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Abstract

We will examine which distributive substructural logics, as defined
in the book of Restall [Res00], have the same positive fragment with
and without the weak excluded middle axiom. The main result of this
diploma thesis is that some substructural logics have this property.

We repeat the basic notions as described in [Res00], especially the
consecution, natural deduction, frame semantics, Hilbert system. We
will use the soundness and completeness theorems. We also will use
the equivalence of natural deduction systems and Hilbert systems. All
these important theorems are in  [Res00].

We make the proof of our main result in the next part. We will
use the semantics of frames, similarly as de Jongh and Zhao [dJZ13].
We will define the top model. After, we define the construction which
converts a model to the top model. We define for each formula the
positive part of it; this is the formula, which behaves the same way on
the top models as the original formula. We use Hilbert type calculus
to formulate our main theorem. We prove our main result using the
deduction theorem for certain types of Hilbert type calculus. We list
at the end the logics, for which we proved that have the same positive
fragment with and without the weak excluded middle axiom.



Abstract

V této diplomové praci budeme zkoumat, které distributivni sub-
strukturdlni logiky, tak jak jsou definovdny v Resstalové knize [Res00]
maji stejny positivni fragment s axiomem slabého vylouc¢eného tietiho
a bez néj. Hlavni vysledek této diplomové prace je, ze nékteré sub-
strukturdlni logiky tuto vlastnost maji.

Zopakujeme zdkladni pojmy, tak jak jsou popsdny v [Res00],
zv1asté pak konsekuce, prirozena dedukce, rdmcova semantika, Hilbertuv
systém. Budeme pouzivat véty o korektnosti a iplnosti. Také budeme
potiebovat vétu o ekvivalenci pfirozené dedukce a Hilbertova dtukazového
systému. Vsechny tyto dulezité véty jsou v [Res00].

V dalsi ¢asti dokdzeme n&as hlavni vysledek. Budeme pouzivat
sémantiku ramct podobné jako de Jongh and Zhao v ¢lanku [dJZ13].
Definujeme, co to je top model. Poté ukazeme, jak z daného mod-
elu vytvofime top model. Pro kazdou formuli definujeme jeji pozi-
tivni ¢éast, to jest formuli, kterd se na top modelech chova stejné jako
puvodni formule. Pro formulaci nasi hlavni véty pouzijeme Hilbertav
kalkulus. Dokazeme ji pomoci véty o dedukci, kterd plati pro nékteré
typy Hilbertova kalkulu. Na zavér vypiSeme seznam logik, pro které
jsme dokazali, ze maji stejny pozitivni fragment se slabym zdkonem
vylou¢eného tfetiho a bez néj.
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1 Introduction

We consider in this paper certain distributive substructural logics and their
extension with the axiom of weak excluded middle. We investigate whether
these logics with and without the weak excluded middle axiom have the same
positive fragment. Equivalently, we investigate whether adding the axiom of
weak excluded middle is conservative over the positive fragment of the logics
in consideration.

The weak excluded middle axiom is the following scheme: —A v ——A.
We will denote this axiom WEM.

We extend the results of V.A.Jankov [V.A68] and de Jongh and Zhao
[dJZ13]. Both results say that intuitionistic logic (which we will denote IL)
and the IL with WEM (we will denote this logic JL as Jankov Logic) have
the same positive fragment. The positive fragment of a language is the set
of formulas which do not contain |, the positive fragment of a logic L are
theorems of L which do not contain L. The positive fragment is the set of
formulas without L (and therefore without negation, since we will consider
negation —A as an abbreviation for A — 1. We will denote the positive
fragment of the logic L as L*. So the result in [V.A68] and [dJZ13] is
ILt = JL*. V.A. Jankov uses the algebraic approach to prove this result.
Dick de Jongh and Zhiguang Zhao use the Kripke semantics approach.

Our goal will be to extend this result to some substructural logics, namely
distributive substructural logics. We will use very similar approach as in
[dJZ13] based on the frame semantics for distributive substructural logics as
described in [Res00].

Our starting point is the distributive associative Full Lambek logic, with
the twisted associativity axiom (which is also known as suffixing). We prove
that adding the weak excluded middle axiom to this logic is conservative
over its positive fragment, i.e. that these two logics have the same positive
fragment.

In the proof, we will construct for each formula A its positive counterpart
A" which is equivalent to A over so called top models (models with the great-
est point, in which all atomic formulas are satisfied). This plus construction
is an identity on positive formulas and it translates the axiom WEM into
T. Using Hilbert style axiomatization of the logic, which is complete and
admits a deduction theorem, we show that the plus construction preserves
provability, and the result follows.

The argument remains valid if we extend the basic system with (some



of) structural axioms of commutativity, weakening and contraction. There-
fore our work covers the extensions of distributive Full Lambek logic with
commutativity (dFLe), with both commutativity and weakening (dFLew),
intuitionistic logic (which is FLewc), and relevant logic R (dFLec).

