X, τ, τd) is a
d-compact d-regular (T0) bispace.

On the other hand, also the reverse direction holds. Every d-compact d-regular
bispace determines a stably compact space as follows:

5.2.5 Proposition. Let X = (X, τ+, τ−) be a d-compact d-regular bispace. Then,
(X, τ+) and (X, τ−) are stably compact spaces.

Proof. We prove that (X, τ+) is a stably compact space according to the alternative
definition from Remark 5.1.11:

1. T0 separation and compactness follow from the fact that the bispace is order-
separated and d-compact.

2. Local compactness: Let x ∈ U for some U ∈ τ+. Then, from d-regularity, x ∈
V ⊆ Vτ− ⊆ U for some V ∈ τ−. Because X is d-compact, Vτ− is d-compact
and, in particular, also τ+-compact.

3. Coherence: Let K and H be τ+-compact. By Lemma 4.1.29, they are also τ−-
closed. Then, K ∩ H is also τ−-closed and, because X is d-compact, K ∩ H is
also τ+-compact.

4. Well-filteredness: If
⋂

i Ki ⊆ U for U ∈ τ+ and a filtered collection of {Ki}i of τ+-
compact saturated sets. We have that U ∪ ⋃

i(X \ Ki) = X. By Lemma 4.1.29
again, we see that each X \ Ki is τ−-open and so, by d-compactness, there is an
i such that U ∪ X \ Ki = X. Consequently, Ki ⊆ U. □

The last two propositions establish mapping between the objects of categories of
stably compact spaces and d-compact d-regular bispaces; namely we have

(X, τ) ↦→ (X, τ, τd) and (X, τ+, τ−) ↦→ (X, τ+)

In the following we show that those mappings are inverse to each other:

5.2.6 Lemma. If X1 = (X, τ+, τ1
−) and X2 = (X, τ+, τ2

−) are two d-compact d-
regular bispaces, then τ1

− = τ2
−.

Proof. Let U ∈ τ1
−. Because X \U is d-compact in X1, it is also τ+-compact in X2.

Moreover, X \ U is upwards closed both in X1 and X2 as their associated orders
agree. Therefore, by Lemma 4.1.29, X \U is τ2

−-closed. Hence, U ∈ τ2
−. The converse

inclusion is the same. □
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This means that each stably compact space uniquely extends to a d-compact d-
regular bispace and each d-compact d-regular bispace can be obtained this way.
Moreover, our bitopological approach immediately implies two known facts about
duals of stably compact spaces:

5.2.7 Corollary. For a stably compact space X,

1. (X, τd) is a stably compact space, and

2. τ = τdd.

3. If X is compact Hausdorff, then τ = τd.

Proof. (1) is a consequence of the fact that d-compactness and d-regularity are sym-
metric axioms. Hence, (X, τd, τ) is d-compact and d-regular by Proposition 5.2.4
and (X, τd) is stably compact by Proposition 5.2.5.

(2) From (1) and Proposition 5.2.4 we know that both (X, τd, τ) and (X, τd, τdd)

are d-compact and d-regular and, therefore, τ is equal to τdd by Lemma 5.2.6.
(3) Since (X, τ, τ) and (X, τ, τd) are both d-compact d-regular, by Lemma 5.2.6, τ

is equal to τd. □

5.2.8 Example. Let D be a continuous coherent dcpo with bottom, as defined in
[Jun04]. Then, (D, σD) is known to be stably compact (2.4 Examples in [Jun04]),
where σD is the Scott-topology on D, and the bispace (D, σD, ωD) is d-regular where
ωD is the weak-lower topology [Kli12, Proposition 3.5.4]. Since (D, σD) is compact
iff (D, σD, ωD) is d-compact [Law10], by Lemma 5.2.6 (σD)

d = ωD. This is, in fact,
true even if D is just a continuous poset [Law10].

In the following statement we observe that this bijection on objects can be ex-
tended to an isomorphism of categories, if one restricts morphisms between stably
compact spaces to perfect maps:

5.2.9 Proposition. Let X and Y be stably compact spaces. A map f : Xbi → Ybi is
bicontinuous if and only if f : X → Y is a perfect map.

Proof. Since τ+-compact saturated K ⊆ Y is also τ−-closed, f−1[K] is τ−-closed in X
and, therefore, d-compact.

Conversely, each τ−-open U ⊆ Y has a τ+-compact saturated complement and,
because f−1[Y \U] is τ+-compact saturated, X \ f−1[Y \U] = f−1[U] is τ−-open in
X by Lemma 4.1.29. □

5.2.10 Theorem.
The categories of stably compact spaces and perfect maps and d-compact d-regular
bispaces and bicontinuous maps are isomorphic.
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Although the name “d-compact d-regular bispace” might seem mouthful, the ac-
tual definition is much simpler than the monotopological definition of stably com-
pact spaces. We already saw a benefit of this in the proof of Corollary 5.2.7 and will
see again in Observation 5.2.13 and Theorem 5.4.1. Bitopological proofs of state-
ments about stably compact spaces are tent to be simpler than their monotopological
counterparts and this is even more pronounced in more sophisticated constructions
such as Vietoris powerspaces, e.g. see Theorem 5.4.1.

The isomorphism of categories from Theorem 5.2.10 composes with the isomor-
phism we proved in Theorem 2.2.5, yielding the following:

5.2.11 Corollary. The categories of stably compact spaces and perfect maps and com-
pact partially ordered spaces and monotone continuous maps are isomorphic.

5.2.12 Remark. We believe that both proofs of the two isomorphisms of categories in
Theorems 2.2.5 and 5.2.10 combined are much simpler than any of the known proofs
of Corollary 5.2.11 (see, for example, the proof of Proposition VI-6.23 in [Gie+03] or
Proposition 9.1.20 and Theorem 9.1.32 in [Gou13]). This is probably because the
arguments needed to prove Corollary 5.2.11 are fundamentally bitopological. A
similar observation appears also in [Bez+10].

Another by-product of Proposition 5.2.9 is also the following:

5.2.13 Observation. A continuous map between stably compact spaces f : (X, τ)→
(Y, σ) is a perfect map if and only if f : (X, τd)→ (Y, σd) is a perfect map.

Proof. f is perfect iff f : Xbi → Ybi is bicontinuous and, because τ = τdd and σ = σdd

(Corollary 5.2.7), f : Xbi → Ybi is bicontinuous iff f : (X, τd)→ (Y, σd) is perfect. □

In the following we show that the isomorphism of categories from Theorem 5.2.10
restricts to an isomorphisms of d-compact d-zero-dimensional bispaces and spectral
spaces. Then, a combination of this result and Corollary 2.2.6 gives the famous re-
sult of Cornish [Cor75] that the categories of spectral spaces and Priestley spaces are
isomorphic.

5.2.14 Proposition. The category of d-compact d-zero-dimensional (T0) bispaces is
isomorphic to the category of spectral spaces.

Proof. We use Theorem 5.2.10. First, assume that X is a spectral space and denote
by Q the set of all its compact open subsets. Let x ∈ U for some U ∈ τ. Because
X is spectral, x ∈ Q ⊆ U for some Q ∈ Q and the pair (Q, X \ Q) is both disjoint
and covers the whole space. On the other hand, let K be some compact saturated.
Because X is spectral, every open U is equal to

⋃↑{Q ∈ Q | Q ⊆ U}. Therefore,
K ⊆ U implies that K ⊆ Q ⊆ U for some Q ∈ Q. We have that

X \K = X \
⋂
{U | K ⊆ U} = X \

⋂
{Q ∈ Q | K ⊆ Q} =

⋃
{X \Q |Q ∈ Q, K ⊆ Q}.
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In other words, X \ K is a union of τd-open τ-closed sets. We have proved that Xbi

is d-zero-dimensional.
For the other direction, let (X, τ+, τ−) be a d-compact d-zero-dimensional bis-

pace. We know that (X, τ+) is stably compact. We need to verify that its compact
open sets generate τ+ and that they are closed under finite intersections. To check
the former, let x ∈ U for some U+ ∈ τ+. From d-zero-dimensionality, there is a
pair (V+, V−) ∈ τ+×τ− which is both disjoint and covers X such that x ∈ V+ ⊆ U.
Because V+ is τ−-closed it is also τ+-compact. To check the latter, let K, H ⊆ X be
two τ+-compact open sets. They are both upwards closed and so, by Lemma 4.1.29,
τ−-closed. Therefore, K ∩ H is also τ−-closed and hence d-compact. □

The Hofmann-Mislove theorem says that, under local compactness and sobri-
ety, the set B

def≡ {X \ K | K is compact saturated} ordered by set-inclusion and the
set of Scott-open filters Ω(X)∧ ordered by set-inclusion are isomorphic posets. We
conclude this section by giving a direct proof of a point-set variant of Lemma 5.1.5:

5.2.15 Proposition. Let X be a sober topological space:

1. If X is coherent and compact, then τd-closed subsets of X are exactly the compact
saturated subsets of X.

2. B (defined above) is a sub-preframe of Filt(Ω(X)).

3. If X is stably compact, then τd is a subframe of Filt(Ω(X)).

Proof. (1) Clearly, B is closed under finite joins, if X is coherent. Since X is sober
(and, therefore, well-filtered), B is closed under directed unions. Indeed, if

⋂
i Ki ⊆⋃

j Uj for a filtered family of compact saturated sets {Ki}i and open sets {Uj}j, then
Ki ⊆

⋃
j Uj for some i. Because Ki is compact, a finite subcover of Uj’s covers Ki as

well as
⋂

i Ki. Moreover, if X is compact, then ∅ ∈ B. In summary, if X is sober,
coherent and compact, then B is closed under all finite unions, intersections and
directed unions, that is, it is a topology.

(2) First, we check that B is a sub-poset of Filt(Ω(X)). Consider the mapping

X \ K ↦−→ FK
def≡ {U | K ⊆ U}. (5.2.1)

This is clearly monotone. The fact that it is injective follows from Hofmann-Mislove
theorem: If FK = FH, for some compact saturated K and H, then K =

⋂
FK and

H =
⋂

FH implies K = H. Further, the mapping in (5.2.1) preserves finite meets as
F∅ = Ω(X) and FK ∩ FH = {U | K ⊆ U and H ⊆ U} = {U | K ∪ H ⊆ U} = FK∪H. It
also preserves directed joins by well-filteredness since

⋁↑
i FKi = {U1 ∩ · · · ∩Un | ∀j ∈

{1, . . . , n} ∃i s.t. Ki ⊆ Uj} = {U | ∃i. s.t. Ki ⊆ U} = {U | ⋂i Ki ⊆ U} = F⋂i Ki .
(3) Because X is stably compact, τd = B by (1) and (2) is τd a sub-preframe

of Filt(Ω(X)). By compactness the smallest filter {X} is in the image of F(−) as
FX = {X}. Lastly, we show that τd is closed under meets in Filt(Ω(X)). We need
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to show that FK∩H is equal to FK ∨ FH = {U ∩ V | K ⊆ U, H ⊆ V}. Because
K ∩ H =

⋂
FK∩H is equal to

⋂
(FK ∨ FH) and both FK∩H and FK ∨ FH are Scott-open

(Lemma 5.1.5), it follows that FK∩H = FK ∨ FH by Hofmann-Mislove theorem. □

5.3 Stably compact frames and d-frames

It is now clear, from what we have proved in the previous sections, that the cate-
gories of stably compact frames and d-compact d-regular d-frames are equivalent,
by being dually equivalent to two isomorphic categories (Corollary 5.1.10 and The-
orem 5.2.10). In this section we show that this can be proved directly and without
the detour to (bi)spaces. One of the benefits of doing this is that, as a result, the new
proof will not rely on the Axiom of Choice. Also, by doing so we develop techniques
essential for the results in Section 5.4.

Let us first take a look at a construction which mimics (−)bi for spaces. For a
stably compact frame L define Lbi to be the structure (L, L∧, conbi, totbi) where, for an
x ∈ L and a Scott-open filter S ∈ L∧,

(x,S) ∈ conbi def≡ S ⊆ ↑x and (x,S) ∈ totbi def≡ x ∈ S

5.3.1 Example. For a stably compact space X, the definition of conbi in Ω(X)bi exactly
matches the consistency relation of Ωd(Xbi) as U ∩ (X \ K) = ∅ iff U ⊆ V for every
open V ⊇ K. The same is true for the totality relation as U ∪ (X \ K) = X iff K ⊆ U.

5.3.2 Lemma. Let L be a stably compact frame. Then, Lbi is a d-frame.

Proof. By Lemma 5.1.5 we know that L∧ is a frame. We need to verify that the axioms
of d-frames are satisfied.

Information order axioms: (tot-↑) If (x,S) ∈ totbi and (x,S) ⊑ (y,T), then y is in
T because T is upwards closed and x ∈ S ⊆ T. (con-↓) is similar: if (y,T) ∈ totbi

and (x,S) ⊑ (y,T), then S ⊆ T ⊆ ↑y ⊆ ↑x. For (con-
⨆↑) let {(xi,Si)}i be a directed

subset of conbi and let x ∈ ⋁↑
i Si =

⋃↑
i Si. There is an i such that x ∈ Si. Moreover, for

every j ≥ i, x ∈ Si ⊆ Sj ⊆ ↑xj. Therefore, x ∈ ⋂
i ↑xi = ↑(

⋁↑
i xi). This proves that⋁↑

i Si ⊆ ↑(
⋁↑

i xi).
Logical order axioms: (con-∨· ,∧· ) Let (x,S), (y,T) ∈ conbi. Then, (x ∧ y,S ∨T) ∈

conbi because the join S ∨T is computed in Filt(L), i.e. it is the set {s ∧ t | s ∈ S, t ∈
T}. Also, (x ∨ y,S ∧ T) ∈ conbi because S ∧ T is the intersection S ∩ T which is
upwards closed. Finally {1} ⊆ ↑1 and L ⊆ ↑0 proves that tt, ff ∈ conbi. Next, for
(tot-∨· ,∧· ) assume (x,S), (y,T) ∈ totbi. Their logical join and meet are also in totbi

since x ∨ y ∈ S ∩T, from being upwards closed, and x ∈ S ⊆ S ∨T and, similarly,
y ∈ S ∨T implies that x ∧ y ∈ S ∨T. Also, 1 ∈ {1} and 0 ∈ L proves tt, ff ∈ totbi.

Lastly, to show (con-tot), let (x,S) ∈ conbi and (y,T) ∈ totbi. If x = y, then
S ⊆ ↑x ⊆ T from x ∈ T. If, on the other hand, S = T, then y ∈ S ⊆ ↑x and so
x ≤ y. □
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5.3.3 Observation. Let L be a locally compact frame and S ⊆ L a Scott-open filter.
Then, S =

⋃↑
x∈S ↠x where ↠x = {y | x ≪ y}.

Proof. Let z ∈ S. From local compactness, z =
⋁↑{x | x ≪ z} and so x ∈ S for

some x ≪ z. Hence, z ∈ ↠x. On the other hand, for every x ∈ S, ↠x ⊆ S, therefore,
S =

⋃↑
x∈S( ↠x). □

5.3.4 Proposition. For a stably compact frame L, Lbi is a d-compact d-regular d-
frame.

Proof. First we check d-regularity. Because L is locally compact, we know that every
x in L is equal to

⋁↑{a | a ≪ x}. Moreover, a ≪ x implies that x ∈ S ⊆ ↑a
for some Scott-open filter S (Lemma 5.1.5) and so a �+ x because (a,S) ∈ conbi

and (x,S) ∈ totbi. On the other hand, if x ∈ S for some Scott-open filter S, then
(x,S) ∈ totbi, (x, ↠x) ∈ conbi and ↠x �− S. Therefore, since S =

⋁↑
x∈S ↠x =

⋃↑
x∈S ↠x

(Observation 5.3.3), every Scott-open filter S is a (directed) join of elements �-below
it.

Next, for d-compactness, let {(xi,Si)}i∈I be a directed subset of L×L∧ with the
join

⨆↑
i (xi,Si) in totbi. This means that

⋁↑
i xi ∈

⋃↑
i Si and, therefore,

⋁↑
i xi ∈ Sj for

some j ∈ I. Since Sj is Scott-open, xk ∈ Sj for some k ∈ I. This means that, for some
i ∈ I such that i ≥ j and i ≥ k, xi ∈ Si. □

5.3.5 Lemma. For a d-compact d-regular d-frame L = (L+, L−, con, tot) and a, b ∈
L+ or a, b ∈ L−,

1. a � b iff a≪ b, and

2. L+ and L− are stably compact frames.

Proof. (1) Whenever b ≤ ⋁↑ D, then, from d-compactness, because (b, a∗) ∈ tot,
(d, a∗) ∈ tot for some d ∈ D. Hence, a ≤ d. On the other hand, if a ≪ b then,
because L is d-regular, b =

⋁↑{c | c � b} and so a ≤ c � b for some c.
(2) L+ is locally compact and also compact since 1 � 1. Moreover, it is coherent

because x � a and x � b implies x � (a ∧ b) (Lemma 2.3.12). □

We have defined mappings between the category of stably compact frames and
d-compact d-regular d-frames and back

L ↦→ Lbi and L ↦→ L+.

The following lemma shows that those two mappings are, up to isomorphism, in-
verse to each other.
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5.3.6 Lemma. Let L = (L+, L−, con, tot) be a d-compact d-regular d-frame. Then,

1. The mapping y ↦→ Sy
def
≡ {x | (x, y) ∈ tot} establishes an isomorphisms be-

tween L− and (L+)
∧

2. (x, y) ∈ con iff Sy ⊆ ↑x,

3. (x, y) ∈ tot iff x ∈ Sy.

In other words, L is isomorphic to the d-frame (L+)bi and, symmetrically, also to
((L−)bi)−1 where

L−1 def
≡ (L−, L+, con−1, tot−1).

Proof (inspired by Theorem 6.15 in [JM06]). (1) Define the maps:

k : L− −→ (L+)
∧

y ↦−→ Sy

l : (L+)
∧ −→ L−
S ↦−→

⋁
IS

where IS is the ideal ↓{x∗ | x ∈ S} or, equivalently, {y ∈ L− | ∃x ∈ S. (x, y) ∈
con}. The mapping k is well-defined by Lemma 2.4.2 and, moreover, both k and
l are monotone. Next, observe that l · k = id. By definition, lk(y) =

⋁{z | ∃x ∈
k(y). (x, z) ∈ con} = ⋁{z | ∃x. (x, y) ∈ tot and (x, z) ∈ con} = ⋁{z | z �− y} = y
from d-regularity. Also, k · l = id as

kl(S) = {w | (w,
⋁

IS) ∈ tot} = {w | ∃x ∈ S. (w, x∗) ∈ tot} = S

where the middle equality follows from d-compactness and the last equality is a
consequence of the fact that w ∈ S iff x ∈ S for some x � w, by d-regularity.

