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Katedra: Ústav teorie informace a automatizace, Akademie věd České republiky
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a automatizace, Akademie věd České republiky

Abstrakt: Tato disertace rozv́ıj́ı pokročilé metody analýzy obrazu založené na
obrazových momentech. Zaměřujeme se předevš́ım na návrh rychlých algoritmů
pro poč́ıtáńı moment̊u v 2D i 3D a vytvořeńı nových př́ıznak̊u, které jsou tol-
erantńı ke Gaussovskému rozmazáńı, resp. zašuměńı obrazu. Práce se skládá
z úvodu do problematiky a čtyř článk̊u. Prvńı článek poskytuje přehledovou
studii o metodách obdélńıkové dekompozice binárńıch obrázk̊u v 2D; rozklady
mj. urychluj́ı poč́ıtáńı moment̊u. Součást́ı studie jsou i implemetnace algoritmů
vč. optimálńıho, který existuje v 2D v polynomiálńı složitosti a je prakticky
dosažitelný. Druhý článek se soustřed́ı na dekompozici 3D binárńıch objekt̊u do
kvádr̊u. Na rozd́ıl od 2D je v 3D otázka optimálńıho rozkladu NP-úplný problém
a neńı známo, že by existoval efektivńı zp̊usob jeho řešeńı. V článku navrhujeme
nový sub-optimálńı algoritmus, který pracuje v polynomiálńım čase a na exper-
imentálńı databázi ukazujeme, že dává statisticky významně lepš́ı výsledky, než
nejlepš́ı známé heuristiky. Daľśı dva články se soustřeďuj́ı na př́ıznaky invari-
antńı ke Gaussovskému rozmazáńı a zašuměńı obrazu. Třet́ı článek představuje
invarianty založené na projekčńıch operátorech ve Fourierově doméně, což zvyšuje
předevš́ım jejich rozlǐsovaćı schopnost. Posledńı článek představuje robustńı
př́ıznaky histogramu obrázku. Metoda je tolerantńı v̊uči Gaussovskému zašuměńı
p̊uvodńıho obrazu a na rozsáhlých experimentech ukazujeme, že významně převy-
šuje běžně použ́ıvané metody.

Kĺıčová slova: obrazové momenty, momentové invarianty, rozklad na obdelńıky,
zašuměný obraz, vyhledáváńı obrazu podle obsahu
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1. Introduction

Every day, humans process enormous amounts of visual information. The

vast majority of inputs we receive is of a visual kind. Face recognition is

fundamental for social interactions, character recognition is necessary for

reading texts and the recognition of visual objects in general is essential for

understanding and navigating in this world. The image is a very powerful

information medium that serves not only as a source of information, but

also as a communication interface between machines and humans. Recent

trends show an increased popularity in feeding computers with a visual input

rather than a traditionally encoded one. To name a few examples, today’s

mobile applications can read invoice information through QR scans, label

objects in photos, recognize wine bottles to provide instant reviews, and many

more. A basic digital image captured by an ordinary smartphone contains

a similar amount of information as hundreds of text pages. Thanks to the

valuable information contained in digital images, many application areas such

as medicine, robot vision, astronomy, surveillance or remote sensing urges a

strong need for effective digital image analysis methods.

1.1. Digital image analysis by a computer

The process of digital image analysis consists of multiple steps in which

the input image is transformed into a final symbolic description of the image

or to a decision result. A typical example is the input image of a family

photo and the recognition analysis identifying individual faces on the photo

against a given database of people. Other examples include the identification

of a possible tumor in PET images, localization and recognition of vehicle

registration plates, reading road signs, recognition of a handwritten text, etc.

The workflow of the image analysis typically consists of the steps illus-

trated in Fig. 1. Fig. 2 shows the typical process of an image analysis on an

illustrative example of a family photo.
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Figure 1: The scheme of image analysis workflow.

Figure 2: An illustrative example of an analysis of a family photo. The individuals are

categorized by their age and gender.
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The first three steps (image acquisition, preprocessing and object detec-

tion) are exhaustively covered in several image processing books [1, 2, 3, 4, 5],

recent monographs [6, 7, 8] and thousands of research papers. In the follow-

ing paragraphs, we will describe them only very briefly. This Thesis mainly

focuses on methods in the fourth step: the feature design. We focus on

a special class of features, which are based on image moments. The fifth

step of the classification will also be mentioned very briefly as its detailed

explanation is beyond the scope of this text.

1.1.1. Image acquisition

In image acquisition, the main theoretical questions are how to choose the

sampling scheme, the sampling frequency and the number of the quantization

levels such that the artifacts caused by aliasing, moire, and quantization noise

do not degrade the image much while keeping the image size reasonably low

(there are of course also many technical questions about the appropriate

choice of camera and spectral band, objective, memory card, transmission

line, storage format, etc., which we do not discuss here). Since real imaging

systems as well as imaging conditions are usually imperfect, the acquired

image represents only a degraded version of the original scene. Various kinds

of degradations (geometric as well as graylevel/color) are introduced into the

image during the acquisition process by such factors as imaging geometry,

lens aberration, wrong focus, motion of the scene, systematic and random

sensor errors, noise, etc. (see Fig. 3 for the general scheme and an illustrative

example). The removal or at least suppression of these degradations is a

subject of image preprocessing. Historically, image preprocessing was one

of the first topics systematically studied in digital image processing (already

in the very first monograph [9] there was a chapter devoted to this topic),

because even the simple preprocessing methods were able to enhance the

visual quality of the images and were feasible on old computers. The first two
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Figure 3: Image acquisition process with degradations.

steps, image acquisition and preprocessing, are often categorized in literature

into low-level processing. The characteristic feature of low-level methods is

that both their input and output are digital images. On the contrary, in

high-level processing, the input is a digital image (often an output of some

preprocessing) while the output is symbolic (i.e. high-level) information, such

as the coordinates of the detected objects, the list of boundary pixels, etc.

1.1.2. Object detection

Object detection is a typical example of high-level processing. The goal is

to localize the objects of interest in the image and separate (segment) them

from the other objects and from the background. Hundreds of segmentation

methods have been described in the literature. Some of them are universal,

but most of them were designed for specific families of objects such as char-
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acters, logos, cars, faces, human silhouettes, roads, etc. A good basic survey

of object detection and segmentation methods can be found in [5] and in the

references therein.

1.1.3. Feature definition

Feature definition and computing are probably the most challenging parts

of image analysis. The features should provide an accurate and unambiguous

quantitative description of the objects. The feature values are elements of

the feature space, which should be of low dimensionality for the sake of an

efficient computation. The design of the features is highly dependent on the

type of objects, on the conditions under which the images have been acquired,

on the type and the quality of preprocessing, and on the application area.

There is no unique ”optimal” solution.

1.1.4. Classification/recognition

The fifth and last step in the image analysis pipeline is performed entirely

in the feature space. Every unknown object in the image is represented by

a point in a (typically low dimensional) feature space. The object will be

assigned to the proper class based on the position of the respective point.

The classes can be prepared in advance by samples that create a training

set. In this case, we talk about supervised classification. If no training set

is available, classes are formed according to the distribution of the unknown

objects in the feature space. Then we talk about unsupervised classification

or clustering.

Unlike the feature design, the classification methods are independent of

the nature of the original data or physical meaning of the features. Classi-

fication algorithms are intensively covered in the popular Duda-Hart-Stork

book [10] and in recent monograph [11].

Classification methods are not exclusively related to image processing.

We can find many applications of them in other areas, such as artificial
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intelligence, social sciences, statistics, decision making and many other fields

that are beyond the scope of this work.

1.2. Object Recognition: Humans vs. computers

Computers are very powerful in solving exact numerical problems, where

they are much faster and more precise than people. However, the human

brain is much better suited for solving image recognition tasks. For com-

puters and today’s algorithms, solving a simple task such as a recognition

of individuals in a family photo is a very complex and non-trivial problem.

For us, on the other hand, it is an easy task, especially due to the fact that

humans employ lifetime experience.

The human brain is also very capable of choosing the proper context of

a visual object. For example, if we see a picture of a partly occluded person

with a napkin around their neck, holding a fork and a knife above a table,

we automatically assume that the person is going to eat something from the

plate even though the table is occluded (see Fig. 4a). Our experience has

taught us that the picture shows someone enjoying his meal even though

it is not necessarily always the case. In this example, people quickly guess

the right context of dining by assigning a high prior probability to it. Even

the speed of the human’s investigation of the image does not depend on

the number of scenes we have already seen in our life. On the other hand,

for computers, the right choice of context and the estimation of the prior

probability is a very complex and time-demanding problem.

Computers can in principle solve these tasks, too, but it requires mas-

sive learning when the algorithm needs to process an enormous amount of

data from a large database, and hence the task is quite slow and memory-

demanding (especially the training phase). To overcome this limitation, sev-

eral recent projects try to provide a substitution for human life experience

with a shared knowledge available online (see for example [12]).
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Figure 4: Illustrative pictures. a) Human brain automatically assumes the man is about

to eat. b) Prior probability of the unknown object is determined according to the known

objects nearby.

To avoid the human way of contextual perception, many algorithms ana-

lyze isolated objects separately without a broader context or they classify the

objects in the neighborhood and then use the relations between the objects as

additional clues for the recognition (For example, if we analyze an unknown

object and we know that there are airplanes on both sides of the query ob-

ject, then there is a high prior probability that the investigated object is also

an airplane (see Fig. 4b for an illustration).

Another advantage of human brains over traditional computer algorithms

is the robustness to various changes, such as a geometric distortion caused

by a change of scale, mirroring, rotating, skewing, etc. Computer methods

can solve this as well, but they need to involve special functions that are

tolerant/insensitive to such modifications. Standard features may rapidly

change under a spatial transformation of the image, and hence it may lead

to a wrong classification.

1.3. Summary

The short introduction into image analysis, which we gave in this sec-

tion, illustrates that visual object recognition is a challenging and complex

task, which is important in many application areas. It employs advanced
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algorithms in all steps of the analysis pipeline.

This work focuses mainly on special types of features for object descrip-

tion and recognition, which are known as image moments. An introduction

to moments and a specification of the Thesis goals are provided in the next

section.

2. Image Moments

Moments and moment invariants play a very important role as features

in invariant recognition. They have been introduced to the image processing

community in the early 60’s, but an increase of a research interest appeared

rapidly in recent years as it is obvious also from a graph (see Fig. 5). In

SCOPUS, which is probably the most widely-used publication database, a

query on papers with the ”image moment” keyword returns more than 18,500

search results and more than 6,500 results on the ”moment invariants” search.

There has been an overlap of about 3,000 papers, which results in 22,000 rel-

evant papers in total. This large amount of results illustrates the importance

that the methods based on image moments play in the area of computer

science.

Invariant methods based on image moments are extensively reviewed in

the book [13] (we adopted the notation and basic definitions from this book)

which is a successor of the moment invariant textbook from 2009 [14]. In

2014, a multi-authored book edited by G. A. Papakostas [15] also appeared

on the market and reflects the recent development in some areas, even though

it does not cover the whole topic as extensively as the previously mentioned

monographs.

2.1. Mathematical preliminaries

Before describing moments in more detail, we first recall some basic def-

initions that will be useful for understanding the further text.
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Figure 5: The number of moment-related publications as found in SCOPUS.

Spatial coordinates in the image domain are denoted as x = (x1, x2, · · · ,
xd)

T , where d is the dimension of the space. In 2D and 3D domains, if there

is no danger of misunderstanding, we sometimes use a simpler (and more

common in the literature) notation x = (x, y)T and x = (x, y, z)T , respec-

tively. The supperscript (· · · )T means a transposition, so our coordinates are

arranged into a column vector.

Definition 1.: By an image function (or image) we understand any piece-
wise continuous real function f(x) defined on a compact support Ω ⊂ Rd,
which has a finite nonzero integral.

According to this definition, our ”images” need not be non-negative. The

piece-wise continuity and the compact support are assumed to make the op-

erations we are going to apply on the images well defined, which enables

a comfortable mathematical treatment without a tedious verification of the

existence of the operations in each individual case. From a purely mathemat-

ical point of view, these requirements may seem to be too restrictive, because

certain operations are well defined on broader classes of functions, such as
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integrable or square integrable functions or infinitely supported functions of

fast decay. However, these nuances make absolutely no difference from a

practical point of view when working with digital images. The non-zero inte-

gral is required, because its value will be frequently used as a normalization

factor1.

If the image is mathematically described by the image function, we some-

times speak of a continuous representation. Although the continuous repre-

sentation may not reflect certain properties of digital images, such as sam-

pling and quantization errors, we will adopt the continuous formalism because

of its mathematical transparency and simplicity. If the discrete character of

the image is substantial (such as in sections 6 and 7 where we explain de-

composition algorithms for numerical moment computations), we will work

with a discrete representation of the image in the form of a finite-extent 2D

matrix f = (fij) or 3D matrix f = (fijk), which is supposed to be obtained

from the continuous representation f(x) by sampling and quantization.

The image function from Definition 1 represents monochromatic images

(sometimes also called graylevel or scalar images). If f has only two possible

values (which are usually encoded as 0 and 1), we speak about a binary

image. Color images and vector-valued images are represented as a vector

image function, each component of which satisfies Definition 1.

Convolution is an operation between two image functions, the result of

which is another image function defined as

(f ∗ g)(x) =

∫

Rd

f(t)g(x− t)dt . (1)

For example, a blurred image can be viewed as a sharp image f that has

been convolved with some mask g. If the mask is a Gaussian, then we speak

1If we relaxed this assumption, the invariants still could be constructed provided that

at least one moment is non-zero.
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about a Gaussian blur.

2.2. Moments

Moment is a feature (quantitative measure) that characterizes a given

function. It is expressed by a real or complex scalar value. From a mathemat-

ical point of view, moments are ”projections” of function f onto a polynomial

basis.

Let us mention the formal definitions of basic types of moments:

Definition 2.: Let {πp(x)} be a d-variable polynomial basis of the space of
image functions defined on Ω and let p = (p1, · · · , pd) be a multi-index of non-
negative integers which show the highest power of the respective variables in
πp(x). Then the general moment M

(f)
p of image f is defined as

M (f)
p =

∫

Ω

πp(x)f(x)dx . (2)

The number |p| = ∑d
k=1 pk is called the order of the moment. We omit the

superscript (f) whenever possible without confusion.

Depending on the polynomial basis {πp(x)}, we recognize various systems

of moments. The most common choice is a standard power basis πp(x) = xp,

which leads to geometric moments

m(f)
p =

∫

Ω

xpf(x)dx . (3)

In the literature, one can find various extensions of Definition 2. Some

authors allow non-polynomial bases (more precisely, they allow basis func-

tions which are products of a polynomial and some other – usually harmonic

– functions) and/or include various scalar factors and weighting functions

in the integrand. Some other authors even totally replaced the polynomial

basis by some other basis, but still call such features moments – we can find

wavelet moments [16] and step-like moments [17], where wavelets and step-

wise functions are used in a combination with harmonic functions instead

of polynomials. These modifications broadened the notion of moments, but

have not brought any principle differences in moment usage.
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2.3. Geometric moments in 2D

In case of 2D images, the choice of the standard power basis πpq(x, y) =

xpyq yields 2D geometric moments

mpq =

∞∫

−∞

∞∫

−∞

xpyqf(x, y)dxdy. (4)

Geometric moments of low orders have an intuitive meaning – m00 is

a “mass” of the image (on binary images, m00 is an area of the object),

m10/m00 and m01/m00 define the center of gravity or centroid of the image.

Second-order moments m20 and m02 describe the “distribution of mass” of

the image with respect to the coordinate axes.

A characterization of the image by means of geometric moments is com-

plete and unambiguous in the following sense. For any image function, its

geometric moments of all orders do exist and are finite. The image function

can be exactly reconstructed from the set of all its moments (this asser-

tion is known as the uniqueness theorem and holds on an infinitely accurate

polynomial approximation of continuous functions thanks to the Weierstrass

theorem).

2.4. Other moments

Geometric moments are very attractive thanks to the formal simplicity

of the basis functions. This is why many theoretical considerations about

moment invariants have been based on them. On the other hand, they have

also certain disadvantages, mainly due to the complicated transformations

under certain operations (like rotation, translation, etc.). To overcome this

drawback, other forms of moments have been invented. For example, central

moments are well suited to translation transformation, circular moments

(and their special case complex moments) to rotation, orthogonal moments

lead to the higher numerical precision. Detailed review of various types of

moments is covered in the book [13].
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2.5. Moment invariants

In the previous sections we have shown the role that the image moments

play in the feature design. An important property of well-designed features

is an invariance to a certain transformation. Moment invariants are special

functions of image moments. They have become important and frequently

used shape descriptors. Nowadays, they exist for 2D as well as for 3D ob-

jects with a possible extension into arbitrary dimensions in some cases. We

have moment invariants for binary, gray-level, color, and even vector-valued

images. Concerning the type of invariance, there are moment invariants to

similarity and affine object transformations as well as invariants w.r.t. image

blurring with certain types of blurring filters.

From a mathematical point of view, invariant I is a functional, which does

not change its value under a degradation operator D, i.e. which satisfies the

condition I(f) = I(D(f)) for any image function f . The operator D is sup-

posed to belong to a certain group of transformations but its particular form

is not required, which enables working with uncertain information about the

deformation. In practice, we usually formulate this requirement as a weaker

constraint: I(f) should not be significantly different from I(D(f)). An-

other desirable property of I, as important as invariance, is discriminability.

For objects belonging to different classes, I must have significantly different

values. Clearly, these two requirements are antagonistic – the broader the

invariance, the less discrimination power and vice versa. Choosing a proper

trade-off between invariance and discrimination power is a very important

and challenging task in feature-based object recognition.

3. Current trends in the moment research

Moment research is a quickly developing area, where the researchers have

been studying all aspects of moment-based image analysis. Although an
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exact categorization is difficult, we can still identify three main directions in

theoretical research, which have attracted major attention in the last years.

3.1. Looking for optimal polynomial basis

Moment invariants are an example of projection invariants which are func-

tions of image projections onto proper functional bases. Until now, the choice

of the basis was usually done “ad hoc” and then the properties of the invari-

ants were investigated. The recent trend shows an effort to grasp the problem

from the other end. First to define the desirable criteria for each particular

task and then to construct the basis which optimizes these criteria. In this

way, we obtain an image representation which is guaranteed to be optimal

in a pre-defined sense, which can be chosen according to the users request.

The major breakthrough is that instead of constructing invariants from

the projections on the a priori chosen basis, the new approach is to adapt

and optimize the basis with respect to the given task and dataset. Hence, it

optimizes a cost function reflecting the discrimination power or reconstruc-

tion ability of the invariance. This is an important improvement compared

to the state of the art, where the basis was usually chosen in advance and

the optimization (if ever considered) only selected the “best” projections but

did not change the basis.

An optimization of the basis leads to a stronger discrimination power and

enables the handling of more general image deformation classes.

3.2. Designing new moment invariants

Moment features invariant to scale, translation and rotation have been

known for many decades. Subsequently, the idea of blur invariant functionals

appeared in various papers (Flusser et al. [18], and Flusser and Suk [19]) as

well as several other authors have further developed the theory of blur invari-

ants. Combined invariants to convolution and to rotation were introduced
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by Flusser and Zitová [20], who also reported their successful usage in satel-

lite image registration [21] and in camera motion estimation [22]. Combined

invariants both to convolution and affine transformation was published by

Zhang et al. [23] and Suk and Flusser [24].

A recent important improvement in the moment invariant research is

designing new features that are invariant to image noise. New noise invariant

features applied on the image histogram are introduced in the paper [25] that

is part of this thesis.

3.3. Developing fast algorithms for moment calculations, speed and stability

testing

In theory, we mostly work with moments and moment invariants in a

continuous domain. In digital image processing, however, all quantities have

to be converted from a continuous to a discrete domain; therefore efficient

algorithms for a computation of discrete quantities need to be developed.

The discrete algorithms sometimes follow their continuous ancestors in a

straightforward manner, but sometimes the development of a computation-

ally efficient algorithm requires new inventions. The same holds true for

moments and moment invariants.

When speaking about algorithms for moment computation, we generally

understand algorithms for binary as well as graylevel images, for geometric

and complex moments, for algorithms which speed up the computation and

make it more robust to numerical errors and for algorithms, which act in 2D

and 3D.

It is not necessary to develop particular algorithms for the calculation of

moment invariants. Since all invariants are functions of a small number of

moments (relative to the image dimension), the computing complexity of the

invariants is determined solely by the complexity of the moment computation.

As soon as we have calculated the moments, we can calculate any invariant
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in O(1) time.

Much effort has been spent in recent years to develop efficient algorithms

to compute moments. Most authors have focused on binary images because

of their importance in practical pattern recognition applications.

The methods for a fast computation of the moments of binary images can

be divided into two groups referred to as the boundary-based methods and the

decomposition methods.

In this work, we have focused on algorithms that speed up the computa-

tion of moments by decomposing binary images (2D or 3D) into rectangular

blocks.

4. Main Goals

The Thesis contributes to image analysis research mainly in the following

areas:

• Development of fast algorithms that speed-up moment calculations

• Design of features that are tolerant to Gaussian blur

• Design of robust methods for noisy image retrieval

5. Structure of the Thesis

The Thesis consists of four papers that are attached below. Each paper

presents the work that has contributed to achieve the main goals.

The first two papers focus on rectangular decomposition algorithms that

help speed-up moment calculations. The last two papers focus on a design

of new moment invariants.