An alternative approach is the one using the algebraic semantics of sub-
structural logics given by residuated lattices, as has been done by Galatos
in [Galll] using an ordinal sum construction. This approach does not as-
sume distributivity and is therefore more general. How exactly these two
approaches relate to each other remains to be seen.

1.1 Structure of the Thesis

o We start with well known results. We describe at first the syntax of
the substructural logics in the section 2.1. We describe the natural
deduction in the section 2.2. Then we describe the frame semantics
for these logics in the section 2.3. After, we state the soundness and
completeness in the section 2.4. Then we show the Hilbert systems for
these logics in the section 2.5. We state that natural deduction and
Hilbert systems are equivalent in the section 2.6.

e We continue with our own results. We show in the section 2.7 how the
frames with WEM axiom look. The next chapter 2.8 deals with positive
formulas and top models. These notions are for substructural logics
introduced in this paper. After, we will for each formula construct the
positive part in the section 2.9. Then we will look at Hilbert systems,
for which our main result holds in 2.10. The main result is that certain
logics have the same positive fragment with WEM and without them.
The proof of this follows. This main result with the proof is in the
section 2.11 We list examples of the logics, for which it holds at the
end of the work, in the section 3.1. We also recommend further work
in this area in the section 3.2.

2 Positive Formulas in Substructural Logics

We will examine certain distributive substructural logics, using their syntax
and frame semantics as defined in the book of Restall [Res00]. We will
closely follow the book [Res00] in setting the necessary preliminaries and we
refer the reader to consult it for further details.



2.1 Syntax of the Substructural Logics

Let us have the language L with binary connectives —, «—, o, v and A. We
will also consider unary symbols T, ¢t and L. We will also consider signs
— and ~. These signs are just abbreviations: the —A is an abbreviation
for A — 1, and ~ A is an abbreviation for 1 <« A. We also consider a
countable set of atoms A;.We will denote these atoms p, ¢ and so on. We
will consider as the language of substructural logics the set of all formulas
created from these connectives and atoms in the usual way; we give a more
precise definition below.

We will use a Hilbert style approach to capture axiomatization of the
logics to prove the main result. However, to be able to refer to the book
[Res00] as closely as possible, in particular, to use the completeness results
proven there for a natural deduction calculi. We will also need to use the
notion of structure and consecution.

The structure X is the structured collection of premises. We will provide
the exact definition below. But before it, we have to give the definition of
language (set of formulas) and punctuation mark.

Definition 1. Given a countable set AForm of atomic formulas, and a finite

set C'onn of connectives, disjoint from AForm, the language Lang(AForm; Conn)
is the smallest subset of String(AFormu Conn) satisfying the following con-
ditions:

e AForm < Lang(AForm;Conn). This means that every atomic for-
mula is a part of the language Lang(AForm;Conn).

o If ¢ € Conn and a(c) = n (arity of the connective), then for every
Ay, ..., Ay € Lang(AForm; Conn) the string ¢ ~ A} —~ ... ~ A, is also
in Lang(AForm; Conn).

We will use in this paper the set of connectives (—, «, A,v,0).
Let us see, how the structures are built.

Definition 2. A punctuation mark p is an object together with a number
a(p) € w, its arity.

Definition 3. A collection Struct of structures is made up of a language
Lang and a set Punct of punctuation marks, disjoint from Lang. The set
Struct(Lang; Punct) on Lang and Punct is the smallest subset of Sring(Langu
Punct) satisfying these conditions:



e Lang < Struct(Lang; Punct). That is, every formula in Lang is a
structure.

e Ifp e Punct and a(p) = n, then for any X3, ..., X, € Struct(Lang; Punct),
the string p ~ A; —~ ... ~ A, € Struct(Lang; Punct)

We will use in our paper two binary punctuation marks semicolon ; and
comma , . We will use in some substructural logics the empty structure, we
will denote it 0. We add just in this case to the definition of structure that
0 is a structure.

The consecution is the claim of the form, X — A, where X is a body of
premises and A is a consequence of X. We also provide the exact definition.

Definition 4. Given a set Struct of structures over a language Lang, a con-
secution on Struct is of the form X + A, where X € Struct is the antecedent
of the consecution and A € Lang is the consequent of the consecution.

2.2 Natural Deduction

We will describe now a system of the natural deduction G. We have two rules
for each connective. One rule tells us how we can derive the connective. It
is called the introduction rule. The other rule to do with a connective tells
how to eliminate the connective. It is called an elimination rule. These rules
are in the detail described in the chapter 2 of [Res00]. Let us see these rules.
We start with rules for implication:

X;A+B

el el B RN |
XI—A—>B( )

E)
X;Y+—B

The rules for converse implication (« I) and (« E) are:

A X+ B

TP (T
XI—B<—A( )

E)
Y X+B



The rules for fusion are:

XrA YiB
X:Y+ AoB

ol)

X+AoB Y(A;B)FHC
Y(X)-C

(cE)
The rules for the logical truth constant ¢ are:
0t (t)

X+t Y0 +A
Y(X)-A

(tE)

The exception is the trivial truth T and the trivial falsehood 1. Each of
them has only one rule:

XET(TI)

XEL

o (LE)
Y(X)-A

Similar rules are valid for the extensional connectives A and v.