Because (3) holds by definition, the last thing to check is (2): (con-tot) implies
that (x, y) ∈ con and so Sy ⊆ ↑x. Conversely, we have that w � y implies that
x ≤ w∗ and so (x, w) ∈ con. Therefore, by d-regularity and (con-

⨆↑), (x, y) =

(x,
⋁↑{w | w � y}) ∈ con.
The isomorphism between L and (L+)bi is given by the pair of frame isomor-

phisms (idL+ , k) : L
∼=−→ (L+)bi. Similarly, (k′, idL−) establishes an isomorphisms

between L and ((L−)bi)−1 = ((L−)
∧, L−, (conbi)−1, (totbi)−1) where k′ is the iso-

morphisms between L+ and (L−)
∧ computed symmetrically to k. □

5.3.7 Proposition. A d-frame L = (L+, L−, con, tot) is d-compact and d-regular if
and only if L ∼= Lbi for some stably compact frame L.

Moreover, if L and M = (M+, M−, con′, tot′) are both d-compact and d-regular
such that either M+

∼= L+ or M− ∼= M−, then L ∼= M.

Proof. The right-to-left direction follows from Proposition 5.3.4. Conversely, by Lem-
mas 5.3.5 and 5.3.6, L+ is stably compact and, therefore L ∼= (L+)bi.
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For the “Moreover” part, assume L+
∼= M+. Then, L ∼= (L+)

∧ ∼= (M+)
∧ ∼=

M. Also, L is d-compact and d-regular iff L−1 is, and so L is isomorphic to M

whenever L− ∼= M− for the same reason: L ∼= ((L−)bi)−1 ∼= ((M−)bi)−1 ∼= M. □

This proposition implies that, in case of d-compact d-regular d-frames, either of
the frame components determines the rest of the structure. A direct consequence of
this is a result similar to Corollary 5.2.7 for stably compact spaces.

5.3.8 Corollary. Let L be a stably compact frame. Then,

1. L∧ is a stably compact frame,

2. L ∼= (L∧)∧, and

3. (L∧)bi ∼= (Lbi)−1

4. for any Scott-open filters S,T ∈ L∧, S ≪ T in L∧ iff there exists an x ∈ L
such that x ∈ T and S ⊆ ↑x.

Proof. Lbi is d-compact d-regular by Proposition 5.3.4. Therefore, L∧ is stably com-
pact (Lemma 5.3.5) and L ∼= (L∧)∧ (Lemma 5.3.6). The “Moreover” part of Proposi-
tion 5.3.7 implies that (L∧)bi is isomorphic (Lbi)−1.

4. follows from the fact that (L, L∧, con, tot) is d-compact d-regular and, therefore,
by Lemma 5.3.5, S ≪ T iff S�T. This is, by definition, whenever x ∈ T and S ⊆ ↑x
for some x ∈ L. □

Furthermore, there is also one immediate consequence for the frames of filters
and ideals of distributive lattices:

5.3.9 Corollary. Let D be a distributive lattice. Then, Idl(D)∧ ∼= Filt(D) and
Filt(D)∧ ∼= Idl(D).

Proof. Since IF (D) is d-compact and d-regular (Lemma 2.6.8), IF (D) ∼= Idl(D)bi

and IF (D)−1 ∼= Filt(D)bi by Lemma 5.3.6. □

Coming back to the relationship between stably compact frames and d-compact
d-regular d-frames, we established in Propositions 5.3.4 and 5.3.7 that the mappings
between objects of SCFrm and d-KReg, i.e. L ↦→ Lbi and (L+, L−, con, tot) ↦→ L+,
are inverse to each other (up to isomorphism). To establish an equivalence of cate-
gories we need to extend this correspondence to morphisms.

5.3.10 Lemma. If (h+, h−), (h+, h′−) : L → M are d-frame homomorphisms be-
tween two d-regular d-frames, then h− = h′−.

Proof. Let x ∈ L− and a � x. This means that (a∗, x) ∈ totL and (a∗, a) ∈ conL, and
so (h+(a∗), h′−(x)) ∈ totM and (h+(a∗), h−(a)) ∈ conM, from which axiom (con-tot)
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gives h−(a) ≤ h′−(x). Therefore, because h−(x) =
⋁{h′−(a) | a � x}, we get that

h−(x) ≤ h′−(x). The reverse inequality is the same. □

The last lemma is a result shown by Klinke (Theorem 3.5.8 in [Kli12] or Theorem
2 in [KJM11]). We use this to show the wanted equivalence of morphisms:

5.3.11 Lemma. Let L and M be stably compact frames. The mapping h ↦→ (h, h∧)
establishes a bijection between perfect frame homomorphisms L → M and d-frame
homomorphisms Lbi → Mbi.

Proof. In Lemma 5.1.6 we showed that, if h is a perfect homomorphism, then h∧ is
a frame homomorphism, therefore hbi = (h, h∧) is well-defined. Moreover, it is a d-
frame homomorphism: If (x,S) ∈ conbi, i.e. S ⊆ ↑x, then, clearly, ↑h[S] ⊆ ↑h[↑x] =
↑h(x). Also, (x,S) ∈ totbi, i.e. x ∈ S, implies that h(x) ∈ h[S] ⊆ ↑h[S].

Moreover, if g = (g+, g−) : Lbi → Mbi is a d-frame homomorphism, then g+ pre-
serves �+ because g preserves con and tot. Therefore, by Lemma 5.3.5, g+ also pre-
serves the way-below relation. The fact that g− = g+∧ follows from Lemma 5.3.10.

□

5.3.12 Theorem.
The category of stably compact frames and perfect maps is equivalent to the category
of d-compact d-regular d-frames and d-frame homomorphisms.

Consequently, since the category of d-compact d-regular d-frames is complete
and cocomplete (Section 3.3.2), so are SCFrm and (by duality) also SCTop. In the
following we prove a frame-theoretic variant of Proposition 5.2.14.

5.3.13 Proposition. The category of spectral frames and perfect maps is equivalent to
the category of d-compact d-zero-dimensional d-frames.

Proof. In the proof of Proposition 5.1.13 we showed that every spectral frame is
stably compact. Therefore, it is enough to show that the equivalence from Theo-
rem 5.3.12 restricts to SpecFrm and d-Pries.

Let L be a stably compact frame. Observe that (x,S) ∈ conbi ∩ totbi iff S is equal
to ↑x iff x ≪ x. Therefore, if Lbi is d-zero-dimensional, then L is generated by its
compact elements and also k ≪ k and h ≪ h imply (k ∧ k) ≪ (k ∧ h) because
(k, ↑k), (h, ↑h) ∈ conbi ∩ totbi implies that (k ∧ h, (↑k) ∨ (↑h)) ∈ conbi ∩ totbi.

On the other hand, if L is spectral, Lbi is d-zero-dimensional. Indeed, a Scott-
open filter S ∈ L∧ is equal to the union

⋃{↑k | k ∈ S and k ≪ k} because each
x ∈ S is equal to

⋁↑{k | k ≪ k ≤ x}. Further, each x ∈ L is generated by k’s from
L which are k ≪ k. Because k ≪ k implies (k, ↑k) ∈ conbi ∩ totbi, both x and S are
generated by complemented elements of Lbi. □
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5.3.14 Remark. Banaschewski and Brümer show in [BB88] a biframe variant of The-
orem 5.3.12 and later a generalisation of this also appeared in [Mat01]. In both cases,
the authors needed to construct an ambient frame L0 in which L+ and L− live. They
do this by making L0 a subframe of of a frame of congruences which leads to further
difficulties, when compared to our approach. More recently Escardó [Esc99] and
Klinke [Kli13] described a more elementary construction of the ambient frame L0.

A biframe version of Proposition 5.3.13 was first published in [Pic94]. Then,
Achim Jung and Drew Moshier gave a constructive and d-frame proof of the same
result in [JM06]. The main difference here is that we give a direct proof; as opposed
to Jung’s and Moshier’s proof which goes via distributive lattices and partial frames.

5.3.15 Compact regular and spectral frames. It is immediate to verify that each
compact regular frame L is stably compact and that all frame homomorphisms be-
tween compact regular frames are perfect; that is, KRegFrm is a full subcategory of
SCFrm. Moreover, the plus-frame of the d-compact d-regular d-frame L▷◁ = (L, L,
conL, totL) from Section 2.5 agrees with the plus frame of Lbi = (L, L∧, conbi, totbi).
Hence, by Proposition 5.3.7, L ∼= L∧ and L▷◁ ∼= Lbi.

Furthermore, because homomorphisms between d-regular d-frames are deter-
mined be either of their components (Lemma 5.3.10), the functor

(−)bi : SCFrm→ d-KReg

when restricted to the category of compact regular frames must be exactly the same
as the functor (−)▷◁ : KRegFrm→ d-KReg.

Similarly, in the proof of Corollary 5.3.9, we pointed out that Idl(D)bi ∼= IF (D).
This means that, for a spectral frame L, Lbi ∼= IF (D) where D is the lattice such
that L ∼= Idl(D). Also, for the same reason as above, (−)bi ◦ Idl(−) and IF agree on
morphisms.

In other words, (−)bi generalises the two previously defined constructions since

(−)bi ∼= (−)▷◁ : KRegFrm→ d-KReg, and

(−)bi ◦ Idl(−) ∼= IF : DLat→ d-KReg.

5.4 Vietoris constructions and their duals

We conclude this chapter by showing some applications of results from Chapter 4
to the theory of stably compact spaces and frames.

The Vietoris powerspace constructions from Section 4.1.3 play an important role
in domain theory because they are used to give a semantics to non-deterministic
computations. For a stably compact space X, elements of V2×(X), V3+(X) and V(X)

are considered to be models of demonic, angelic or erratic choice, respectively (as ex-
plained in [Gou10]). Since powerspace constructions have been intensively studied
in the past, we do not aim to provide any new results in the following theorem. The
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novelty lies in the proof which is bitopological, shorter and, arguably, much easier
to follow:

5.4.1 Theorem.
For a stably compact space (X, τ),

1. V2×(X), V3+(X) and V(X) are all stably compact spaces, and

2. V2×(X)d ∼= V3+(Xd), V3+(X)d ∼= V2×(Xd) and V(X)d ∼= V(Xd).

Proof. Let, Xbi = (X, τ, τd) be the associated d-compact d-regular bispace to X.
We know that W2×(Xbi) = (Clos−(X), V2×τ, V3+τd) is again d-compact and d-regular
(Theorem 4.1.32 and Proposition 4.1.33) where Clos−(X) is the set of τd-closed sub-
sets of X, i.e. compact saturated subsets of X (Proposition 5.2.15). Therefore, V2×(X)

is equal to the stably compact space (Clos−(X), V2×τ) (Proposition 5.2.5) and its dual
is V3+(Xd) = (Clos−(X), V3+τd) by Proposition 5.2.4 and Lemma 5.2.6.

The other cases are proved accordingly. □

The main ingredient of the proof is the fact that Vietoris construction is closed on the
category of d-compact d-regular bispaces. The proof of this fact is arguably more
straightforward then the corresponding purely monotopological argument about
Vietoris construction on stably compact spaces [Gou10]. This is again a consequence
of the fact that the bitopological definitions are simpler, as discussed below Theo-
rem 5.2.10

Similarly to Theorem 5.4.1 an analogous result holds for the frame-theoretic pow-
erspace constructions and frame-theoretic duals of stably compact frames:

5.4.2 Theorem.
For a stably compact frame L,

1. V2(L), V3(L) and VFr(L) are all stably compact frames, and

2. V2(L)∧ ∼= V3(L∧), V3(L)∧ ∼= V2(L∧) and VFr(L)∧ ∼= VFr(L∧).

Proof. From Proposition 5.3.4 we know that Lbi is d-compact and d-regular. There-
fore, W2(Lbi) = (V2(L), V3(L∧), conW2 , totW2) is also d-compact d-regular (The-
orem 4.2.12) and V2(L) is stably compact (Lemma 5.3.5). Hence, by Lemma 5.3.6,
V2(L)∧ is isomorphic to V3(L∧).

The other cases are proved accordingly. □

5.4.3 Remark. Because Ω(Σ(L)d) ∼= L∧, the previous theorem is a direct conse-
quence of Theorem 5.4.1. However, such a detour to spaces requires the Axiom of
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Choice. A purely frame-theoretic proof of this fact that, for a stably compact frame
L, V2(L) and V3(L) are also stably compact, was already published in [Vic04]. Al-
though, both [Vic04] and also [Keg02] suggest a framework which can be used to
tackle this, they both leave the case for VFr(L) open. Therefore, to the knowledge of
the author, our proof that VFr(L) is stably compact is the first purely frame-theoretic
proof of this result which does not require the Axiom of Choice. Moreover, a choice-
free proof of the second part of Theorem 5.4.2 is also entirely new.
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6
Belnap-Dunn logic of bispaces

In this chapter we show that bispaces and d-frames are naturally associated with a
paraconsistent version of the logic of observable properties. Such logic allows rea-
soning even in the presence of conflicting or missing information. We also make
a comparison with bilattices, which are structures also designed to be well suited
for paraconsistent reasoning. It turns out that d-compact d-regular d-frames, while
providing a much larger class of models, model most of the logic of bilattices. Con-
trary to Belnap’s proposal, bilattice logic cannot capture predicates which are only
obtainable by an approximating computation. For this reason, we design a logic of
d-frames, which is aimed to solve this problem, and show its soundness and com-
pleteness.

6.1 The logic of bispaces and d-frames

6.1.1 Geometric logic of spaces

The topological view of a property or predicate is as the set of models or states which
satisfy it. An important class of properties in theoretical computer science are those
which are, so called, observable – that is, properties for which we can determine their
validity in a state based only on a finite observation or, in other words, by inspect-
ing only a finite amount of information about the state [Abr87a; Abr87b]. Borrow-
ing terminology from computability theory, observable properties are exactly the
semidecidable or recursively enumerable sets.

Since observable properties are closed under unions and finite intersections, the
set of states (or models) equipped with the set of all observable properties forms a

167
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topological space. This combines well with the fact that frames of open sets are asso-
ciated with theories of geometric logic; that is, infinitary joins and finite meets corre-
spond to infinitary disjunctions and finitary conjunctions. As a result, we can think
of topological spaces or frames as logical theories of observable properties. Further-
more, the same way open sets approximate the notion of an observable property,
under Dana Scott’s interpretation, continuous functions approximate the notion of
a computable function.

It has to be said that none of these ideas and interpretations is new. In fact, the re-
search program studying the connections between computation and topology goes
back to Scott’s [Sco70; Sco76] which was immediately picked up by many follow-
ers, such as [Vic89; Smy83; Smy92a; Abr87b; Esc04; AJ94], and resulted in a fruit-
ful exchange of ideas between the theory of computation, topology and logic. For
example, Martı́n Escardó formally proved that “A subset Q of a topological space
X is compact if and only if its universal-quantification functional is continuous.”
(Lemma 1.4.1 in [Esc04]).

For ease of reference, we summarise the correspondences between some topo-
logical, algebraic and logical notions in the following table:

Space X Frame L Logical interpretation

Open set U ⊆ X Element a ∈ L Observable property

Point x ∈ X
Completely prime

filter P ⊆ L
Model, i.e. maximally

consistent geometric theory

Union of open sets Join of elements in L Infinitary disjunction

Finite intersection
of open sets

Finite meet in L Finite conjunction

Compact set K ⊆ X Scott-open filter S ⊆ L
(Computationally)

universally quantifiable
property

Table 6.1: Topological vs. logical interpretation

6.1.2 Logical aspects of bispaces and d-frames

Taking inspiration from (mono)topological spaces, we can also interpret the struc-
ture of a bitopological space (X, τ+, τ−) in logical terms. Each of the topologies cor-
responds to a logical theory of observable properties. As suggested by the notation,
τ+ represents the frame of all positive observations and τ− all negative observations.
Then, performing an observation results in a pair of open sets (U+, U−) ∈ τ+×τ−
where U+ determines the states where the examined property observably holds and
U− determines the states where the predicate observably fails.
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Notice that observably “failing” (i.e. x ∈ U−) is something different from “not
holding” (i.e. x /∈ U+). Take, for example, a property given informally as:

“the program stops and outputs an even number”.

If a program never stops, its output is neither even nor odd and so it does not belong
to U+ and neither to U−. Although observably failing and not-holding are different
in this example, they are somehow related. Namely, if a program stops and outputs
an odd number, the property cannot hold. This can be manifested as

“failing implies not holding” (con)

or equivalently “holding implies not failing”. Mathematically speaking, this hap-
pens whenever U+ ∩U− = ∅ as it cannot happen that state would both observably
satisfy and fail the property; in other words, (con) expresses the fact that the obser-
vation (U+, U−) is consistent.

In addition, the reverse implication to (con), that is,

“not holding implies failing”, (tot)

also has a logical reading. It corresponds to U+ ∪U− = X which translates as: for
each state x ∈ X, either the property holds (x ∈ U+) or it fails (x ∈ U−). We call
such observations total.

An example of a property which is both consistent and total would be “the pro-
gram outputs number 56 or nothing after 100 steps”. On the other hand, properties
which are total but not consistent are common for concurrent programs. Consider
running an instance of “the value of the variable x is 56” in two parallel threads.
In this case, we might get both “true” and “false” as answers, depending on the
scheduler.

To summarise, a general picture of an observation (U+, U−) ∈ τ+×τ− which
is not consistent nor total is shown in Figure 6.1. The states x ∈ U+ \ U− in the
picture are observably true but not observably false and the opposite is the case for
the states in U− \U+. Further, the points in U+ ∩U− are non-classical as they are
both true and false, i.e. they represent a contradiction, and points in X \ (U+ ∪U−)
are also non-classical as they are neither true nor false, i.e. they represent having no
information. Those four options determine four logical values in the logic associated
to bispaces: true, false, contradiction and no-information.