The first paper provides a comparative study of state of the art methods

for 2D decomposition and discusses their pros and cons. The study includes

the original implementation of the optimal 2D decomposition algorithm. We
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have also shown how that rectangular decomposition can be used not only

to compute moments but also to compress images. To support the decom-

pression stage, we have designed a fast novel algorithm that reconstructs the

image outline from a given set of disjoint rectangles.

The second paper proposes a novel heuristic method of effective decompo-

sition in 3D. In contrast to its 2D counterpart, the optimal 3D decomposition

is a much harder task and fast approximations are necessary to achieve the

goal in the practice. The proposed algorithm outperforms the other cutting

edge methods in terms of the number of decomposed blocks and yet its time

complexity stays polynomial.

The third paper proposes a new form of blur invariants that are derived

by means of projection operators in a Fourier domain (this improves mainly

the discrimination power of the features).

The fourth paper utilizes the idea of image blur invariants and proposes

a new moment-based feature that is tolerant to image noise (the proposed

feature is applied on the image histogram and is invariant to additive white

Gaussian noise of the image).

Brief summaries of the attached papers are in the following sections.

6. Decomposition of binary images - A survey and comparison

6.1. Citations

• T. Suk, C. Höschl IV, and J. Flusser, “Decomposition of binary im-

ages – a survey and comparison,” Pattern Recognition, vol. 45, no. 12,

pp. 4279–4291, 2012

Shorter version also appeared at

• T. Suk, C. Höschl, and J. Flusser, “Rectangular decomposition of bi-

nary images,” in Advanced Concepts for Intelligent Vision Systems:
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14th International Conference ACIVS 2012, (Brno, Czech Republic),

pp. 213–224, Springer Berlin Heidelberg, September 2012

6.2. Abstract

We present an overview of the most important methods that decompose

an arbitrary binary object into a union of rectangles. We describe a run-

length encoding and its generalization, decompositions based on quadtrees,

on mathematical morphology, on the distance transform, and a theoretically

optimal decomposition based on a maximal matching in bipartite graphs. We

compare their performance in image compression, in moment computation

and in linear filtering. We show that the choice is always a compromise

between the complexity and time/memory consumption. We give advice on

how to select an appropriate method in particular cases.

6.3. Main contribution of the paper

This paper provides an overview of the most important methods that

decompose a binary 2D image into a disjoint set of rectangles. Image rect-

angular decomposition has found numerous straightforward applications in

image compression methods and formats (RLE, TIFF, BMP and others) and

in the calculation of image features (mainly moments and moment invariants)

used subsequently for object description and recognition [28, 29, 30, 31, 32,

33, 34, 35]. Other applications may be found in image spatial filtering and

restoration and in other areas. For an illustration of various decomposition

methods see Fig. 6.

In case of filtering with a binary mask, the time complexity per one pixel

depends on the number of rectangles (into which the mask is decomposed)

and not the size of the mask itself. If the mask is partitioned into a small

number of blocks, it speeds-up the whole filtering process rapidly.

Similarly, computation of image moments and moment features is pro-

portional to the number of rectangles rather than the image size.
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Figure 6: Example of various decomposition methods.
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The idea behind the speed-up algorithms is as follows. Let’s suppose

we have a 2D image, but the principle can also easily be generalized for 3D

images. If image B is partitioned into K disjoint blocks, then the moment

of the image is the sum of the moments of blocks:

m(B)
pq =

K∑

k=1

M (Bk)
pq , (5)

Thanks to the Newton-Leibnitz formula, the block moment M
(Bk)
pq can be

calculated in O(1) time. Hence, the image moment m
(B)
pq can be calculated

in O(K) time. Since the number of blocks is much lower than the image size,

the time improvement compared to the trivial calculation is significant.

The crucial task is to find an optimal image partitioning that minimizes

the number of disjoint blocks.

The choice of decomposition method is a trade-off between the number

of blocks it generates, its computational complexity and space requirements

for storing decomposed rectangles. We have shown various methods and dis-

cussed their advantages and drawbacks with regards to speed-up and com-

pression purposes.

We have also implemented the optimal method (w.r.t. the number of

blocks) that is based on graph algorithms and is solvable efficiently in 2D (in

polynomial time). However, some of the other methods yield only slightly

worse results and their computation is simpler and faster. See Fig. 7 for an

illustration of the steps of the optimal algorithm.

We have shown that the decomposition can also be utilized in image

compression where only the rectangular blocks are stored instead of the image

pixels. To render the image from a sequence of the stored blocks, we have

proposed a new algorithm for a fast and memory-efficient reconstruction of

an image outline.
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Figure 7: Steps of the optimal decomposition algorithm in 2D. First, we find concave cor-

ners and all rectilinear chords that connect them. Then, we find their mutual intersections

and in the corresponding graph we find maximal independent set (i.e. the maximal set of

non-crossing chords). Once we divide the object along the chords found in step 1, then

the final partitioning in step 2 is straightforward.
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6.4. Main contribution of the author

• Implementation of the decomposition algorithms

• Design and implementation of a novel algorithm for border reconstruc-

tion from decomposed image

7. Close-to-optimal algorithm for rectangular decomposition of 3D

shapes

7.1. Citations

• C. Höschl IV and J. Flusser, “Close-to-optimal algorithm for rectangu-

lar decomposition of 3d shapes.” Submitted to Discrete & Computa-

tional Geometry in 2017

Shorter version appeared at

• C. Höschl and J. Flusser, “Decomposition of 3d binary objects into rect-

angular blocks,” in International Conference on Digital Image Com-

puting: Techniques and Applications DICTA 2016, (Gold Coast, Aus-

tralia), pp. 1–8, Nov 2016

7.2. Abstract

In this paper we propose a novel algorithm for the decomposition of 3D

binary shapes to rectangular blocks. The aim is to minimize the number

of blocks. The theoretically optimal brute-force algorithm is known to be

NP-hard and practically unfeasible [38]. We introduce its polynomial sub-

optimal approximation, which transforms the decomposition problem onto

a graph-theoretical problem. We compare its performance with the state

of the art Octree and Delta methods. We show by extensive experiments

that the proposed method outperforms the existing ones in terms of the

number of blocks on a statistically significant level. We also discuss potential

applications of the method in image processing.
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7.3. Main contribution of the paper

In this paper, we presented an original method of block-wise decomposi-

tion in 3D. The proposed method is a polynomial approximative heuristic of

the optimal algorithm, which is an NP-complete problem [38]. See Fig. 8 for

some examples of decomposed 3D objects.

We proved by large-scale experiments that the proposed method is sta-

tistically better than the 3D Generalized Delta Method, which is the best

one among the existing methods in terms of the number of blocks. This

determines that potential applications of the proposed method can be found

namely in those tasks where it is more desirable to keep the number of blocks

as low as possible rather than to minimize the decomposition runtime. See

Fig. 9 for a result of the experiment.

Although in the paper we have been dealing with binary shapes only,

all methods can theoretically be used for graylevel and color 3D images as

well. Like in the 2D counterpart, a rectangular decomposition of 3D objects

helps speed-up convolution and integral transformation calculations and can

be used in compression as well.

We have created an online tool that visualizes the most important de-

composition algorithms and shows the proposed method step-by-step. It is

possible to create or upload a custom 3D model and decompose it according

to a chosen technique.

7.4. Main contribution of the author

• Design of the proposed novel algorithm

• Running tests

• Implementation of the algorithms

• Development of the online tool for the decomposition
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Figure 8: Example of the rectangular decomposition of 3D objects. Above are a few

examples of almost 500 objects from the McGill 3D Shape Benchmark database [39]. In

the bottom is an instance of a 50% density random cube.

26



Figure 9: Result of the experiments. The upper chart shows that the proposed method

performed better (it has decomposed the objects into fewer blocks) in 73% of 481 cases

in the Benchmark database. The bottom chart shows the results of the decomposition of

100 random cubes (see the cube picture in Fig. 8). For the random cubes the proposed

methods outperformed the others in all cases (in the chart we show the closest Delta

method only).
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8. Recognition of Images Degraded by Gaussian Blur

8.1. Citations

• J. Flusser, S. Farokhi, C. Höschl, T. Suk, B. Zitová, and M. Pedone,

“Recognition of images degraded by Gaussian blur,” IEEE Transac-

tions on Image Processing, vol. 25, pp. 790–806, Feb 2016

Shorter version also appeared at

• J. Flusser, T. Suk, S. Farokhi, and C. Höschl IV, “Recognition of im-

ages degraded by Gaussian blur,” in Computer Analysis of Images and

Patterns CAIP’15 (G. Azzopardi and N. Petkov, eds.), vol. 9256–9257

of Lecture Notes in Computer Science, (Valletta, Malta), pp. 88–99,

part I, Springer, September 2015

8.2. Abstract

In this paper, we propose a new theory of invariants to Gaussian blur.

We introduce a notion of a primordial image as a canonical form of all Gaus-

sian blur-equivalent images. The primordial image is defined in the spectral

domain by means of projection operators. We prove that the moments of

the primordial image are invariant to Gaussian blur and we derive recursive

formulas for their direct computation without actually constructing the pri-

mordial image itself. We show how to extend their invariance also to image

rotation. The application of these invariants is in blur-invariant image com-

parison and recognition. In the experimental part, we perform an exhaustive

comparison with two main competitors: 1) the Zhang distance and 2) the

local phase quantization.

8.3. Main contribution of the paper

We proposed new invariants w.r.t. Gaussian blur, both in frequency and

image domains. We showed the performance of the new method in object
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recognition and in matching of blurred and noisy templates. Compared to

Zhang’s method [42], which has been the only Gaussian-blur invariant metric

so far, the proposed method is significantly faster and more robust to addi-

tive noise while its recognition rate in noise-free cases is fully comparable to

Zhang’s distance. An additional benefit of the new method is that it can

easily be made invariant to translation, rotation, scale, and contrast of the

image, which is crucial in many applications and which is not the case of

Zhang’s method. Last but not least, our method also handles an anisotropic

Gaussian blur and is even able to compare images of different sizes.

8.4. Main contribution of the author

• Implementation of the proposed invariants

• Help with the design of experiments

9. Robust histogram-based image retrieval

9.1. Citations

• C. Höschl IV and J. Flusser, “Robust histogram-based image retrieval,”

Pattern Recognition Letters, vol. 69, pp. 72 – 81, 2016

Shorter version also appeared at

• C. Höschl IV and J. Flusser, “Noise-resistant image retrieval,” in 22nd

International Conference on Pattern Recognition ICPR’14, (Stockholm,

Sweeden), pp. 2972–2977, IEEE, 2014

9.2. Abstract

We present a histogram-based image retrieval method which is designed

specifically for noisy query images. The images are retrieved according to

histogram similarity. To reach high robustness to noise, the histograms are
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Figure 10: Illustration of an image retrieval. The database is searched for the query image

affected by a noise.

described by newly proposed features, which are insensitive to Gaussian ad-

ditive noise in the original images. The advantage of the new method is

proved theoretically and demonstrated experimentally on real data.

9.3. Main contribution of the paper

Histograms of a noisy image, both visual appearance and common nu-

merical characteristics, are significantly affected by additive noise in the im-

age. Assuming the noise is independent on the image, the histogram of a

noisy image is the clear image histogram convolved with the noise histogram.

Provided the noise is Gaussian, we proposed original histogram descriptors,

which are invariant w.r.t. the noise. We proved that along with the theoreti-

cal invariance the descriptors are sufficiently robust on real images corrupted

by thermal and electronic sensor noise. As demonstrated experimentally, the

proposed descriptors can be used as features in a histogram-based retrieval if

the database and/or query images are heavily noisy and standard descriptors

fail (for an illustration see Fig. 10). We confirmed that the retrieval based

on the new invariants significantly outperforms the other more traditional

methods included in our tests (see Fig. 11 for the results). We have also

proved that the method can be used even if the noise distribution is not

exactly Gaussian.
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Figure 11: Results of the tests performed on more than 70 000 pictures. The proposed in-

variant features (blue bars) outperformed other methods for several levels of noise (SNRs).
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9.4. Main contribution of the author

• Implementation of the proposed invariants

• Design of the experiments

• Performing tests

10. Main Contribution of the Thesis

The general goal of the Thesis was to contribute to the development of

moment-based methods for image analysis. The main contributions of this

thesis are the decomposition methods both for 2D and 3D images and a

design of new moment-based invariant features.

Contrary to the 2D version where the optimal decomposition algorithm

exists and has a polynomial time complexity, in 3D, the optimal algorithm

is NP-complete and practically unfeasible. An important contribution of

this thesis is a proposition of a new graph-based sub-optimal algorithm that

has a polynomial time complexity and yields fewer rectangles than the best

heuristics known. We have also created an online tool that does the 3D

decomposition of custom models and illustrates the work of the proposed

sub-optimal algorithm step-by-step, see [36, 37]. The online tool is available

at http://goo.gl/hAEuCg, for a screenshot of the tool, see Fig. 13.

The demand of such decomposition algorithms is illustrated in the chart

in Fig. 12. It shows the number of downloads of a library ”rectangle-

decomposition” by Mikola Lysenko2. The implementation of the library for

the popular runtime environment Node.js3 has been inspired by our work

presented in this thesis.

2Available online at https://www.npmjs.com/package/rectangle-decomposition
3See https://nodejs.org
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Figure 12: Number of downloads (cumulative) of the Node.js library ”rectangular-

decomposition” since its release in 2014. The implementation of the library has been

based on the work of this thesis [27].
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Figure 13: A sample screen shot of our online decomposition tool available at

http://goo.gl/hAEuCg. The tool performs various decomposition methods and visualizes

the proposed algorithm step-by-step.
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The second contribution of this thesis is a design of new invariant features

based on image moments. We proposed a feature that is invariant to Gaussian

blur.

We utilized the principles from the area of blur invariants and derived an-

other feature that is invariant to additive white Gaussian noise. This feature

is applied on an image histogram that is affected by the image noise. Our

image retrieval experiments on more than 70 thousand pictures show that

our proposed invariant method outperforms standard histogram matching

and denoising methods convincingly.
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[27] T. Suk, C. Höschl, and J. Flusser, “Rectangular decomposition of binary

images,” in Advanced Concepts for Intelligent Vision Systems: 14th In-

ternational Conference ACIVS 2012, (Brno, Czech Republic), pp. 213–

224, Springer Berlin Heidelberg, September 2012.

[28] M. F. Zakaria, L. J. Vroomen, P. Zsombor-Murray, and J. M. van Kessel,

“Fast algorithm for the computation of moment invariants,” Pattern

Recognition, vol. 20, no. 6, pp. 639–643, 1987.

[29] M. Dai, P. Baylou, and M. Najim, “An efficient algorithm for computa-

tion of shape moments from run-length codes or chain codes,” Pattern

Recognition, vol. 25, no. 10, pp. 1119–1128, 1992.

38



[30] B. C. Li, “A new computation of geometric moments,” Pattern Recog-

nition, vol. 26, no. 1, pp. 109–113, 1993.

[31] I. M. Spiliotis and B. G. Mertzios, “Real-time computation of two-

dimensional moments on binary images using image block representa-

tion,” IEEE Transactions on Image Processing, vol. 7, no. 11, pp. 1609–

1615, 1998.

[32] J. Flusser, “Refined moment calculation using image block representa-

tion,” IEEE Transactions on Image Processing, vol. 9, no. 11, pp. 1977–

1978, 2000.

[33] C.-H. Wu, S.-J. Horng, and P.-Z. Lee, “A new computation of shape mo-

ments via quadtree decomposition,” Pattern Recognition, vol. 34, no. 7,

pp. 1319–1330, 2001.
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1. Introduction

It is intuitively clear and well known that binary images can be
represented in a more efficient way than just as a full-sized
matrix consisting of zeros and ones. It is also clear that the terms
‘‘good representation’’ and ‘‘optimal representation’’ cannot be
generally defined and are always dependent on what we are going
to do with the object. Usually there are two basic requirements
on the representation—small time/memory consumption and
possibility of fast further computation (which is application-
dependent). Sometimes we also require fast recovery of the
original.

Regardless of the particular purpose, the methods of binary
image representation can be divided into two groups referred as
decomposition methods and boundary-based methods. Boundary-
based methods employ the property that the boundary of a binary
object contains a complete information on the object, all other
pixels are redundant. Provided that the boundary consists of
much less pixels than the whole object (which applies to
‘‘normal’’ shapes but does not hold true in general), it provides
efficient non-redundant representation. Individual boundary-
based methods differ from each other by a boundary definition
(outer or inner boundary), by a discrete topology used (4-pixel or
8-pixel connectivity) and by the way how the boundary is

encoded and stored (chain codes and various piece-wise approx-
imations are mostly used for this purpose).

Decomposition methods try to express the object as a union of
simple disjoint subsets called blocks or partitions which can be
effectively stored and consequently used for required processing.
Having a binary object B (by a binary object we understand a set
of all pixels of a binary image whose values equal one), we
decompose it into KZ1 blocks B1,B2, . . . ,BK such that Bi \ Bj ¼ |
for any ia j and B¼

SK
k ¼ 1 Bk. Although in a continuous domain

we may consider various shapes of the blocks (convex, star-
shaped, hexagonal, rectangular, etc., see [1]), all decomposition
methods that perform in a discrete domain use only rectilinear
rectangular or square blocks because of a native rectangular
structure of the discrete image domain. The methods differ from
one another namely by the decomposition algorithms.

The power of any decomposition method depends on its ability
to decompose the object into a small number of blocks in a
reasonable time. Most authors have measured the decomposition
quality just by the number of blocks K, while ignoring the
complexity of the algorithms (it should be noted that there exist
a few other criteria such as the ‘‘minimum ink’’ criterion which
minimizes the overall length of the inner boundary but they are
out of the scope of this paper). There is a common belief that such
decomposition that minimizes K is the optimal one. This criterion
is justified by the fact that the complexity of subsequent calcula-
tions uses to be OðKÞ and compression ratio (if the decomposition
is used for compression purposes) also increases as the number of
blocks decreases. However, this viewpoint may be misleading.
Simple algorithms produce relatively high number of blocks but
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flusser@utia.cas.cz (J. Flusser).

Pattern Recognition 45 (2012) 4279–4291



perform fast, while more sophisticated decomposition methods
end up with small number of blocks but require more time. Even
if the decomposition is performed only once per object in most
tasks and can be done off-line, the time needed for decomposing
the image is often so long that it substantially influences the
efficiency of the whole method.

Image rectangular decomposition has found numerous straight-
forward applications in image compression methods and formats
(RLE, TIFF, BMP and others) and in calculation of image features
(mainly moments and moment invariants) used subsequently for
object description and recognition [2–9]. Other applications may
be found in image spatial filtering and restoration, in integrated
circuits design and in other areas. Convolution with a constant
rectangular mask can be performed in Oð1Þ time per pixel if the
matrix of partial sums is precomputed. If the mask is constant or
piecewise constant but not rectangular, its support can be decom-
posed into rectangles and the convolution in one pixel can be
calculated in OðKÞ time as a sum of partial Oð1Þ convolutions. In
VLSI design, the decomposition problem appeared many years
ago—the masks are rectilinear polygons (often very complex)
which should be decomposed into rectangles in such a way that
the pattern generator can effectively generate the mask. The time
needed for a mask generation is proportional to the number of
rectangles, so it is highly desirable to minimize their number
[10,11].

The aim of this paper is to present a survey and a comparison of
existing decomposition methods. To ensure an unbiased compar-
ison, all reviewed methods were implemented on the same platform
and run on the same computer. We compare their performance in
three common tasks—loss-less compression, calculation of image
moments and convolution with a binary mask. We show that there
is no ‘‘generally optimal’’ decomposition method and explain the
pros and cons of individual algorithms.

2. Decomposition methods

In this section, we present a brief survey of the most common
decomposition methods. Their performance in real-data experi-
ments is compared in Sections 3–5.

2.1. Decomposition into row segments

Decomposition of an object into rows or columns is the most
straightforward and the oldest method. The blocks are continuous
row segments for which only the coordinate of the beginning and
the length is stored. In image compression, this has been known
as run-length encoding (RLE). This principle and its modifications
(CCITT, PackBits) are used in several image formats such as TIFF
and BMP. In feature calculation, Zakaria et al. [2] used the same
representation for fast computation of image moments of convex
shapes and called it ‘‘Delta-Method’’ (DM) since the lengths of the
row segments were labeled by the Greek letter d. The method was
slightly improved by Dai et al. [3] and generalized for non-convex
shapes by Li [4].

The decomposition into rows is very fast but leads to the
number of blocks which uses to be (much) higher than the
minimal decomposition. A simple but powerful improvement of
the Delta-Method was proposed by Spiliotis and Mertzios [5]
and adopted by Flusser [6]. This ‘‘Generalized Delta-Method’’
(GDM) employs a rectangular-wise object representation instead
of the row-wise one. The adjacent rows are compared and if
there are some segments with the same beginning and end, they
are unified into a rectangle (see Fig. 1). For each rectangle, the
coordinates of its upper-left corner, the length and the width are
stored. GDM is only slightly slower than DM while producing

(sometimes significantly) less number of blocks. Surprisingly,
under our knowledge this method has not been implemented in
any commercial image format.

Fig. 1. Decomposition of the leaf image by the Generalized Delta-Method (GDM).

The size of the original image is 1196�1828 pixels. The adjacent rows of the same

length are unified into blocks (1963 blocks in total).