XA XI—B(

nI)
X+HAAB

X+AAB (

ANE
X—A 2

X+-AAB (

/\EQ)
X+B

XEA

_AEA )
XFAVB( 1)

X+FB

_XEB (g
XFAvB( 2)
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Y(A)-C YBFHC XrHAVB

Y(X)F C (vE)

The important notion in substructural logics is the structural rule.

Definition 5. Structural Rules
A rule

Y(X)-A
Y(X') A

is a structural rule if it is closed under substitution of formulas. We will
denote this structural rule X <= X’.

We list several structural rules.

Name Label Rule
Associativity B | X;(V;2)<=(X;Y); Z
Twisted Associativity B | X;(Y;Z2)<= (V;X);Z
Converse Associativity | B¢ | (X;Y);Z < X;(Y;2)
Strong Commutativity | C | (X;Y);Z < (X;2);Y
Weak Commutativity Cl XY <YV X
Strong Contraction w (X;Y),Y <« XY
Weak Contraction W1 X X=X
Mingle M X=X X
Weakening K X<XY
Commuted Weakening | K’ X<V X

If all the associativity rules are present, the weak and strong versions
of the rules become interderivable. If moreover commutativity is present,
weakening and commuted weakening are interderivable.

Some of the structural rules are also known by different names: the com-
mutativity is often called exchange and denoted by (e), contraction is often
denoted by (c), weakening and commuted weakening are referred to as right
weakening (o) and left weakening (0), and if both are present then simply

(w).

11



2.3 Frame Semantics

In this section, we will describe the frame semantics for distributive substruc-
tural logics. We start with the important notion of frames. Frames are based
on partially ordered sets of points and accessibility relations.

Definition 6. (POINT SETS AND PROPOSITIONS) A point set P =<
P,=> is a set P together with a partial order £ on P. The set Prop(P) of
propositions on P is the set of all subsets X of P which are closed upwards:
that is, if z € X and x = 2/ then 2’ € X.

We will consider the plump accessibility relations R and C' as ACCESSI-
BILITY RELATIONS defined in [Res00]. I will state here only the definition
of the relation R, because the relation C' is defined using R to fit our def-
inition of negation, —A is an abbreviation for A — 1. The compatibility
relation for our two negation connectives is defined as xCy iff 3z Rxyz.

Definition 7. A ternary relation R is a plump three-place accessibility re-
lation on the point set P if and only if for any x,y,2',y/, z, 2’ € P, where
Rxyz, 2’ € x,y © y and z = 2/ then Rz'y'2" .

We state now, how the compatibility relation C looks, if negation is given
by A — L (the dual negation 1 «— A is given by the same compatibility
relation). zCly if and only if 3zRzyz. The plump condition for C' therefore
translates to: for any z,2',y,y € P where xCy and 2/ < x and 3/ < vy, it
holds that 2'Cy/'.

We will call the point set P with any number of accessibility relations a
frame F. We will also consider the evaluation = on the frame F as defined
in [Res00] and below in Definition 9.

Definition 8. TRUTH SETS FOR A TERNARY RELATION R
If R is a three-place accessibility relation on a point set P then for any subset
T € Prop(P),

e T is a left truth set for R if and only if for each z,y € P,z & y if and
only if for some z € T, Rzxy.

e T is a right truth set for R if and only if for each z,y € P, x = y if and
only if for some z € T, Rxzy.

12



Definition 9. EVALUATIONS ON FRAMES A relation = between points
of a frame F and formulas is said to be an evaluation if and only if for each
the connectives in the language, the condition from the following list holds.

o {reF:xk=p}e Prop(F)
e x=TforallzeF
e r =1 fornozeF

rEAABiff v = Aand x = B for each x € F

rEAvBiff v =Aorz | Bforeach z e F

x = A > B iff for each y € F, where x = y, if y = A then y = B

xf=tiff x €T for each x € F

x = ~ A iff for each y € F, where zCy, y = A

x = —A iff for each y € F, where yCz, y = A

e v = A — B iff for each y, z € F, where Rxyz, if y = A then z = B

e © = Ao B iff for each y, z € F, where Ryzx, if y = A then z = B

o v = A« B iff for each y, z € F, where Ryzz, if y = A then z = B
We also need to define the evaluation for structures:

e r=0ifand only if x €T

er =X Yifandonlyzr =X andz Y

e r = X oY if and only if for some y,z, where Ryzz, y = X and z =Y

2.4 Soundness and Completeness

We will use two important theorems from Restall’s book [Res00]: Soundness
and completeness of the natural deduction systems of substructural logics
with respect to their corresponding classes of frames, and equivalence of
natural deduction systems and Hilbert systems. The proofs of these two
theorems are quite long, so we will state the theorems without proofs. The
proofs can be found in [Res00].