All these ideas inspired the terminology and naming conventions of d-frames.
We can think of d-frames as of a logical manifestation of bitopological spaces. What
is left to explain is the motivation behind the logical and information orders. If
U+ ⊆ V+ and U− ⊆ V−, for some (V+, V−) ∈ τ+×τ−, that means that wherever
(U+, U−) is true (resp. false) (V+, V−) also is and, moreover, some states which were
previously not true, not false or even carried no information, might have become
true or false. In brief, (V+, V−) caries more information than (U+, U−). If, on the
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tt ff⊤

⊥
U+ U−

Figure 6.1: A general predicate (U+, U−)

other hand, U+ ⊆ V+ and U− ⊇ V−, then there is more true and less false evidence
in (V+, V−) than is in (U+, U−), making the former “closer to” the everywhere true
observation (X, ∅) than (U+, U−) is.

6.2 Comparison with bilattices

6.2.1 Bilattices

Ginsberg, in his famous paper [Gin88], also considered splitting the information
and logical orders to represent the knowledge of an AI system. This led him to
consider an example which, by the nature, is very close to bispaces. Namely, Gins-
berg took the (complete) Boolean algebra P(X) of all subsets1 of a set of states
X as the lattice of both positive and negative predicates. With this, every pair
(U+, U−) ∈ P(X)×P(X) represents a predicate which assigns one of the four-
values to the states of X the same way as in Figure 6.1.

An algebraic manifestation of these ideas are (implicative) bilattices which are
structures

(B×B,⊓,⊔,∧· ,∨· ,⊥,⊤, ff , tt,¬,⊃)2

where B is a Boolean algebra, the ⊃ and ¬–free reduct is defined as in d-frames (see
Observation 2.3.1) and, for α = (α+, α−), β = (β+, β−) ∈ B×B, negation and weak
implication are defined as

¬α
def≡ (α−, α+) and α ⊃ β

def≡ (α+ → β+, α+ ∧ β−). (6.2.1)

Ginsberg’s example from above can be seen as a bilattice if we instantiate B by
P(X).

1This is in contrast with bispaces which allowed only observable subsets/predicates.
2In fact, Ginsberg defined bilattices to be the structure (A,⊓,⊔,∧· ,∨· ,⊥,⊤, ff , tt,¬) and only later

they were extended by an implication in [AA96] which Umberto Rivieccio showed to have an alge-
braic presentation as a product of two Boolean algebras in [Riv14; Riv10].
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⊤

⊥

ff tt

Figure 6.2: FOUR

6.2.1 On Belnap-Dunn logic of bilattices. The
minimal non-trivial bilattice (Figure 6.2) matches ex-
actly what Belnap described as a practical logical lat-
tice for a computer reasoning [Bel76; Bel77]. Belnap ar-
gued that it is in the very nature of computers to make
decisions even in the presence of contradictions and,
for that reason, a classical two-valued logic does not
suffice.

The work of Belnap and Ginsberg was initially picked up by Fitting, who suc-
cessfully used bilattices to give a semantics to logical programming [Fit91], and by
Arieli and Avron who formalised a bilattice-based logic [AA96]. This logic hap-
pened to be paraconsistent. This means that it does not allow one to derive all formu-
las from a contradiction (i.e. ⊥ ̸⊢ φ for some φ). The reason for its paraconsistency
is that it does not permit disjunctive syllogism (i.e. φ ∨ ψ,¬φ ̸⊢ ψ for some φ and ψ).

6.2.2 Comparison

Although motivated differently, d-frames and bilattices have a lot in common. They
both consist of pairs of elements which are closed under all finite logical and infor-
mation meets and joins. On the other hand, they are not entirely the same because
of the following differences:

• In d-frames, the two component lattices may be different, in bilattices they are
identical;

• (consequently) it is not possible to define negation or weak implication on d-
frames in the same way as it is done for bilattices;

• frames are complete Heyting algebras (but frame homomorphisms may not pre-
serve Heyting implication);

• the two predicates con and tot are relational, not algebraic structure.

Moreover, Belnap, inspired by Scott’s [Sco70], argued that (when paraphrased),

(⋆) predicates ought to be constructed as directed joins of their (finite) approxima-
tions

(§81.1 and §81.3.2 in [Bel76]).

A directed join in the information order is understood as a computation which gen-
erates its output gradually, in a limiting process. Requiring (⋆) simply means that all
predicates must be somehow computable, even though some predicates may only
be represented by an infinite computation which produces them.

Ginsberg and Fitting, although not aiming to satisfy (⋆), originally considered
bilattices complete in both logical and information orders. Besides, completeness is
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usually not assumed for bilattices, not to mention the Scott property (⋆). d-Frames,
on the other hand, when restricted to the class of d-compact d-regular d-frames,
satisfy (⋆). Also, having the two component lattices of d-frames different can be
seen as a bonus when compared to bilattices. This way, d-frames allow us to have
different procedures for the confirmation and refutation of properties.

Moreover, as we will see in Corollary 6.2.5 and Section 6.2.5, d-compact d-regular
d-frames can not only be freely extended with a negation and weak implication but
they also “conservatively generalise” bilattices. This brings us to the brave conclu-
sion that d-frames might actually be a better fit than bilattices to model Belnap’s
paraconsistent logic suitable for computers.

To summarise, the three respective categories of four-valued structures compare
as shown in the following table:

bilattices d-frames d-compact d-regular d-frames
carrier symmetric carrier non-symmetric carrier non-symmetric

(B×B) (L+×L−) (L+×L−)

¬, ⊃ — ¬, ⊃

—
⨆↑ , con, tot

⨆↑ , con, tot

6.2.3 Negation as interior operations

We saw in (6.2.1) that, in order to define negation and implication for bilattices, we
heavily use the fact that the carrier is the product of a Boolean algebra with itself.
Therefore, we can freely send elements from one component of the product to the
other.

Since the two component lattices of d-frames do not have to be the same, in order
to define ¬ and ⊃ for d-frames by a similar formula we need two order-preserving
maps

o+ : L− → L+ and o− : L+ → L−.

Then, similarly to (6.2.1) we can define, for α, β ∈ L,

¬α
def≡ (o+(α−), o−(α+)) and α ⊃ β

def≡ (α+ → β+, o−(α+) ∧ β−).
(6.2.2)

However, just in the structure of d-frames, there are no natural candidates for o+
and o−. This changes when we look at the semantic counterparts of d-frames, i.e.
bitopological spaces, as there are very natural candidates for maps between both
frames of open sets. For a bispace (X, τ+, τ−), assigning to every τ+-open (or τ−-
open) set its interior with respect to the other topology is a monotone map. These,
then, are our maps

o+ : τ− → τ+ and o− : τ+ → τ−;
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or more precisely: o+(V) = V◦τ+ and o−(U) = U◦τ− . Moreover, if X is d-regular,
the interior operations o+ and o− can be expressed explicitly in the structure of the
d-frame Ωd(X). Indeed, for a U ∈ τ+, U◦τ− is equal to the union of all V′ ∈ τ− such
that V′ ⊆ U and, by regularity, V′ is an union of all V ⊆ V′ such that V′ ∪W = X
and V ∩W = ∅ for some W ∈ τ+. Consequently,

U◦τ− =
⋃
{V ∈ τ− | ∃W ∈ τ+. V ∩W = ∅ and W ∪U = X}.

We can turn this into a definition of interior operations o+ : L− → L+ and o− : L+ →
L− for a general d-frame L. For an a ∈ L+, define

o−(a) =
⋁
{y ∈ L− | ∃x ∈ L+. (x, y) ∈ con and x ∨ a = 1},

and o+(b), for b ∈ L−, symmetrically. The formulas can be slightly simplified with
pseudocomplements as follows

o−(a) =
⋁
{y ∈ L− | y∗ ∨ a = 1} and o+(b) =

⋁
{x ∈ L+ | x∗ ∨ b = 1}. (6.2.3)

Finally, combining (6.2.2) and (6.2.3) gives us an explicit formula for negation. For
an α ∈ L,

¬α = (
⋁
{x | α− ∨ x∗ = 1},

⋁
{y | α+ ∨ y∗ = 1} =

⨆
{γ | α ⊔ γ∗ = ⊤} (6.2.4)

where γ∗ is the componentwise pseudocomplementation (γ∗−, γ∗+).

6.2.2 Properties of negation. The following statements summarise the basic d-
frame theoretic properties of the negation defined above. In the proofs we mostly
just refer to the corresponding results in [JJP16] and only show how to translate the
results from there to our setting.

6.2.3 Proposition. Let L be a d-frame, then¬ : L→ L defined as in (6.2.4) satisfies:

(pm-1) ¬(α ⊓ β) = ¬α ⊓ ¬β

(pm-2) ¬tt = ff, ¬ff = tt
(con-¬) α ⊓ β ∈ con

α ⊓ ¬β ∈ con

Proof. In Proposition 6.1 of [JJP16] it is proved that o+ and o− defined as in (6.2.3)
preserve finite meets, send 1 to 1 and 0 to 0. This proves (pm-1) and (pm-2).

The same proposition also shows that (a∧ b, c) ∈ con implies (a, o−(b)∧ c) ∈ con

and that (a, b ∧ c) ∈ con implies (a ∧ o+(b), c) ∈ con. From this we can prove (con-
¬): α ⊓ β ∈ con implies (α+, o−(β+) ∧ β− ∧ α−) ∈ con which implies α ⊓ ¬β ∈
con. □

6.2.4 Proposition. Let L be a spatial d-frame. Then, ¬ defined in (6.2.4) further
satisfies

(pm-3) ¬¬α ⊑ α (tot-¬) α ⊔ ¬β ∈ tot

α ⊔ β ∈ tot

If, moreover, L is also d-regular, then ¬(U, V) = (V◦τ+ , U◦τ−) for every (U, V) ∈
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τ+×τ− where X = (X, τ+, τ−) is the bispace such that L ∼= Ωd(X).

Proof. In Proposition 6.1 of [JJP16], it is proved that, for a spatial L, o+ ◦ o− ≤ id
and o− ◦ o+ ≤ id and also that (a, o−(b) ∨ c) ∈ tot implies (a ∨ b, c) ∈ tot and
that (a ∨ o+(b) , c) ∈ tot implies (a, b ∨ c) ∈ tot. The first pair of inequalities gives
(pm-3) and the last two implications give (tot-¬) by an argument similar to the one
in the proof of Proposition 6.2.3. The “moreover” part is exactly Proposition 6.6 in
[JJP16]. □

The list of valid equalities or rules does not stop here. One can, for example, also
prove that the negation of d-frames is monotone with respect to the information
order and antitone with respect to the logical order, that ¬⊤ = ⊤, ¬⊥ = ⊥ or that
α ∈ con implies α ⊓ ¬α = ⊥. The point of the equalities proved in Propositions 6.2.3
and 6.2.4 is that they are powerful enough to show that most of the logic of bilattices
is preserved (Theorem 6.2.24).

As we discussed earlier, we are mostly interested in the category of d-compact
d-regular d-frames to model a Belnap-Dunn logic. Such d-frames are always spatial
(Proposition 2.4.4) and so we can assume that d-compact d-regular d-frames always
come equipped with a negation:

6.2.5 Corollary. For a d-compact d-regular d-frame L, ¬ defined as in (6.2.4) satis-
fies (pm-1), (pm-2), (pm-3), (con-¬) and (tot-¬) from above and, moreover, it exactly
corresponds to taking interiors in X where L ∼= Ωd(X).

Note that, in contrast with bilattices, the negation of d-frames is not required
to satisfy ¬¬α = α. From the point of view of bilattice semantics ¬α only flips
the positive and negative evidence of α whereas in d-frames we can understand
¬α as the procedure which translates the positive evidence into the negative context
and the negative evidence into the positive context. It then makes sense that such
translation can be lossy, hence ¬¬α ⊑ α. Maybe, it would be better to call ¬ a switch
of context rather than a negation.

Another difference between bilattices and d-frames is that a form of the Law of
Excluded Middle α ∨· (α ⊃ ⊥) = tt is true for bilattices and not true for d-frames.
This corresponds to the fact that the logic of observable properties is naturally intu-
itionistic, e.g. the set of states for which a program stops is observable but its com-
plement is not. However, there is no philosophical reason to require that bilattices
have to be of the form B×B, for some Boolean algebra B; in fact, a generalisation
where in the place of B is a Heyting algebra were already considered in [BJR11].

Because d-frame homomorphisms only preserve geometric connectives, one can
show that h(¬α) ⊑ ¬h(α) and h(α ⊃ β) ⊑ h(α) ⊃ h(β). This again is not a prob-
lem as, in applications of bilattices, both Fitting and Ginsberg already considered
situations where ¬ ◦ ¬ ̸= id or ¬v(φ) ̸= v(¬φ), for a valuation v, [Fit88; Gin90].
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6.2.4 Modal extensions

In the following we show that many of the new d-frame constructions we have build
in this text, such as coproducts or Vietoris functor, can be used to extend d-frames
with a modal operator similarly to how this is done for bilattices.

Among existing modal extensions of bilattice logic the most elegant one is proba-
bly minimal modal logic studied in [JR13b; RJJ15]. Algebraic models of this logic are
modal bilattices, that is, bilattices equipped with a modal operator 2 : A → A such
that

(M1) 2tt = tt

(M2) 2(α ∧· β) = 2α ∧· 2β

(M3) 2(⊥ → α) = ⊥ → 2α

where α → β is the shorthand for (α ⊃ β) ∧· (¬β ⊃ ¬α). In addition, every such
modal bilattice (A, 2) can be uniquely represented as a Boolean algebra B with two
modal operators 21, 22 : B → B which preserve 1 and distribute over binary meets.
Then, to get a modal bilattice (A, 2) from this data, set A = B×B and

2α
def≡ (21α+ ∧22(∼α−), 31α−), (6.2.5)

for every α = (α+, α−) from A, where ∼x is the negation in B and 31α− is an abbre-
viation for ∼(21∼α−).

6.2.6 Lemma. In bilattices, the rule (M3) is equivalent to the rule

(M3’) 2(α ⊃ ⊥) = (3α) ⊃ ⊥ where 3α
def
≡ ¬2(¬α).

Proof. First, observe that 2(⊥ → α)
(M2)
= 2(⊥ ⊃ α) ∧· 2(¬α ⊃ ¬⊥) and, because

⊥ ⊃ α = (0 → α+, α+ ∧ 0) = tt and ¬⊥ = ⊥, by (M1), 2(⊥ → α) = 2(¬α ⊃ ⊥).
Similarly, ⊥ → 2α = (⊥ ⊃ 2α) ∧· (¬α ⊃ ¬⊥) = ¬2α ⊃ ⊥.

We show that 2(¬α ⊃ ⊥) = (¬2α) ⊃ ⊥ is equivalent to (M3’). Set α = ¬β

for the right-to-left implication: 2(¬¬β ⊃ ⊥) = (¬2(¬β) ⊃ ⊥) from which, by
¬¬β = β, 2(β ⊃ ⊥) = (3β ⊃ ⊥). Conversely, again set α = ¬β: 2(¬β ⊃ ⊥) =

(3(¬β)) ⊃ ⊥ = (¬2¬(¬β)) ⊃ ⊥ = (¬2β) ⊃ ⊥. □

We can likewise extend d-frames with a modal operator preserving most of the
properties from the bilattice setting. Observe that every 1 and meet-preserving map
B → B uniquely extends to a Boolean algebra homomorphism MB → B (this fol-
lows from the presentation of M described in Proposition 4.5.3). Then, Boolean
algebras with two modal operators (B, 21, 22) are in bijective correspondence with
structures (B, e1, e2) where ei : MB → B (for i = 1, 2) are M-algebras in Bool. The
d-frame analogue of M is the Vietoris functor Wd (Theorem 4.3.12). Therefore, de-
fine a modal d-frame to be any triple (L, e1, e2) such that L is a d-compact d-regular
d-frame and

e1 : WdL→ L and e2 : WdL→ L
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are d-frame homomorphism. In fact, a modal d-frame (L, e1, e2) can be represented
as an algebra WdL ⊕WdL → L in d-KReg or, equivalently, as Wd(L ×L) → L

because Wd(L×L) ∼= WdL⊕WdL (Lemma 4.3.7).
In order to define a modal operator 2 : L → L similarly to (6.2.5) we use e1 and

e2 to represent the 21, 22 and 31, Heyting pseudocomplementation (−)→ 0 in the
place of negation and we also need o+ : L− → L+ from page 173. For every α ∈ L,
define

2α
def≡ (2̃1α+ ∧ 2̃2(o+(α− → 0)), 3̃1α−) (6.2.6)

where 2̃ix, for x ∈ L±, is a shorthand for ei
±(2x) and 3̃ix for ei

±(3x). Next, we
show how 2̃i and 3̃i interact with the rest of the structure:

6.2.7 Lemma. For x, y ∈ L+ and i ∈ {1, 2},

1. 2̃i1 = 1, 3̃i0 = 0, 2̃i(x ∧ y) = 2̃ix ∧ 2̃iy and 3̃i(x ∨ y) = 3̃ix ∨ 3̃iy,

2. 2̃i(x → 0) ≤ (3̃ix)→ 0 and 3̃i(x → 0) ≤ (2̃ix)→ 0

3. 2̃i(z∗) ≤ (3̃iz)∗ and 3̃i(z∗) ≤ (2̃iz)∗, and

4. 2̃i(o−(x)) ≤ o−(2̃ix) and 3̃i(o−(x)) ≤ o−(3̃ix).

The dual inequalities hold for x and y coming from L−.

Proof. (1) Because 21 = 1 in VFr(L±) and ei
± is a frame homomorphism, 2̃i1 =

ei
±(21) = 1. Similarly, 3i0 = 0. Next, because 2 distributes over finite meets in

VFr(L±), 2̃i(x∧ y) = ei
±(2(x∧ y)) = ei

±(2x∧2y) = ei
±(2x)∧ ei

±(2y) = 3̃ix∨ 3̃iy.
The proof of the last part is similar.

(2) For the same reason as in (1) 2̃i distributes over directed joins. Therefore, we
have that 2̃i(x → 0) = 2̃i(

⋁↑{y | x ∧ y = 0}) = ⋁↑{2̃iy | x ∧ y = 0}. On the other
hand, (3̃ix) → 0 =

⋁↑{z | z ∧ 3̃ix = 0}. Because x ∧ y = 0 implies 2̃ix ∧ 3̃ix = 0,
2̃i(x → 0) ≤ (3̃ix)→ 0. The second part is analogous.

(3) Since (2z, 3(z∗)) ∈ conWdL, the pair (2̃iz, 3̃i(z∗)) = ei(2z, 3(z∗)) is in conL
because ei is a d-frame homomorphism. Therefore, 3̃i(z∗) ≤ (2̃iz)∗. The proof of
the first part is similar.