Fig. 2. Decomposition of the leaf image by the quadtree method (8911 blocks in

total).
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2.2. Quadtree decomposition

Quadtree decomposition (QTD) is a popular hierarchical
decomposition scheme used in several image processing areas
including representation and compression [12], spatial transfor-
mations [13] and feature calculation [7]. In its basic version, QTD
works with square images of a size of a power of two. If this is not
the case, the image is zero-padded to the nearest such size. The
image is iteratively divided into four quadrants. Homogeneity of
each quadrant is checked and if the whole quadrant lies either in
the object or in the background it is not further divided. If it
contains both object and background pixels, it is divided into
quadrants and the process is repeated until all blocks are homo-
geneous. The decomposition can be efficiently encoded into
three-symbol string, where 2 means division, 1 means a part of
the object and 0 stands for the background. An example of the
quadtree decomposition is in Fig. 2.

The algorithm always yields square blocks which may be
advantageous for some purpose but usually leads to a higher
number of blocks than necessary. It would be possible to imple-
ment a backtracking and to unify the adjacent blocks of the same
size into a rectangle but this would increase the complexity. Since
the speed is the main advantage of this method, the backtracking
is mostly not employed here. A drawback of this decomposition
algorithm is that the division scheme is not adapted with respect
to the content of the image but it is defined by absolute spatial
coordinates. Hence, the decomposition is not translation-invar-
iant and may lead to absurd results when for instance a large
single square is uselessly decomposed up to individual pixels. We
may use a bintree or other trees producing non-square blocks but
it does not overcome this principal weakness.

2.3. Morphological decomposition

In order to better adapt the decomposition to the image
content, Sossa-Azuela et al. [8] published a decomposition algo-
rithm based on a morphological erosion. The erosion is an opera-
tion, where a small structural element (here 3�3 square is used)
moves over the image and when the whole element lies in the
object, then the central pixel of the window is preserved in the
object, otherwise it is assigned to the background. So, each
erosion shrinks the object by one-pixel boundary layer. The
decomposition works in an iterative manner: it finds the largest
square inscribed in the object, removes it and looks for the largest
square inscribed in the rest of the object. This outer loop is
repeated until the object is completely decomposed. An inter-
mediate object decomposition after two outer loops can be seen
in Fig. 3, the final decomposition is in Fig. 4.

Although the original method [8] considers decomposition into
squares only, it can be generalized also to rectangles which
decreases the number of the resulting blocks. The inner loop serves
for finding the center and the size of the largest inscribed square/
rectangle. We repeat the erosion until the whole object disappears
and count the number of erosions s. Then a ð2s�1Þ � ð2s�1Þ square
can be inscribed into the object and it forms one block of the
decomposition. The pixels of the object before the last disappearing
erosion are potential centers of the inscribed square. Theoretically,
we can choose one of them randomly, but the ‘‘corner’’ pixels
provide better odds to more compact rest of the object. If the
potential square centers create a line segment, then the correspond-
ing inscribed squares can be unified into a rectangle.

It is possible, especially in the last steps of the method, that
several of the identically sized squares (overlapping as well as
non-overlapping) can be inscribed into different places of the
object. Of course, it is possible to inscribe and remove one of
them, repeat the erosions, inscribe and remove another one, etc.

A better approach is, after inscribing and removing one of them,
to remove the centers of the squares that would overlap this one
and search a center of another block of this size without repeating
the erosions.

Vizireanu (e.g. [14]) generalized the morphological decompo-
sition for other applications as skeleton computation or image
interpolation. The skeleton can be used for image compression,

Fig. 3. The leaf image after removing two largest square blocks.

Fig. 4. Morphological decomposition of the leaf image to squares (7489 blocks in

total).
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but its utilization for feature computation is difficult. The inter-
polation of an image between two frames in a video sequence can
be computed even for gray-scale images.

2.4. Distance transform decomposition

If the object is sufficiently compact, i.e. the largest inscribed
square is bigger than a certain minimum size, we can speed up
the previous algorithm by means of the distance transform (DT),
which we use for the finding of the centers of the inscribed
rectangles [9]. In morphological decomposition, we must repeat
the erosions s-times for finding ð2s�1Þ � ð2s�1Þ inscribed square,
while the distance transformation with a suitable metric can be
calculated only once. DT of a binary image is an image, where
each object pixel shows the distance to the nearest boundary
pixel and the background pixels are zero [15].

DT strongly depends on the metric used for the distance
measurement. We use a simplified version of the Seaidoun’s
algorithm [16] for the chessboard metric

dða,bÞ ¼maxf9ax�bx9,9ay�by9g: ð1Þ

We successively search the image from the left, right, top and
bottom, count distances from the last boundary pixel and calcu-
late the minimum from the four directions. The result is DT, the
maximum of the result equals s for the inscribed square ð2s�1Þ �
ð2s�1Þ and the pixels with this maximum value are potential
centers of the inscribed squares.

We use an improved version of DT inspired by [17]. If we change
only a small part of the original image, then upgrading its close
neighborhood is sufficient. In our case, if we remove a rectangle
from the image, then the rectangle is zeroed and DT is recomputed
in a small frame around it. If the frame in some distance d from the
rectangle is not changed, then the rest of DT is left unchanged. In
Fig. 5, we can see the visualization of DT of the leaf image.

Similarly to the morphological decomposition, the algorithm
consists on iterative repeating the following loop until the object

is fully decomposed. In each run, the largest inscribed rectangular
block is found. Its potential center(s) are the pixels with the
maximum values of DT. If the maximum s is unique, i.e. there is a
single pixel with value s only, then a square ð2s�1Þ � ð2s�1Þ is
inscribed. This is however a rare case, often the maximum is not
unique and the choice of the block center is ambiguous. We try to
keep the blocks as large as possible. Hence, if there is a 2�2
square of the maxima, an even-sized square 2s� 2s can be
inscribed into the object. If the potential square centers create a
line segment (with a single or double-pixel width), then the
corresponding squares are unified into one rectangle like in the
morphological method. At the end of the loop, the inscribed
rectangle is removed from the object and the procedure starts
the next loop, which is applied to the rest of the image. The
decomposed leaf image is shown in Fig. 6.

Both morphological and DT decompositions end up with the
same set of blocks. However, they are still only sub-optimal even
on many simple shapes. This is because a sequence of locally
optimal steps that these ‘‘greedy’’ algorithms apply to an image
(placing always the largest inscribed rectangle) may not yield an
optimal solution. As soon as a block is created, it cannot be
removed any more, because the methods do not include any
backtracking. These two algorithms differ from each other by
computing complexity. Erosion is a relatively complex operation,
while the DT can be calculated faster thanks to its simple
upgrading. Anyway, both methods perform slower comparing to
the previous decomposition algorithms.

2.5. Graph-based decomposition

A large group of decomposition algorithms appeared in 1980s
in computational geometry [1]. Surprisingly, they have not
received almost any attention from image analysis community.
Their formulation was usually much more general than ours. They
tried to decompose general polygons into specific polygonal
components (convex polygons, star-shape polygons, triangles,

Fig. 5. The distance transform of the leaf image. The pixels are labeled by

pseudocolors according to the DT values.

Fig. 6. The distance transform decomposition of the leaf image (2482 blocks in

total).
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generally oriented rectangles, etc.). A common feature of these
methods was that they transformed the decomposition problem
to a graph partitioning problem and employed tools known from
graph theory. The only subgroup relevant to our purposes is a
decomposition of a digital polygon into rectilinear rectangles. An
algorithm which was proved to be optimal in terms of the number
of blocks was independently proposed in the same form by three
different authors [18–20] (in this order) and later discussed by
[21,22] and others. The method (denoted here as FER) works for
any object even if it contains holes. As will be discussed later,
individual versions of the algorithm differ from one another only
by the implementation of one step, which may influence the
complexity but not the total number of the blocks.

The method performs hierarchically on two levels. On the first
level, we detect all ‘‘concave’’ vertices (i.e. those having the inner
angle 2701) of the input object and identify pairs of ‘‘cogrid’’
concave vertices (i.e. those having the same horizontal or vertical
coordinates). Then we divide the object into subpolygons
by constructing chords which connect certain cogrid concave
vertices. It is proved in [20] and other papers that the optimal
choice of the chord set is such that the chords do not intersect
each other and their number is maximum possible.

The problem of optimal selection of the chords is equivalent to
the problem of finding the maximal set of independent nodes in a
graph, where each node corresponds to a chord and two nodes are
connected with an edge, if the two chords have a common point
(either a vertex or an intersection). Generally, this problem is
NP-complete, but our graph is a bipartite one, since any two
horizontal (vertical) edges cannot intersect one another. In a
bipartite graph, this task can be efficiently resolved. First, we find
a maximal matching, which is a classical problem in graph theory,
whose algorithmic solution in a polynomial time has been
published in various versions. Some of them are optimized with
respect to the number of edges, the others with respect to the
number of vertices (see [23–25,21] for some examples of parti-
cular algorithms). For binary object decomposition, it is impos-
sible to choose one that would be time-optimal for any object,
because the number of vertices and/or edges of the graph depends
on the shape of the object. We implemented the algorithm by
Edmonds and Karp [25] which is based on the Maximum Network
Flow and is linear w.r.t. the number of vertices and quadratic
w.r.t. the number of edges.

As soon as the maximal matching has been constructed, the
maximal set of independent nodes can be found much faster than
the maximal matching itself—roughly speaking, the maximal
independent set contains one node of each matching pair plus
all isolated nodes plus some other nodes, which are not included
in the matching but still independent. As a result, we obtain a set
of nodes that is unique in terms of the number but ambiguous in
terms of particular nodes. However, this ambiguity does not play
any role—although each set leads to different partitioning, the
number of partitions is always the same. Hence, at the end of the
first level, the object is decomposed into subpolygons, which do
not contain any cogrid concave vertices (see Fig. 7).

The second level is very simple. Each subpolygon coming from
the first level is further divided. From each its concave vertex, a
single chord is constructed such that this chord terminates either
on the boundary of the subpolygon or on the chord constructed
earlier. This is a sequential process in which each concave vertex
is visited only once. We may choose randomly between two
possible chords offered in each concave vertex. After that, the
subpolygon is divided into rectangles, because rectangle is the
only polygon having no concave vertices (see Fig. 8).

The strength of this algorithm is in the fact that it guarantees
minimizing the number of decomposing rectangles regardless of
the particular choices on the both levels. On the other hand, one

may expect slower performance than in the previous algorithms
namely because of expensive finding the maximum set of inde-
pendent graph nodes. Since the optimal partitioning is not unique
on both levels, one could require additional constraints, such as

Fig. 7. (b) First-level decomposition of the object (a) by chords connecting the

cogrid concave vertices. The crosses indicate the chord intersections. (c) The

corresponding bipartite graph with a maximum independent set of three vertices

and (d) the object decomposition.

Fig. 8. Second-level decomposition of a subpolygon. From each concave vertex a

single chord of arbitrary direction is constructed.
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minimum length of inner boundary, but this would lead to further
increasing of the complexity.

If the object does not have any cogrid concave vertices or if the
maximum independent set of nodes (or, more precisely, at least
one of such sets) contains only the nodes corresponding to the
horizontal (or vertical) chords, then also all chords in the second
level may be constructed in the same direction and, consequently,
FER decomposition leads exactly to the same partitioning as GDM
applied in that direction (see Fig. 9 for an example). This helps us
not only to understand when GDM is strong, but also to interpret
the idea behind FER algorithm—it may be viewed as a ‘‘local

GDM’’ properly switching between the directions. An example of
FER decomposition is in Fig. 10.

3. Experimental comparison—image compression

In this section, we compare the performance of the above
decomposition methods in binary image compression. The experi-
ments were performed on the publicly available LEAF database
[26], which is a database of 795 scanned and binarized leaves
of trees and shrubs of vegetation growing in the Czech Republic
(see Fig. 11).1 All methods were implemented in Cþþ language
and run on a PC with Intel Core 2 Duo, 2.8 GHz CPU and Windows
7 Professional.

3.1. Efficiency of the decomposition

First we monitor and compare two parameters: the number of
blocks and the corresponding decomposition time for GDM, QTD,
DT and FER methods, respectively. The data presented in Table 1
are cumulative for all objects in the database. The time was
always measured just of the decomposition itself, no input/output
operations were included. The minimum number of blocks was
achieved by FER, as one expects from the theory. This is of course
on the expense of the time, but surprisingly the time is lower than
that of DT and only five times higher than the time of QTD.
The winner of this test is GDM method yielding only a slightly
worse number of blocks than FER but in the by far shortest time.
On the other hand, QTD produces the highest block number and
the DT is the slowest.

It is interesting that the differences among these decomposi-
tion methods are observable even on very small and simple
images. For example, the 8�8 object in Fig. 12a was decomposed
by (DM, GDM, QTD, DT, and FER) into (10, 5, 23, 6, and 4)
rectangular blocks, respectively.

3.2. Compression ratio

Although the decomposition itself makes a substantial com-
pression, we further increase the compression ratios of all
methods by a proper block ordering. We propose a new file
format denoted as BLK. It uses three types of compression: the
blocks from DT are grouped according their size, this allows to
store the size only once per each group and then to store just
upper left corner of each block. The long narrow blocks from GDM
and FER are sorted by the coordinates in the ‘‘narrow’’ direction
and sizes and coordinate differences in this direction are encoded
in the decreased number of bits. QTD uses its traditional three-
symbol encoding. The label of the actual decomposition method is
stored in the file header along with other auxiliary parameters.

We compared compression ratios of BLK format (with all these
four decomposition methods) to commercial formats. As we
already explained, it does not reflect only the number of blocks,
since other factors playing role there. We calculated average
compression ratios (ACR) over the LEAF database. ACR is a ratio
of the size of all files in the database in the specific format and the
size without any compression. The results are in Table 2. In this
experiment, it is not meaningful to measure the time, because it
inherently includes I/O operations. Since we do not have an access
to the source codes of commercial compressions, it would be
impossible to ensure an objective time comparison.

Fig. 9. An example where both FER and GDM yield the same decompositions.

Fig. 10. FER decomposition of the leaf image (1748 blocks in total).

1 The database exists in two versions—original (the leaves with petioles, high

resolution) and simplified (the leaves without petioles, downsampled by a factor 2).

Table 1 refers to the simplified version, Table 2 to the original one.
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The best performance of QTD was achieved namely because its
three-symbol encoding in the BLK format is very efficient. This
yields good compression even if the number of blocks is high. The
ACR of FER and GDM is slightly worse, but still very good; FER
method is better because it guarantees the minimum number of
blocks. The result of DT is still good comparing to TIFF and was
achieved by efficient encoding of one-pixel blocks. However, this
method is very time-consuming. The only commercial format
providing a comparable ACR is PNG with a deflate method, others
provide worse compression ratios than all BLK methods.

Based on these two measurements a general recommendation can
be as follows: QTD method yields good compression ratio because of
efficient implementation in BLK format, but we should keep in mind

that the number of blocks was four times higher and the decomposi-
tion time even six times higher than GDM offering a very good
compromise between compression ratio and decomposition speed.
FER and DT methods are suitable mainly for applications, where the
compression is performed only once (usually off-line) and thus the
time of the compression is not critical. FER provides minimum
number of blocks and slightly better ACR and time of compression.

The results of the previous experiments are statistically significant
and can be generalized. However, for specific shapes the results
may be different. The same experiment was carried out on special
images ‘‘Transmitter’’ and ‘‘Labyrinth’’ to illustrate the behavior of the
algorithms in extreme cases. Transmitter is decomposed into very
high number of blocks (7207 in an optimal case), while Labyrinth
represents an opposite case with only 37 blocks (see Figs. 13 and 14
for their decompositions). The compression ratio of various methods
is summarized in Table 3. While PNG deflate, DT, GDM and
FER methods efficiently employs the rectangular structure of the
Labyrinth, the other methods (namely QTD) are not able to do so.

3.3. Backward composition

The compression methods would be useless, if we would
not be able to restore the original shape if requested. In many

Fig. 11. Examples of the LEAF database (Acer platanoides, Acer saccharinum, Aesculus hippocastanum, Betula pendula, Castanea sativa, Fagus sylvatica, Ginkgo biloba,

Hamamelis virginiana, Hedera helix, Ilex aquifolium, Morus alba, Quercus robur, Quercus rubra, Salix alba, Ulmus glabra, and Vitis riparia).

Table 1
The number of blocks and decomposition time achieved on the LEAF database.

Method # blocks # blocks (%) Time (s)

GDM 419,489 112 1.3

QTD 1,913,275 511 7.2

DT 545,528 146 50.3

FER 374,149 100 37.5
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applications the compressed images are stored in widely-
accessed databases. While decomposition and compression is
performed mostly off-line only once, composition (reconstruc-
tion) of the objects is required repeatedly and (almost) real time.
Hence, three basic constraints on the reconstruction algorithm are
no information loss, high speed and low memory consumption.

A naive reconstruction consists just of drawing all the rectan-
gles to an allocated pixel array. This is accurate, simple to
implement and relatively fast, but such method consumes a large
amount of memory in an inefficient way. A much better way is to
avoid drawing of the whole object and reconstruct the object
boundary only. Since each binary object is fully determined by its
boundary, this is still a lossless reconstruction. Such an algorithm
handles computer memory more efficiently, because it does not
require an array of the size of the original image.

We introduce an algorithm that requires only OðmþnÞmemory
for an m� n image. Its time complexity varies with the shape of
the image, i.e. with the number of the blocks K in the compressed
version, but it performs very fast for ‘‘standard’’ objects. The
algorithm works with images in BLK format regardless of the
particular decomposition method used.

The idea of the algorithm is to search the compressed BLK file
and to maintain lists of border lines that we update whenever
new rectangle is inserted. We start with the first rectangle of
the compressed representation, so in the first step, the object
boundary is formed by border lines of the first rectangle only.
When processing a new rectangle, we need to update the current
outline by inserting or removing lines or its parts. If the new

Fig. 12. Decomposition of a simple object: (a) original object—29 pixels, (b) QTD—23 blocks, (c) DM—10 blocks, (d) DT—6 blocks, (e) GDM—5 blocks, and (f) FER—4 blocks.

Table 2
Compression ratios on the LEAF database.

Format Method Size (byte) ACR (%)

TIFF No compression 172,886,448 100.00

TIFF PackBits 13,282,998 7.68

TIFF RLE 8,297,340 4.80

GIF LZW 6,914,637 4.00

BLK DT 5,173,371 2.99

PNG Deflate 5,066,019 2.93

BLK GDM 4,723,166 2.73

BLK FER 4,603,942 2.66

BLK QTD 3,012,532 1.74

Fig. 13. Decomposition of the Labyrinth. DT, GDM, and FER produce the same

number of 37 blocks.

Table 3
Compression ratios of Transmitter and Labyrinth.

Format Method Transmitter (%) Labyrinth (%)

TIFF No comp. 100.00 100.00

TIFF PackBits 24.01 49.65

TIFF RLE 11.95 23.49

GIF LZW 13.66 16.04

PNG Deflate 6.29 1.43

BLK DT 8.18 0.54

BLK GDM 7.35 0.54

BLK QTD 9.28 17.40

BLK FER 6.66 0.54

Fig. 14. Decomposition of the Transmitter.
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rectangle is adjacent to the current boundary, we insert only those
parts of its border that are not adjacent to the current boundary.
Moreover, in the current boundary, those lines or its parts that are
adjacent to the new rectangle are removed (see Fig. 15).

To find adjacent border lines quickly, we maintain two arrays
of lists, one for every horizontal coordinate and the other for
every vertical one, see Fig. 16. Each element of the array contains
pointer to the list of lines in the corresponding row or column.
The borders of the new rectangle are inserted into the four
corresponding lists and then the adjacent lists are searched.

First, we tested the correctness of the algorithm. We restored
all leaves from BLK format to the standard matrix representation
by the algorithm described above and compared them with the
originals by matrix XOR. The cumulative error over the whole
database was zero, which illustrates a perfect reconstruction. Also
the reconstruction of complex objects is error free (see Fig. 17 for
a reconstruction of a part of the Transmitter).

In the next experiment, we compared time complexity and
memory consumption of the proposed decompression method
with a ‘‘traditional’’ restoration, i.e. with putting all rectangles

into an array and consequent boundary detection by convolution
with ð�1;1Þ kernel. The results achieved on the LEAF dataset are
in Table 4. The column ‘‘Lower 10%’’ means 10% of objects with
the lowest number of blocks; analogously the column ‘‘Upper
10%’’. ‘‘Overall’’ means a mean value over a complete database.
One can see that we achieved huge savings in memory consump-
tion and that also certain speed-up of the reconstruction can be
observed. Clearly, both these factors are more significant for
objects with a low number of blocks.

4. Experimental comparison—moment calculation

Moments are scalar quantities that have been used to char-
acterize an image and to capture its significant features. From the
mathematical point of view, moments are ‘‘projections’’ of an
image function onto a polynomial basis. Functions of moments,
insensitive to certain group of transforms, are called moment

invariants (see [27] for a survey). Moment invariants have become
one of the most important and most frequently used tools for
object description and recognition. Hence, efficient algorithms of
their computation are of a high importance and have attracted
much attention (see [27, Chapter 7] for an overview).

Geometric moment of a continuous image f ðx,yÞ is defined as

mðf Þpq ¼

Z1

�1

Z1

�1

xpyqf ðx,yÞ dx dy, ð2Þ

where pþq is the order of the moment. If the image f ðx,yÞ is a
discrete one of the size M�N, then we can estimate its moment
as2

mðf Þpq ¼
XM�1

i ¼ 0

XN�1

j ¼ 0

ipjqf ij: ð3Þ

For a binary object, f is just its characteristic function.
Object decomposition can be employed in moment calculation

in the following way. If we decompose an object B into disjoint
blocks B1,B2, . . . ,BK such that B¼

SK
k ¼ 1 Bk, then, thanks to the

linearity of moments,

mðBÞpq ¼
XK

k ¼ 1

mðBkÞ
pq : ð4Þ

Since we can calculate the moment of each rectangular block in
Oð1Þ time (either by symbolic integration of the kernel function
or, in a discrete domain, by summation rules), the overall
complexity of mðBÞpq is OðKÞ. If K5MN the speed-up may be
significant. As we already have seen, simple decomposition
algorithms produce relatively high number of blocks but perform
fast, while more sophisticated decomposition methods end up
with small number of blocks but require more time. The

Fig. 15. Boundary list updating. Symbol ni is the list of lines in the ith row.