13



Definition 10. Given a natural deduction system G, a frame is fit for G
if and only if every condition corresponding to each structural rule of the
system G holds in the frame.

Definition 11. e X entails A in the model M, written X =, A, iff for
every point z, if = X then x = A

e X entails A in the frame F, written X =7 A, iff for every model M
based on F X = A

Theorem 1. If F is fit for G, and X — A is provable in G, then X = rA.
See the THEOREM 11.20 on the page 251 of [Res00].

Theorem 2. If X &= A for each frame F fit for G, then X + A is provable
ng.

See the THEOREM 11.37 on the page 259 of [Res00].

The previous two theorems in particular say that the distributive sub-
structural logics containing some of the following structural rules are com-
plete with respect to the corresponding classes of frames. We show several
examples of this correspondence. We also add the corresponding Hilbert
axiom.

e the associativity, the structural rule is X;(YV;Z7) < (X;Y);Z, the
frame must satisfy R(xy)zw — Rx(yz)w, Hilbert axiom is (A — B) —
(€= A) = (C— B))

e the twisted associativity, the structural rule is X; (Y;Z) < (V; X); Z,
the frame must satisfy R(yz)zw — Rzx(yz)w, Hilbert axiom is (A —
B) = (B—=0C)—(4-0))

e the converse associativity, the structural rule is (X;Y); Z < X; (Y; Z),
the frame must satisfy Rz (yz)w — R(zy)zw, Hilbert axiom is ((B «
C) = (A=C)) —(B<4)

e the weak commutativity, X;Y < Y; X, Rryz — Ryxz, A — (A —
B) — B)

e the strong commutativity, (X;Y); Z < (X; Z);Y, R(zz)yw — R(zy)zw,
(A= (B—-C)—(B-(A=0)

14



e the weakening, X < XY, Rryz >z 2, A — (B — A)

e the contraction, (X;Y);Y <« X;Y, Rryz — R(zy)yz, (A - (A —
B)) - (A — B)

Notice, that from associativity and commutativity (even from the weak
commutativity) follows the twisted associativity.

2.5 Hilbert Systems

We define the Hilbert system HG as defined in [Res00]. Hilbert system
contains rules and axioms. For better readability, we split them to the sets.
We will use = for one-way rules and <= for two-way rules.

Definition 12. The core rule set for a Hilbert system consists of the following
axiom (the identity axiom) and rules

A—-A
AoB—-(C<«<=A— (B—C)
A—-B(C—->D=— (B—->C)—>(A—>D)
t-> A=A
AA—->B=—20B

Definition 13. The conjunction rule set is made up of the following axioms,
together with one rule.

AAnB— A
AAnB— B
(A>B)A(A—>C)—> (A—>BAC)
A B=— AAB
Definition 14. The disjunction rule set is made up of the following axioms.

A—-Av B

15



B—-AvB
(A->C)A(B—-C)— (AvB—C)

Definition 15. The top and bottom axioms are the following axioms.

A—-T
1= A

The translation transl of a structure and a consecution into Hilbert type
formula is defined:

Definition 16. THE TRANSLATION OF A STRUCTURE AND A CON-
SECUTION

If X is a structure then translation transl(X) of X is a formula given recur-
sively as follows.

o transl(A) = A
o transl(0) =t
o transl(X;Y) = transl(X) o transl(Y)
o transl(X,Y) = transl(X) A transl(Y)

The translation of a consecution transi(X  A) is defined to be
transl(X) — A.

We also must add axioms corresponding to the structural rules.

Definition 17. For any structural rules of the form X < X', we add the
axiom

transl(X') — transl(X)

16



2.6 Equivalence of Natural Deduction Systems and Hilbert
Systems

Hilbert style axiomatization of the substructural logics we will consider in
what follows can be defined from the natural deduction systems as is done
in the book of Restall [Res00]. We will use one of these Hilbert systems in
the chapter 2.10. We will denote this as OH, which means our Hilbert to
distinguish it from the Restall notation HG for the general Hilbert system
used in the following two theorems.

Theorem 3. If there is a proof of A in HG, then in G 0 A can be proved.
See the THEOREM 4.16 on the page 78 of [Res00].

Theorem 4. If X — A is provable in the system G, then transl(X + A) is
provable in HG.

See the THEOREM 4.21 on the page 83 of [Res00].

2.7 Frames for the Weak Excluded Middle

We show in this subsection, how the class of the frames for the law weak ex-
cluded middle looks like, i.e. which frame condition corresponds to the WEM
axiom. Let us consider the compatibility relation C' as defined previously.

Theorem 5. A frame F satisfies condition VeVyVz(xCy A xCz) — yCz (I)
if and only if the —A v ——A is valid in all nodes of the frame F (1I).