(4) Recall that o−(x) is the join
⋁{y ∈ L− | y∗ ∨ x = 1} and this join is directed

because y∗1 ∧ y∗2 = (y1 ∨ y2)
∗ (Lemma 2.3.13). Therefore, because 2̃i distributes over

directed joins 2̃i(o−(x)) =
⋁{2̃iy ∈ L− | y∗ ∨ x = 1}. Since y∗ ∨ x = 1 implies

3̃i(y∗) ∨ 2̃ix = 1 and (3) implies that also (2̃iy)∗ ∨ 2̃ix = 1. Therefore, 2̃i(o−(x)) is
smaller than o−(2̃ix) =

⋁{x | x∗ ∨ 2̃ix = 1}. □

6.2.8 Proposition. For a modal d-frame (L, e1, e2), the following inequalities hold:

1. 2tt = tt
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2. 2(α ∧· β) = 2α ∧· 2β

3. 2(α ⊃ ⊥) ⩽· (3α) ⊃ ⊥

4. (¬2α) ⊃ ⊥ ⩽· (3¬α) ⊃ ⊥

where 2α is as in (6.2.6) and 3α = (3̃1α+, 2̃1α− ∧ 2̃2(o−(α+ → 0))).

Proof. We use the properties proved in the previous lemma: (1) By definition 2tt =
(2̃11∧ 2̃2(o+(0→ 0)), 3̃10) = (1∧ 1, 0) = tt where 2̃2(o+(0→ 0)) = 2̃2(o+(1)) =
2̃21 = 1 because o+ preserves 1.

(2) 2(α∧· β) = (2̃1(α+ ∧ β+)∧ 2̃2(o+((α− ∨ β−)→ 0)), 3̃1(α− ∨ β−)) and, since
3̃1 distributes over joins, (α− ∨ β−) → 0 = (α− → 0) ∧ (β− → 0) and both 2̃2 and
o+ distribute over finite meets, we have that 2(α ∧· β) = 2α ∧· 2β.

(3) Since γ ⊃ ⊥ = (γ+ → 0, 0) and, whenever γ− = 0, 2γ = (2̃1γ+, 0), we have
that 2(α ⊃ ⊥) = (2̃1(α+ → 0), 0) is ⩽·-smaller than (3α) ⊃ ⊥ = ((3̃1α+)→ 0, 0).

(4) Similarly, (¬2α) ⊃ ⊥ = (o+(3̃1α−) → 0, 0) is ⩽·-smaller than (3¬α) ⊃ ⊥ =

((3̃1o+(α−))→ 0, 0). □

This proposition shows that the axioms (M1) and (M2) hold for modal d-frames.
Moreover, without any extra assumptions on (L, e1, e2), it does not seem possible
to prove (M3) or even compare 2(⊥ → α) and ⊥ → 2α in any way. However, (3)
proves that one inequality of (M3’) (from Lemma 6.2.6) holds in modal d-frames. In
some sense this means that (M3’) expresses a relationship between box and diamond
although they are not interdefinable, as was the case for bilattices. This is similar to
the situation in intuitionistic modal logic where there also have to be extra axioms
postulated to relate box and diamond modalities.

6.2.9 Remark. (1) Proposition 6.2.8 suggests that an intuitionistic modal bilattice
logic ought have both box and diamond. It would make sense to postulate axioms
similar to the inequalities (1)–(4) and possibly even their dual versions: 3ff = ff ,
3(α ∨· β) = 3α ∨· 3β, 3(α ⊃′ ⊥) ⩽· (2α) ⊃′ ⊥ and (¬3α) ⊃′ ⊥ ⩽· (2¬α) ⊃′ ⊥
where ⊃′ is the dual implication α ⊃′ β

def≡ (β+ ∧ o+(α−), α− → β−) which was
already introduced in [MRJ17].

(2) Note also that the choice of the definition of 2 for modal d-frames is not
arbitrary. In the place of ∼α− in (6.2.5) we needed an antitone map L− → L+ and
among the apparent options o+(α− → 0), α∗− and o+(α−) → 0 only the first one
satisfies (M2).

6.2.5 Bilattices bitopologised

In the following we show a simple fact, namely, that bilattices can be identified with
a subcategory of d-frames and also the corresponding dual category of bispaces.
Let A = B×B be a bilattice, for some Boolean algebra B. Define IdlBL(A) to be the
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d-frame Idl(B)▷◁, i.e.
(Idl(B), Idl(B), con, tot)

where (I, J) ∈ con iff I ∩ J = 0Idl(B) and (I, J) ∈ tot iff I ∨ J = 1Idl(B).

6.2.10 Observation. For every bilattice A, the d-frame IdlBL(A) is a Stone d-frame,
that is, a Priestley d-frame with its frame components being zero-dimensional frames.

Proof. Let B be the Boolean algebra such that A = B×B. It is well known that Idl(B)
is compact and zero-dimensional [Joh82]. Moreover, because Idl(B)▷◁ is isomorphic
to IF (B) (Lemma 2.7.3), IdlBL(A) is a Priestley d-frame. □

6.2.11 Remark. Note that having zero-dimensional frame components is a separate
property from the d-frame d-zero-dimensionality. The former is a property of the
frame components and it is independent from the rest of the d-frame.

Next, define bilattice homomorphisms h× : B×B→ B′×B′ to be mappings

α ↦→ (h(α+), h(α−)),

for some Boolean homomorphism h : B → B′. Observe that they distribute over ¬
and⊃ as well as the other bilattice operations and constants, e.g. h×(¬α) = ¬h×(α),
h×(α ⊓ β) = h×(α) ⊓ h×(β), h×(⊥) = ⊥ and so on.

The action of IdlBL on morphisms is defined as IdlBL(h×) = (Idl(h), Idl(h)).

6.2.12 Proposition. The functor IdlBL(−) establishes an equivalence of categories be-
tween the category of bilattices and bilattice homomorphisms, and the category of Stone
d-frames and d-frame homomorphisms.

Proof. Because the functor Idl restricted to Bool → Stone establishes a duality of
categories [Joh82], IdlBL is a faithful embedding. Moreover, it is full because mor-
phisms between d-regular d-frames are determined by either of their components
(Lemma 5.3.10).

On the other hand, if L is a Priestley d-frame with either of the frame component
zero-dimensional, for example L+, then, because L+ is also compact, L+

∼= Idl(B)
for some Boolean algebra B. Furthermore, L ∼= Idl(B)▷◁ by Proposition 5.3.7. □

From the duality between Priestley d-frames and Priestley bispaces it follows
that:

6.2.13 Corollary. The category of bilattices is dually equivalent to the category of
Priestley bispaces with zero-dimensional topologies, i.e. bispaces (X, τ, τ) such that
(X, τ) is a Stone space.

The simplicity of this bitopological duality is in contrast with monotopological
approaches. Traditionally, in order to model negation in the spectrum of a bilattice,
an extra structure needs to be assumed, e.g. a continuous endomap [JR12; JR13a;
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Mob+00]. On the other hand, in our bitopological duality, negation of (U+, U−) is
computed by taking the interiors with respect to the other topology and because the
topologies are the same we obtain just (U−, U+). See Lemma 6.2.17 for a point-free
proof of this.

6.2.6 Bilattice logic and d-frames

Given a bilattice A, since the d-frame IdlBL(A) is d-compact and d-regular, it has
negation and weak implication as defined in Section 6.2.3. This means that both
A and IdlBL(A) admit an interpretation of the connectives of bilattice logic. In this
subsection we show how A and IdlBL(A) compare from the perspective of bilattice
logic.

6.2.14 Syntax and satisfaction relation of bilattice logic. Formulas of bilattice
logic are defined inductively from the language of bilattices

BL = ⟨Var,⊓,⊔,∧· ,∨· ,⊥,⊤, ff , tt,¬,⊃⟩.

We assume that the set of variables Var is countable. Let M be a structure which
can interpret the language of bilattices, i.e. M is either a bilattice or a d-compact
d-regular d-frame. As always, any valuation of variables v : Var → M uniquely
extends to v : FmBL → M where FmBL is the term algebra of bilattice formulas.
Validity of a bilattice formula φ under the valuation v is, following the example
of [Riv10], given as follows

M ⊨BL
v φ

def≡ v(φ) = v(φ) ⊃ v(φ) (6.2.7)

Again, define the abbreviations M ⊨BL φ as M ⊨BL
v φ for all valuations v : Var → M.

6.2.15 Lemma. For a bilattice or d-compact d-regular d-frame M, M ⊨BL
v φ iff

tt ⊑ v(φ).

Proof. We only prove this for d-compact d-regular d-frames since the proof for a
bilattices is the same. Assume that v(φ) = (1, a). Then, by definition v(φ) ⊃ v(φ) =

(1 → 1, o−(1) ∧ a) = (1, 1 ∧ a) = (1, a) = v(φ). Conversely, v(φ) = v(φ) ⊃ v(φ)

implies that v(φ)+ = v(φ)+ → v(φ)+ and this is equivalent to v(φ)+ = 1 in every
Heyting algebra. □

This lemma will be useful later when we show that the set of implication-free
formulas true in A is the same as the set of such formulas true in IdlBL(A). In order
to show that, we first prove a similar statement but for positive two-valued logic:
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6.2.16 Lemma. Let L2 be the language of positive two-valued logic, i.e. ⟨Var,∧,∨, 0, 1⟩.
Then, for a distributive lattice D and a formula φ in L2,

D ⊨L2 φ iff Idl(D) ⊨L2 φ.

(Where, for a valuation v : Var → D, we define D ⊨L2
v φ as v(φ) = 1.)

Proof. Assume Idl(D) ⊨L2 φ and let v : Var → D be a valuation. The composition of
v with the inclusion i : D → Idl(D), a ↦→ ↓a, is a valuation i · v : Var → Idl(D) and
so, by the assumption, Idl(D) ⊨L2

i·v φ. Therefore, i(v(φ)) = 1Idl(D) = i(1) and, by
injectivity of i, v(φ) = 1.

For the reverse direction we show something stronger. We show that, if v′(ψ) ≤
v′(φ) for every valuation v′ : Var → D, then also v(ψ) ≤ v(φ) for every valuation
v : Var → Idl(D). The original statements follows by assigning ψ to 1. Without
loss of generality, assume that ψ and φ do not contain 0 nor 1 (otherwise, replace
them with two unused variables w0 and w1 and define v(w0) = 0Idl(D) and v(w1) =

1Idl(D)). Further, let
⋁n

j=1
⋀mj

k=1 vjk be ψ in a disjunctive normal form where vjk’s are
its variables (note that they might repeat). Then, every element a of the ideal v(ψ) is
of the form

⋁n
j
⋀mj

k ajk for some ajk’s such that ajk ∈ v(vjk).
Define v′ : Var → D such that

v′ : v ↦−→
{ ⋁{ajk | v is the same variable as vjk} if v ∈ Var(ψ)

0 if v /∈ Var(ψ)

where Var(ψ) is the set of all variables occurring in ψ. We have that a ≤ v′(ψ) and
so i(a) ≤ i(v′(ψ)) ≤ i(v′(φ)) by the assumption. Moreover, because v′(v) ∈ v(v)
for every v ∈ Var(φ), i(v′(φ)) ≤ v(φ). Hence a ∈ v(φ) and, since a was chosen
arbitrarily, also v(ψ) ⊆ v(φ). □

6.2.17 Lemma. For a bilattice A and any α ∈ IdlBL(A), ¬α = (α−, α+).

Proof. α is a pair of ideals (I+, I−) ∈ Idl(B)×Idl(B) where B is the Boolean algebra
such that A = B×B. Recall that ¬α = (o+(I−), o−(I+)) where o+ and o− are defined
as in (6.2.3). This means that o−(I+) =

⋁{J | I+ ∨ J∗ = 1Idl(B)} and

J∗ =
⋁
{K | J ∧ K = {0}} =

⋁
{↓z | J ∧ ↓z = {0}} = {z | ∀j ∈ J. j ∧ z = 0}.

In particular, (↓x)∗ = ↓(∼x) where ∼ is the negation in B. Observe that, whenever
I+ ∨ J∗ = 1, then i ∨ z = 1 for some i ∈ I and z ∈ J∗, and each j ∈ J has the property
that i ∨ (∼j) = 1. Because this means that I ∨ ↓(∼j) = 1 and also I+ ∨ (↓ j)∗ = 1, for
every j ∈ J, o−(I+) simplifies to

⋁{↓ j | ∃i ∈ I. i ∨∼j = 1} = {j | ∃i ∈ I. i ∨∼j = 1}.
Clearly o−(I+) contains I. Moreover, because i ∨∼j = 1 implies that j ≤ i, we have
that o−(I+) = I+. The proof that o+(I−) = I− is similar. □
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6.2.18 Proposition. For a bilattice A and a bilattice formula φ which does not contain
⊃,

A ⊨BL φ iff IdlBL(A) ⊨BL φ.

Proof. Since the validity of φ is determined only by its value in the plus component
(Lemma 6.2.15), we can inductively construct a formula φ• such that A ⊨BL φ if and
only if B ⊨L2 φ•, for every bilattices A = B×B.

Let Fmd be the term algebra of L2-formulas but containing every variable twice;
denoted as v+ and v−. Next, we inductively define a mapping (−)◦ which assigns
an element of Fmd×Fmd to every bilattice formula which does not contain ⊃:

⊥◦ = (0, 0), ⊤◦ = (1, 1), ff ◦ = (0, 1), tt◦ = (1, 0),

(¬φ)◦ = (φ◦−, φ◦+), v◦ = (v+, v−), (∀v ∈ Var)

(φ ⊓ ψ)◦ = (φ◦+ ∧ ψ◦+, φ◦− ∧ ψ◦−), (φ ⊔ ψ)◦ = (φ◦+ ∨ ψ◦+, φ◦− ∨ ψ◦−),

(φ ∧· ψ)◦ = (φ◦+ ∧ ψ◦+, φ◦− ∨ ψ◦−), (φ ∨· ψ)◦ = (φ◦+ ∨ ψ◦+, φ◦− ∧ ψ◦−),

where φ◦ = (φ◦+, φ◦−) and ψ◦ = (ψ◦+, ψ◦−). Finally, define φ• as the projection to the
first/plus coordinate of φ◦. Observe that A ⊨BL φ iff B ⊨L2 φ• and this is equiva-
lent to Idl(B) ⊨L2 φ• by Lemma 6.2.16. Finally, Idl(B) ⊨L2 φ• iff IdlBL(A) ⊨L2 φ by
Lemma 6.2.17. □

6.2.19 Lemma. Every infinite Boolean algebra B has an infinite strictly ascending
sequence of elements b1 < b2 < . . . .

Proof. The Stone space spec⪯(B) of an infinite Boolean algebra B is infinite. Take
x ̸= y ∈ spec⪯(B), there must exist a clopen C1 such that x ∈ C1 ̸∋ y. Either C1 or
spec⪯(B) \C1 must be infinite. Without loss of generality assume that C1 is. Observe
that C1 is strictly smaller than spec⪯(B). Continue by induction on C1 and obtain an
infinite descending chain C0 = spec⪯(B) ⊃ C1 ⊃ C2 ⊃ . . . . Complements of Ci’s
form a strictly ascending chain. □

6.2.20 Proposition. For a Boolean algebra B, if there exists a distributive lattice D
such that B is isomorphic to Idl(D), then B is finite.

Proof. Let I(−) : B → Idl(D) be the isomorphism map. Observe that all ideals of D
must be principal. Indeed, for every ideal I ∈ Idl(D), there exist some Ic ∈ Idl(D)

such that
I ∨ Ic = D and I ∧ Ic = {0}.

By I ∨ Ic = D, there exist x ∈ I and x′ ∈ Ic such that x ∨ x′ = 1. Therefore, we
have that I ∨ ↓x′ = D and I ∧ ↓x′ = {0} and, since Idl(D) is a distributive lattice,
Ic = ↓x′. A symmetrical argument gives that I = ↓x.
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From this it is immediate that D is also a Boolean algebra. For every x ∈ D, the
complement of ↓x in Idl(D) is a principal ideal ↓x′. We can see that x ∨ x′ = 1 and
x ∧ x′ = 0.

Now, we will prove that D is Noetherian, that is, it does not have an infinite
strictly ascending sequence of elements. Assume, for a contradiction, that there is a
sequence a1 < a2 < a3 < . . . in D. Denote

⋁
i ↓ai = {x | ∃i. x ≤ ai} by I. Then, from

previous, we know that I = ↓a for some a ∈ D. Since a ∈ I, there exists an i such
that a ≤ ai and also ai < ai+1 ≤ a. A contradiction. Consequently, by Lemma 6.2.19,
D must be finite and the same is the case for B as B ∼= Idl(D). □

Consequently, because the frame of ideals of an infinite distributive lattice is infinite,
we also have the following.

6.2.21 Corollary. For an infinite Boolean algebra B, Idl(B) is not a Boolean algebra.

It follows from this corollary that it cannot be the case that A ⊨BL φ iff IdlBL(A) ⊨BL

φ for every bilattice formula φ. Indeed, let A = B×B for some infinite Boolean alge-
bra B. Then, for the bilattice form of the excluded middle φ

def≡ x ∨· (x ⊃ ff ), A ⊨BL φ

but not IdlBL(A) ⊨BL φ.
However, an equivalence can be retained if we restrict to the right kind of valu-

ations. Observe that the valuations Var → A are in a bijection with the valuations
Var → Cmpd(IdlBL(A)) where Cmpd(L) is the set of all elements of L which are
compact in the information order, i.e. Cmpd(IdlBL(A)) = {(↓x, ↓y) | (x, y) ∈ A}.
Moreover, we have the following fact:

6.2.22 Lemma. Let B be a Boolean algebra. For a, b ∈ B, ↓a → ↓b = ↓(a → b)
(where he first→ is Heyting implication in the frame Idl(B)).

Proof. ↓a → ↓b =
⋁{J | ↓a ∧ J ≤ ↓b} = ⋁{↓c | ↓a ∧ ↓c ≤ ↓b} = {c | a ∧ c ≤ b} =

{c | c ≤ a→ b} = ↓(a→ b). □

From this lemma it follows that, for a valuation Var : v → A and a formula φ

Var(φ) ⊒ tt iff i(Var(φ)) ⊒ tt where i : A → IdlBL(A) is the inclusion (x, y) ↦→
(↓x, ↓y).