Fig. 16. Horizontal and vertical block boundaries. Symbols ni and hj are the list

of lines in the ith row and jth column.

Fig. 17. Detail of the reconstruction of the Transmitter.

Table 4
Comparison of the proposed algorithm and the traditional reconstruction.

Criterion Lower 10% Upper 10% Overall

Time (ms/image)

Proposed 1.3 2.3 1.6

Traditional 4.0 4.0 4.0

Memory consumption (bytes/image)

Proposed 4955 41,165 17,589

Traditional 1,048,576 1,048,576 1,048,576

Ratio (%) 0.5 3.9 1.7

2 Another way is using higher-order approximation of the integral and/or

exact integration of xpyq over rectangular regions [6].
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complexity of the decomposition must be always considered as a
part of the whole algorithm. Even if the decomposition is
performed only once and can be used for the calculation of all
moments, the time needed for decomposing the image is often so
long that it substantially influences the efficiency of the whole
method.

We decomposed a 465�465 squirrel silhouette by means of
DT, GDM, QTD and FER decompositions (see Fig. 18a–d) which
lead to 697, 497, 2513, and 476 rectangular blocks and took 32, 1,
4, and 19 ms, respectively. Then we calculated the moments of
the image up to the order 464. To prevent floating point overflow
for high orders, we used discrete Chebyshev polynomials tpðxÞ

instead of xp in the kernel functions. The particular choice of
the polynomial basis does influence neither the decomposition
algorithms themselves nor their mutual comparison. The moments
of the individual rectangles were calculated using summation rules
of the kernel functions independently of the size of the rectangle.

The computation times are on the graph in Fig. 19, where the
horizontal axis shows the number of moments calculated. The
initial time tð0Þ shows the expense of the decomposition. It can be
better seen in more detailed Fig. 20.

The best results were achieved for GDM because of its fast
initial decomposition time and only slightly sub-optimal number
of blocks. The theoretically optimal FER method requires so much
initial time that it produces best results only if we calculate about
45,000 and more moments, which is not realistic. QTD is the
second fastest at the beginning, but the time grows quickly, as the
number of moments increases such that it becomes the worst
one, if 3000 and more moments are calculated. DT requires the
longest initialization and then its time complexity grows faster
than that of FER and GDM. It gave the worst results among the
four tested methods in this experiment. All decomposition meth-
ods outperformed the calculation from the definition even for
very low number of moments.

The above results can be generalized for most ‘‘reasonable
simple’’ shapes. However, it is easy to find a counterexample.

If we repeat this experiment for a chessboard image, the results
change dramatically, see Fig. 21. The chessboard image is the
worst possible case, because it cannot be decomposed efficiently.
The decomposition is just a waste of time and a direct calculation
from the definition exhibits the best performance.

5. Experimental comparison—convolution

In this experiment, we show that the decomposition can be a
powerful tool for speeding-up convolution filtering of an image
with a binary kernel. While traditional ‘‘by definition’’ discrete
convolution of an M � N image with an arbitrary m� n mask
requires OðmnMNÞ operations and convolution via fast Fourier
transform (FFT) OðMN log MNÞ operations, convolution with a
constant-valued rectangle takes only OðMNÞ operations regardless
of the mask size. There are several ways how to implement such
algorithm. The best one is probably to employ the precalculations
of row-wise and consequently column-wise sums of the image.
The convolution in a certain position is then calculated just from
four values, which corresponds to the mask corners (see Fig. 22).

Fig. 18. Decomposition of the squirrel image: (a) DT—697 blocks, (b) GDM—497

blocks, (c) QTD—2513 blocks and (d) FER—476 blocks.
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Fig. 19. The time complexity of the moments of the squirrel image.
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Fig. 20. A detail of Fig. 19 showing the complexity of lower-order moments.
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Now, let us imagine a binary kernel, where the non-zero
values form a more complex set than a single rectangle. Such a
situation typically appears for instance in coded aperture (CA)
imaging. CA is a method of recovering the depth map of the scene
from a single image [28]. The trick is to insert a special occluder

within the aperture of the camera lens to create a coded aperture
(see Fig. 23 for an example). The CA output must be deconvolved,
which incorporates (if an iterative deconvolution method such as
Richardson–Lucy or similar is applied) repeating the calculations
of convolution of an estimated image with the aperture mask. If
the mask has a full or close-to-full rank, we cannot effectively use
any factorization, which seemingly takes us back to the calcula-
tion from the definition or via FFT. However, if we decompose the
mask into rectangles B1, . . . ,BK , we can, thanks to the linearity of
convolution, calculate the convolutions with each Bj separately by
the method described above and then just sum up the results.
(This method can be used even if the kernel is not binary and thus
the blocks have different values but that is a rare case in practice.)
In that way, we achieve the overall complexity of OðKMNÞ. In this
experiment, we demonstrate that for K5mn the speed up is
really huge comparing to the direct calculation from the defini-
tion and still significant comparing to the FFT.

We filtered a 3456�2592 image with two binary kernels of
the same shape but different size—the small one of (35�38) and
the large one of (141�152) pixels. The small kernel is scaled
version of the large one. The kernels were decomposed by the FER
method into 10 rectangles (see Fig. 24 for the kernel and its
decomposition). We tested three methods—direct convolution in
the image domain from the definition, convolution via FFT in
the frequency domain (we used popular public-domain FFTPack
software [30,31]), and fast convolution using kernel decomposition
as described above. In the last case, the matrix of the partial sums of
the image was precomputed and then the (cyclic) convolution was
calculated as explained in Fig. 22. We wanted to measure the time of
each individual step separately, because in practice, either the mask
decomposition or the precomputing of partial sums uses to be done
only once and hence its complexity is negligible (in batch processing
either the mask or the image stays the same while the other factor
varies). However, the mask decomposition was so fast that the
corresponding time was not measurable.

The smoothed image is always the same regardless of the
method used. The time comparison is summarized in Table 5. As
expected, the slowest calculation is from the definition in the
image domain. Even for the small mask, it is many times slower
than the methods via FFT and via mask decomposition. Note that
the times for both FFT and decomposition methods actually do
not depend on the mask size, which is clear from the theory.
Although FFTPack is a very powerful implementation, the decom-
position method was still able to perform four times faster.
Precomputing of the partial sums took only 0:1 s of the total time.
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Fig. 21. The time complexity of the moments of the chessboard image.

Fig. 22. Convolution of an image with a constant rectangular mask ABCD. The

large rectangle contains in point X row-wise and column-wise sum S(X) of the

original image from (0, 0) to X. Then the convolution in the depicted position is

given as SðDÞ�SðCÞ�SðBÞþSðAÞ.

Fig. 23. An example of the coded aperture mask (courtesy of [29]).

Fig. 24. The convolution kernel used in the experiment (left) and its FER

decomposition into 10 blocks (right).

Table 5
Time comparison of various convolution methods (the time in s).

Mask size Definition FFT Decomposition

35�38 26 4.3 0.96

141�152 411 4.3 0.96
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This experiment illustrates that the convolution with a binary
mask can be implemented by means of mask decomposition in a
very efficient way. Two main factors influence whether or not the
convolution via decomposition is faster than via FFT—the image
size (not the mask size!) and the number of blocks of the mask. In
our implementation and hardware and for 8–10 Mpix images the
threshold value is about 40. If the number of blocks is lower, the
decomposition-based convolution is the best choice.

6. Conclusion

We presented an overview of methods which decompose an
arbitrary binary object into rectilinear rectangles, starting from very
simple one up to the optimal graph-based decomposition. We tested
their performance in three frequent tasks—image compression,
moment computation and linear filtering. We showed that there is
no ‘‘generally best’’ method; the choice must reflect our require-
ments and is always a compromise between complexity on one hand
and time and memory consumption on the other hand. The weights
given to these two factors are user-defined parameters. This paper
should help the users to select proper decomposition method
according to their preferences. In our opinion, GDM is the most
appropriate in common situations, while FER is recommended, if we
want to achieve as few blocks as possible on the expense of higher
complexity. The other two tested methods either produce too many
blocks (QTD) or perform slowly (DT). They may find applications in
specific tasks only.

An interesting extension in the future could be a usage of
overlapping blocks (we speak about covering instead of partition-
ing). This may significantly decrease the block number, however,
on the expense of the NP-hard complexity.

Although we have been talking just about binary objects in the
paper, all methods can be theoretically used for graylevel and color
images as well. Graylevel image can be expressed as a union of
disjoint binary images, which can be obtained either as intensity
slices [32] or bit planes [33]. However, these ‘‘images’’ use to be
highly fragmented (especially low bit planes resemble a ‘‘random
chessboard’’) and decomposition methods do not perform well. Our
experiments indicate that for graylevel/color images the decom-
position algorithms of this kind have only little practical importance.
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Close-to-optimal algorithm for rectangular
decomposition of 3D shapes

Cyril Höschl IV and Jan Flusser
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Abstract

In this paper we propose a novel algorithm for a decomposition of 3D binary

shapes to rectangular blocks. The aim is to minimize the number of blocks.

Theoretically optimal brute-force algorithm is known to be NP-hard and prac-

tically infeasible. We introduce its sub-optimal polynomial heuristic approxi-

mation, which transforms the decomposition problem onto a graph-theoretical

problem. We compare its performance with the state of the art Octree and

Delta methods. We show by extensive experiments that the proposed method

outperforms the existing ones in terms of the number of blocks on statistically

significant level. We also discuss potential applications of the method in image

processing.

Keywords: 3D binary object, voxels, decomposition, rectangular blocks,

sub-optimal algorithm, tripartite graph, maximum independent set

1. Introduction

Binary images, both in 2D and 3D, form a specific class of objects and re-

quire dedicated algorithms for their processing and analysis. The major differ-

ence from traditional gray-level and color images is that the pixel/voxel matrix

representation of binary images (which consists only of zeros and ones) is highly5

redundant. This has led to many specialized algorithms that employ various
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loss-less compressive representations for image storage and object description

(see, for instance, the books [1], [2]). Such representations result not only in an

efficient memory usage but also contribute to fast feature calculation and object

recognition.10

One of the possible approaches (and probably the most frequently used one)

is to decompose the object into simple parts which we are able to store and

process efficiently (some other approaches, such as object characterization based

on its boundary and various kinds of multilevel representations, exist but are

beyond the scope of this paper). Having a binary object B (by a binary object15

we understand a set of all pixels of a binary image whose values equal one), we

decompose it into K ≥ 1 partitions B1, B2, . . . , BK such that Bi ∩ Bj = ∅ for

any i 6= j and B =
K⋃

k=1

Bk.

The 2D decomposition problem has been studied for decades in computa-

tional geometry and some of the methods were later introduced into the image20

analysis area. Although in the continuous domain we may consider various

shapes of the partitions (convex, star-shaped, hexagonal, rectangular, etc., see

[3]), the decomposition methods in the discrete domain should use only rectilin-

ear rectangular blocks because of a native rectangular structure of the discrete

image domain (if other primitives were allowed, we would have to face sampling25

errors along the boundary).

A commonly accepted measure of the decomposition quality is the number

of the resulting blocks K. This is a reasonable criterion, justified by the fact

that the complexity of subsequent calculations uses to be O(K) and compression

ratio (if the decomposition is used for compression purposes) also increases as the30

number of blocks decreases. The time complexity of the decomposition is usually

the secondary criterion. Obviously, sophisticated decomposition methods which

end up with small number of blocks usually require more time than the simple

ones. Since the decomposition is in most tasks performed only once per object

and can be done off-line, the time complexity becomes crucial only if it is so35

2



high that the method is not feasible in an acceptable time.1

Several rectangular 2D decomposition algorithms have been proposed namely

in connection with compression and image feature calculation [4, 5, 6, 7, 8, 9, 10,

11] but one may find also other applications in fast spatial filtering, in iterative

deconvolution methods [12], in the coded aperture imaging [13], in integrated40

circuits design [14, 15], and in other areas. The decomposition methods in the

above cited papers are simple, intuitive but only suboptimal – they do not guar-

antee the minimal number of the blocks. In computational geometry, several

authors [16, 17, 18] independently proposed basically the same algorithm (later

discussed and improved in [19, 20]) which was proved to be optimal since it45

actually minimizes the number of blocks for an arbitrary input shape. The

algorithm has a polynomial time complexity. This algorithm was adapted for

image analysis purposes by Suk et al. [21], who also performed a large-scale ex-

perimental comparison with other methods. Their experiments proved not only

the optimality but also an acceptable time-complexity of the algorithm (the50

time consumption was of the same order as in the case of the other methods)

[21]. In this sense, the 2D decomposition problem has been fully resolved.

During the last decade, 3D image/object analysis has attracted a significant

attention due to a dynamic development of 3D imaging devices and technologies.

Most of the devices only measure the distance to the object surface, they cannot55

see ”inside” the object.2 The object is scanned from various sides such that

each surface part is visible on at least one scan. The individual scans (views)

are combined together and the complete surface of the object is reconstructed.

We obtain 3D binary object as a result. All range finders, including the popular

X-box sensor Kinect, work in that way. All popular public benchmark databases60

of 3D objects such as Princeton Shape Benchmark (PSB) and McGill 3D Shape

Benchmark [22, 23] contain binary objects. This illustrates there is a great

1The term ”acceptable” of course depends on the particular application.
2In this paper, we do not consider specialized medical devices such as MRI, CT, SPECT

and PET, that actually produce a full 3D voxel cube.
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demand of developing efficient algorithms for working with 3D binary objects.

Few papers on 3D shape decomposition can be found in the literature but

almost none of them has solved the decomposition into rectangular blocks. Ren65

et al. dealt with a decomposition into ”nearly convex” regions [24], Sivignon and

Coeurjolly [25] decomposed the object surface into planar patches and several

other authors proposed decompositions into geometric primitives and other pre-

defined components [26, 27], which requires some kind of ”understanding” the

object structure.70

To our best knowledge, the only paper on 3D shape decomposition into

rectangular blocks is by Dielissen and Kaldewaij [28], who proved that deci-

sion problem of the optimal 3D decomposition (i.e. that one which minimizes

K) is equivalent to a variant of the Boolean three satisfiability problem called

3SAT3. This means that the optimal 3D decomposition problem is NP-complete75

and cannot be efficiently resolved. Nevertheless, 3D decomposition can be ac-

complished by various sub-optimal methods. Some simple algorithms can be

easily designed as an extension of 2D methods. Run-length encoding, the delta-

method, and the quadtree decomposition (which turns into octree in 3D) are

typical examples.80

In this paper, we present a new sub-optimal algorithm. It was inspired

by the optimal 2D decomposition algorithm [18, 21] but unlike the optimal

3D algorithm the proposed method is of a polynomial complexity. From this

point of view, it can be considered a polynomial approximation3 for an NP-

complete algorithm. As demonstrated experimentally and by statistical tests,85

the proposed method outperforms both delta-method and octree decomposition

significantly.

3 To the best of our knowledge, no approximation that provably bounds the optimal so-

lution up to a small constant factor is known. In this text, by an approximation we mean a

polynomial heuristic that provides reasonable good solution compared to the NP-hard optimal

algorithm.
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2. Present state of the art

Since 3D decomposition methods are mostly motivated by their 2D ances-

tors4, we start our brief review with a description of 2D versions. Then we90

explain how to extend the methods into 3D.

2.1. Delta method

The Delta method (DM) was under this name originally proposed by Zakaria

[4] in the connection with computation of object descriptors but it has been

known also in image compression as the run-length encoding (RLE). In the95

basic version, the ”blocks” are continuous row segments for which only the

coordinate of the beginning and the length are stored. The method was later

slightly improved by Dai [5] and generalized for non-convex shapes by Li [6].

The Delta method is very fast but leads to the number of blocks which uses

to be (much) higher than the minimal decomposition. A simple but powerful100

improvement of the delta method was proposed by Spiliotis and Mertzios [7] and

improved later by Flusser [8]. In this ”Generalized Delta method” (GDM), the

adjacent rows are compared and if there are some with the same beginning and

end, they are unified to form a rectangle. The GDM is only slightly slower than

the basic DM while producing (sometimes significantly) less number of blocks.105

Creating a 3D version of DM is straightforward. In case of the generalized

Delta method, the 3D version (denoted as 3GDM) is also clear but we have to

test which direction and which order of the segment connecting yields the best

result. In 2D we have only two degrees of freedom – we may choose either the

vertical or the horizontal direction. As soon as the direction has been chosen,110

there is no choice in the row connection step. In 3D, we have an option of

any of three directions and for each direction we may first connect horizontally

adjacent rows and then vertically adjacent ”plates” or vice versa.5 Hence, the

3GDM which we implemented and used in the tests in this paper checks all

4We are not aware of any 3D method which does not have a counterpart in 2D
5Here the terms ”horizontal” and ”vertical” are used relatively to the chosen direction.
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Figure 1: A sample object (a), its decomposition by the 3GDM into 13 blocks (b), and the

octree decomposition into 90 blocks (c).

these six options and selects that one yielding the minimum number of blocks115

or decides randomly if there is a multiple minimum (see Fig. 1b for an example

of the 3GDM decomposition).

2.2. Quadtree and octree decompositions

In 2D, the Quadtree decomposition (QTD) is a popular hierarchical decom-

position scheme used in several image processing areas including representation120

and compression [29], spatial transforms [30] and feature calculation [9]. In its

basic version, the QTD works with square images of a size of a power of two. If

this is not the case, the image is zero-padded to the nearest such size. The im-

age is iteratively divided into four quadrants. Homogeneity of each quadrant is

checked and if the whole quadrant lies either in the object or in the background125

it is not further divided. If it contains both object and background pixels, it

is divided into quadrants and the process is repeated until all blocks become

homogeneous. The decomposition can be efficiently encoded into three-symbol

string, where 2 means division, 1 means a part of the object and 0 stands for

the background.130

The QTD always yields square blocks which may be advantageous for some

purpose but usually leads to a much higher number of blocks than necessary. It
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would be possible to implement a backtracking and to unify the adjacent blocks

of the same size into a rectangle but this would increase the complexity. Since

the speed is the main advantage of this method, the backtracking is mostly not135

employed here. A drawback of this decomposition algorithm is that the division

scheme is not adapted with respect to the content of the image but it is defined

by absolute spatial coordinates. Hence, the decomposition is not translation-

invariant and may lead to absurd results when for instance a large single square

is uselessly decomposed up to individual pixels.140

The QTD can be readily extended into 3D. Instead of square elements we

employ cubes and the quadtree scheme is replaced with the octree (OTD). The

OTD method keeps all pros and cons of its 2D ancestor (see Fig. 1c for an

example of the OTD decomposition).

Octree representation has been commonly used in Minecraft-like computer145

games and similar voxel-represented scenarios. Popularity of this representation

is mainly due to its simple implementation, fast run, and its ability to render

the scene in various levels of details. However, it is much less efficient than other

methods in terms of the block number.

2.3. Binary space partitioning150

The term Binary space partitioning (BSP) denotes a wide class of hierarchical

decomposition methods, very popular namely in 3D computer graphics [31,

32]. BSP recursively divides the bounding box, which contains the object, by

hyperplanes. Individual BSP methods differ from one another by the criteria

that select the separating hyperplane. Both QTD and OTD are special cases155

of BSP, where the hyperplanes are always put in the middle of the box to be

decomposed. Other BSP algorithms may put the separator with regard of the

object itself, but the separators always cut the entire box into two parts. This

leads to object representation by the BSP tree. The BSP algorithms usually

perform fast but the number of blocks depends on the chosen criterion.160
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2.4. Optimal decomposition

As we already pointed out, there exist a 2D decomposition method of poly-

nomial complexity (even in several versions) which guarantees the minimum

number of blocks for an arbitrary shape. Here we briefly recall the version

proposed in [21].165

The method performs hierarchically on two levels. On the first level, we

detect all “concave” vertices (i.e. those having the inner angle 270◦) of the

input object and identify pairs of “cogrid” concave vertices (i.e. those having

the same horizontal or vertical coordinates). Then we divide the object into

subpolygons by constructing chords which always connect two cogrid concave170

vertices. As proved in [18] and in other papers, the optimal choice of the chord

set is such that the chords are pair-wise disjoint and their number is maximum

possible.

The problem of optimal selection of the chords is equivalent to the prob-

lem of finding the maximal set of independent vertices in a graph, where each175

vertex corresponds to a chord and two vertices are connected by an edge if the

two chords have a common point (either a concave vertex or an intersection).

Generally, this problem is NP-complete, but our graph is a bipartite one, since

any two horizontal (vertical) chords cannot intersect one another. In a bipartite

graph, this task can be efficiently resolved. We find a maximal matching, which180

is a classical problem in graph theory, whose algorithmic solution in a polyno-

mial time has been published in various versions. Some of them are optimized

with respect to the number of edges, the others with respect to the number of

the vertices (see [33, 34, 35, 19] for some examples of particular algorithms) but

all of them are polynomial in both.185

As soon as the maximal matching has been constructed, the maximal set

of independent vertices can be found much faster than the maximal matching

itself – roughly speaking, the maximal independent set contains one vertex of

each matching pair plus all isolated vertices plus some other vertices, which are

not included in the matching but still independent. As a result, we obtain a set190

of vertices that is unique in terms of the number of vertices being involved but
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ambiguous in terms of the particular vertices. However, this ambiguity does not

matter – although each set leads to different object partition, the number of the

components is always the same. Hence, at the end of the first level, the object is

decomposed into subpolygons, which do not contain any cogrid concave vertices195

(see Fig. 2).