Proof. Let us start with (I) — (I7). The proof will be done by contradiction.
Let us assume that ([) is valid and (I7) is not valid. If (/7) is not valid,
there is a node x, where neither —A nor ——A is valid. If —A is not valid,
there must be at least one node y satisfying A, where xC'y. Let us denote
this node yy. We show that in all z such that Cz, —A is not valid. We
know from our condition (1) zCyg A 2Cz — yoCz and xCz A 2Cyg — 2Cyp.
The A is satisfied in yg, so —A cannot be valid in z. —A is not valid in any
z reachable from x and so ——A is valid in z. And this is the contradiction
with the assumption, that ——A is not valid in z.

We continue with (/1) — (I). The proof will be done again by contra-
diction. Let us assume that (/1) is valid and (/) is not valid. We negate (I)
and we receive

Jrdydz(zCy A 2C2) A —=(yCz).

17



Let us denote the corresponding existing nodes xg, yo and zp. Let us
evaluate yy with A and we let x5 and 2y without evaluation. We also let
without evaluation all other nodes. Then —A is not valid in the node xg,
because A is valid in yo. Also ——A is not valid in the node x(, because —A
is valid in 2 - in all nodes reachable from z; is not valid A . O

We will reformulate VaVyVz(zCy A xCz) — yCz with the help of our
knowledge of the compatibility relation C'. We know that this compatibility
relation xCy is 3zRxyz. So we can write

VaVyVz(JuRzyu A vRxzv) — JwRyzw.

2.8 Positive Formulas and Top Models

Definition 18. Positive formula in the language of substructural logic L is
a formula, which does not contain L. (It means it also does not contain the
abbreviations — and ~.)

Definition 19. We say, that frame F with evaluation is a top model, iff
there exists a node 7 such that Vx x & 7, R777 and all atoms are satisfied
in the node 7. The frame must also satisfy that, if R7yz or Ry7rz then 7= z.

Definition 20. If we have frame F we define a plus frame F* adding the
element 7 € F such that Vx x = 7. We also expand the relation R. We
add RTrt. We also take the accessibility closure, it means we add to the
relation elements to assure that R remains plump accessibility relations. If
we have x £ 7 and y E 7, it means for arbitrary x and y, it must be Rzyr.
It means that after the operation of adding 7, all points are compatible with
each other. Observe, that this means that F'" satisfies the frame condition
for the weak excluded middle. For all x and y in F we have Rxyr. We also
extend the truth set T, we add 7 to T. We call the plus evaluation of F*
an evaluation where all atoms are satisfied in the node 7 of the frame F*. If
the original model was M, we will name the corresponding model based on
the frame F* and plus evaluation M.

Definition 21. A formula A has a top model property iff for all models M
and for all nodes w M,w = A iff Mt w = A.

Definition 22. The consecution X + A has a top model property, iff the
formula A and all formulas in X have the top model property.

18



Lemma 1. In any top model all positive formulas are satisfied in the top
node 7. In particular, this holds for any plus model M.

Proof. We will proceed by induction on the length of a formula. Atoms are
satisfied in 7 by the definition. We suppose A and B are satisfied in the node
7. Then the following formulas are satisfied in the node 7.

1. AvB
2. ANB
3. Ao B
4. A—> B
5. A<~ B

See the or case 1. A v B is valid from the definition of valuation. Similarly
the case 2. Regarding 3 we have to use R777. Because A is satisfied in 7
and B is satisfied in 7, A o B is satisfied in 7. Let us have a look to 4. To
show that 7 = A — B we take y and z such that R7yz. From our definition
of top models it must be that z = 7. But 7 satisfies B as desired. The case
5 is analogous to the case 4. O]

Theorem 6. The appropriate classes of frames (described in section 2.4) are
closed under the plus construction.

Proof. Let us denote the original frame F' and the corresponding plus frame
FT.

1. Commutativity, we must show, that on the plus frame it is valid that
if Rryz than Ryxz. If no x, y and z is our top element 7, we know
this from the commutativity of the frame F'. If one of the z, y or z is
7, we are ready, because the z is also 7, from our construction of R on
the plus frame, so Ryzz.

2. Associativity, we show if R(zy)zw then Rx(yz)w , if all z, y, z and w
are from F', we know it from the associativity from the frame F'. If one
of the z, y, z and w is 7, then w is 7 and the result is valid trivially.

3. Weakening, we have, that from Rxyz follows z E 2. If no z, y and 2
is 7, we know this from this property of the frame F. If one of the =z,
y and z is 7, then also z is 7, and it is valid x E 2.

19



4. Contraction, if we have Rxxx and x is from F, we know it from the
assumption, that F' is contractive. We know from our F'* construction,
that R777 is satisfied.

]

2.9 Constructing the Positive Part of the Formula

Theorem 7. For any formula A, there exists the formula At which is pos-
itiwe or it is identically equal to L, such that for any top model M and its
node w we have w = A iff w = A* .

Proof. We will now construct for every formula A the formula A*, which
does not contain L or it is identically equal to L. This plus formula A*
is valid in the plus evaluation of the framework if and only if the original
formula A is valid in the plus evaluation of the framework, i.e., A and A"
are equivalent over all top models.