6.2.23 Corollary. For a bilattice A and a bilattice formula φ,

A ⊨BL φ iff IdlBL(A) ⊨BL
v φ for all valuations v : Var → Cmpd(IdlBL(A)),

Even when no restriction on valuations is assumed, most axioms of bilattice logic
are preserved. Arieli and Avron, [AA96], gave a Hilbert-style axiomatisation of a
four-valued logic which is sound and complete with respect to bilattices. Here we
show that a large part of their logic is still valid in d-compact d-regular d-frames.
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6.2.24 Theorem.
The following axioms of four-valued logic are valid in any d-compact d-regular d-
frame:

(Weak implication)

(⊃ 1) φ ⊃ (ψ ⊃ φ)

(⊃ 2) (φ ⊃ (ψ ⊃ γ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ γ))

(¬¬ R) ¬¬φ ⊃ φ (⋆A)

(Logical conjunction and disjunction)

(∧· ⊃) (φ ∧· ψ) ⊃ φ and (φ ∧· ψ) ⊃ ψ

(⊃ ∧· ) φ ⊃ (ψ ⊃ (φ ∧· ψ))

(⊃ tt) φ ⊃ tt
(⊃ ∨· ) φ ⊃ (φ ∨· ψ) and ψ ⊃ (φ ∨· ψ)

(∨· ⊃) (φ ⊃ γ) ⊃ ((ψ ⊃ γ) ⊃ ((φ ∨· ψ) ⊃ γ))

(⊃ ff) ff ⊃ φ

(Informational conjunction and disjunction)

(⊓ ⊃) (φ ⊓ ψ) ⊃ φ and (φ ⊓ ψ) ⊃ ψ

(⊃ ⊓) φ ⊃ (ψ ⊃ (φ ⊓ ψ))

(⊃ ⊤) φ ⊃ ⊤
(⊃ ⊔) φ ⊃ (φ ⊔ ψ) and ψ ⊃ (φ ⊔ ψ)

(⊔ ⊃) (φ ⊃ γ) ⊃ ((ψ ⊃ γ) ⊃ ((φ ⊔ ψ) ⊃ γ))

(⊃ ⊥) ⊥ ⊃ φ

(Negation)

(¬∧· L) ¬(φ ∧· ψ) ⊂ ¬φ ∨· ¬ψ (⋆B)
(¬ ∨· ) ¬(φ ∨· ψ) ≡ ¬φ ∧· ¬ψ

(¬ ⊓) ¬(φ ⊓ ψ) ≡ ¬φ ⊓ ¬ψ

(¬⊔ L) ¬(φ ⊔ ψ) ⊂ ¬φ ⊔ ¬ψ (⋆B)
(¬⊃ R) ¬(φ ⊃ ψ) ⊃ φ ∧· ¬ψ (⋆A)

where φ ≡ ψ is a shorthand for (φ ⊃ ψ) ∧· (ψ ⊃ φ). Furthermore, the rule of Modus
Ponens is sound:

(MP) φ, (φ ⊃ ψ) ⊢ ψ

Proof. See Theorem 4.2 in [JJP16]. □

The axioms marked with (⋆A) or (⋆B) are the only axioms that differ from the origi-
nal axioms of bilattices because they are only implications, whereas the original ax-
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ioms are equivalences. Requiring equivalence instead of implication in the axioms
marked by (⋆A) is equivalent to requiring that o+ ◦ o− = id and requiring equiva-
lences for axioms marked by (⋆B) is the same as requiring that o+ preserves finite
suprema. Also, the following axiom, called Peirce’s law, is usually added [AA96]

(⊃ 3) ((φ ⊃ ψ) ⊃ φ) ⊃ φ

Assuming this to hold is equivalent to assuming that L+ is a Boolean frame [JJP16].

6.2.25 Remark. Notice that assuming o+ ◦ o− = id implies that o− is an injective
frame homomorphism and o+ is its right adjoint. This follows from the fact that
we always have that o− ◦ o+ ≤ id and that o− already distributes over meets and
preserves 1. Conversely, let m : L → M be an injective frame homomorphism. It is
not difficult to check that (L, M, conm, totm) defined as

(x, y) ∈ conm
def≡ m(x) ∧ y = 0 and (x, y) ∈ totm

def≡ m(x) ∨ y = 1

is a d-frame. This d-frame can be equipped with negation and implication

¬α = (m•(α−), m(α−)) and α ⊃ β = (α+ → β+, m(α+) ∧ β−)

which satisfies the conditions of Propositions 6.2.3 and 6.2.4 and so the same axioms
as in Theorem 6.2.24 hold, plus (⊃ 3).

Whenever we have a continuous map between spaces f : X → Y, we can factor it
into an onto map g : X ↠ f [X] followed by an injection f [X] ↪→ Y. Then, m = Ω(g)
is an injective frame homomorphism giving rise to a d-frame with the properties
described above. Because continuous = computable, this says that computable pro-
cesses come with paraconsistent language attached to them.

For example, if ¬(φ ⊃ ψ) = ¬φ ⊃′ ¬ψ holds in a d-frame arising from an
injective m if and only if m is an open homomorphism, as defined in [PP12] (where
⊃′ was defined in Remark 6.2.9).

6.3 Belnap-Dunn geometric logic

In the previous section we briefly discussed to which extent d-frames model the
logic of bilattices. However, as we argued in Section 6.2.2, bilattices are not suited
for modelling infinite processes. For this reason we outline a new logic inspired
by Belnap which is sound and complete with respect to d-frames. We mostly get
our inspiration from Vicker’s presentation of geometric logic, that is, the logic of
frames [Vic07].

Note that the proof of completeness is not just a mere adaptation of the classical
proof for propositional (intuitionistic) logic. It is more involved mostly because the
logic of d-frames is infinitary. In fact, it uses the iterative machinery of quotients
described in Chapter 3.
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6.3.1 Language. Let Var be a fixed set of variables. The logic of d-frames contains
four basic constant symbols ⊥, ⊤, tt and ff . The class Fm of d-frame formulas is defined
by a transfinite induction from variables and basic constant symbols as follows

⊥,⊤, tt, ff ∈ Fm, Var ⊆ Fm,

S is a subset of Fm =⇒
⨆

S ∈ Fm,

α1, α2, . . . , αn ∈ Fm =⇒ α1 ⊓ α2 ⊓ . . . ⊓ αn ∈ Fm.

It follows from this construction that the formulas form a proper class. However, as
we will see in Section 6.3.1, this is not a problem because the collection of equiva-
lence classes of those formulas is in bijection with a set. Next, define Jud⇒, Judcon
and Judtot to be the classes of judgements of the form

α⇒ β, con(α), and tot(α),

respectively, where α and β range over the elements of Fm. Often, we will denote
the class of all judgements as just Jud, i.e. Jud = Jud⇒ ∪̇Judcon ∪̇Judtot.

6.3.2 Satisfaction relation. Let L be a d-frame and let v : Var → L be an assign-
ment of variables. In the following, we will always use the same symbol for the
natural extension of v to Fm→ L such that it preserves basic constants ⊥, ⊤, tt and
ff . Then, define the satisfaction relation as follows

L ⊨v α⇒ β iff v(α) ⊑ v(β) in L

L ⊨v con(α) iff v(α) ∈ conL

L ⊨v tot(α) iff v(α) ∈ totL

From this relation we also define the usual abbreviations. For a judgement φ, define
L ⊨ φ to mean that L ⊨v φ, for all valuations v : Var → L. For a set of judgements
Γ, L ⊨ Γ means L ⊨ ψ, for all ψ ∈ Γ, and Γ ⊨ φ means that, whenever L ⊨ Γ for
some d-frame L, then also L ⊨ φ.

6.3.3 Axioms of d-frame logic. Our next task is to define an entailment relation
which we later prove to be sound and complete with respect to the satisfaction re-
lation. Before we look at how it is defined, let us first list the basic rules of d-frame
logic. The rules are quantified over all formulas α, β, γ ∈ Fm, subsets of formulas
S ⊆ Fm and subsets of judgements Γ ⊆ Jud.

(Frm-1) Basic pre-order and entailment rules:

α⇒ α
α⇒ β β⇒ γ

α⇒ γ
Γ (φ ∈ Γ)φ
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(Frm-2) Information-wise implication and meets:

α⇒ ⊤
γ⇒ α γ⇒ β

γ⇒ α ⊓ β α ⊓ β⇒ α α ⊓ β⇒ β

(Frm-3) Information-wise implication and joins, and frame distributivity:

⨆
∅⇒ ⊥ (α ∈ S)

α⇒ ⨆
S

α⇒ β (all α ∈ S)⨆
S⇒ β

⊥ ⇒ α α ⊓⨆
S⇒ ⨆{α ⊓ β | β ∈ S}

(Frm-4) Relationship between the constants:

tt⊓ ff ⇒ ⊥ ⊤ ⇒ tt⊔ ff

(d-Frm-1) Consistency relation:

con(tt) con(ff )
con(α) con(β)

con(α ∧· β)

con(α) con(β)

con(α ∨· β)

con(β) α⇒ β

con(α)

con(α) (all α ∈ S) S is⇒-directed
con(

⨆
S)

(d-Frm-2) Totality relation:

tot(tt) tot(ff )
tot(α) tot(β)

tot(α ∧· β)

tot(α) tot(β)

tot(α ∨· β)

tot(α) α⇒ β

tot(β)

(d-Frm-3) Interaction between con and tot:

con(α) tot(β) α ⊓ tt⇔ β ⊓ tt
α⇒ β

con(α) tot(β) α ⊓ ff ⇔ β ⊓ ff
α⇒ β

Where α ⊔ β is a shorthand for
⨆{α, β}. In the rules for the consistency and

totality relations we needed to use logical meets and joins. Those are defined as
shorthands:

α ∧· β
def≡ ((α ⊓ β) ⊓ tt) ⊔ ((α ⊔ β) ⊓ ff )

α ∨· β
def≡ ((α ⊔ β) ⊓ tt) ⊔ ((α ⊓ β) ⊓ ff )

The⇔ used in (d-Frm-3) translates as two⇒ conditions, one for each direction.
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6.3.4 Entailment relation. A substitution σ is an assignment of variables σ : Var →
Fm which, when applied to a formula φ, yields a formula σ(φ) obtained from φ by
replacing all of its variables simultaneously, as given by the mapping σ. For a set
of judgements define σΓ to be the closure of Γ under all substitutions, i.e. σΓ is the
minimal set of judgements such that, for all substitutions σ : Var → Fm and φ ∈ Γ,
σ(φ) ∈ σΓ.

Next, define the entailment relation ⊢ as a relation between sets of judgements
and judgements. To define it formally, consider the function ent : P(Jud)→ P(Jud)
given by

ent(Γ) = {φ | a rule Γ′
φ

is in 6.3.3, for some Γ′ subset of σΓ}.

For any set of formulas Γ, we have a growing sequence of sets {Γδ | δ ∈ Ord}where,
for an ordinal δ and a limit ordinal λ,

Γ0 = Γ, Γδ+1 = ent(Γδ) and Γλ =
⋃

δ<λ

Γδ.

Then, define

Γ ⊢ φ
def≡ φ ∈ Γδ, for some ordinal δ.

Because the basic axioms from 6.3.3 are all true in d-frames, it is an immediate ob-
servation that we have soundness of the entailment relation with respect to the satis-
faction relation:

6.3.5 Proposition. For a judgementφ and set of judgements Γ, Γ ⊢ φ implies Γ ⊨ φ.

In the next two subsections we also prove completeness. Note that this has to be
done by a d-frame specific method because there is no general theorem for infinitary
logics3. This is because infinitary logics are usually not complete and they often do
not even have a Lindenbaum-Tarski algebra.

6.3.6 Remark. In comparison with the geometric logic of frames defined in [Vic07],
we extended the language with constants tt and ff and two more types of judge-
ments, that is, con(α) and tot(α). We can read any judgement of the form α ⇒ β as:
the positive evidence of α implies that of β and the same is the case for the negative
evidence. This reading comes from the interpretation in the models because α ⇒ β

translates as α ⊑ β (i.e. α is information-wise smaller than β).
Also, except for the axioms for con and tot, the logical order does not appear in

the axiomatisation of our logic. This is because the logical order is definable from
the information order; we can define α ⩽· β to be the shorthand for α ∧· β⇔ α.

3Exception for Theorem 5.1.7 in [MR77] which works for some logics with a countable set of
variables.
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6.3.1 Completeness of (plain) geometric logic

In the following we compute the Lindenbaum-Tarski algebra for the d-frame logic.
However, in the presence of constants tt and ff one cannot use the standard theory.
For this reason we first extend the geometric/frame logic with constants and prove
completeness for it.

Define (propositional) geometric logic as follows:

• Fix a set of variables Var and a set of constant symbols Cons, disjoint for each
other. Then, the set of atoms At consists of both variables and constant sym-
bols, i.e. At = Var ∪ Cons.

• Formulas are defined by a transfinite induction as in 6.3.1 for d-frame logic,
except that we include also all constant symbols, Cons ⊆ Fm, and from the
basic constants we only include ⊥ and ⊤.

• The only judgements we consider are of the form α⇒ β.

• For a frame L and a valuation of atoms v : At→ L, define L ⊨Fr
v α⇒ β to mean

v(α) ⊑ v(β).

• Γ ⊢Fr φ iff we can deduce φ from Γ by only using the rules from (Frm-1),
(Frm-2) and (Frm-3) from above.

The other abbreviations for ⊨Fr need to take into an account that we also have
constants in our language: For an assignment of constants c : Cons → L, define
(L, c) ⊨Fr φ to mean that L ⊨Fr

v φ, for all valuations v such that the restriction v↾Cons
is equal to c. Further, (L, c) ⊨Fr Γ means (L, c) ⊨Fr ψ, for all ψ ∈ Γ, and Γ ⊨Fr φ

means that, whenever (L, c) ⊨Fr Γ for some frame L and assignment c : Cons → L,
then also (L, c) ⊨Fr φ.

In the following proposition we show that there is a bijection between⇔-equi-
valence classes of formulas in geometric logic and elements of Fr⟨At⟩ (which is
the free frame defined in Section 3.4.1). This will allow us to treat Fr⟨At⟩ as if it
was the set of formulas Fm. We will obtain the bijection as the natural extension
Fm→ Fr⟨At⟩ of the inclusion of atoms as generators At ↪→ Fr⟨At⟩.

6.3.7 Lemma. Fr⟨At⟩ ⊨Fr α⇒ β if and only if ⊢Fr α⇒ β

Proof. The right-to-left direction is immediate. Conversely, each formula in the lan-
guage of geometric logic is⇔-equivalent to a formula of the form⨆

F∈A
(⊓v∈F v), for some A ⊆ F(At)4. (6.3.1)

This is proved by a transfinite induction; one inequality follows from the last rule of
(Frm-3) and the other from the last two rules of (Frm-2) and the third rule of (Frm-3).

4Recall that F(At) is the set of finite subsets of At, as defined in Section 3.4.1.
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Next, since Fr⟨At⟩ = Down(F(At),∪), we aim to relate the formula in (6.3.1) to
a downset of finite meets. Define

A† def≡ {G⊆fin At | F ⊆ G, for some F ∈ A},

Then, each formula of the form (6.3.1) is equivalent to
⨆

F∈A†(⊓v∈F v) by the last two
rules in (Frm-2) and the second and third rule of (Frm-3).

Let Fr⟨At⟩ ⊨Fr α ⇒ β for some α =
⨆

F∈A(⊓v∈F v) and β =
⨆

F∈B(⊓v∈F v). Since
v(α) ⊑ v(β) for all valuations v : At → Fr⟨v⟩, it must be true, in particular, for the
valuation v which is the inclusion of the generators At ↪→ Fr⟨At⟩. In this case A†

and B† are elements of Fr⟨At⟩ = Down(F(At),∪) and v(α) ⇒ v(β) translates as
A† ⊆ B†. Therefore, ⊓v∈F v⇒ β, for every F ∈ A, by the second rule of (Frm-3), and
so

⨆
F∈A(⊓v∈F v)⇒ β by the third rule of (Frm-3). □

In Proposition 6.3.9 below we show completeness of geometric logic with respect
to frames. Before we do that let us take a look at a special case.

Convention. By abuse of notation we define Fr⟨At | Γ⟩, for a set of frame
judgements Γ, to be the freely generated frame Fr⟨At⟩ quotiented by equations
α ⊑ β for every α⇒ β from Γ , i.e. we see Γ as a subset of Fr⟨At⟩×Fr⟨At⟩ and
Fr⟨At | Γ⟩ as the quotient Fr⟨At⟩/Γ (recall Section 3.4.1).

6.3.8 Lemma. For a set of frame judgements Γ and the valuation which is an inclusion
of atoms as generators v : At ↪→ Fr⟨At | Γ⟩,

Fr⟨At | Γ⟩ ⊨Fr
v α⇒ β implies Γ ⊢Fr α⇒ β.

Proof. Consider the factorisation of v into the composition of the inclusion At ↪→
Fr⟨At⟩ and the quotient Fr⟨At⟩ ↠ Fr⟨At | Γ⟩. Recall that Fr⟨At | Γ⟩ is the set of all
Γ-saturated elements of Fr⟨At⟩ (Section A.5) and that the quotient map µ : Fr⟨At⟩↠
Fr⟨At | Γ⟩ can be computed as γ ↦→ ⨆

δ∈Ord γδ where, for an ordinal δ and a limit
ordinal λ,5

γ0 = γ,

γδ+1 = γδ ⊔
⨆
{α ⊓ ε | β ⊓ ε ⊑ γδ for some ε and α⇒ β in Γ} and

γλ =
⨆

δ<λ

γδ.

Moreover, for every γ ∈ Fr⟨At⟩, there is an ordinal λ such that γλ = γλ+1. We
show Γ ⊢Fr γλ ⇒ γ by a transfinite induction. First, Γ ⊢Fr γ0 ⇒ γ is in (Frm-
1). Next, assume Γ ⊢Fr γδ ⇒ γ. Whenever β ⊓ ε ⊑ γδ for some ε ∈ Fr⟨At⟩ (and so
⊢Fr β⊓ ε⇒ γδ by Lemma 6.3.7) and α⇒ β in Γ, then (Frm-2) gives that α⊓ ε⇒ β⊓ ε

5In this instance, we denote the order of Fr⟨At⟩ as⊑ and, therefore, its frame operations as
⨆

and
⊓.
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and, then, the second rule in (Frm-1) entails that α⊓ ε⇒ γδ and also that α⊓ ε⇒ γ.
Therefore, by the third rule of (Frm-3), Γ ⊢Fr γδ+1 ⇒ γ. The transfinite step also
follows from (Frm-3).