The second level is very simple. Each subpolygon arriving from the first

level is either a rectangle or a concave polygon. In the latter case, it must be

further divided. From each its concave vertex, a single chord is constructed such

that this chord terminates either on the boundary of the subpolygon or on the200

chord that has been constructed earlier. This is a sequential process in which

each concave vertex is visited only once. The order of the concave vertices may

be chosen arbitrary. Similarly, we may choose randomly between two possible

chords offered in each concave vertex. This choice does not influence the final

number of blocks. After that, the subpolygon is divided into rectangles, because205

rectangle is the only polygon having no concave vertices.

The optimal decomposition cannot be readily extended into 3D because it

becomes NP-complete, as follows from the analysis presented in the next Section.

The method we propose in this paper replaces the NP-complete steps by an

approximation of a polynomial complexity.210

3. 3D suboptimal decomposition

When trying to extend the above 2D optimal algorithm into 3D, we discover

several substantial differences between the 2D and 3D cases. In 3D, concave

edges play the role of concave vertices (see Fig. 3). Concave vertices may

exist, too, but they have no significance for 3D decomposition. The analogue215

of the chord is the separator, which is the intersection of a plane and the object

(see Fig. 4). Note that the separator not always splits the entire object into

two separate components as it is illustrated in Fig. 5. Similarly as in 2D, any

concave edge must be contained in a separator to get the decomposition into

blocks. Separators containing no concave edges are possible but useless. Unlike220
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(a) (b)

(c) (d)

Figure 2: The first level of the 2D optimal decomposition method. (a) The input object. (b)

All possible chords connecting two cogrid concave vertices. The crosses indicate the chord

intersections. (c) The corresponding bipartite graph with a maximum independent set of

three vertices. Other choices are also possible, such as {h1, h2, h3} or {v1, v2, v3}. (d) The

first level of the object decomposition.
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Figure 3: A concave edge formed by two voxel faces of a 270◦angle in between.

2D, where a chord can contain two concave vertices at maximum, a separator

can contain an arbitrary high number of concave cogrid edges (the edges laying

in a plane which is perpendicular to an axis are called cogrid edges). From this

we can see that the 3D version of the optimal algorithm (if it exists) cannot work

in two levels but rather in m levels, where m depends on (but not necessarily225

equals to) the maximum number of the existing cogrid concave edges. Another

difference from 2D is that a separator may split a perpendicular concave edge

into two separate concave edges. In this way, placing a separator eliminates some

concave edges but may at the same time induce new ones, which is impossible

in 2D (see Fig. 6). The most significant difference is, however, the following230

one. Even if we place the separators in order given by the number of the

concave edges they eliminate, we do not end up with the minimum number of

blocks. Placing a separator which eliminates the maximum possible number of

the concave edges at the particular moment may not be globally optimal since

it may prevent placing some separator(s) which would finally lead to a better235

decomposition (see Fig. 8 for illustration of such simple situation). Before we

fix the separator, we should check the complete subtree of all other alternatives.

This makes the task NP-complete.6

11



Figure 4: A separator is a cross-section of a plane and the object. Meaningful separators elim-

inate some concave edges of the object. In this example, the red edges have been eliminated

by a cyan separator.

Figure 5: Example of a separator which is meaningful (it eliminates red dotted edges) even if

it does not split the object into separated parts.
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3.1. The basic version

The basic version of a sub-optimal algorithm is a heuristics which basically240

follows from the above thoughts. It works iteratively in a greedy manner. In

each iteration, we place proper separators and cut the object by them. This

eliminates all edges connected with the chosen separators. We repeat this step

until all concave edges have disappeared.

The tricky part in each iteration is how to choose the proper separators. We245

have already shown that the optimal brute force approach is NP-complete. To

overcome this, we choose the separators according their weight. The weight ws

of separator s is a function which estimates how significant (i.e. how useful)

is the particular separator for the decomposition. Intuitively, it should reflect

the number of the concave edges the separator eliminates and should be easy to250

evaluate (preferably in a polynomial time). Two possible particular choices of

ws will be discussed later.

In each iteration, the algorithm finds all possible separators and calculates

their weights. Let us denote the highest weight as α and the set of all separators

with this weight as M . Now the method tries to place as many separators from255

M as possible but at the same time it must avoid all mutually intersecting

separators because they are redundant (by ”intersecting” we understand also

adjacent separators, i.e. those which share an edge), see Figs. 6 and 7. In

other words, we are looking for a maximum subset of M of non-intersecting

separators.260

This task can be reformulated as a task of finding the maximum independent

set in a tripartite graph, which is a well-known problem in graph theory. We

refer to the maximum independent set in graph G as MaxIS(G) or MaxIS for

short.

We construct graph G = (V,E′) whose vertices are the separators from the265

set M . Vertices u and v form edge (u, v) ∈ E′ iff the corresponding separators

6Note that the NP-completeness was formally proven in [28] by transforming the decom-

position problem onto a 3SAT3 problem.
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Figure 6: An example of a separator that splits perpendicular concave edges and intersects

other separators. Cyan-highlighted separator s eliminates edges e3, e4 and intersects one

vertical edge that has been divided into e1 and e2. It also intersects other separators s1 and

s2 and is adjacent to separators s3 and s4

Figure 7: An example of a graph construction: On the left there are four separators of the

same weight. On the right we can see the corresponding tripartite graph. The graph vertices

are associated with the separators and the graph edges reflect their mutual intersections (or

adjacency). In this example, highlighted vertices {1, 2} form the MaxIS (compare with

corresponding disjoint separators 1 and 2).
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intersect each other. Graph G is tripartite because parallel separators (along

axes x, y and z) are always disjoint. Example of a graph construction is shown

in Fig. 7. The maximum independent set of vertices MaxIS gives us the largest

set of disjoint separators of weight α. We split the object by these separators270

and proceed to the next iteration. Note that the set of the separators may not

be unique because the graph may contain more than one MaxIS set of the same

cardinality. In such a case we chose the separator set randomly.

We repeat the iterations until all concave edges have been eliminated. De-

pending on the particular choice of ws, α may not monotonically decrease during275

the iteration process. At the end, the object has been decomposed into rect-

angular blocks. The partitioning may sometimes produce adjacent blocks that

share one side and therefore they can be merged into a single block. As soon as

the iterations have been completed, we find and merge these adjacent blocks.

3.2. The weight function280

As we already explained, the choice of the weight function ws determines

the sub-optimal approximation of the full-search technique. It should describe

the significance of the separator for the decomposition. High weights should

be given to separators, the early placement of which leads to a low number of

blocks. At the same time, the evaluation of the weight of each separator should285

be fast enough. This is why we limit ourselves to two weight functions, both

of which can be evaluated directly on the current level and do not require any

recursive hierarchical calculations.

The first one simply counts the number of the concave edges which the

separator eliminates when placed290

w(1)
s = |{e | e ∈ E ∧ e ⊂ s}|

In the example in Fig. 5, the highlighted separator has the weight w
(1)
s = 4 since

it contains four concave edges.
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Figure 8: An example that neither w
(1)
s nor w

(2)
s select the optimal separators. At the first

step, both weight functions prefer s1 to s2 because w
(1)
s1 = 6 and w

(2)
s1 = 4 while w

(1)
s2 =

w
(1)
s2 = 2. However, placing s1 leads to 8 blocks (see c)), while using s2 yields the optimal

decomposition into 7 blocks.

A more sophisticated choice (but also slightly more time-consuming to eval-

uate) which reflects the fact that the separator may also generate some new

concave edges is

w(2)
s = |{e | e ⊂ s}| − |{e | e⊥s}|, e ∈ E (2)

which is in fact w
(1)
s minus the number of the concave edges perpendicular to

and intersected by the separator.

In the experimental section we will compare the performance of w
(1)
s and295

w
(2)
s , among others.

3.3. Implementation

In the following pseudocode, we describe the algorithm more formally. Plac-

ing the separator in the object is implemented in a way that the separator

becomes ”final” and forms a ”wall” that cannot be divided any further. We300

first search for all concave edges and all separators that contain them. Then we

iteratively choose maximum sets of disjoint separators with the highest weight

and move them to the set of walls. The concave edges, eliminated by these

separators, are removed from the list and new edges (if any) are added. As
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soon as the iteration process has been completed, the blocks are formed by orig-305

inal object surface and/or by ”final inner walls” created by the separators. For

each block we store the coordinates of its upper left front voxel and three block

dimensions. The last step – block merging – is accomplished by lexicographic

sorting the blocks w.r.t. x, y, z, identifying adjacent blocks of the same side size

and updating the data in the block list. The complexity of the merging is only310

O(K ′ logK ′) where K ′ is the number of blocks produced by the iterative part of

the algorithm. (Note that the block merging step is due to the sub-optimality of

the algorithm. If the decomposition was optimal, no merging would be possible

and this step could be removed from the algorithm.)

The most time-consuming part is finding the MaxIS on line 9 of the al-315

gorithm. For general graphs, this problem is NP-hard. Although the graph

we work with is a tripartite one, which is much simpler than a general graph,

finding the maximum independent set is still NP-hard w.r.t. the number of

separators of the same weight. Theoretically, this number may be proportional

to the number of all surface voxels. Actually, it is usually much lower namely320

for high α, but may become so high for low α that the algorithm may not be

feasible. This is another substantial difference from the 2D case – finding the

maximum independent set in a bipartite graph is of a polynomial complexity

[21]. In the next Section, we propose an approximation of a polynomial time

complexity, which we use in our implementation.325

We implemented the decomposition for Node.js framework. In addition to

standard node.js package written in Javascript, we created an online visual

tool that runs in any modern browser that supports WebGL (such as the lat-

est versions of Google Chrome). In this tool, the user can interactively cre-

ate a custom object or upload an external object, run different decomposition330

methods (the proposed algorithm can be even executed step-by-step for better

understanding of the process). The visualization helps in understanding the

behavior of the decomposition algorithms. The tool was designed mainly for

educational purposes, it is not meant for routine work. It is available online at

http://goo.gl/hAEuCg, a sample screenshot can be seen in Fig. 9.335
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Figure 9: A sample screen shot of our online decomposition tool.

3.4. Approximating the maximum independent set

The vertices of graph G = (V,E′) can be clustered into three disjoint sub-

sets Px, Py, Pz according to the axis that the corresponding separators are

perpendicular to

G(V,E′) = G(Px ∪ Py ∪ Pz, E
′). (3)

Clearly, each subset is composed of parallel separators which cannot intersect

each other and hence G is a tripartite graph because there are no graph edges

inside the individual subsets.340

The complexity of finding the maximum independent set of vertices of G

is exponential w.r.t. the number of the vertices and edges, which varies in

individual iterations. If the number of the vertices is low, which is a typical

situation at the beginning of the algorithm when the maximum weight α is
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Algorithm 1 Sub-optimal 3D decomposition

1: E ← find concave edges

2: S ← find separators

3: W ← ∅ . the set of final walls

4: while |S| > 0 do

5: ws ←weight(s), ∀s ∈ S . calc. weight for each sep.

6: α← max
s∈S

(ws) . calc. the max. weight

7: M ← {s | ws = α ∧ s ∈ S} . separators of max. weight

8: G = (V,E′)← vs ∈ V ⇔ s ∈M, (vs, vp) ∈ E′ ⇔ s⊥p . create graph

9: I ←MaxIS(G) . find max. indep. set of vertices

10: F ← {s | vs ∈ I} . seps. chosen in MaxIS become final

11: W ←W ∪ F . move final seps. to the set of walls

12: C ← {c | c⊥s ∧ c ∈ S ∧ s ∈ F} . intersecting separators

13: N ← new divided separators that replace C

14: S ← (S ∩ C ∩ F ) ∪N . remove final seps., add divided seps.

15: divide all e ∈ E that intersect any s ∈ F . split edges that inters. walls

16: end while

17: convert voxels bounded by walls w ∈W into rectangular blocks

18: merge adjacent blocks
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high, the exponential time may be acceptable. Finding the MaxIS is equivalent345

to finding the maximal clique in the complement graph7, so we adopted the

popular Bron-Kerbosch algorithm [36] for the clique problem to find theMaxIS.

This is, however, not feasible for large graphs, typically arriving in case of

complex objects with many concave edges at the iteration levels when the weight

approaches one.350

Very simple approximation for MaxIS is just to take the largest subset

among Px, Py, Pz instead (let us denote it as IS(1)). The independence is guar-

anteed but for most (especially large) graphs this approximation is far from the

actual MaxIS.

A better approach is to treat this problem in tripartite graphs as an ex-355

tension of the bipartite graph problem. We choose two largest vertex sub-

sets among Px, Py, Pz and consider a subgraph of G (let us denote it as G2),

which is a bipartite graph. On G2 we find the exact maximum independent set

I2 = MaxIS(G2). This is solvable in a polynomial time thanks to the König’s

theorem [37]. We implemented this step by means of the maximum network360

flow algorithm by Edmonds and Karp [35] of a time-complexity O(V E′2) and

also alternatively by the Dinic’s algorithm [38] with the complexity O(V 2E′).

Our algorithm selects automatically the method which is more efficient for the

particular graph. Finally, we unify I2 with those vertices from the remaining

third part of the graph which are not adjacent to any vertex of the selected365

independent set. We denote this final independent set as IS(2) (see Fig. 10).

The choice of how to calculate/approximate the MaxIS can be in our imple-

mentation done by the user. It is always a trade-off between the time efficiency

and the size of the independent set (which consequently influences the number

of blocks). The optimal solution provides the correct maximum set, but it is370

NP-hard and thus for complicated objects it can run unacceptably long time.

7Complement graph H to the given graph G consists of the same set of vertices and

complementary set of edges, i.e. two distinct vertices of H are adjacent if and only if they are

not adjacent in G.
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Figure 10: Finding maximum independent set in a tripartite graph. (a) optimal solution

MaxIS, (b) an approximative heuristic IS(1) where only the largest part is taken, (c) better

approximative heuristic IS(2) as an extension of bipartite subgraph MaxIS completed with

the vertex No. 14 from the third part of the graph.

IS(1) is retrieved very quickly, but the set is much smaller and thus leads to

more blocks in the final decomposition. IS(2) provides a very good compromise,

as demonstrated in the next Section by experiments.

4. Experiments375

The main goal of this Section is to compare the proposed decomposition

method with the state of the art Octree algorithm [39], the BSP algorithm

where the separator was chosen such that it minimizes the number of voxels it

passes through, and namely with the generalized delta method, which is known

from 2D to be very powerful. The second goal is to study the performance of380

various modifications of the proposed algorithm. We verify that the polynomial

heuristic functions IS(1) and IS(2) provide good approximation of the optimal

NP-hard solution of the MaxIS. Additionally, we compare the two different

weight functions that evaluate the separators’ significance and verify that the

enhanced w(2) performs significantly better than w(1).385
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Table 1: The number of the blocks for the entire DB achieved by various methods.

Method Graph IS Weight Total No. of blocks Mean time

method function [103] per object [s]

Octree N/A N/A 3413 1.3

BSP N/A N/A 512 4.6

3GDM N/A N/A 458 0.7

Proposed MaxIS w(1) 448 88.6

Proposed MaxIS w(2) 445 107.5

Proposed IS(1) w(2) 450 67.4

Proposed IS(2) w(2) 445 83.3

4.1. Models from the McGill database

The first round of experiments was run on a database of 416 voxelized models

from the McGill 3D Shape Benchmark8 [23] (we denote this set as ”MDB”).

All models have been inscribed into a 128× 128× 128 cube. Each object has a

different volume, but together the whole MDB contains more than 13.5 millions390

of voxels.

We decomposed all shapes by the OTD, BSP, 3GDM, and by the proposed

method with various settings (see Fig. 11 for some examples). The test re-

sults are summarized in Table 1. In the fourth and fifth rows, we used MaxIS

algorithm with the separator weights w(1) and w(2), respectively. Comparison395

of the performance of these two weights was done by Wilcoxon test. The null

hypothesis was that there is no significant difference between these two sample

decompositions. The null hypothesis was rejected with p-value < 0.001, which

led us to the conclusion that w(2) performs significantly better. On the last two

rows of the table we can see the most important results of the experiment -400

decomposition achieved by heuristics IS(1) and IS(2). In both cases, solely the

8Some of these objects can be found in the Princeton Shape Benchmark [22], too.
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Figure 11: Example of the models from the McGill database [23] and their decomposition by

the proposed method.
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better weight w(2) was used. A surprising result is that the polynomial heuristic

IS(2) yields almost the same number of blocks as the optimal NP-hard algo-

rithm MaxIS. This was confirmed by the Wilcoxon test – the null hypothesis

was accepted with the p-value > 0.1. This result proves the efficiency of IS(2)
405

algorithm. When applying IS(1) heuristic, the decomposition works faster but

in average it yields slightly higher number of blocks. Since the differences are

more or less consistently spread over the whole database, the Wilcoxon test re-

jected the null hypothesis with p-value < 0.001. A comparison with the 3GDM

is clearly in favor of the proposed method. For both IS(1) and IS(2) (and of410

course also for MaxIS), the Wilcoxon test confirmed that 3GDM performed

significantly worse on this database.

Summarizing, the most important result of the test is the following. Poly-

nomial heuristics IS(2) with the weight w(2) is statistically equivalent (in terms

of the block number) to NP-hard MaxIS algorithm and is at the same time415

significantly better than all other tested methods. This is expressed visually in

Fig. 12.

4.2. Random cubes

The aim of this experiment was to compare the performance of the 3GDM

and the proposed method on the set of irregular, less compact, objects. We used420

one hundred 32× 32× 32 cubes inside which we randomly ”carved” holes of an

average density 50%. The proposed method was applied in both configurations,

i.e. using MaxIS and IS(2) algorithms. A sample cube along with its decom-

positions can be seen in Fig. 13. The individual number of blocks are shown

”cube by cube” in Fig. 14 and the summary results are in Table 2. Similarly425

as on the MDB objects, we can clearly see the insignificant difference between

MaxIS and IS(2), and significantly worse performing 3GDM and BSP (these

conclusions were again confirmed by the Wilcoxon test).
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Figure 12: The differences of the numbers of blocks between the 3GDM and the proposed

method. Red solid line corresponds to the 3GDM which is taken as an etalon. The objects

have been sorted according to the differences between 3GDM and IS(2) (denoted as blue

”+”). The differences between 3GDM and MaxIS are denoted as orange ”×”.

Table 2: The number of the blocks for the set of 100 random cubes by various methods.

Method Total No. of blocks [103]

BSP 838

3GDM 717

MaxIS 648

IS(2) 654
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(a) (b)

(c) (d)

Figure 13: A sample random cube (16449 voxels) (a), its 3GDM decomposition (7174 blocks)

(b), MaxIS decomposition (6458 blocks) (c), and IS(2) decomposition (6521 blocks) (d).
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Figure 14: The number of blocks in the decomposition of 100 random cubes. Blue line –

3GDM, orange line – IS(2), gray line – MaxIS.
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5. Applications

Potential applications of the proposed decomposition method can be found430

in all areas where decomposition of 3D shapes is required and where the num-

ber of the blocks is the main issue. This is typically if the decomposition is

performed off-line, if it is then used many times in subsequent calculations, and

if the number of blocks influences substantially the time and/or the cost of a

subsequent processing. If, on the other hand, realtime or close-to-realtime de-435

composition is required as a primary criterion, then the 3GDM method provides

the best solution.

5.1. Compression

Our method can be used in 3D shape encoding/compression, both loss-less

and lossy ones. In a loss-less compression, we store the position and the size of440

each block. To optimize the compression ratio, we order the blocks according

to their size such that the blocks of the same size form a substring. Then we

store only the positions of the blocks while the size is stored only once for each

substring. In a lossy compression, we throw away the smallest blocks, typically

from 1×1×1 to a certain limit. This significantly improves the compression ratio445

but many shape details may disappear when the object has been reconstructed.

5.2. Feature calculation

Many features, which have been proposed for 3D shape description and

recognition, are of the form of an integral transformation

M (f)
p =

∫

Ω

πp(x)f(x)dx . (4)

where p is a 3D multi-index, {πp(x)} is a set of basis functions of the image

space (transformation kernels), f(x) is characteristic function of the shape, and

Ω is a bounded subset of R3. Fourier coefficients, wavelet coefficients, and

image moments are few popular examples [40]. If we decompose the object into
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K disjoint blocks Bk, Eq. (4) can be rewritten as

M (f)
p =

K∑

k=1

∫

Bk

πp(x)dx . (5)

If the basis functions πp(x) can be integrated on a rectangular region by means450

of primitive functions and Newton-Leibnitz theorem in O(1) time (which is the

case of all polynomial and harmonic bases), then the evaluation of M
(f)
p from

Eq. (5) is of O(K) complexity while the direct calculation from Eq. (4) is

proportional to the total number of the object voxels.

The object features are typically computed for a large set of the basis func-455

tions and used repeatedly, so the time benefit of the decomposition may be

really huge even if the decomposition itself might be relatively slow.

5.3. Fast convolution

When we calculate a convolution of 3D image (graylevel or color) f with a

binary kernel h, we can benefit from the decomposition as well. If we decompose

the support of h into disjoint blocks, then we have

f ∗ h = f ∗
K∑

k=1

hk =
K∑

k=1

f ∗ hk, (6)

where hk is a characteristic function of block Bk.