We will create the plus formula in several steps. We remove | according
to the following table, where = denotes logical equivalence.
Remove |
IA A=AAN L=1
lv A=Av 1 =A
lo A=Ao 1 =1

1> A=T
A—-1=-A
A—1=T
1l A=~ A
-1L=T
~1l=T

We prove these equivalences, they are not obvious.

Let us prove L. o A — 1. This is clear because L is valid nowhere. The
opposite implication is also valid from the same reason.

We prove now (L — A) — T. The L is valid nowhere so L — A is valid
everywhere. We will prove T — (L — A). It is also valid, because L — A
is valid everywhere.

A «— 1 =T is analogous to the L. - A=T

A — 1 = —A is our definition of negation.

We prove now —1 = T. —1 is by definition I — L. This is satisfied
everywhere.
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We will make a modification of the similar construction of A* in [dJZ13].
The construction proceeds in even and odd steps as follows. We eliminate
1 in the even stage, using the equivalences in the table. In contrast to
[dJZ13], it is enough to take only the column Remove L of our table. We
will repeatedly apply the rules from this column and we receive the formula
without L or identically equals L. If we receive L we finish. If not, we make
an odd step. If we have formula without L we search a subformula —A where
A is a positive formula. We substitute —A with L. We make then even step
again, if needed followed by the odd step. The described procedure will come
to an end, since all steps reduce the number of symbols in the formula.

Each step preserves the validity of formula in the top models. We have
already shown, that the even step preserves the validity, it was shown without
the assumption of the top model. The odd steps preserve the validity as well,
we will need to assume we have the top model for this case. Let us denote
the negated positive formula A. This A is a positive formula, so it is valid
in 7. We want to show that A — 1 is never valid, it means it is equivalent
with L. If I had a node x where A — L we know, that Rrx7. But in 7 is
valid A and not valid L. This is a contradiction. m

Theorem 8. A formula A in substructural logic L has a top model property
iff it is equivalent to a L — free formula (in fact A*) or L.

Proof. The direction from the right to the left is just lemma 1. Let us prove
the other direction. Assume, that A has the top model property, but it is
not equivalent to A*. Then there is a model M with a world w so that A
and A*' have different truth values in M node w. Then, because both have
the top-model property, they have different truth values in M™* w as well.
But that contradicts the fact given by the previous theorem that A and A*
behave identically on top models. O]

Theorem 9. 1. If A(By, Ba, ...By) arises from the simultaneous substitu-
tion of By, Bs, ...By, for p1,pa, ...px in A(p1, 2, ...px), then

(A(By, By, ...By))" = (A(By, By, ..B{)*t

(A— B)t = At - B*, if Bt is not L

(B<— A)t = B" «— A", if Bt is not L

(A1 A Ageo AN Ap)t = AT A AT oA AF

(Ay v Ay v At = AT v AT ... v Af
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Ajo Ay 0 At = AT 0 AT ... 0 Af
1 2 k

Proof. 1. By the fact that the construction of the +-formula in Theorem 7
is inside out. We can construct (A(B1, Bs, ...Bx))" by first applying the
+-operation to the formulas By, By, ...By in A(By, Bs, ...Bx) to obtain

A(Bf, By ,...B;") and then continue to work on the remainder to obtain
(A(B B i)

2. We will use the previous point in our proof.

Let us start with the first implication. There are only two possibilities,
how the plus construction can finish. It can finish as positive formula
or 1. So we have 2 possibilities, because of the condition that B is
not L. If AT is 1, we have T on the left and right of our equality. If
AT is positive, we also have the same positive formula on both sides of
our equality.

We can use the same argument for the converse implication.

Regarding conjunction, we also use the fact, that A* is a positive for-
mula or L. If one of the A; is L, then we have L on both sides of our
equality. If none of them is | we have the same positive formula on
both sides.

Regarding disjunction if one of the A;" is positive we have the same
positive formula on both sides. If all A;" are 1 we have L on both
sides of our equality.

Regarding fusion if one of the A; is |, then we have L on both sides of
our equality. If none of them is | we have the same positive formula
on both sides.

O

Remark 1. There is an error in the Theorem 7 in [dJZ13]. The error is
in the point 5 which states that (¢ — )" = ¢T — ™. But it is not true.
If we take ¢ as an atom p and as v we take L, then we have p — L on the
left side, which translates to L. But there is pt — LT on the right side. But
1 translates to L. So we have p — L. The left side does not equal to right
side.

Let us see several examples of the plus construction.
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Let us calculate (p A (¢ v —p))*. The p translates to p in the first step as
well as ¢. The —p translates to L. So we have, after first step pA (¢v L). We
continue with the translation and we get p v ¢. This is a positive formula.

Let us calculate p — (—g — p) . So we get in the first step p — (L — p).
We receive in the second step p — T. This is the searched positive formula.