Because α ⊑ β in Fr⟨At | Γ⟩ if and only if αδ ⊑ βδ′ in Fr⟨At⟩, for some ordinals δ

and δ′, by Lemma 6.3.7, ⊢Fr αδ ⇒ βδ′ , also α ⇒ αδ by (Frm-3) and βδ′ ⇒ β by what
we proved above. Therefore, by (Frm-1), Γ ⊢Fr α⇒ β. □

Finally, we use this lemma to show that Γ ⊨Fr α⇒ β implies Γ ⊢Fr α⇒ β.

6.3.9 Proposition (Completeness). Let Γ be a set of frame judgements,

1. (Fr⟨At | σΓ⟩ , c) ⊨Fr Γ

2. (Fr⟨At | σΓ⟩ , c) ⊨Fr α⇒ β implies Γ ⊢Fr α⇒ β

where σΓ is the closure of Γ under substitution (as in 6.3.4) and the picked assignment
c : Cons→ Fr⟨At | σΓ⟩ is the inclusion of constants as generators.

Proof. (1) Let v : At → Fr⟨At | σΓ⟩ be an assignment such that v↾Cons = c. Since
the frame Fr⟨At | σΓ⟩ is a subset of Fr⟨At⟩ (i.e. it is a sublocale), we can define a
substitution σ : Var → Fr⟨At⟩ as the composition of v↾Var with the set inclusion
Fr⟨At | σΓ⟩ ⊆ Fr⟨At⟩. Then, for an equation α ⇒ β in Γ, the equation σ(α) ⇒
σ(β) is in σΓ because σΓ is closed under substitutions. Therefore, for the quo-
tient map µ : Fr⟨At⟩ ↠ Fr⟨At | σΓ⟩, µσ(α) ⊑ µσ(β) is true in Fr⟨At | σΓ⟩ and so
Fr⟨At | σΓ⟩ ⊨Fr

v α⇒ β because v = µ · σ.
(2) If (Fr⟨At | σΓ⟩ , c) ⊨Fr α ⇒ β then, in particular, Fr⟨At | σΓ⟩ ⊨Fr

v α ⇒ β

where v is the inclusion of generators At ↪→ Fr⟨At | σΓ⟩. Lemma 6.3.8 implies that
σΓ ⊢Fr α⇒ β and, because Γ ⊢Fr φ for every φ ∈ σΓ, also Γ ⊢Fr α⇒ β. □

6.3.2 Completeness of d-frame logic

In the following we show that completeness of geometric logic with constants can
be directly used to compute the Lindenbaum-Tarski algebra for d-frame logic. The
starting point is Proposition 6.3.9 used with Cons = {tt, ff} and Γ = {tt ⊓ ff ⇒
⊥, ⊤ ⇒ tt ⊔ ff}. It follows that the⇔-equivalence classes of d-frame formulas Fm
can be identified with elements of the freely generated frame

T
def≡ Fr⟨Var, tt, ff | tt⊓ ff ⊑ ⊥, ⊤ ⊑ tt⊔ ff ⟩

where⊑ denotes the order of the free frame and⊥ and⊤ are the smallest and largest
elements, respectively6. As before, the mapping Fm → T which establishes the

6As before, we interpret statements α ⇒ β in the logic as inequalities α ⊑ β in T. Observe that
the rules (d-Frm-1), (d-Frm-2) and (d-Frm-3) do not add any new equations since, unless more is
assumed, only tt and ff are “in” con and tot.
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bijection between⇔-equivalence classes of formulas and elements of T is obtained
as the natural extension of the inclusion of generators Var ↪→ T.

T is a lattice with two (non-trivial) complemented elements tt and ff . A gen-
eral result from lattice theory says that any lattice L with two complemented ele-
ments can be equivalently represented as a product L+×L− of two lattices L+ and
L− [JM06]. In the following we explicitly compute this decomposition for T.

6.3.10 Lemma.

1. T ∼= Fr⟨Var+⟩×Fr⟨Var−⟩ where Var± are defined syntactically as {v+ | v ∈
Var}.

2. For a Γ ⊆ Jud⇒, the quotient frame T/Γ is isomorphic to the product

Fr⟨Var+ | Γ+⟩×Fr⟨Var− | Γ−⟩

where the relations Γ± = {α± ⊑ β± | α ⇒ β in Γ} are the images of Γ under
the isomorphism α ↦→ (α+, α−) from (1).

Proof. (1) We show that Fr⟨Var⟩×Fr⟨Var⟩ has the same universal property as T has.
First, define the embedding i : Var ∪ {ff , tt} → Fr⟨Var⟩×Fr⟨Var⟩ as v ↦→ (v+, v−),
tt ↦→ (1, 0) and ff ↦→ (0, 1). Then, for a mapping g : Var ∪ {ff , tt} → L into a
frame (L,

⨆
,⊓,⊥,⊤) which preserves the defining equations of T define its lift

g : Fr⟨Var⟩×Fr⟨Var⟩ → L as

g : (x, y) ↦→ (g̃+(x) ⊓ g(tt)) ⊔ (g̃−(y) ⊓ g(ff ))

where g̃± is the lift of g↾Var : Var → L to g̃± : Fr⟨Var±⟩ → L (after the obvious re-
naming). Checking that g · i = g and that g is unique is standard.

(2) follows from (1) by a general fact about quotients of a product of two frames
(see Proposition A.5.4 in the appendix). □

This establishes that T can be represented as the product Fr⟨Var+⟩×Fr⟨Var−⟩.
In fact, these frames are identical to the frame components of the freely generated
d-frame given by a single-sorted presentation as dFr⟨Var⟩ (recall Section 3.4.4). In
order to achieve completeness of the d-frame logic, we need to show that the d-
frame

dFr⟨Var | σΓ⟩

behaves as the Lindenbaum-Tarski algebra for Γ. As in Convention on page 189 and
interpret each judgement in σΓ as a d-frame equation in the obvious way, e.g. α⇒ β

translates as α ⊑ β, con(α) as α ∈ con and tot(α) as α ∈ tot.
The first step in proving completeness is a d-frame variant of Lemma 6.3.8 for

the ⇒-fragment of our logic. Most of the proof is about establishing a translation
between the single-sorted and two-sorted views on the free d-frame.
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6.3.11 Lemma. For a set of frame judgements Γ (i.e. Γ ⊆ Jud⇒) and the valuation
which is an inclusion of variables as generators v : Var ↪→ dFr⟨Var | Γ⟩,

dFr⟨Var | Γ⟩ ⊨v α⇒ β implies Γ ⊢ α⇒ β.

Proof. First, let us examine how the d-frame dFr⟨Var | Γ⟩ looks like. Recall from
Section 3.4.4, that each α ⇒ β in Γ translates as two inequalities α+ ≤ β+ and
α− ≤ β− for Fr⟨Var+⟩ and Fr⟨Var−⟩, respectively. Because there are no judgements
involving con or tot in Γ, the presentation of dFr⟨Var | Γ⟩ automatically satisfies the
conditions of Theorem 3.4.20 making the resulting d-frame isomorphic to

(Fr⟨Var+ | Γ+⟩ , Fr⟨Var− | Γ−⟩ , contriv, tottriv).

Here contriv and tottriv are the trivial consistency and totality relations (as in Ex-
ample 2.3.5). Moreover, by Lemma 6.3.10, Fr⟨Var+ | Γ+⟩×Fr⟨Var− | Γ−⟩ ∼= T/Γ
which is isomorphic to Fr⟨Var, tt, ff | tt⊓ ff ⊑ ⊥, ⊤ ⊑ tt⊔ ff , Γ⟩ (notice the extra Γ at
the end).

It is immediate to see that, for a judgement φ of the form α ⇒ β, dFr⟨Var | Γ⟩ ⊨v

φ if and only if T/Γ ⊨Fr
v φ. However, in the latter case, Lemma 6.3.11 implies that

Γ ⊢Fr φ and so also Γ ⊢ φ. □

In the proof of completeness we will also need to relate the procedure which
computes dFr⟨Var | σΓ⟩ with the entailment relation. For that we will need that
quotient structures on (Fr⟨Var+⟩ , Fr⟨Var−⟩), as defined in paragraph 3.4.7, uniquely
determine sets of d-frame judgements (up-to interprovability), and vice versa. In the
following we write Γ ⊢ ∆ to denote that Γ ⊢ φ for every φ ∈ ∆:

6.3.12 Lemma. There is a pair of maps ∆(−) : Q ↦→ ∆Q and Q(−) : ∆ ↦→ Q∆ between
quotient structures on (Fr⟨Var+⟩ , Fr⟨Var−⟩) and sets of judgements such that

r⋆(Q) = r⋆(Q∆Q) and also ∆ ⊢ ∆Q∆ and ∆Q∆ ⊢ ∆,

for every quotient structure Q and set of judgements ∆.
(where r⋆ was defined in Section 3.2.3.)

Proof. We use the isomorphism T ∼= Fr⟨Var+⟩×Fr⟨Var−⟩ from Lemma 6.3.10. De-
note by α ↦→ (α+, α−) and (α+, α−) ↦→ ⟨α+, α−⟩ the corresponding pair of inverse
maps. For any set of judgements ∆ ⊆ Jud, define the following sets of equations

Econ = {(α+, α−) ∈ con | con(α) is in ∆}, E+ = {α+ ≤ β+ | α⇒ β is in ∆},
Etot = {(α+, α−) ∈ tot | tot(α) is in ∆} and E− = {α− ≤ β− | α⇒ β is in ∆}.

Then, set the quotient structure Q∆ corresponding to ∆ to be (Econ, Etot, E+, E−).
Conversely, for a quotient structure Q = (con, tot, R+, R−) on (Fr⟨Var+⟩ , Fr⟨Var−⟩)
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define ∆Q to be the following set of judgements

{con(⟨α+, α−⟩) | (α+, α−) ∈ con} ∪ {⟨α+, 1⟩ ⇒ ⟨β+, 1⟩ | α+ ≤ β+ in R+}
∪{tot(⟨α+, α−⟩) | (α+, α−) ∈ tot} ∪ {⟨1, α−⟩ ⇒ ⟨1, β−⟩ | α− ≤ β− in R−}.

Observe that Q∆Q is equal to Q if R+ and R−, both, contain the inequalities 1 ≤ 1.
Moreover, adding this pair of inequalities to Q does not make any difference for
the image of r⋆. On the other hand, ∆Q∆ contains the same consistency and totality
judgements as ∆ does, and each judgement α ⇒ β in ∆ yields a pair of judgements
⟨α+, 1⟩ ⇒ ⟨β+, 1⟩ and ⟨1, α−⟩ ⇒ ⟨1, β−⟩ in ∆Q∆ . Because ⟨α+, 1⟩ = α ⊔ ff and
⟨β+, 1⟩ = β ⊔ ff in T, α ⇒ β ⊢ ⟨α+, 1⟩ ⇒ ⟨β+, 1⟩ by (Frm-3) and, similarly, α ⇒ β ⊢
⟨1, α−⟩ ⇒ ⟨1, β−⟩. Conversely, {⟨1, α−⟩ ⇒ ⟨1, β−⟩, ⟨α+, 1⟩ ⇒ ⟨β+, 1⟩} ⊢ α ⇒ β by
(Frm-2). □

Recall the iterative version r∞ of the operation on quotient structures from Sec-
tion 3.2.3. We show that ∆(−) from the previous lemma maps Q ⊆ r⋆(Q) and
Q ⊆ r∞(Q) (which hold automatically) to ∆Q ⊢ ∆r⋆(Q) and ∆Q ⊢ ∆r∞(Q), respec-
tively.

6.3.13 Proposition. Let Q be a quotient structure on (Fr⟨Var+⟩ , Fr⟨Var−⟩). Then,
for the translation from Lemma 6.3.12,

1. ∆Q ⊢ ∆r⋆(Q), and

2. ∆Q ⊢ ∆r∞(Q).

Proof. Let Q = (con, tot, R+, R−) be a quotient structure on (Fr⟨Var+⟩ , Fr⟨Var−⟩).
(1) Define (con⋆, tot⋆, R⋆

+, R⋆
−) to be the quotient structure r⋆(Q), i.e. it is equal to

(↓R D(con), ↑R tot, (con ; tot−1) ∪ R+, (con−1 ; tot) ∪ R−)

Let ⊑R be as in paragraph 3.1.10 and let ⊑⋆ be an abbreviation for ⊑R⋆
where

R⋆ = (R⋆
+, R⋆

−); i.e. ⊑R and ⊑⋆ are pre-orders on Fr⟨Var+⟩×Fr⟨Var−⟩. Observe
the following:

• α ⊑R β implies ∆Q ⊢ α ⇒ β: Notice that α ⊑R β implies that µ(α) ⊑ µ(β) where
µ is the quotient map dFr⟨Var⟩ ↠ dFr⟨Var | R⟩. Moreover, by Lemma 6.3.12,
dFr⟨Var | R⟩ is isomorphic to the d-frame dFr⟨Var | ∆R⟩ where ∆R is the set of
judgements ∆(∅,∅,R+,R−), i.e. it is the union of {⟨a, 1⟩ ⇒ ⟨b, 1⟩ | a ≤ b in R+} and
{⟨1, c⟩ ⇒ ⟨1, d⟩ | c ≤ d in R−}. Therefore, by Lemma 6.3.11, ∆R ⊢ α ⇒ β and,
because ∆R ⊆ ∆Q, also ∆Q ⊢ α⇒ β.

In the following we use this fact and show that α ∈ con⋆ implies ∆Q ⊢ con(α), that
α ∈ tot⋆ implies ∆Q ⊢ tot(α) and that α ⊑⋆ β implies ∆Q ⊢ α ⇒ β. We do this in a
case by case fashion:
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• α ⊑⋆ β: This implies that µ′(α) ⊑ µ′(β) where µ′ is the quotient map dFr⟨Var⟩↠
dFr⟨Var | R⋆⟩. As before, by Lemma 6.3.12, dFr⟨Var | R⋆⟩ ∼= dFr⟨Var | ∆⋆

⇒⟩where
∆⋆
⇒ is the set of judgements ∆(∅,∅,R⋆

+,R⋆
−)

, i.e. it is the set

{⟨a, 1⟩ ⇒ ⟨b, 1⟩ | a ≤ b in R⋆
+} ∪ {⟨1, c⟩ ⇒ ⟨1, d⟩ | c ≤ d in R⋆

−}.

Then, by Lemma 6.3.11, ∆⋆
⇒ ⊢ α ⇒ β. Therefore, if we prove that ∆Q ⊢ φ, for

all φ ∈ ∆⋆
⇒, then we have that ∆Q ⊢ α ⇒ β. If (a, b) ∈ R⋆

+, then either (a, b) ∈
R+ or (a, b) ∈ con ; tot−1. In the first case we, ⟨a, 1⟩ ⊑R ⟨b, 1⟩ and so, by the
previous bullet point, ∆Q ⊢ ⟨a, 1⟩ ⇒ ⟨b, 1⟩. In the latter case, there must be some
c ∈ Fr⟨Var−⟩ such that (a, c) ∈ con and (b, c) ∈ tot. Then, because con(⟨a, c⟩)
and tot(⟨b, c⟩) are in ∆Q, by the first rule of (d-Frm-3), ∆Q ⊢ ⟨a, c⟩ ⇒ ⟨b, c⟩. We
also entail that ⟨a, c⟩ ⇒ ⟨b, c⟩ ⊔ ff and then ⟨a, c⟩ ⊔ ff ⇒ ⟨b, c⟩ ⊔ ff by (Frm-3).
Finally, because ⟨a, c⟩ ⊔ ff = ⟨a, 1⟩ and ⟨b, c⟩ ⊔ ff = ⟨b, 1⟩ in T (resp. dFr⟨Var⟩),
∆Q ⊢ ⟨a, 1⟩ ⇒ ⟨b, 1⟩.

• α ∈ D(con): By definition, α =
⨆

S for some directed S ⊆ con. We know that
∆Q ⊢ con(γ), for all γ ∈ S and so, by the last rule of (d-Frm-1), ∆Q ⊢ con(α).

• α ∈ ↓R D(con): There is an α′ ∈ D(con) such that α ⊑R α′. Then, ∆Q ⊢ α ⇒ α′

and also ∆Q ⊢ con(α′) by the previous case. Consequently, ∆Q ⊢ con(α) by the
penultimate rule of (d-Frm-1).

• α ∈ ↑R tot: by an argument analogous to the previous case, ∆Q ⊢ tot(α).

(2) Q is the first element of the growing sequence {rδ(Q) : δ ∈ Ord} (defined
as in Section 3.2.3) and r∞(Q) is equal to some rδ(Q) such that rδ(Q) = r⋆(rδ(Q)).
The statement follows from a transfinite induction: In the previous we showed that
Qrδ(Q) ⊢ Qrδ+1(Q), for every ordinal δ, and the limit steps follow from the fact that,
for a limit ordinal λ, ∆⋃{rδ(Q) | δ<λ} is equal to

⋃{∆rδ(Q) | δ < λ}. □

6.3.14 Theorem (Completeness).
For a judgement φ and a set of judgements Γ, Γ ⊨ φ implies Γ ⊢ φ.

Proof. Recall that LΓ
def≡ dFr⟨Var | σΓ⟩ is computed as the quotient d-frame

(Fr⟨Var+⟩ , Fr⟨Var−⟩ , con∞, tot∞)/R∞

where (con∞, tot∞, R∞
+ , R∞

−) is equal to the quotient structure r∞(QσΓ). The construc-
tion of r∞(QσΓ) has the property that, for the quotient map µ : dFr⟨Var⟩ ↠ LΓ,
µ(α) ⊑ µ(β) iff α ⊑R∞

β, that µ(α) ∈ con iff α ∈ con∞ and that µ(α) ∈ tot iff
α ∈ tot∞.

Now we show that, for any valuation v : Var → LΓ, LΓ ⊨v Γ. Let con(α) be
a judgement from Γ. We have that con(σ(α)) is in σΓ, where the substitution σ is
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obtained as the composition of v and the pairwise inclusion µ• : LΓ ↪→ dFr⟨Var⟩,
and so σ(α) ∈ con∞. Hence, v(α) = µ(σ(α)) is consistent in LΓ because µ · µ• = id.
Similarly, we have that whenever α⇒ β (resp. tot(α)) is in Γ, then v(α) ⊑ v(β) (resp.
v(α) ∈ tot).