The evaluation of convolution of arbitrary f with rectangular Bk in a sin-

gle voxel can be accomplished in O(1) time regardless of the block size. We

precompute partial sums of f in all three dimensions, so we create an auxiliary

array g such that

g(L,M,N) =
L∑

`=1

M∑

m=1

N∑

n=1

f(`,m, n).

This array is precomputed only once for the given f and may be used for any460

h. The convolution f ∗ hk in a certain voxel is then evaluated just from the

values of g which correspond to the corners of properly shifted block Bk. This

approach is significantly faster than calculating convolution from the definition,

which is proportional to the kernel size, and also than using FFT; especially
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when multiple convolutions with the same kernel are to be calculated. Such a465

situation arises for instance in deblurring/sharpening of CT images (and other

data of a similar nature) when the blurring kernel is known since it charac-

terizes the imaging device. Iterative deconvolution methods, such as popular

Richardson-Lucy algorithm, iteratively estimate the input image, evaluate many

times convolutions with the same kernel, and check in each iteration the simi-470

larity to the blurred acquired image.

The kernel decomposition is particularly efficient if the kernel matrix has a

full or close-to-full rank because in that case we cannot effectively use any fast

convolution algorithm based on kernel factorization.

5.4. Manufacturing475

Manufacturing of 3D structures is often done by assembling them from sim-

ple components. If these components are rectangular blocks, then our algorithm

can be advantageously applied because the production cost and time are pro-

portional to the number of blocks, while durability of the product uses to be

inversely proportional to it. The time of decomposition, which is performed on a480

computer model of the product, is negligible comparing to the total production

time.

6. Concluding discussion

In this paper, we presented an original method of block-wise decomposition

in 3D. The method is a double approximation of the optimal algorithm, which is485

NP-complete and practically infeasible. We proposed the criterion for the sepa-

rator selection in the first heuristic approximation. In the second approximation,

the maximum independent set in a tripartite graph, the finding of which is again

NP-complete (and to our knowledge is also hard to approximate), is replaced

by a polynomial sub-optimal solution. We proved by large-scale experiments490

that the proposed method is statistically better than the 3GDM, which is the

best one among the existing methods in terms of the number of blocks. This
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determines that potential applications of the proposed method can be found

namely in the tasks where it is more desirable to keep the number of blocks as

low as possible rather than to minimize the decomposition runtime.495

It is interesting that even though the proposed algorithm is generally sub-

optimal, it is optimal on specific shapes. A trivial example of such class are

objects, which do not have any cogrid concave edges. Another class where our

method performs optimally, is formed by objects all concave edges of which

are parallel.9 This is not true for the main competitor, 3GDM, which is still500

suboptimal on these objects.

Although in the paper we have been dealing with binary shapes only, all

methods can be theoretically used for graylevel and color 3D images as well. A

graylevel image can be expressed as a sum of several binary 3D images multi-

plied by a proper constant, which can be obtained either as intensity slices or505

bit slices (these techniques were proposed for 2D images in [41], [42] and can

be adapted to 3D case readily). We can decompose each slice independently

by means of our algorithm. However, these binary ”images” use to be highly

fragmented (especially low bit planes resemble a ”random chessboard”) and

their decomposition typically yields high number of blocks. Hence, this kind of510

decomposition is of a little practical importance for graylevel/color 3D images.

For the sake of completeness, we should mention that the format of binary

images used in some databases is not based on a voxel representation. A com-

mon representation of a shape is by triangular patches (facets) of the surface.

In that case, only the vertices of the triangles are stored. Such a representa-515

tion may be often used directly for compression, feature calculation, and other

tasks. This is, however, not true in general. Calculating convolution and in-

9This property can be proven formally. First, we prove that in this case all concave edges

must have their beginning in the same object face. The same is true for the edge ends. This

means that such object is an ”elongation” of a 2D shape, which forms the object face, into

the third dimension. Our algorithm is equivalent to 2D optimal decomposition of the base

and ”elongation” of the rectangles into blocks. Hence, our method must be optimal, too.
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tegral transformations in triangular representation may be very tricky or even

impossible. If we want to find a rectangular decomposition, we have to convert

the triangular representation to the voxel one first. Although several conversion520

algorithms exist (see, for instance, [40] for one of the simplest methods), this

approach is not very efficient and the triangular representation is mostly used

without any conversion to voxels.
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Recognition of Images Degraded by Gaussian Blur
Jan Flusser, Senior Member, IEEE, Sajad Farokhi, Cyril Höschl IV, Tomáš Suk,

Barbara Zitová, and Matteo Pedone

Abstract— In this paper, we propose a new theory of invariants
to Gaussian blur. We introduce a notion of a primordial image
as a canonical form of all Gaussian blur-equivalent images.
The primordial image is defined in spectral domain by means
of projection operators. We prove that the moments of the
primordial image are invariant to Gaussian blur and we derive
recursive formulas for their direct computation without actually
constructing the primordial image itself. We show how to extend
their invariance also to image rotation. The application of these
invariants is in blur-invariant image comparison and recognition.
In the experimental part, we perform an exhaustive comparison
with two main competitors: 1) the Zhang distance and 2) the
local phase quantization.

Index Terms— Blurred image, object recognition, blur invari-
ant comparison, Gaussian blur, projection operators, image
moments, moment invariants.

I. INTRODUCTION

IMAGE recognition/classification in general is an extremely
broad area which apparently cannot be resolved by a single,

always-optimal method. This is why numerous specific for-
mulations of the problem have appeared, which consequently
has resulted in many approaches and particular algorithms.
Some of them have already become an established discipline
of image analysis while some others are still undergoing initial
development. One of the representatives of the latter group are
methods for recognition of images which are degraded by a
uniform Gaussian blur.

Few years ago, this task was considered a borderline prob-
lem. Thanks to the rapid development of imaging sensors
and technologies that are nowadays available everywhere, the
challenge of recognizing Gaussian-blurred images has started
to appear more and more often in practice which consequently
has attracted the attention of the researchers.

The mathematical formulation of the problem is well known
in image processing. Capturing an ideal scene f by an imaging
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device with the point-spread function (PSF) h, the observed
image g is a convolution of both

g(x, y) = ( f ∗ h)(x, y). (1)

This linear space-invariant image formation model, even if
it is very simple, is a reasonably accurate approximation of
many imaging devices and acquisition scenarios. In this paper,
we concentrate our attention to the case when the PSF is a
Gaussian function with unknown parameters.

Gaussian blur appears whenever the image was acquired
through a turbulent medium and the acquisition/exposure
time is by far longer than the period of Brownian motion
of the particles in the medium. Ground-based astronomical
imaging through the atmosphere, taking pictures through a
fog, underwater imaging, and fluorescence microscopy are
typical examples of such situation (in some cases, the blur
may be coupled with a contrast decrease). Gaussian blur is
also introduced into the images as the sensor blur which is due
to a finite size of the sampling pulse; this effect is, however,
mostly of low significance. Moreover, Gaussian kernel is often
used as an approximation of some other blurs which are
too complicated to work with them exactly. Gaussian blur
is sometimes even introduced into the image intentionally,
for instance to suppress additive noise, to “soften” the image
or to perform local averaging before the image is down-
scaled (see Fig. 1 for some examples). Numerous examples
of the Gaussian convolution can be found outside the image
processing area – particle transportation, diffusion process,
time-development of a heat distribution in a mass, and photon
scattering in radiation physics are few examples. Most of
them are represented by 2D or 3D functions which can be
visualized, that brings us back to image processing. So, we
can see there is actually a demand for developing the tools
designed particularly for processing Gaussian-blurred images.

When we need to classify a blurred image g against a
database of clear images, we have basically three options.
The most time-expensive one is to generate all possible
blurred versions of all templates (i.e. blurring with Gaussians
the variances of which fill a reasonable, properly sampled
interval) and incorporate them into the database. This brute-
force approach is not practically feasible. Another approach
relies on the solution of the inverse problem, when the blur
is removed from the input image and the deblurred image
is then classified by any standard technique. This process
contains semi-blind image deconvolution (the term “semi-
blind” is used because we know the parametric form of
the kernel but its parameters are unknown) which is in the
case of a Gaussian kernel an unstable, ill-posed problem.
Unlike motion blur and out-of-focus blur, Gaussian blur does

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Examples of the Gaussian blur: (a) the image of the sunspot blurred by
atmospheric turbulence, (b) the underwater photo blurred by light dispersion,
(c) a picture blurred due to a fog, (d) the image of axon boutons from wide-
field epifluorescence microscopy, (e) the snap of an aquarium and (f) the snap
from the cave. The last two pictures were originally very noisy because of poor
light conditions, the noise was suppressed by applying a computer-generated
Gaussian blur.

not introduce any zero patterns into the spectrum of the
image, which are in the other cases employed for parameter
estimation. Another difficulty is that the Gaussian can be
factorized into an arbitrary (theoretically infinite) number of
convolution terms, each of them being again a Gaussian.
Hence, deconvolution algorithms cannot in principle remove
Gaussian blur if no prior information is available. If the blur
size (i.e. the variance of the Gaussian) was known, then we
could apply a convolution with an inverse kernel (which can be
synthesized by Hermite polynomials) or Wiener deconvolution
in the frequency domain to deblur the image. Unfortunately, in
image processing this scenario is not realistic because the blur
size uses to be unknown, which makes the deblurring difficult.
Only few semi-blind deconvolution methods w.r.t. Gaussian
blur have been published. They first try to estimate the size
(variance) of the blur and perform a non-blind deconvolution.
Honarvar et al. [1] and Honarvar and Flusser [2] proposed
to perform the deconvolution in the moment domain but his
algorithm contains a time-consuming search in the parametric
space and is sensitive to overestimation of the Gaussian
variance. The APEX method [3] estimated the blur variance by
fitting the image spectrum in the Fourier domain. There exist
also several local methods that estimate the blur size by

investigating the response on a point source or on an ideal
edge [4], [5]. A common weakness of these methods is their
sensitivity to noise and the necessity of the prior knowledge
where an ideal point or edge is located. Xue and Blu [6]
proposed to estimate the blur variance by minimizing a proper
functional and then to apply a non-blind Wiener filtering.
As in the previous cases, the method is sensitive to the variance
overestimation and relatively time-consuming.

The third and the most promising approach is based on the
idea that for blur-insensitive recognition we do not need to
restore the query image. We only need to have its represen-
tation (possibly low-dimensional and lossy) which is robust
w.r.t. Gaussian blur. We are looking for a blur-invariant image
descriptor I , which is a functional defined on the space of all
images, such that

I ( f ) = I ( f ∗ h) (2)

for any Gaussian kernel h. The existence of such Gaussian blur
invariants is theoretically possible thanks to the fact that the
Gaussian convolution is closed under the composition.1 The
closure property is an essential necessary condition. Imagine
a set S of functions (convolution kernels) which would not
be closed under convolution. Then I ( f ) = I ( f ∗ h1) =
I ( f ∗ h1 ∗ h2) for arbitrary h1, h2 ∈ S but obviously (h1 ∗ h2)
may lie outside S. So, the functional I must be invariant
to a convolution with a broader set of kernels. Such set is
called convolution closure of S and we denote it as C(S).
If S �= C(S), then looking for the specific blur invariants
w.r.t. S does not make sense. All such invariants must be at
the same time invariant w.r.t. C(S).

The idea of designing blur invariant functionals appeared
about 20 years ago in the papers by Flusser et al. [7] and
Flusser and Suk [8]. They proposed a system of blur invariants
which are recursive functions of standard (geometric)
moments of the image and proved their invariance under
a convolution with arbitrary centrosymmetric kernel. These
invariants, along with the centrosymmetry assumption, have
been adopted by numerous researchers. They have become
very popular image descriptors and have found a number of
applications, namely in matching and registration of satellite
and aerial images [8]–[12], in medical imaging [13]–[15],
in normalizing blurred images into canonical forms [16], [17],
in blurred digit and character recognition [18], in robot con-
trol [19], in image forgery detection [20], [21], in traffic sign
recognition [22], [23], in fish shape-based classification [24],
in wood industry [25], [26], and in cell recognition [27].

Several authors have further developed the theory of blur
invariants. Combined invariants to convolution and to rotation
were introduced by Flusser and Zitová [28], who also reported
their successful usage in satellite image registration [29]
and in camera motion estimation [30]. Combined invariants

1The set of all Gaussian functions with the binary operation convolution
is a commutative monoid, i.e. a semigroup with a unit element. The closure
property holds also for point-wise multiplication, so the Gaussians form a
commutative ring. This assertion is valid for the set of normalized as well
as unnormalized Gaussians. The Gaussian family is not the only parametric
family of functions with the closure property to convolution; we recall α-stable
distributions known in statistics.
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both to convolution and affine transform was published by
Zhang et al. [17] and Suk and Flusser [31]. Their use for
aircraft silhouette recognition [32], for sign language recogni-
tion [33], for the classification of winged insect [34] and for
robust digital watermarking [35] was reported.

Some researchers attempted derivation of blur invariants
which are functions of orthogonal moments rather than
of the geometric moments. Legendre moments [36]–[39],
Zernike moments [40]–[42], and Chebyshev moments [43]
were employed for this purpose. Zuo et al. [44] even
combined moment blur invariants and SIFT features [45]
into a single vector with weighted components but with-
out a convincing improvement. However, as was proved by
Kautsky and Flusser [46], moment invariants in any two differ-
ent polynomial bases are mutually dependent and theoretically
equivalent.

Some other authors constructed the blur invariants
in Fourier domain. Ojansivu and Heikkilä [47], [48]
and Tang et al. [49] used blur-invariant properties of
Fourier transform phase for image registration and match-
ing. Their idea was later significantly generalized by
Pedone et al. [50], [51]. Popular method of the Local phase
quantization (LPQ) [52]–[55] also belongs to this group.

In almost all papers mentioned above, the invariance prop-
erty was considered–exactly as in the original paper [8]–only
to centrosymmetric PSF’s. Few authors were apparently aware
of this limitation which decreases the discrimination power
and tried to construct invariants to more specific blurs.
Flusser et al. derived invariants to motion blur [56], to axially
symmetric blur in case of two axes [57], to circularly sym-
metric blur [58], and to arbitrary N-fold symmetric blur [59].

All the above methods do not use the parametric form of
the PSF at all. They can be applied to Gaussian blur as well,
because the Gaussian kernel is a special case of symmetric
kernels. However, these methods cannot in principle reach
the maximum possible discrimination power. To understand
the discrimination power of the blur-invariant methods, we
have to analyze the null-space of the respective invariants. The
null-space is always formed by the functions with the same
symmetry as the kernel symmetry the method is invariant to.
To see that, we may imagine that the object is a blur kernel
applied on the delta function. This means, invariants to cen-
trosymmetric blur cannot discriminate among all centrosym-
metric objects, invariants to circularly symmetric blur are not
able to discriminate the circularly symmetric objects, etc. For
instance the circle and the ring blurred by a Gaussian cannot be
distinguished by invariants to centrosymmetric and circularly
symmetric kernels but can be distinguished by invariants to
Gaussian blur. For an optimal discriminabilty we need specific
invariants exactly w.r.t. the blur which is present in the image.
Unfortunately, the Gaussian blur invariants cannot be easily
obtained as a special case of the earlier methods (even if the
idea of projection operators we employ in this paper is similar
to that one we proposed in [59]).

Only few attempts to derive invariants (2) w.r.t. Gaussian
blur have been reported so far. Most of them are heuristics
lacking a deeper mathematical analysis. Liu and Zhang [60]
realized that the complex moments of the image, one index of

which is zero, are invariant to Gaussian blur. Xiao et al. [61]
seemingly derived invariants to Gaussian blur but he did not
employ the parametric Gaussian form explicitly. He only used
the circular symmetry property which led to an incomplete
invariant system. Gopalan et al. [62] derived another invariant
set without assuming the knowledge of the parametric shape
of the kernel but imposed a limitation of its support size.
Flusser et al. mentioned an idea of Gaussian blur invariants
in [63] without presenting the details and without testing their
applicability.

An interesting approach, one of very few which have
been proposed specifically for Gaussian blur and which
works with a parametric form of the PSF, was proposed by
Zhang et al. [64], [65]. They derived a blur-invariant distance
measure d between two images which fulfills the condition

d( f1, f2) = d( f1 ∗ h, f2) (3)

for any Gaussian kernel h. Although the blur invariants are not
explicitly defined, the invariant distance measure (3) can be
used for object classification in a similar manner. The authors
reported its good performance. The paper [65] published in
this Transactions motivated us to perform a detailed study of
their method, to analyze its pros and cons, and to propose a
different approach based on invariants of the type (2) which
outperforms the Zhang’s method in several aspects.

The paper is organized as follows. Section II recalls the
Zhang’s method [65]. The new invariants based on pro-
jection operators are introduced in Section III. Section IV
presents an experimental comparison of these two competing
approaches along with a comparison to two general-purpose
methods–cross correlation and LPQ.

II. RECALLING THE ZHANG’s METHOD

The main idea of the method proposed in [65] is simple and
elegant, even if some steps are hidden behind relatively com-
plicated mathematical formalism which employs Riemannian
manifolds. Here we briefly summarize the Zhang’s method in
a more transparent way.

The blur model used in [65] is supposed to be as in
Eq. (1), where h is assumed to be a 2D circularly symmetric
centralized Gaussian function Gσ (x, y) which is defined as

Gσ (x, y) = Gσ (x)Gσ (y), (4)

where σ > 0 and Gσ (x), Gσ (y) are 1D Gaussian functions
of a traditional shape2

Gσ (x) = 1√
2πσ

e− x2

2σ2

and of the same variance σ 2.
Let f1, f2 be two images to be compared (their content as

well as their blur level are generally different). First, the blur
level of each of them is estimated by a proper blur measure.
The authors used the integral of the image Laplacian but in
principle any of the popular blur measures reviewed in [66]
can be employed in this step. Both images are then brought

2Let us extend this definition by setting G0(x) = δ(x).
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to the same level of blurring which is chosen as the blur level
of the more blurred image. This means that the (assumably)
sharper image is blurred by a Gaussian kernel of a proper size
to reach the same level of blur as the other image. This step
should ensure that the distance measure becomes independent
of the image blurring. Then the distance d( f1, f2) is defined
as a geodesic distance on the surface of the ellipsoid which
contains the images of the same blur level. This distance
is calculated by means of an iterative “path straightening”
algorithm. The only difference from a pure L2 norm is that
the distance is measured along a curve on the ellipsoid surface
but still it is based on a pixel-wise comparison of the images.
It should be noted that in the earlier paper by the same
authors [64], a simpler weighted L2 distance was used instead.

III. GAUSSIAN BLUR INVARIANTS BASED

ON PROJECTION OPERATORS

In this section we present an approach based on the invariant
descriptors of the type (2). The basic conceptual difference
from the Zhang’s method is that these invariants are defined
for a single image, while the Zhang’s distance always requires
a pair of images. So, we can calculate the invariant repre-
sentations of the database objects/templates only once and
store them in the database along with the object images.
It leads to much faster recognition, as will be demonstrated
practically in Section IV, and also yields a possibility of
broader generalization.

The invariants are derived by means of projection operators
in Fourier domain, as we will see in Theorem 1. For prac-
tical application, these complete invariants are replaced with
equivalent image domain invariants, which are based on image
moments. Derivation of both is the subject of the rest of this
section.

A. Projection Operator in 1D

The new invariants are based on the projection of the
image onto a space of unnormalized Gaussian functions, which
preserves the image moments of the zeroth, the first, and the
second orders. The separability of a 2D Gaussian function
allows us to create a 1D theory (which is more transparent
and easy to explain) first and then to generalize it to the 2D
(or even N-D) case.

Let us consider a 1D “image” f , f (x) ≥ 0, with a finite
non-zero integral and finite central moments of all orders.
The projection operator PG is defined as

PG ( f )(x) = m0Gs(x) ≡ m0√
2πs

e
− x2

2s2 , (5)

where

s2 = m2/m0

and

m p =
∫

(x − c)p f (x)dx (6)

is the p-th central moment of f (with c being the centroid
of f ). Hence, PG assigns each f to a centralized Gaussian

multiplied by m0 such that the central moments up to the
second order of f and PG ( f ) are equal. In other words,
PG( f ) is the “closest” unnormalized Gaussian to f in terms
of the first three moment values. In this sense, PG can be
considered a projector onto the set of unnormalized Gaussian
functions.3

The operator PG exhibits several interesting properties.
• Operator PG is idempotent, i.e. PG(PG ( f )) = PG ( f ).
• Operator PG is multiplicative, i.e. PG(a f ) = a PG( f ) for

any constant a > 0.
• If f is an (unnormalized) Gaussian, then PG( f ) = f and

vice versa.
• Any function f can be expressed as f = PG( f ) + fn ,

where fn can be considered a “non-Gaussian” part of f .
• The equality PG( f1) = PG( f2) defines an equivalence

relation on the image space. The classes of equivalence
are formed by the functions of the same zeroth and second
central moments.

An important property of PG , which will be later used
for construction of the invariants, is its relationship to a
convolution with a Gaussian kernel. It holds, for any f and σ ,

PG( f ∗ Gσ ) = PG( f ) ∗ Gσ . (7)

To see this, we have to establish the relation between the
second-order moments m(g)

2 on one hand and m( f )
2 , m(h)

2 on
the other hand. We recall (see [63] for details) that in general,
for arbitrary f, h, and p, the moments are transformed under
a convolution as

m(g)
p =

p∑

k=0

(
p

k

)
m(h)

k m( f )
p−k . (8)

If h(x) = Gσ (x), its moments are

m(h)
k = σ k(k − 1)!! (9)

for any even k. The symbol k!! means a double factorial,
k!! = 1·3·5 · · · k for odd k, and by definition (−1)!! = 0!! = 1.
For any odd k the moment m(h)

k = 0 due to the symmetry of
the Gaussian function. Hence, (8) obtains the form

m(g)
p =

p∑

k=0
k even

(
p

k

)
σ k(k − 1)!! · m( f )

p−k . (10)

In particular,

m(g)
0 = m( f )

0

and

m(g)
2 = m( f )

2 + σ 2m( f )
0 .