The last example will be useful for our main theorem. We translate the
WEM axiom —A v ——A. There are two possibilities A" is positive or A™ is
L. If At is positive we have the translation | v —1 in the first step. After
we have | v T which translates to T. If AT is 1, we have the translation
T v =T, after we get T v L, which gives T.

Definition 23. We define X for structure X as the structure, which is
created by substituting all formulas A by A*.

Definition 24. Positive consecution is a consecution with any formula in the
consecution positive. We turn the consecution into the positive consecution
turning each formula in the consecution into the positive formula.

Theorem 10. 1. If X + A then Xt A*. (This means provable in the
natural deduction.)

Proof. We are using the completeness here. Let X is satisfied in some F,
then X is satisfied in F 7', because it has a top model property. But then
also X 1is satisfied in F*. We know then A is satisfied in F*. So also
AT is satisfied in F*. So A% is satisfied in F, because it has a top model
property. ]

We formulate now our main theorem.

2.10 Hilbert System for dFL with Suffixing

In what follows we will consider the Hilbert type systems for substructural
logics as described in the book of Restall [Res00]. In particular, we will
define a Hilbert style axiomatization of the distributive Full Lambek with
suffixing and some of its extension with structural axioms. The Hilbert type
systems are fully equivalent with the systems of natural deduction as shown
in [Res00] and recalled previously in Theorems 3 and 4. We will denote g
the Hilbert deducibility. To proof the main theorem, we will also need to
prove the deduction theorem as stated in the book of Restall [Res00].
We will specify the semantics for Hilbert deducibility.
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We will denote the following Hilbert style system OH as the abbreviation
of the words our Hilbert. We will use in the following text the H as the
abbreviation for OH, when no confusion can arise.

Definition 25. Let us define the Hilbert system OH as the system, which
satisfies the following rules and axioms:
The rules are the modus ponens and the conjunction rule:

(R1) AA—->B=—2B
(R2) AB= AAB
The axioms are

(A1) A A
(A2)

A= B) = ((C - A) = (C — B))
C) — (A= C)) — (B« 4)
—~ B

(
(A3) ((B
(Ad) (A= B) = (B—0)—(A-0))
(A5) (AoB — ()« (A— (B—C))
(A6) Ao (t— A)

(A7) (AAB)— A

(A8) (ArB)— B

(A9) (A—B)A(A—C)— (A (BAC))
(A10) A—>Av B

(A11) B> Av B

(A12) (A—>C)A(B—C)— (AvB—C)
(A13) A—T

(A14) L — A

(A15) AA(BvC)— (AAB)v (AAC)
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This is an axiomatization of the distributive, associative Full Lambek
calculus with suffixing (the axiom A4, which corresponds to twisted associa-
tivity). We consider this extension of the Full Lambek Logic because it can
be axiomatized using only R1 and R2 as rules, and therefore it has a nice
deduction theorem, which will be crucial to prove our main result.

Definition 26. CONFUSION

A confusion of the propositions in the set X is defined inductively as
follows:

T, t and any element of ¥ are confusions of X

If C7 and (5 are confusions of 3, so are C o Cy and C; A Csy .

Theorem 11. HILBERT DEDUCTION THEOREM

In any Hilbert system in which the only rules are modus ponens and conjunc-
tion introduction, ¥ U A g B if and only if ¥ 5 C — B where C' is some
confusion of {A}.

We prove at first a useful lemma about confusions.

Lemma 2. In the Hilbert system defined above, ¥ —yx B, whenever B is a
confusion of 3.

Proof. We will make the proof by induction on the complexity of B. For the
base case we have X -5 T and ¥ g C, for any C € X.

For the induction step, if we take ¥ -y C1 and ¥ gy C5 then we have
Yy C1 A Cy by the conjunction rule. We also know +y C; — (Cy —
C 0 Cy). We apply modus ponens twice. And we get ¥ g C o Cs. O

Proof. Let us prove now the Hilbert Deduction Theorem. Let us assume
Y+ C — B. We know from the lemma ¥ Ay C,s0 X UA g B by
modus ponens.

We prove now the converse implication. We assume that ¥ U A 5 B.
Assume that the proof is of length m and the result holds for proofs of
smaller length. Now B is either in 3 U {A} or is axiom. In this case we have
2 I—H T N A
We will examine the two rules. Let us start with the modus ponens. So we
have confusions C; and Cy, where ¥ - C; — (B’ — B)and X 5 Cy — B'.
We know that C; — (B’ — B),Cy — B' -y C10Cy — B. Tt gives us
Yy CioCy — B and C] o (Cy is the desired confusion.

Let us take now the conjunction introduction rule. We have confusions C'
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and Cy, where X g5 C1 — By and X gy Cy — By, where B = By A By. So
C1 A Cy is the desired confusion, because X -y C7 A Cy — B. O

Definition 27. We say, that A is valid iff for all models M and for all nodes
w which are elements of the Truth set, it holds that M,w = A. We will
write in this case = A.