Next, because LΓ ⊨ Γ, then LΓ ⊨v φ for all valuations v. Fix a valuation v : Var →
LΓ defined as the composition of the inclusion of variables ι : Var ↪→ dFr⟨Var⟩ and
the quotient µ (defined above). If LΓ ⊨v con(α), for some formula α, then it follows
from the discussion in the first paragraph that ι(α) ∈ con∞. Consequently, Γ ⊢
con(α) because ∆QσΓ ⊢ con(α) (Proposition 6.3.13) and Γ ⊢ ∆QΓ (Lemma 6.3.12) and
∆QΓ ⊢ ∆QσΓ (the latter judgements are only substitutions). The case for judgements
of the form tot(α) or α ⇒ β is similar. We have proved that LΓ ⊨v φ implies Γ ⊢
φ. □

6.3.15 Example. Let Γ be a set of judgements of d-frame logic. Let LΓ to be the d-
frame representing the Lindenbaum-Tarski algebra for Γ, i.e. LΓ = dFr⟨Var | σΓ⟩.
Then, the points of the bispace XΓ

def≡ Σd(LΓ) are the d-frame homomorphisms
p : LΓ → 2×2. Each such homomorphism p uniquely determines a pair of maxi-
mally consistent geometric theories (completely prime filters) T+ ⊆ Fr⟨Var+⟩ and
T− ⊆ Fr⟨Var−⟩ such that

• if α+ ∈ T+, α− ∈ T− and Γ ⊢ α⇒ β, then β+ ∈ T+ and β+ ∈ T−;

• if Γ ⊢ con(α), then either α+ ̸∈ T+ or α− ̸∈ T−; and

• if Γ ⊢ tot(α), then either α+ ∈ T+ or α− ∈ T−.

This comes from the fact that we compute T± as the preimage of 1 ∈ 2 by the map
p± · µ± where µ is the quotient dFr⟨Var⟩↠ LΓ.

Consequently, every point x ∈ XΓ determines a theory T+ and a counter-theory
T−7 and we interpret the elements of T+ as the properties which observably hold for
x and the elements of T− are the properties which observably fail for x. Therefore, we
can think of points of x as models of Γ (the same way as in Table 6.1).

There is no guarantee that, for a set of judgements Γ, the space XΓ has any points
at all. Moreover, even if it has some points, it “might not have enough of them”.
This means that there might be α and β such that Γ ̸⊢ α = β but for all points
x = (T+, T−), α± ∈ T± iff β± ∈ T±. In other words, α and β are indistinguishable
by any model x ∈ XΓ. This happens whenever the d-frame LΓ is not spatial.

6.3.16 Adaptation to d-KReg. In order for LΓ, from the example above, to be
spatial, it is enough if it is d-compact and d-regular (Proposition 2.4.4). At the same
time, every d-compact d-regular d-frame L is isomorphic to the d-frame presented

7We borrow the name “theory” and “counter-theory” from Dunn [Dun95].
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as follows

dFr
⟨
⟨α⟩ : α ∈ conL

⏐⏐⏐ ⟨α⟩ ∧· ⟨β⟩ = ⟨α ∧· β⟩ , ⟨tt⟩ = tt, ⟨ff ⟩ = ff ,

(∀α ≺ α′, β ≺ β′) ⟨α ∨· β⟩ ⩽· ⟨α′
⟩
∨· ⟨β′

⟩
,

⟨α⟩ ⊑
⨆
{⟨γ⟩ ⊓ ⟨δ⟩ | γ ≺ α, α ≺ δ},

(∀α ∈ conL) ⟨α⟩ ∈ con, (∀α ≺ β) ⟨α⟩ ⊔ ⟨β⟩ ∈ tot
⟩

.

(6.3.2)

where the strongly implies relation α ≺ β is defined as (β+, α−) ∈ totL. This can be
proved by an adaptation of a construction by Achim Jung and Drew Moshier [JM06,
Proposition 8.3]8. In fact, all that is needed from conL to show that the presentation
in (6.3.2) yields a d-compact d-regular frame is that the structure (conL,∧· ,∨· , tt, ff ,≺)
is a strong proximity lattice. Those are distributive lattices (X,∧,∨, 1, 0) equipped
with a relation ≺ ⊆ X×X satisfying six simple axioms (see, for example, Definition
2.18 in [JM06]). Moreover, strong proximity lattices can be thought of as an alge-
braisation of Multi Lingual Sequent Calculus introduced in [JKM97] and [Keg95]. It
should not be difficult to spell out the necessary conditions under which the d-frame
LΓ is d-compact and d-regular, for a set of judgements Γ.

For more information about (strong) proximity lattices refer to [Smy92b], [JS96]
and [BH14].

8This is because the first three lines of (6.3.2) make sure that the frame components are the frames
of rounded ideals and rounded filters. The proof of this is exactly as in [BM03]. Then, to check that also
the consistency and totality relations agree, one has to adapt the proof of Proposition 3.5.3.



A
Appendix: Mathematical background

In this chapter we give an overview of basic terminology needed to understand this
text. For further information about order theory see [DP02], for topology and frame
theory see [PP12; PPT04; Joh82; Vic89] and for category theory see [Mac71; AHS90].

A.1 Set theory

For the purpose of this text, we do not rely on any particular foundations of mathe-
matics. We only need to make a distinction between classes and sets as is common in
set theory.

For a function f : X → Y between sets, we write f [M] and f−1[N] for the sets
{ f (x) | x ∈ M} and {x | f (x) ∈ N}, respectively. Denote the restriction of f to
M ⊆ X by f ↾M : M→ Y. Next, A⊆fin B denotes that A is a finite subset of B, M×N
is the set {(x, y) | x ∈ M, y ∈ N} and P(X) = {A | A ⊆ X} is the set of all subsets
of X. The quotient of a set X by an equivalence relation ∼, denoted X/∼, is defined
as the set {[x]∼ | x ∈ X} where [x]∼ = {y ∈ X | x ∼ y}.

We also often need the class Ord of ordinal numbers to perform transfinite in-
ductions. All that we require from our ordinals is that they are pre-ordered, that we
can take a successor and a supremum of a set of ordinals. The exact definition of
ordinals is not important for us. One can, for example, use von Neumann ordinals,
which are the transitive well-ordered sets.
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A.2 Order theory

Most of structures of our investigations are pre-ordered sets, that is, a set equipped
with a binary relation (Z,≤) such that, for every a, b, c ∈ Z,

1. a ≤ a (reflexivity)

2. a ≤ b and b ≤ c implies a ≤ c (transitivity).

A pre-ordered set is a partially ordered set, or simply poset, if it further satisfies

3. a ≤ b and b ≤ a implies a = b (antisymmetry).

For a set A ⊆ Z, define the downwards closure of A, denoted ↓A, and the up-
wards closure of A, denoted ↑A, to be the sets {b | b ≤ a for some a ∈ A} and
{b | a ≤ b for some a ∈ A}, respectively. Also, ↓a and ↑a are shorthands for ↓{a}
and ↑{a}, respectively. Then, a set A is a downset, upset or convex set if A = ↓A,
A = ↑A and A = ↓A ∩ ↑A, respectively.

Throughout the text we come across many different posets and so the symbol we
use for the order relation depends on the context. Apart from ≤ and ⪯ we also use,
for example, ⊑ and ⩽·.

A.2.1 Finitary lattices. A poset equipped with a binary operation called infimum
(or meet) and a constant (S,∧, 1) is a meet semilattice if ∧ is an associative, commuta-
tive and idempotent binary operation such that

1. a ∧ 1 = a

2. a ∧ b ≤ a

3. a ≤ b, a ≤ c implies a ≤ b ∧ c.

Dually, (S,∨, 0) is a join semilattice if the dual poset (S,≤op) together with ∨ and 0
is a meet semilattice, where a ≤op b iff b ≤ a. We call the operation ∨ supremum or
join.

Next, we say that (D,∧,∨, 0, 1) is a (distributive) lattice if (D,∧, 1) and (D,∨, 0)
are semilattices such that the following equality holds

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

An important consequence of the lattice laws is that, for a fixed a, b, c, any pair
of equations of the form

a ∧ x = b and a ∨ x = c

has at most one solution x. Finally, we say that (B,∧,∨, 0, 1,∼) is a Boolean algebra if
(B,∧,∨, 0, 1) is a distributive lattice such that

x ∧∼x = 0 and x ∨∼x = 1, for all x ∈ B.
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A.2.2 Infinitary lattices and dcpos. A non-empty subset A of a poset (P,≤) is
directed, A⊆↑ P, if for every a, b ∈ A there exists a c ∈ A such that a ≤ c and b ≤ c.
Then, a structure (P,

⋁↑) is a directed-complete partial order, or dcpo for short, if P is a
poset and every directed subset A of P has a supremum (or join)

⋁↑ A, i.e.

1. ∀a ∈ A, a ≤ ⋁↑ A, and

2. ∀a ∈ A, a ≤ b implies
⋁↑ A ≤ b.

If a poset is a join semilattice and a dcpo at the same time, we say that it is a complete
lattice. Complete lattices enjoy the following important properties:

• Every subset has a supremum. A supremum
⋁

A of an arbitrary set A is com-
puted as the directed join of the set {a1 ∨ a2 ∨ · · · ∨ an | a1, a2, . . . , an ∈ A}.

• Dual poset is also a complete lattice, i.e. every subset of a complete lattice has an
infimum (or meet). An infimum

⋀
A of an arbitrary set A is computed as the

supremum of the set {x | x ≤ a for every a ∈ A}.

An example of a poset which is a complete lattice is (P(X),⊆). The joins and
meets are exactly the operations of taking unions and intersections.

A.2.3 Structure preserving maps. A monotone map f : X → Y between two pre-
orders X and Y is a map such that

a ≤ b in X =⇒ f (a) ≤ f (b) in Y.

Similarly, a map h : S → T between two meet semilattices is a (meet) semilattice ho-
momorphism if h(a ∧ b) = h(a) ∧ h(b), for every a, b ∈ S. Define join semilattice
homomorphisms dually. Next, a map h : D → E between two distributive lattices is
a lattice homomorphism if, for every a, b ∈ D,

h(a ∧ b) = h(a) ∧ h(b), h(a ∨ b) = h(a) ∨ h(b), h(0) = 0 and h(1) = 1.

Similarly, a map h : B→ C between two Boolean algebras is a Boolean homomorphism
if it is a lattice homomorphism such that ∼h(x) = h(∼x) for every x ∈ B.

These definitions generalise to the infinitary cases as well. We say that a map
between posets f : X → Y preserves the supremum of A ⊆ X (provided that it
exists) if f (

⋁
A) =

⋁
f [A]. Define preservation of infima dually. Then, for example,

a map between two dcpo is Scott-continuous if it preserves suprema of all directed
sets.

A.2.4 Galois adjunction. Let f : X → Y and g : Y → X be maps between two
posets. We say that f is the left Galois adjoint of g and that g is the right Galois adjoint
of f if, for every x ∈ X and y ∈ Y,

f (x) ≤ y if and only if x ≤ g(y)
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or equivalently

f (g(y)) ≤ y and x ≤ g( f (x)).

Furthermore, in special cases, Galois adjoints have another characterisation. For
a map f : L→ M between two complete lattices, the following two are equivalent:

1. f preserves all suprema.

2. f has a right adjoint f• (computed as f•(x) =
⋁{y ∈ L | f (y) ≤ x}).

A.3 Category theory

A category C consists of a class of objects obj(C), a set of morphisms Hom(A, B), for
every pair of objects A, B ∈ obj(C), and a function for composition of morphisms

(·) : Hom(B, C)× Hom(A, B)→ Hom(A, C)

for every A, B, C ∈ obj(C) such that

1. For every object A ∈ obj(C), there is a morphism idA ∈ Hom(A, A) such that
idA · f = f and g · idA = g for every f ∈ Hom(B, A) and g ∈ Hom(A, B).

2. ( f · g) · h = f · (g · h) for every h ∈ Hom(A, B), g ∈ Hom(B, C) and f ∈
Hom(C, D).

Morphisms f ∈ Hom(A, B) are often denoted f : A → B or A B
f

, and Hom-sets
are alternatively denoted HomC(A, B) or C(A, B).

A.3.1 Example. In the previous sections we came across the category Set of sets and
functions, the category PreOrd of pre-ordered sets and monotone functions, the
category Pos of partially ordered sets and monotone functions, the category DLat
of distributive lattice and lattice homomorphisms, and the category Bool of Boolean
algebras and Boolean homomorphisms.

Moreover, every poset P can be seen as category with the object of the category
being the elements of P and HomP(a, b) is a singleton if a ≤ b in P, otherwise it is
empty.

Every category C has an opposite category Cop associated to it. It is defined as
the category with morphisms going in the opposite direction; i.e. HomCop(A, B) =

HomC(B, A) and f ·op g = g · f .
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A.3.2 Special morphisms. A morphism f : A → B is a monomorphism (or just
mono) if f · g = f · h implies g = h. Similarly, f is an epimorphism (or just epi) if f is a
monomorphism in the opposite category, i.e. g · f = h · f implies g = h. Further, f
is an isomorphism (or just iso) if there exists and f−1 : B → A such that f · f−1 = idB
and f−1 · f = idA.

A.3.3 Remark. In the categories mentioned in Example A.3.1, monomorphisms, epi-
morphisms and isomorphisms correspond precisely to injective, surjective and bi-
jective maps, respectively, but this is not the case for a general category. The category
of frames (which we define below) is an example of a category where epimorphisms
are not always surjective.

To capture surjectivity, a stronger notion has to be often assumed. One example
is the following. An extremal epimorphism is a morphism e such that, whenever e =

m · f for some monomorphisms m, then m is an isomorphisms.1

Next, anytime a pair of morphisms A B As r composes to the identity
idA we say that s is a section of r and that r is a retraction of s. Because r is always an
epi and s is always a mono, we also say that r is a split epimorphism and s is a split
monomorphisms (and that the composition r · s is called splitting idempotent). In fact, r
is always an extremal epimorphism.

A.3.4 Functors and natural transformations. A (covariant) functor F : C → D be-
tween categories C and D is a mapping on objects F : obj(C)→ obj(D) together with
mappings between sets of morphisms F : Hom(A, B)→ Hom(F(A), F(B)), for every
A, B ∈ obj(C), which preserve the identity morphisms and composition, i.e.

F(idA) = idF(A) and F( f ) · F(g) = F( f · g).

Alternatively, we define a contravariant functor similarly, except that the mappings
between Hom-sets is contravariant, i.e. it is of the type Hom(A, B)→ Hom(F(B), F(A)).

We say that F is an embedding if it is injective on morphisms, faithful if all the map-
pings F : Hom(A, B)→ Hom(F(A), F(B)) are injective and full if those mappings are
onto.

A.3.5 Example. (1) For every category C, there is the identity functor IdC : C → C is
defined as the identity mapping on both objects and morphisms. Also, for any other
category D and an object C ∈ obj(C), there is a constant functor ∆C : D → C defined
as ∆C(D) = C and ∆C( f ) = idC for every D ∈ obj(D) and any morphism f in D.

(2) Pos being a subcategory of PreOrd induces a functor I : Pos → PreOrd
which is a full embedding.

(3) Consider a forgetful functor U1 : Pos → Set which sends a poset (Z,≤) to Z
and leaves the morphisms unchanged. Similarly define the following two forgetful

1Even though e is not required to be an epimorphism it often follows from mild categorical as-
sumptions such as existence of equalisers.
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functors U2 : DLat→ Pos, and U3 : DLat→ Set. We see that U3 is, in fact, the com-
position of the two previous functors, i.e. U3 = U1 ◦U2 (defined as a composition
of mappings on objects and morphisms separately). Observe that U1 and U3 are full
and faithful but not embeddings.

Let F, G : C → D be two functors. A natural transformation ε : F =⇒ G is de-
fined as a collection of morphisms {εC : F(C) → G(C)}C∈obj(C) such that, for every
f : A→ B in C, G( f ) · εA = εB · F( f ); expressed as a commutative diagram

F(A) G(A)

F(B) G(B)

εA

F( f ) G( f )

εB

(Natural transformations for contravariant functors are defined accordingly.)
Then, two categories C and D are equivalent if there is a pair of functors F : C →

D and G : D → C such that F ◦ G ∼= IdD and G ◦ F ∼= IdC where F ◦ G ∼= IdD

denotes that there is a natural isomorphism η : F ◦ G =⇒ IdD , i.e. η is a natural
transformation which consists of isomorphisms.

A.3.6 Limits and colimits. A diagram D in C is any functor D : I → C such that
the category I has only set many objects. A limit of a digram D in C is a constant
functor lim(D) : I → C and a natural transformation η : lim(D) =⇒ D such that
for any other constant functor ∆C : I → C and a natural transformation δ : ∆C =⇒
D there is a unique natural transformation δ : ∆C =⇒ lim(D) such that δ = η · δ
(composed componentwise). Correspondingly, a colimit of a diagram D in C is a
limit in the opposite category, Cop.

A.3.7 Example. (1) An example of a limit is the product ∏i Ai of a collection of ob-
jects {Ai}i∈I in C (provided that it exists), i.e. D(i) = Ai and the category I has
no morphisms except for the identities. The natural transformation lim(D) =⇒ D

consists exactly of the projection maps πi : ∏i Ai → Ai.
(2) Another type of limit is an equaliser. For a pair of morphisms f , g : A→ B, an

equaliser is a morphism e : C → A such that f · e = g · e and, whenever there is an h
such that f · h = g · h, then h = e · u for a unique u. In the category of sets, Set, is an
equaliser of a pair of maps f , g : A → B the set {a ∈ A | f (a) = g(a)} together with
the inclusion map to A.

(3) Coproducts are defined as products but in the opposite category. They are
usually denoted as ⨿i Ai or

⨁
i Ai and the natural transformation D =⇒ colim(D)

consists of the inclusion morphisms/maps ιi : Ai → ⨿i Ai.

(4) Finally, coequaliser is a colimit of a diagram A B
f

g
. It consists of an object

C and a morphism c : B → C such that c · f = c · g with the expected universal
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property. In Set, for example, an equaliser of f and g is the quotient q : B → B/∼
where ∼ is the smallest equivalence relation such that f (a) ∼ g(a), for all a ∈ A.

A.3.8 Fact. If a category has (co)products and (co)equalisers then it has (co)limits of
all diagrams.