Now we can see that

PG( f ∗ Gσ )(x) = m0G√
(s2+σ 2)

(x) = (PG( f ) ∗ Gσ )(x)

(11)

(the latter equality follows from the fact that the convolution
of two Gaussians is again a Gaussian with the variance being
the sum of the input variances).

3However, it is not a projector in the common meaning, since it is not a
linear operator and the Gaussians do not form a vector space.
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B. 1D Gaussian Blur Invariants in the Fourier Domain

Now we can formulate the central Theorem of this paper.
Theorem 1: Let f be an image function. Then

IG( f )(u) = F( f )(u)

F(PG ( f ))(u)

is an invariant to Gaussian blur, i.e. IG ( f ) = IG( f ∗ Gσ ) for
any blur parameter σ .

The proof follows immediately from Eq (7). Note that IG is
invariant also to the contrast stretching, IG( f ) = IG(a f ).

What is the meaning of these invariants? The frequency
domain provides us with a good insight. IG( f ) is a ratio
of two Fourier transforms which may be interpreted as a
deconvolution. Having an image f , we seemingly “decon-
volve” it by the kernel PG ( f ), which is the largest pos-
sible Gaussian kernel (larger kernels cannot exist because
de-blurring always monotonically decreases m2, reaching the

limit at m(F−1(IG ( f )))
2 = 0). We call the result of this seeming

deconvolution the primordial image

fr = F−1(IG ( f )).

Hence, IG ( f ) can be viewed as its Fourier transform, although
fr is not an image in a common sense because the existence of
F−1(IG( f )) is not generally guaranteed and even if fr exists,
it may contain negative values.

IG( f ) can be viewed as a kind of normalization of f
w.r.t. Gaussian blurring of unknown extent. The primordial
image plays the role of a canonical form of f , which actually
is its “maximally deconvolved” non-Gaussian part. We can
see a conceptual difference from the Zhang’s approach [65].
To make two images comparable, Zhang blurs them to the
same level of blur, which is given by the more blurred image in
the pair. We (seemingly) deblur each image separately because
the canonical form is independent of the other images.

The equality IG ( f1) = IG( f2) decomposes the image space
into classes of equivalence. Fortunately, this decomposition is
exactly the same as that one induced by the following relation:
two functions f1 and f2 are equivalent if and only if there exist
a > 0 and σ ≥ 0 such that f1 = f2 ∗ aGσ or f2 = f1 ∗ aGσ .
To prove this, let us first realize that if IG( f1) = IG ( f2) then
obviously

F( f1)(u)F(PG( f2))(u) = F( f2)(u)F(PG( f1))(u),

which in the image domain means

f1 ∗ PG( f2) = f2 ∗ PG ( f1).

Both PG ( fi ) are (unnormalized) Gaussians. Let us denote
their standard deviations as σ1 and σ2, respectively, so we
have PG( fi ) = ai Gσi . Let σ1 ≥ σ2. We define σ 2 = σ 2

1 − σ 2
2

and a = a1/a2. Since the convolution of any two Gaussians
is again a Gaussian the variance of which is the sum of two
input variances, we have

aGσ ∗ a2Gσ2 = a1Gσ1 .

From this we immediately obtain

f1 = f2 ∗ aGσ

which completes the proof.

This is an important observation, saying that IG( f ) is a
complete description of f up to a convolution with a Gaussian
and a multiplicative contrast change. In other words, IG( f )
defines an orbit – a set of images equivalent with f . Thanks
to the completeness, IG discriminates between the images
from different orbits but obviously cannot discriminate inside
an orbit. In particular, IG cannot discriminate between two
Gaussians since all Gaussians lie on the orbit the root of which
is the delta function.

C. 1D Gaussian Blur Invariants in the Image Domain

In principle, we can use directly IG( f ) as the invariant
feature vector of the same size as f but working in the Fourier
domain brings two practical difficulties. Since IG( f ) is a ratio,
we possibly divide by very small numbers which requires an
appropriate numerical treatment. Moreover, high frequencies
of IG ( f ) use to be sensitive to noise. This can be overcome
by suppressing them by a low-pass filter, but this procedure
introduces a user-defined parameter (the cut-off frequency)
which should be set up with respect to the particular noise
level. That is why in most cases we prefer to work directly in
the image domain, where invariants equivalent to IG( f ) can
be constructed.

To get the link between the Fourier and image domains,
we use a Taylor expansion of the harmonic functions and its
term-wise integration

F( f )(u) ≡
∫ ∞

−∞
f (x) · e−2π iux dx =

∞∑

k=0

(−2π i)k

k! mkuk .

(12)

The above formula tells us that the moments of the image
are Taylor coefficients (up to a constant factor) of its Fourier
transform. Taylor expansion of F(PG( f )) yields

F(PG( f ))(u) = m0

∞∑

k=0

(2k − 1)!! (−2π i)2k

(2k)!
(

m2

m0

)k

u2k (13)

(we recall F(PG( f )) is a Gaussian).
We can see IG( f ) is a ratio of two absolutely convergent

power series, so IG ( f ) itself can be expressed as an absolutely
convergent power series of the form

IG ( f )(u) =
∞∑

k=0

(−2π i)k

k! akuk

where ak are the moments of the primordial image. Substitut-
ing the above three power series into the definition of IG( f )
and considering that

(2k − 1)!! = (2k)!
2k · k!

we have
∞∑

k=0

(−2π i)k

k! mkuk = m0

∞∑

k=0

(−2π2)k

k!
(

m2

m0

)k

u2k

·
∞∑

k=0

(−2π i)k

k! akuk .



FLUSSER et al.: RECOGNITION OF IMAGES DEGRADED BY GAUSSIAN BLUR 795

Comparing the terms with the same power of u we obtain,
after some algebraic manipulation, the recursive expression
for each ap

ap = m p

m0
−

p∑

k=2
k even

(k − 1)!! ·
(

p

k

) (
m2

m0

)k/2

ap−k . (14)

Since the primordial image itself (more precisely, its Fourier
transform) was proven to be blur invariant, each its moment
must be also a blur invariant. If we restrict ourselves to a
brightness-preserving blurring, then m0 itself is an invariant
and we obtain from (14) the simplified final form of Gaussian
blur invariants

B(p) ≡ m0ap = m p −
p∑

k=2
k even

(k − 1)!!

·
(

p

k

) (
m2

m0

)k/2

B(p − k), (15)

which can be equivalently expressed in a non-recursive form

B(p) =
p∑

k=0
k even

(k − 1)!! ·
(

p

k

) (
−m2

m0

)k/2

m p−k . (16)

For the proof of the equivalence of (15) and (16)
see Appendix A.

As we already said, B(p) is actually a p-th moment of the
primordial image of f . Regardless of f , B(1) = 0 because
we work with central moments4 m p . It always holds B(2) = 0
because the second-order moment was used to eliminate the
unknown blur parameter σ . Hence, B(1) and B(2) should not
be used in the feature vector since they do not carry any
information.

Using the image-domain invariants (15) instead of the
Fourier domain ones provides higher robustness to noise and
is also faster. In practice, we do not need a complete repre-
sentation of the images in question. Usually a few invariants
provide a sufficient discrimination power, so we use the B(p)’s
up to the certain order Q only. This Q is a user-defined
parameter the determination of which should be based on a
discrimination analysis of the database images. The choice
of Q is always a compromise between the discriminative
power and the complexity of the method.

D. Gaussian Blur Invariants in N Dimensions

Let us assume the image domain is a subset of RN . The
centralized N-D Gaussian function has the form

G�(x) = 1√
(2π)N |�| exp

(
−1

2
xT �−1x

)
, (17)

where x ≡ (x1, . . . , xN )T and � is the covariance matrix
which determines the shape of the Gaussian. Provided that

4This theory is valid also when using standard non-centralized moments.
Then generally B(1) �= 0 but working with central moments is advantageous
since it assures the shift invariance.

Fig. 2. The original image f (a) and its projection PG( f ) (b).

N = 2 and that the covariance matrix of the blur kernel is
diagonal, we define the projection operator as

PG ( f )(x) = m00GS(x), (18)

where

S = diag(m20/m00, m02/m00).

The definition of the central geometric moments m pq in
two dimensions is analogous to that in one dimension

m pq =
∫ ∫

(x1 − c1)
p(x2 − c2)

q f (x1, x2)dx1dx2. (19)

A visual example of the projection operator is shown in Fig. 2.
Similarly to the 1D case (see Theorem 1), the ratio

IG ( f )(u) = F( f )(u)

F(PG( f ))(u)

is a Gaussian blur invariant. After applying the Taylor
expansion, we end up with the following moment invariants
analogous to (15)

B(p, q) = m pq −
p,q∑

k+ j=2
k, j even

(k − 1)!! · ( j − 1)!! ·
(

p

k

)(
q

j

)

×
(

m20

m00

)k/2 (
m02

m00

) j/2

B(p − k, q − j) (20)

which can be rewritten into a non-recursive form analogous
to (16) as

B(p, q) =
p,q∑

k, j=0
k, j even

(k − 1)!! · ( j − 1)!! ·
(

p

k

)(
q

j

)

×
(

−m20

m00

)k/2 (
−m02

m00

) j/2

m p−k,q− j . (21)

For the general case of N > 2 see Appendix B.
Note that unlike the Zhang’s method, we are not limited

to circularly symmetric Gaussian blur kernels but we allow
different extent of blur in x1 and x2 directions.5 This may
be useful when the horizontal and vertical resolutions of the
sensor differ one another. Again, certain invariants are trivial:
B(1, 0) = B(0, 1) = 0 due to the centralization, B(2, 0) =
B(0, 2) = 0 due to the parameter elimination.6

5The Zhang’s method could very likely be also generalized to non-isotropic
blurs but on the expense of additional time.

6If the blur kernel is circularly symmetric, there is only one parameter to
be eliminated and we obtain an additional independent invariant m20 − m02.
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E. Translational, Scaling, and Rotational Invariance

Invariance w.r.t. to image translation, scaling and rota-
tion (TSR) is one of the basic requirements we impose on
almost any features. If the images are not captured in a fully
controlled environment, we always face certain unavoidable
unwanted translation/scaling/rotation of the scene.

The Zhang’s method is not invariant to translation, scaling,
and rotation. This issue was not discussed at all in [65] and
the experiments were presented on perfectly registered images
only. We believe the Zhang’s method could be adapted to be
translational invariant but we cannot see any possible extension
to scaling and rotation invariance except a time-expensive
brute force search.

The invariants B(p, q), introduced in the previous section,
are inherently invariant to translation, because they are com-
posed of the central moments of the image. Scaling invariance
can be achieved by using the scale-normalized moments
instead of the standard moments. This is a commonly used
approach in the moment theory (see [63] for details), which is

in this case equivalent to dividing each B(p, q) by m(p+q+2)/2
00 .

Since the standard moments change under rotation in a
complicated way, the rotation invariance of B(p, q) cannot be
achieved readily (let us speak about the 2D case only because
handling the rotation in higher dimensions requires special
mathematical tools and it is of less practical importance).
We will adopt the trick discovered by Flusser [67], who used
it for construction of rotation moment invariants (with no
relationship to blurring).

First of all, we have to use other moments than the geomet-
ric ones, which change under rotation in a simple way. There
exist a class of such moments (see [63] for a survey) called
radial moments. Their common feature is that their 2D basis
functions are products of 1D radial polynomials and angular
harmonic functions. They use to be complex valued and under
the image rotation only their phase is changed (the reader can
recognize a clear analogy with the Fourier Shift Theorem).
Here we employ so-called complex moments

cpq =
∞∫

−∞

∞∫

−∞
(x + iy)p(x − iy)q f (x, y)dxdy (22)

that are linked to the previously used geometric moments as

cpq =
p∑

k=0

q∑

j=0

(
p

k

)(
q

j

)
(−1)q− j · i p+q−k− j · mk+ j,p+q−k− j

(23)

and inversely as

m pq = 1

2p+qi q

p∑

k=0

q∑

j=0

(
p

k

)(
q

j

)
(−1)q− j · ck+ j,p+q−k− j .

(24)

Note that cpq = c∗
qp , so only the moments with p ≥ q are

independent and meaningful to consider. After a transforma-
tion into polar coordinates (r, θ), the complex moments obtain

the form

cpq =
∞∫

0

2π∫

0

r p+q+1ei(p−q)θ f (r, θ)dθdr. (25)

From the last equation we can see that after a coordinate
rotation by angle α the complex moment is changed as

c′
pq = e−i(p−q)α · cpq . (26)

The complex moments of the blurred image (1) are in general

c(g)
pq =

p∑

k=0

q∑

j=0

(
p

k

)(
q

j

)
c(h)

kj c( f )
p−k,q− j . (27)

If the blur kernel h is a circularly symmetric Gaussian (4) then
we have for its moments

c(h)
pq =

{
(2σ 2)

p
p! p = q

0 p �= q

and Eq. (27) becomes

c(g)
pq =

q∑

j=0

(
p

j

)(
q

j

)
j !(2σ 2) j c( f )

p− j,q− j , (28)

assuming that p ≥ q .
Now we use the complex moments to derive invariants w.r.t.

Gaussian blur in a similar way as the geometric moments were
used earlier. Similarly to Eq. (5), we define the projection
operator as

PG( f )(x, y) = c00Gs(x, y) ≡ c00

2πs2 e
− x2+y2

2s2 , (29)

where

s2 = c11/(2c00).

PG( f ) has the same c00 and c11 as f (and of course
c10 = 0 when working in the centralized coordinates). The
other moments of PG ( f ) and f are generally different from
one another. The following relation shows that the complex
moments are “almost” the Taylor coefficients of the Fourier
transform of f . Let us make a substitution U = u + v and
V = i(u − v). Then

F( f )(U, V ) ≡
∞∫

−∞

∞∫

−∞
e−2π i(U x+V y) f (x, y)dxdy

=
∞∑

j=0

∞∑

k=0

(−2π i) j+k

j !k! c jku jvk . (30)

Using the same substitution, we define the blur invariant in
Fourier domain analogously to Theorem 1 as

IG ( f )(U, V ) = F( f )(U, V )

F(PG( f ))(U, V )
.

Taylor expansion of the denominator is

F(PG( f ))(U, V ) = c00

∞∑

k=0

(−4π2)k

k!
(

c11

c00

)k

ukvk .
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Using the Taylor expansion of all three factors by means
of their complex moments and comparing the coefficients of
the same powers, we obtain the blur invariants in the image
domain

K (p, q) = cpq −
q∑

k=1

k!
(

p

k

)(
q

k

) (
c11

c00

)k

K (p − k, q − k)

=
q∑

k=0

k!
(

p

k

)(
q

k

) (
−c11

c00

)k

cp−k,q−k . (31)

Note that K (q, p) = K (p, q)∗, K (1, 0) = 0 when working
in the centralized coordinates, and K (1, 1) = 0 due to the
parameter elimination.

The invariants K (p, q) are formally similar to the B(p, q)’s
(only the moment type was changed). They are actually differ-
ent but thanks to the link between the geometric and complex
moments (23, 24) they generate the same invariant subspace.
The principle difference between them (and the reason why
we employed the complex moments in this section) is that the
K (p, q)’s are easy to handle under an image rotation. They
change in the same way as the complex moments themselves,
i.e.

K ′(p, q) = e−i(p−q)α · K (p, q). (32)

The simplest way to achieve the rotation invariance is to take
the magnitudes |K (p, q)| which provide combined invariants
but create only an incomplete system. A more sophisticated
method is based on the phase cancellation by multiplication of
proper invariants, which leads for instance to the invariants7

K (p, q)K (1, 2)p−q .

Scale invariance of K (p, q)’s can be achieved by the same
normalization as in the case of B(p, q)’s.

IV. EXPERIMENTS AND A COMPARISON

TO THE ZHANG’s METHOD

The aim of this section is not only to demonstrate the
performance of the proposed method but also to compare
it to the method by Zhang et al. [65]. Comparison to the
Zhang’s method is highly relevant because both methods have
been designed specifically for Gaussian-blurred images, both
are theoretically invariant to blur and both should provide
good recognition power. There have been proposed no other
competitors of these properties in the literature. To make
the comparison as fair as possible, we asked the authors
of [65] for providing all necessary original codes. Then we
implemented our method using the same version of Matlab
(R2013a) and always run both on the same computer (Dell
Notebook, VOSTRO 1510, Intel, Core2 Duo CPU, 4GB RAM,
Windows 8, 32-bit) and on the same test images. Since the
Zhang’s method can compare only images of the same size,
we kept this condition in all experiments.

In some experiments we included also two other method
into the comparison – image cross-correlation and Local phase
quantization (LPQ) [52]–[55]. The cross-correlation is of

7This set can be proven to be complete and independent provided that
K (1, 2) �= 0. Other choices are also possible and lead to equivalent invariants.

TABLE I

THE VALUES OF ZD AND ID IN THE CASE OF SIMULATED GAUSSIAN BLUR

course not blur invariant, so the comparison with it shows what
is the actual benefit of the blur invariance property. LPQ is a
representative of methods acting in the Fourier domain. LPQ is
invariant to general centrosymmetric blur, it does not employ
the parametric form of the PSF at all. The main idea is that a
centrosymmetric PSF does not change the phase of the Fourier
transform in certain neighborhood of the origin. The Fourier
transform is windowed and its phase in a close neighborhood
of the origin is quantized and taken as a local descriptor.
We originally used the LPQ code provided by the authors
which we later improved to reach better performance. Some
other method had been compared to the Zhang’s distance (ZD)
already in [65]. The reader can find there a comparison to
standard Euclidean distance, the Gopalan method [62], and
centrosymmetric blur invariants [8]. Since the ZD had been
evaluated as the best performing method among these, we did
not incorporate these comparative methods into our current
tests.

The first set of the experiments only illustrates the properties
of both methods, which already were proved theoretically.
The core experiments can be found in the second set, where
statistically significant comparison of the success rate and the
time complexity is presented.

A. Blur Invariance Property

As we expected, both methods actually exhibit high invari-
ance w.r.t. a “perfect” (i.e. computer-generated) Gaussian blur
(see Table I). We changed the blur parameter σ from 0 to 7
and calculated both the Zhang’s distance ZD and the Euclidean
distance in the space of the invariants (31) between the
blurred image and the original. We refer to the distance in
the space of the invariants as the invariant distance ID. Both
distances in this experiment are reasonably small although
not zero. The non-zero values appear because the sampled
Gaussian does not fulfil exactly the assumption. Since larger
sampled Gaussians are more accurate, we observe that the
error sometimes decreases as the blur size increases, although
one might expect an opposite relation. For comparison, we also
calculated the distances between several different originals,
which is by two orders higher. The test images were of the
size 160 × 160 pixels (see Fig. 3 for an example).

B. Shift, Rotation, and Scaling Invariance

Here we experimentally verified the theoretical knowledge
that our method provides the invariance w.r.t. these three ele-
mentary geometric transformations while the Zhang’s method
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Fig. 3. One of the original images (160 × 160 pixels) used in the tests.

TABLE II

THE DISTANCE BETWEEN THE ORIGINAL AND ITS SHIFTED COPY

TABLE III

THE DISTANCE BETWEEN THE ORIGINAL AND ITS ROTATED COPY

TABLE IV

THE DISTANCE BETWEEN THE ORIGINAL AND ITS SCALED COPY

is sensitive to the particular image position, orientation and
size. It is worth mentioning how sensitive the ZD is to the
shift. As the shift approaches 5 pixels, the Zhang distance
between the shifted images is comparable to the distance
between two completely different images (see Table II). The
same is true for the scaling and rotation, too. Even a small
rotation/scaling harms the ZD substantially (see Table III and
Table IV). The sensitivity to a shift is also a weakness of the
LPQ method. The Fourier phase is changed when the image
has been shifted, so the LPQ feature is changed as well. There
exist rotation and scale invariant modifications of LPQ but no
shift invariant version has been reported.

TABLE V

THE DISTANCE BETWEEN THE ORIGINAL AND
ITS CONTRAST-CHANGED COPY

C. Invariance to Contrast Stretching

This easy test verified that the invariants, when normalized
by m00, are invariant also to a contrast stretching of the form
g(x, y) = a f (x, y), a > 0. The Zhang’s method interprets
low contrast as a blur due to lower values of the Laplacian
and blurs the more contrast image before the distance is calcu-
lated. This leads to an inaccuracy of computation of the ZD,
which of course depends on the parameter a (see Table V
for illustration). However, this problem of the ZD can easily
by resolved by normalizing the images to the same graylevel
variance (which, on the other hand, would increase the time
complexity).

D. Robustness to Noise

Robustness to additive noise is an important requirement
imposed on any features since in reality the noise is unavoid-
able. When taking a picture in low light, we use high ISO
and/or long exposure. Both amplifies the background noise,
which is present in any electronic system, such that the noise
energy may be even higher than that of the signal. Particularly
compact cameras and cell-phone cameras with small-size chips
suffer from this kind of noise, along with an omnipresent
thermal noise. Although the camera noise contains also a
Poisson component, it is commonly modelled as a white
Gaussian noise.