Theorem 12. Soundness and Completeness for Hilbert Semantics

EAiffg A
Proof. We will prove first soundness. If we have 5 A we have 0 - A, see
the THEOREM 4.16 on the page 78 of [Res00]. So it means that A is valid
everywhere in our models, everywhere, where 0 is valid, which is the truth
set.

Let us go to the completeness. Let us assume it is not the case that g A.
Then we know from [Res00] that it is not the case that 0 - A. Let us take
the theory {B,0 — B}. A is not in this theory. So we can extend {B,0 - B}
to the prime theory which does not include A. So we have the model of all
prime theories M and the node {B,0 B}, where A is not satisfied. O

Theorem 13. If -5 A then -z AT.

Proof. We use our Soundness and Completeness theorem. Assume, that
g A" is not valid. Then also =y A" is not satisfied. It means we have
model M and the node w, where A™ is not satisfied. Because A™ is positive
it is not satisfied in M™*. So A is not satisfied in M™. It contradicts the
fact, that =5 A and g A. O

Theorem 14. If ¥ gy D then X1y DT, provided Dt is not L.

Proof. Let us consider that X is the set { Ay, As, ..., A, } We can take gradually
Ay, Ay, ..., A, and we repeat the Hilbert deduction theorem. We get

Fuy C — (Cy — (... > (C, > D))...), where C, Cy, ..., C,, are confusions
of Ay, Ay, ..., A,

We use the previous theorem, so we know:

From this and from the theorem 9, we know 5 Cf — (Cf — (... —
(Cf — D%))...). This is because when we have implication, which right side
does not translate to false, then all the implication does not translate to false
(easy to see from examining the cases). From the plus construction we know
if C is the confusion of A, then C* is the confusion A". Now we use the
Hilbert deduction theorem in the opposite direction repeatedly. So we get
{AT AS, ..., At} by DT, which is ¥t g DY, O
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2.11 Main Theorem

Theorem 15. The Hilbert system OH for substructural logic dF'L with suf-
fizing with the additional axiom of weak excluded middle has the same positive
fragment as without it. It means if B is a positive formula we have -y B if
and only if {Aq, Ag, ..., Ap} - B, where {Ay, Ay, ..., A,} are instances of the
axiom of the weak excluded middle.

Proof. We will prove the nontrivial implication. We will use the previous the-
orem. As B we take any positive formula and we assume that Aq,..., A, g
B. Then B = B™. From previous theorem we have {Af, A5, ..., Al} -y B*.
We just take all instances A;, A,, ... , A, of the axiom of weak excluded mid-
dle =D; v =—D;, used in a proof of B. If we take A} we receive L v T which
is equivalent to T (in the case D] is positive) or T v L which is equivalent
to T (in the case D is 1) . B is then provable only from T and therefore
provable. O

3 Conclusion

3.1 The logics, where our result is valid

In the proof of the main result we substantially used the deduction theo-
rem. For it to remain valid, we are in general only allowed to add axioms
(and not rules). The basic calculus contains the axioms corresponding to
B(associativity), B’(twisted associativity) and B¢(conversed associativity).
We can use only modus ponens rule and conjunction introduction rule. The
other rules cannot be added in general if we want the deduction theorem to
remain valid, it means we have to substitute them by axioms. The axioms
we consider are those that correspond to some of the structural rules.

We know that the result remains valid for axiomatic extensions of the
basic calculus from Definition 25 with axioms of commutativity, weakening
or contraction. In particular, the result holds for the following logics:

1. commutative Full Lambek dF Le, axiom

(A= (B—=C)) - (B~ (A-C0C),

2. commutative Full Lambek with weakening dF Lew axiom from previous
item and

A— (B— A,
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3. intuitionistic logic dF Lewc axioms from previous items and

(A= (A - B)) - (A - B),

4. relevant logic, commutative with contraction, axioms
(A= (B—-C))—(B—(A—0C),
(A— (A— B)) —> (A— B).

Let us see that our proof remains valid if we add (some of) the axioms
mentioned above:

The soundness and completeness theorem, with respect to the correspond-
ing classes of frames, is valid, if we add the corresponding condition of the
relevant structural rule on the frame. It is the chapter 11 of [Res00]. We
have seen in Theorem 6 that the corresponding classes of frames are closed
under the plus construction.

The deduction theorem remains valid, if we add additional axioms and we
do not add any rules. In fact, the deduction theorem even simplifies: if weak-
ening is present, the notion of confusion simplifies (it is enough to consider
fusions of finitely many copies of the formula). If moreover contraction is
present (and we are therefore in IL) we obtain the usual deduction theorem.

3.2 Further work

We conjecture that the method used in this thesis can be suitably generalized
and applied to non-distributive substructural logics.

The proof could be given also by the algebraic semantics as was done by
Galatos in [Galll].

It remains to be seen how the approach based on the frame semantics
relates to the algebraic approach using the duality theory. Namely, how the
plus construction on frames relates to the ordinal sum construction used in

[Galll].
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