A.3.9 Adjoint functors. Let F : C → D and G : D → C be two functors. A functor
F is a left adjoint[adjoint] of G and G is a right adjoint of F, written as F ⊣ G, if there
are two natural transformations η : IdC =⇒ G ◦ F and ε : F ◦ G =⇒ IdD such that
the compositions

F F ◦ G ◦ F F
Fη εF and G G ◦ F ◦ G G

ηG Gε

are equal to the identity natural transformations, i.e. those which consist of the iden-
tity morphisms idF(A) : F(A)→ F(A) and idG(B) : G(B)→ G(B), respectively.

Dual adjunction is defined as a pair of contravariant functors F and G and two
natural transformations η : IdC =⇒ G ◦ F and ε : IdD =⇒ F ◦ G satisfying the corre-
sponding pair of equalities.

A.3.10 Example. (1) Let F : C → D and G : D → C be such that F ◦ G = IdC and
G ◦ F = IdD (in other words the categories C and D are isomorphic) then the functors
F and G are both left and right adjoints to each other.

(2) Let U : DLat → Set be the forgetful functor and let F : Set → DLat be de-
fined on objects as the mapping X ↦→ DL⟨X⟩ where DL⟨X⟩ is the freely generated
distributive lattice over X. Then, F is the left adjoint of U.

(3) Let f : X → Y be a monotone map between two posets and let g : Y → X
be its right Galois adjoint. Then, for X and Y seen as categories, f and g are two
functors which are adjoint to each other, i.e. f ⊣ g.

(4) Let D be a full subcategory of C, that is, the embedding functor J : D ↪→ C

is full. D is said to be reflective (resp. coreflective) if J has a left (resp. right) adjoint.
Reflectivity is equivalent to postulating that, for every object C in C, there is an
object F(C) in D and a morphism ρC : C → J(F(C)) in C such that, for any other
morphism f : A → J(D), f = J( f ) · ρC for a unique f : F(C) → D. Coreflection can
be equivalently restated as a mapping on objects G : obj(C)→ obj(D) together with
a collection of maps λC : J(G(C))→ C, for every C ∈ obj(C), satisfying the expected
universal property.

A concrete example of a reflection is the reflection of PreOrd onto its full subcat-
egory Pos. F(Z,≤) is defined as the poset Z/∼ where x ∼ y if x ≤ y and x ≥ y and
ρZ : Z → Z/∼ is the quotient map.
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A.3.11 Fact. Let F ⊣ G : C ⇄ D be a pair of adjoint functors. Then F preserves all
existing colimits and G preserves all existing limits, i.e. F(colimD) ∼= colim(F ◦D)

for any diagram D which has a colimit in C and, dually, G(lim D) ∼= colim(G ◦D)

for any diagram D which has a limit in D.

A.3.12 Monads and comonads. A monad on a category C is a structure (T, η, µ)

where T : C → C is an (endo)functor and the rest are natural transformations of the
type η : IdC =⇒ T and µ : T ◦ T =⇒ T, such that the following diagrams commute

T3 T2

T2 T

Tµ

µT µ

µ

T T2

T

ηT

idT

µ

T2 T

T

µ

Tη

idT

Instead of providing the full structure of the monad and proving commutativity
of those three diagrams, it is often easier to find an associated Kleisli triple for it.
A huge advantage of this representation is that it is enough to define the action of
T on objects and the action on morphisms is derived from it. A Kleisli triple over a
category C is a structure (T, η, (−)) where

• T is a mapping on objects T : obj(C)→ obj(C),

• ηA : A→ T(A) is a morphism in C, for every A ∈ obj(C), and

• (−) “lifts” every morphism f : A→ T(B) to f : T(A)→ T(B).

Moreover, the following equations hold

(M1) ηA = idT(A),

(M2) f · ηA = f for all f : A→ T(B),

(M3) g · f = g · f for all f : A→ T(B) and g : B→ T(C).

Every Kleisli triple (T, η, (−)) defines a monad (T, η, µ) where the extension of
T to morphisms is computed as T(h : A → B) = ηb · f and µA is defined as idT(A).
Conversely, every monad (T, η, µ) gives a Kleisli triple the following way: T and η

stay the same and f , for an f : A→ T(B), is the morphism µA · T( f ).

A.3.13 Fact (Proposition 1.6 in [Mog91] or Theorem 3.16 in [Man76]). This cor-
respondence between Kleisli triples and monads is a bijection.

Comonads and co-Kleisli triples are defined dually.

A.3.14 Example. The powerset monad (P, η : x ↦→ {x}, µ : M ↦→ ⋃
M) on Set rep-

resented as Kleisli triple (P, η, (−)) where the lift operation maps f : X → P(Y) to
f : (X)→ P(Y), M ↦→ ⋃

f [M].
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A.3.15 Algebras and coalgebras. Any endofunctor T : C → C introduces cate-
gories of T-algebras and T-coalgebras and their homomorphisms, denoted as Alg(T)
and Coalg(T), where

• a T-algebra (A, α) is any morphism α : T(A) → A in C and a homomorphism
of T-algebras h : (A, α) → (B, β) is any morphisms h : A → B in C such that
h · α = β · T(h); and dually

• a T-coalgebra (X, ξ) is any morphism ξ : X → T(X) and a homomorphism of
T-coalgebras f : (X, ξ) → (Y, ρ) is a morphism f : X → Y such that ρ · f =

T( f ) · ξ.

We say that a T-algebra (I, ι) is an initial algebra if for every T-algebra (A, α) there
is a unique homomorphism of T-algebras (I, ι) → (A, α). Final coalgebras are defined
dually.

Finally, for a comonad (T, η : T =⇒ IdC, µ : T =⇒ T2) and a coalgebra (X, ξ), we
say that (X, ξ) is a comonad T-coalgebra if T(ξ) · ξ = µX · ξ and ηX · ξ = idX.

A.3.16 Proposition. Let Q : X ⇄ A : S be adjoint functors, Q ⊣ S, establishing a
dual equivalence of categories. If T : X → X and L : A → A are two endofunctors
such that LQ ∼= QT, then Coalg(T) is dually equivalent to Alg(L).

Proof. By QS ∼= IdA , the morphisms L(A) → A are in a (natural) bijection with
morphisms LQS(A) → A which are, by LQ ∼= QT, in bijection with morphisms
QTS(A) → A. From the dual adjunction Q ⊣ S, those correspond to morphisms
S(A) → TS(A) and therefore to T-coalgebras, because every X is isomorphic to
SQ(X). □

A.4 Point-free topology

A topological space is a structures structure (X, τ) where τ ⊆ P(X) is a collection of
open sets such that

1. ∅, X ∈ τ,

2. U, V ∈ τ implies U ∩V ∈ τ, and

3. U ⊆ τ implies
⋃
U ∈ τ.

Complements of open sets are called closed sets[closed set] and the sets which are
both open and closed are called clopen. For a subset M ⊆ X we define its inte-
rior M◦ as the largest open set contained in M, i.e. M◦ =

⋃{U ∈ τ | U ⊆ M}.
Similarly, the closure M of M is the smallest closed set containing M, that is, M =⋂{closed C | M ⊆ C}.
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Morphisms in the category of topological spaces Top are continuous maps, that is,
the maps f : (X, τX)→ (Y, τY) which satisfy

f−1[U] ∈ τX for every U ∈ τY.

A.4.1 Example. The classical example of a space is the unit interval of real numbers
[0,1] with the smallest topology which contains all the intervals of opens (a, b) where
0 ≤ a < b ≤ 1.

A non-Hausdorff example of a space is the space of all Scott-open sets on a dcpo
(D,

⨆↑) where U ⊆ D is Scott-open provided that⨆↑ A ∈ U implies a ∈ U for some a ∈ A.

A.4.2 Frames and frame homomorphisms. The basic objects of study in the point-
free topology are frames (or their covariant variants, locales). When compared to
topological spaces, we take (abstract) open sets as the basic notion and then the
points of frames are only derived from the relationships between opens.

The objects of the category of frames Frm are complete lattices L = (L,
⋁

,∧, 0, 1)
which satisfy

(
⋁

A) ∧ b =
⋁
{a ∧ b | a ∈ A} (A.4.1)

for all A ⊆ L and b ∈ L. Morphisms of Frm are frame homomorphisms, that is, maps
h : L → M which preserve all joins and all finite meets. This means that they also
preserve the empty join, h(0) = 0, and the empty meet, h(1) = 1.

A.4.3 Example. (1) A topological space (X, τ) gives rise to a frame Ω(X), defined
as (τ,

⋃
,∩, ∅, X), and a continuous map f : X → Y gives rise to a frame homomor-

phism Ω( f ) : Ω(Y) → Ω(X), U ↦→ f−1[U]. In other words, we have a contravariant
functor Ω : Top→ Frm.

(2) Down : Pos → Frm is a functor which assigns to a poset (Z,≤) the frame of
downsets Down(Z,≤) ordered by set inclusion. Joins and meets in Down(Z,≤) are
computed as unions and intersections. On morphisms, it is defined as Down( f ) : U ↦→
↓ f [U] for every monotone f : Z → Y.

(3) Idl : DLat → Frm is a functor which assigns to a distributive lattice D its
frame of ideals Idl(D) ordered by set inclusion, where an ideal is a subset I ⊆ D such
that

(I1) 0 ∈ I (I2) a, b ∈ I implies a∨ b ∈ I (I3) a ≤ b and b ∈ I implies a ∈ I.

Similarly, define a functor Filt : DLat → Frm assigning to D the frame of filters
Filt(D) ordered by set inclusion, where a filter is an ideal in Dop.

The actions on morphisms are defined as Idl(h) : I ↦→ ↓h[I] and Filt(h) : F ↦→
↑h[F], respectively. Note that directed joins and finite meets of ideals/filters are
defined as the union and finite intersection, and binary joins are defined as follows

I1 ∨ I2 = {x ∨ y | x ∈ I1, y ∈ I2} and F1 ∨ F2 = {x ∧ y | x ∈ F1, y ∈ F2}.
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A.4.4 The adjunction Ω ⊣ Σ. Every frame L gives rise to a topological space
Σ(L) whose points are frame homomorphism p : L → 2, where 2 = {0 < 1}, and
the topology of Σ(L) consists of the open sets Σ(a) = {p : L → 2 | p(a) = 1}, for
every a ∈ L.

This definition extends to morphisms. For a frame homomorphism h : L → M
define Σ(h) : Σ(M) → Σ(L) as p : M → 2 ↦−→ p · h : L → 2. The contravari-
ant functors Ω and Σ constitute a dual adjunction Ω ⊣ Σ with the unit and counit
morphisms defined as

ηX : X −→ Σ(Ω(X))

x ↦−→ {U ∈ τ | x ∈ U}
εL : L −→ Ω(Σ(L))

a ↦−→ {Σ(a) | a ∈ L}

A space X is called sober if X ∼= Σ(L) for some frame L and, similarly, a frame L is
called spatial if L ∼= Ω(X) for some space X.

Note that frame homomorphisms p : L → 2 are in a bijective correspondence
with completely prime filters, which are the filters P ⊆ L satisfying⋁

A ∈ P implies a ∈ P for some a ∈ A.

A.4.5 Heyting implication and pseudocomplements. Because of the distributiv-
ity law (A.4.1), for a fixed a ∈ L, the mapping x ↦→ x ∧ a preserves all joins. There-
fore, (−) ∧ a has a right (Galois) adjoint a→ (−) such that

x ∧ a ≤ y iff x ≤ a→ y (for every x, y ∈ L).

In particular, for every a ∈ L, the pseudocomplement a → 0 is the largest x such that
a ∧ x = 0, i.e. a → 0 =

⋁{x | x ∧ a = 0}. It is more common to write a∗ instead of
a→ 0 but in the context of frames we solely use a→ 0 as we reserve a∗ for d-frame
pseudocomplements.

A.4.6 Example. For a topological space X and an open set U ⊆ X, U → ∅ is pre-
cisely the interior of the complement of U, i.e. the open set (X \U)◦.

A.4.7 Topological properties. For a, b ∈ L, define the well-inside relation a � b as
(a→ 0) ∨ b = 1. For topological space X, U � V in Ω(X) is equivalent to U ⊆ V.

We can now rephrase basic topological properties in the language of frames:

• L is regular if a =
⋁{x | x � a} for every a ∈ L,

• L is zero-dimensional if a =
⋁{x | x � x ≤ a} for every a ∈ L

• L is normal if, whenever a ∨ b = 1, then there is some u, v ∈ L, such that
u ∧ v = 0, a ∨ v = 1 and u ∨ b = 1, and

• L is compact if
⋁

A = 1 implies that
⋁

F = 1 for some finite F⊆fin A.

Compactness can be also equivalently rephrased as: whenever
⋁↑ A = 1 then a = 1

for some a ∈ A.
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A.4.8 Fact. A topological space X is regular, zero-dimensional, normal or compact iff
Ω(X) is as a frame.

A.5 Quotients of frames

In the following we introduce a basic theory of quotients of frames. Our construc-
tion is heavily inspired by Theorem III.11.3.1 in [PP12]. The main difference is that
our quotient relation does not represent a set of equations to quotient by but rather
a set of inequalities. This turned out to be a great advantage because, for exam-
ple, computing frame quotients can be expressed as an iterative procedure (Propo-
sition A.5.3).

Let R be a binary relation on frame L. An element x is said to be R-saturated if

∀a, b, c. (a, b) ∈ R and b ∧ c ≤ x =⇒ a ∧ c ≤ x

By L/R denote the set {x ∈ L | x is R-saturated} with the order induced by L.

A.5.1 Lemma. L/R is a frame.

Proof. By Proposition III.2.2 in [PP12], it is enough to show that L/R is so called
“sublocale” of L; that is, it is closed under arbitrary meets and also for any x ∈ L
and s ∈ L/R, x → s ∈ L/R. The first part is immediate and for the latter, we show
that for x and s selected as above, x → s is R-saturated. For (a, b) ∈ R,

b ∧ c ≤ x → s iff b ∧ c ∧ x ≤ s implies a ∧ c ∧ x ≤ s iff a ∧ c ≤ x → s. □

Next, define the quotient map as follows

µR : L→ L/R, x ↦→
⋀
{s | x ≤ s and s is R-saturated }.

A.5.2 Lemma. For a frame homomorphisms h : L→ M such that

∀(a, b) ∈ R =⇒ h(a) ≤ h(b) (A.5.1)

the restriction h↾L/R : L/R→ M is the unique frame homomorphism such that

h = h↾L/R · µR.

Proof. First, we prove that µR is well defined, i.e. that it is a frame homomorphism.
Let j be the embedding L/R → L. Then, µR(a) ≤ s iff a ≤ j(s) = s and so µR is the
left adjoint of j. Therefore, µR preserves all joins. Because 1L is always R-saturated,
also µR(1L) = 1L/R. Lastly, µR(a) ∧ µR(b) = µR(a ∧ b) by definition.
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Next, we show that µR has the required universal property. Let h : L → M be a
frame homomorphism which preserves R as in (A.5.1). To show h = h↾L/R · µR we
observe that h•(x) is R-saturated for every x ∈ M (where h• is the right adjoint of
h). For (a, b) ∈ R,

b ∧ c ≤ h•(x) iff h(b) ∧ h(c) ≤ x implies h(a) ∧ h(c) ≤ x iff a ∧ c ≤ h•(x).

Then, because a ≤ h•(h(a)) and h•(h(a)) is R-saturated, a ≤ µR(a) ≤ h•(h(a)).
From adjointness also h(a) = h(h•(h(a))), therefore h(a) = h(µR(a)).

The last two things to check is that h↾L/R is a frame homomorphism and that it
is unique. Uniqueness follows from the fact that µR is onto. Next, because meets
of L/R are computed in L, h↾L/R preserves finite meets. Join of a set {si}i of R-
saturated elements in L/R is computed as µR(

⋁
i si). Hence, h↾L/R(µ

R(
⋁

i si)) is
equal to h(

⋁
i si) =

⋁
i h(si) =

⋁
i h↾L/R(si). □

Moreover, we show that µR(x), for some x ∈ L, can be computed by an iterative
procedure in L. First, define an auxiliary function

m(x)
def≡ x ∨

⋁
{a ∧ c | b ∧ c ≤ x for some c ∈ L and (a, b) ∈ R}.

Then, for an ordinal γ and a limit ordinal λ, set

m0(x) = x, mγ+1 = m(mγ(x)) and mλ(x) =
⋁

γ<λ

mγ(x)

and set m∞(x) to be mγ(x) for some ordinal γ such that mγ+1(x) = mγ(x).

A.5.3 Proposition. m∞(x) = µR(x).

Proof. For “≤”, let x ≤ s for some R-saturated s. If b ∧ c ≤ x for some c ∈ L and
(a, b) ∈ R, then because s is R-saturated, a ∧ c ≤ s. Therefore, m(x) ≤ s and by a
transfinite induction also m∞(x) ≤ s.

For “≥”, it is enough to show that m∞(x) is R-saturated and this follows from
the observation that m(a) = a if and only if a is R-saturated. □

In the text we also need the following fact about quotients of products of two
frames:

A.5.4 Proposition. Let L = L+×L− for two frames L+ and L− and R be a relation
on L, i.e. R ⊆ L×L. Then,

L/R ∼= (L+/R+)×(L−/R−)

where R+ = {(α+, β+) | ((α+, α−), (β+, β−)) ∈ R} and R− is defined similarly.
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Proof. Assume that h : L → M is a frame homomorphism preserving R. Define
h+ : L+ → M as a ↦→ h(a, 1) and h− : L− → M as b ↦→ h(1, b). We show that
h+ and h− preserve R+ and R−, respectively. For a ((α+, α−), (β+, β−)) ∈ R,
h+(α+) = h(α+, 1) = h((α+, α−) ⊔ (0, 1)) = h(α+, α−) ∨ h(0, 1) ≤ h(β+, β−) ∨
h(0, 1) = h(β+, 1).

Therefore, by universality of L+/R+ and L−/R−, h+ and h− lift to

h+ : L+/R+ → M and h− : L−/R− → M.

Define h : (L+/R+)×(L−/R−) → M as (a, b) ↦→ h+(a) ∧ h−(b). Then, for the
quotient maps µ+ : L+ ↠ L+/R+, µ− : L− ↠ L−/R− and (a, b) ∈ L+×L−, is
h(µ+(a), µ−(b)) equal to h+(µ+(a)) ∧ h−(µ−(b)) = h(a, 1) ∧ h(1, b) = h((a, 1) ⊓
(1, b)) = h(a, b). Therefore, h · (µ+×µ−) is equal to h. Unicity of h follows from
µ+×µ− being onto. □
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