First, we added the noise of SNR from 50 dB to −5 dB
into the image (see Fig. 4 for some examples), and calculated
both ID and ZD from the original. On each noise level, we run
the experiment 10 times and the mean values are presented in
Table VI. The invariant method is more robust because the
moments are defined as integrals, which basically “averages”
the noise and decreases its impact on the feature values.
On the other hand, the Zhang distance is very sensitive. This
is due to its first stage when the image blur level is estimated
by measuring the energy in the high-pass band. The noise
dominates the image on high frequencies and contributes a lot
to this measure. Hence, the blurred image with heavy noise
may often be considered “sharper” than the clear image and
the method blurs it again to bring it (seemingly) to the same
blur level.

We measured the robustness also on real noise. We took a
series of photographs in low-light conditions to introduce an
observable camera noise. Each of four scenes used here was
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Fig. 4. Examples of the images with simulated noise used in the test.
SNR = 10 dB (a), SNR = 5 dB (b), SNR = 0 dB (c), and
SNR = −5 dB (d).

TABLE VI

THE DISTANCE BETWEEN THE ORIGINAL AND
ITS NOISY VERSION – SIMULATED NOISE

TABLE VII

THE DISTANCE BETWEEN THE ORIGINAL AND

ITS NOISY VERSION – REAL NOISE

taken by a multi-shot sequence of 20 frames. The estimated
SNR in each frame is about 30 dB. The “clear” image was
obtained by a time-averaging of the noisy frames, since it
was not possible to take it directly. Such an image is not
actually noise-free but the noise is suppressed significantly.
For each scene, we calculated both ID and ZD between the
“clear” image and each noisy frame. The mean values for
each scene are presented in Table VII. Considering that the
ideal distance value should be always zero, these results are
consistent with those obtained on simulated noise and confirm
the better robustness of the ID.

Fig. 5. Sample “clear” images of the challenging database. The database
consists of very similar faces. Downloaded from the CASIA HFB dataset.

E. Image Recognition Against Public Databases

The main purpose of ZD and ID is to use them in
recognition of Gaussian-blurred images w.r.t. a given database
of clear images. As soon as the query image is provided,
both ZD and ID look for exactly the same image (up to the
blurring and the contrast change) in the database. This recog-
nition should be reliable and fast enough. These methods do
not tolerate other differences such as nonlinear deformations,
object pose, facial expression, etc. They are inappropriate in
the cases where such situation may occur. Since the “image
classes” are defined by single representatives, the classification
by minimum distance is applied most often.8

First of all, we used LIVE and CSIQ databases [68], [69],
which were used already in [65]. To our best knowledge,
these two databases are the only public datasets containing
Gaussian-blurred images. The CSIQ database contains 30 clear
images of common urban, animal and landscape scenes and
five blurred instances of various extent of each of them.
The LIVE database contains similar data but only some of
the images are available along with their blurred versions.
To reach higher statistical significance, we mixed both data-
bases together. We resampled all images to 128 × 128 pixels,
used 59 clear images as training samples and classify all
324 blurred images by ID, ZD and LPQ. The success rate of all
three methods was 100%. This is because the training images

8This is, however, not a restriction imposed by ZD/ID themselves. If the
training set contained more samples, we could apply k-NN or SVM classifiers.
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Fig. 6. Sample test images degraded by heavy blur and noise
(σ = 5 and SNR = 0 dB).

are visually clearly different and therefore the blur introduced
into the query image does not cause serious problems. Con-
cerning the time, ID was the fastest, LPQ was about ten times
slower and ZD was more than 1000 times slower than ID.

For the second experiment we deliberately used a database
which is composed of similar images, which are even difficult
to distinguish visually. In such a case even a mild blur and
noise might result in a number of misclassifications. Although
the tested methods have not been developed as specialized face
recognition methods, we used facial database for two reasons–
it contains very similar images and blur is often present in
face recognition applications. We selected 100 face images
of 100 persons from the CASIA heterogeneous face biomet-
rics (HFB) database [70], [71]. They are all frontal views with
a neutral expression, without a head pose, and with the face
being cropped (see Fig. 5). We successively took each image
of the dataset, blurred it by a Gaussian blur, added a noise,
and classified the image by the minimum distance rule against
the database of the “clear” images (see Fig. 6 for the samples
of the most degraded images). We did this for various amount
of blur and noise and measured the success rate. For each blur
and noise level we generated ten instances of the query image.
Hence, we classified 36,000 images altogether.

The results of all three methods are summarized in a form
of the “blur size – SNR” matrices in Table VIII. While for
low amount of blur and noise all methods work very well, the
performance of ZD drops as the image degradations increase
(check the lower right part of the matrix). The performance

TABLE VIII

RECOGNITION RATE (IN %) OF BLURRED AND NOISY
FACES BY ZD, LPQ AND ID

of the LPQ is comparable to that of the ID except the last
column corresponding to the largest blur (σ = 5), where the
ID performs much better.

The success rate of the ID is almost 100% in all cases
except SNR = 0 dB, which is mainly due to the guaranteed
invariance of the ID w.r.t. blur and good robustness to additive
noise.

We also measured the time needed for recognition of one
image (this time does not depend on the particular configu-
ration of the blur and noise). The Zhang’s method requires
1500 seconds, the LPQ 0.22 second and the proposed method
works in 0.05 second only. This difference in complexity is
mainly caused by the fact that the invariant values as well
as the LPQ descriptors of the database images are calculated
only once and used repeatedly, while the Zhang’s distance
is calculated “from scratch” for each pair. The LPQ feature
is of a high dimension comparing to the invariants. When
calculating ID, only the invariants up to the order 8 were used,
while the LPQ feature in the basic version has the same size as
the image itself. Since the features are supposed to be stored
in the database for a repeated usage, this high dimensionality
makes the LPQ method inefficient in terms of the memory
usage. The LPQ features can be quantized and compressed
into a histogram only which speeds up the recognition and
improves the memory usage (we actually used this trick in
our experiment), but the dimensionality is still at least by one
order higher than the dimensionality of the blur invariants.
On the other hand, thanks to its redundancy, the LPQ achieves
relatively good recognition rates.

F. Matching of Blurred Templates - Simulated Blur

In this experiment we tested the performance in the template
matching, which is a particular classification problem we often
face in practice. Assuming that we have a large clear image
of a scene and a blurred template, the task is to localize this
template in the clear image. We again tested both ID and ZD.
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Fig. 7. Explanation of the boundary effect. The inside pixels near the template
boundary (white square) are affected by the pixels from the outside of the
template if the scene is blurred. The extent of this effect depends on the
blur size (black square).

For a comparison we included also the cross-correlation (CC)
as a “gold standard” method which has been traditionally used
in matching of non-blurred templates. Since the testing of each
possible template location is very time consuming, we used all
three methods in a hierarchical coarse-to-fine implementation.
On the coarse level, we shifted the template by the step of
4 pixels in each direction. On the fine level, we searched
a 9×9 neighborhood of the “best” location found on the coarse
level. Provided that the horizontal and vertical localization
errors are independent and both have the same normal distribu-
tion, the absolute localization error has a Rayleigh distribution.
We estimated the mean values and standard deviations of the
localization error of all three methods, which illustrates the
accuracy. Since these parameters might be influenced by few
big errors, we also calculated the number of “correct hits”,
which may serve as another (and probably more relevant)
accuracy measure. We marked the position of the template
found by the algorithm as a hit, if its localization error was
less or equal to one pixel in each direction.

Note that in template matching, when the blurred templates
have been extracted from a large scene, we always face a
boundary effect. This means there is a strip along the template
boundary where the convolution model is not valid (even if the
blur has been introduced artificially) because the pixels laying
outside the template also contribute to the intensity values
inside this strip due to the blurring kernel (see Fig. 7). The
boundary effect is the main source of errors in a noise-free
case.

We took a clear image of the size 256 × 256, blurred it
by a 13 × 13 Gaussian of σ = 2 and randomly selected
30 templates of the size 32 × 32. These templates were
searched in the clear image. We used the invariants up to
the order six. The results of the matching in terms of the
accuracy and computational time are summarized in Table IX.
We can see that the accuracy of both ID and ZD are excellent,
so both methods are stable w.r.t. the boundary effect. The ZD
yields even better localization error than ID because it uses a
complete information about the template while the invariants
work with highly compressed information. On the other hand,
ID is more than 20 times faster than ZD. The CC was much
faster than ID but its accuracy was very low because of the
blurring. The time measurement for one template includes a
complete “scan” of the scene including invariant and distance
calculation for each tested position and search for the min-
imum distance. Overheads (reading of the images, generat-
ing blur kernel, blurring the image, template selection, etc.)

TABLE IX

MATCHING OF BLURRED NOISE-FREE TEMPLATES

TABLE X

MATCHING OF BLURRED AND NOISY TEMPLATES

Fig. 8. The test image “Fox”: (a) original, (b) blurred image, (c) blurred
and noisy image, SNR = 10 dB.

are common for all methods and were not included into the
measurement.

Then we repeated the same experiment with the same setting
and with the same templates but we added a Gaussian white
noise of SNR = 10 dB into the blurred image (see Fig. 8).
As can be seen from Table X, the results changed dramatically.
The ID still provides 28 correct hits and the mean error less
than one, while the ZD was even worse than the CC. The
explanation of the difference in robustness is the same as that
given in Section IV.D. The time complexity is basically the
same as in the first experiment.

We also studied the behavior of the invariants under variable
blur and template size and on various noise levels. In all
following experiments we used the invariants up to the order 6.
First, we fixed the template size to 32×32 while the Gaussian
σ increased from 1 to 5 by a sampling step 0.5. In each
parameter setting we matched 30 randomly chosen templates.
This experiment was run five times and the means of the
correct hits are shown in a graph in Fig. 9. Then we run the
whole experiment again with the same templates corrupted by
a noise of SNR = 0 dB. As one may expect, the results are
much worse namely in case of small blur (see Fig. 9). In case
of heavy blur, the main source of errors is a boundary effect
and the influence of noise is not so significant.

In a complementary experiment, we fixed σ = 2 and
changed the SNR only. The means of the correct hits over
30 runs are shown in Fig. 10. All templates were matched
correctly for SNR > 25 dB. As the SNR decreases, the number
of errors increases, reaching 53% if SNR = 0 dB.

In the last experiment, we investigated the influence of the
template size on the success rate and the computation time
of the ID. We fixed σ = 2 while the template size changed
from 64 × 64 to 8 × 8 pixels. To make the comparison fair,
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Fig. 9. The number of correctly located templates as a function of
the blur size in the noise-free case (blue curve) and in the noisy case
(SNR = 0 dB, red curve).

Fig. 10. The number of correctly located blurred templates (σ = 2) as a
function of SNR.

only the positions of the 64 × 64 templates were selected
randomly. The smaller templates were obtained by cropping
of the largest ones. As one can expect, both the success rate
and the computation time decrease along with the decreas-
ing template size (see Table XI, the numbers are means
over 5 runs of experiment with 30 templates). The main
source of the errors is the boundary effect (which is more
significant in small templates since the blur size has been
fixed). The time complexity is given by the complexity of
moment computation; the calculation of the invariants and the
matching itself do not depend on the template size. However,
the decrease of the computation time is mild comparing to the
rapid increase of the success rate. Taking these two criteria
into account simultaneously, one may conclude that in practice
large templates should be preferred since they provide better
success/speed gain than the small ones.

G. Matching of Blurred Templates - Real Blur

Finally, we performed a template matching experiment on
astronomical images degraded by real atmospheric turbulence
blur. We employed four images of the spot in the solar
photosphere taken by a telescope with a CCD camera in
a visible spectral band (the venue: Observatory Ondrejov,

TABLE XI

MATCHING OF BLURRED AND NOISY TEMPLATES BY ID

TABLE XII

TEMPLATE MATCHING IN ASTRONOMICAL IMAGES

Czech Republic; wavelength: λ
.= 590 nm). Since the time

interval between the two consecutive acquisitions was only
few seconds, the scene can be considered still and the images
are almost perfectly registered. As the atmospheric condi-
tions changed between the acquisitions, the amount of blur
in individual images vary from one another. We sorted the
images according to their blur level by means of the algorithm
which compares the energy in low-pass and high-pass wavelet
transform bands [66]. The ordered sequence can be seen
(and visually checked) in Fig. 11. The size of each image is
256 × 256 pixels. The first image is relatively sharp while the
other three images, particularly the last one, are noticeably
blurred. The blur kernel is believed to be approximately
Gaussian (an experimental validation of this assumption can be
found for instance in [72]). Mild additive noise is also present
in all images, its estimated SNR is about 30 dB.

By the the four methods used in the previous experiments
(CC, ZD, LPQ, and ID), we matched 30 randomly chosen
32×32 templates extracted from the first “clear” image against
each of the other three images. The maximum order of the
invariants used was six. The coarse-to-fine matching algorithm
was used with the coarse step 8 pixels and with a 16 × 16
search area on the fine level. For each template, we consider
any possible position, we did not apply any restricted search
area. This is equivalent to the classification of 30 query images
against a database of 3(256 − 32)2 = 150528 images.

As one can see from Table XII, the results are consis-
tent with those we achieved on simulated blurring. The CC
localization accuracy is the worst one because of the blur.
The Zhang’s distance provides slightly worse accuracy than
the invariants. The reason is the presence of noise. Even if the
noise is very mild, ZD is highly sensitive to it for the reasons
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Fig. 11. Four images of the sunspot blurred by atmospheric turbulence blur
of various extent. The images are ordered from the less to the most blurred
one. One template is depicted in the first image to illustrate its size.

which we already explained in Section IV.D. Both ID and LPQ
provides a perfect localization accuracy in this experiment.
This is admirable when considering that each template was
tested against 150,528 possible positions and that many of
them have a very similar visual appearance.

V. CONCLUSION

We proposed new invariants w.r.t. Gaussian blur, both in
frequency and image domains. We showed the performance
of the new method in object recognition and in matching
of blurred and noisy templates. Comparing to the Zhang’s
method [65], which has been the only Gaussian-blur invariant
metric so far, the proposed method is significantly faster and
more robust to additive noise while its recognition rate in
noise-free cases is fully comparable to the Zhang’s distance.
An additional benefit of the new method is that it can be easily
made invariant to translation, rotation, scale, and contrast of
the image, which is very important in many applications and
which is not the case of the Zhang’s method. Last but not
least, our method handles also an anisotropic Gaussian blur
and is even able to compare images of different sizes.

APPENDIX A

The proof of the equivalence of Eqs. (15) and (16) is due
to induction on p. For p = 0, 1, 2 the equivalence holds well.
Now we show the induction step. To avoid the necessity of
discrimination between even and odd p’s, we use a re-indexing
in the sums. Introducing K = [p/2] and, for simplicity,

m = m2/m0 we have for Eq. (15)

B(p) = m p −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk B(p − 2k)

= m p −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk

K−k∑

j=0

(2 j − 1)!!

×
(

p − 2k

2 j

)
(−m) j m p−2k−2 j
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Since
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k=1

(−1)k ·
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)
= −1

for any j , we obtain

B(p) = m p +
K∑

j=1

(2 j − 1)!!
(

p

2 j

)
(−m) j m p−2 j

=
K∑

j=0
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)
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which exactly matches Eq. (16).

APPENDIX B

Let us introduce a vector notation

|p| ≡
N∑

i=1

pi ,

(
p
k

)
≡

N∏

i=1

(
pi

ki

)
,

pk ≡
N∏

i=1

pki
i , p!! ≡

N∏

i=1

pi !!,

0 ≡ (0, 0, . . . , 0), 1 ≡ (1, 1, . . . , 1).

The moment of function f (x) is given as

mp =
∫

(x − c)p f (x)dx. (33)

The moment of a Gaussian kernel with a diagonal covariance
matric � = diag(σ 2

1 , σ 2
2 , . . . , σ 2

N ) is, in the case that all
elements of p are even, given as

mp = σ p(p − 1)!! (34)
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where σ ≡ (σ1, σ2, . . . , σN ). All other moments are zero.
Then we can define an N-dimensional projection operator

PG ( f )(x) = m0GS(x),

where

S = diag(m2/m0)

and

m2 ≡ (m20...0, m02...0, . . . , m00...2).

The N-D versions of the invariants (15) and (16) are

B(p) = mp −
p∑

k=0
0<|k|

(k − 1)!! ·
(

p
k

)
(m2/m0)

k B(p − k)

=
p∑

k=0

(k − 1)!! ·
(

p
k

)
(−1)|k|(m2/m0)

kmp−2k, (35)

where the summation goes over those multi-indices k all
elements of which are even.

We can do the same even if � is not diagonal but the
directions of its eigenvectors must be known. The formula for
the invariants would, however, look much more complicated.
If the eigenvectors of � are not known, we cannot properly
“rotate” the image, the projection operators cannot be defined
and the derivation of the invariants fails.
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We present a histogram-based image retrieval method which is designed specifically for noisy query images.

The images are retrieved according to histogram similarity. To reach high robustness to noise, the histograms

are described by newly proposed features which are insensitive to a Gaussian additive noise in the original

images. The advantage of the new method is proved theoretically and demonstrated experimentally on real

data.
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1. Introduction

Since the appearance of the first image databases in the 80’s, im-

age retrieval has been the goal of intensive research. Early meth-

ods did not search the images themselves but utilized some kind

of metadata and image annotation (tagging) to retrieve the desired

images. As many large-scale databases do not contain any annota-

tions (manual annotation is expensive and laborious while automatic

tagging is still under development), content-based image retrieval

(CBIR) methods have become one of the most important challenges

in computer vision. By CBIR we understand methods that search a

database and look for images which are the “most similar” (in a pre-

defined metric) to a given query image. CBIR methods do not rely

on a text annotation and/or other metadata but analyze the actual

content of the images. Each image is described by a set of features

(often hierarchical or highly compressive ones), which may reflect

the image content characteristics the user prefers – colors, textures,

dominant object shapes, etc. The between-image similarity is then

measured by a proper (pseudo) metric in the corresponding feature

space.

CBIR is a subjective task because there is no “objective” similarity

measure between the images. Hence, many CBIR systems aim to re-

trieve images which are perceived as the most similar to the query

image for a majority of users and the users feel this similarity at the

first sight without a detailed exploration of the image content. This

requirement, along with the need for a fast system response, has led

✩ This paper has been recommended for acceptance by Nappi Michele.
∗ Corresponding author. Tel.: +42 2 6605 2357; Fax: +42 2 6641 4903.

E-mail addresses: hoschl@utia.cas.cz (C. Höschl IV), flusser@utia.cas.cz (J. Flusser).

to a frequent utilization of low-level lossy features based on image

colors/graylevels. A typical example is an intensity or color histogram.

It is well known that the histogram similarity is a salient property for

human vision. Two images with similar histograms are mostly per-

ceived as similar even if their actual content may be very different

from each other. On the other hand, those images that have substan-

tially different histograms are rarely rated by observers as similar.

Another attractive property of the histogram is that, if normalized to

the image size, it does not depend on image translation, rotation and

scaling, and depends only slightly on elastic deformations. Thanks to

this, one need not care about image geometry and look for geometric

invariants. Simple preprocessing can also make the histogram insen-

sitive to linear variations of the contrast and brightness of the image.

Hence, the histogram established itself as a meaningful image char-

acteristic for CBIR [7–9].

The histogram is rarely used for CBIR directly as it is basically for

two reasons. The histogram is not only an inefficiently large structure

(in case of color images, the RGB histogram is stored in a vector of 224

integers, which may be even more than the memory requirement of

the original image) but it is also redundantly detailed. It is sufficient

and computationally efficient to capture only the prominent features

of the histogram and suppress the insignificant details. To do so,

some authors compressed the histogram from the full color range

into few bins [3,4] while some others represented the histogram

by its coefficients in a proper functional basis. The advantage of the

latter approach is that the number of coefficients is a user-defined

parameter – we may control the trade-off between a high com-

pression on one hand and an accurate representation on the other

hand. It is very natural to get inspired by a clear analogy between

histogram of an image and a probability density function (pdf)

of a random variable. In probability theory, the pdf is usually

http://dx.doi.org/10.1016/j.patrec.2015.10.012
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characterized by its moments, so it is worth applying the same

approach in the histogram-based CBIR [6,10].

The CBIR methods based on comparing histograms are sensitive to

noise in the images, regardless of the particular histogram represen-

tation. Additive noise results in a histogram smoothing, the degree

of which is proportional to the amount of noise. This immediately

leads to a drop of the retrieval performance because different his-

tograms tend to be more and more similar to each other due to their

smoothing. In digital photography, the noise is unavoidable. When

taking a picture in low light, we use high ISO and/or long exposure.

Both amplifies the background noise, which is present in any elec-

tronic system, such that the noise energy may be even higher than

that of the signal. Particularly compact cameras and cell-phone cam-

eras with small-size chips (i.e. devices which produce vast majority

of photographs on Flickr, on other servers, and on personal websites)

suffer from this kind of noise, along with an omnipresent thermal

noise. In-built noise reduction algorithms are able to suppress the

noise only slightly and perform at the expense of fine image details.

Although the noise in digital photographs is an issue we can nei-

ther avoid nor ignore, very little attention has been paid to develop-

ing noise-resistant CBIR methods. The authors of the papers on CBIR

have either skipped this problem altogether or rely on denoising al-

gorithms applied to all images before they enter the database. Such a

solution, however, is not convenient or even not realistic, because the

denoising inevitably introduces artifacts such as high-frequency cut-

off, requires additional time, and mostly also needs a cooperation of

the user in tuning the parameters. In this paper, we present an origi-

nal histogram-based image retrieval method which is not only robust

but totally resistant (at least theoretically) to additive Gaussian noise.

The core idea of the method is a proper representation of the his-

togram by certain characteristics, which are not affected by the noise.

We stress that the paper does not aim to evaluate in which tasks and

for what purposes a histogram-based CBIR is appropriate. We rather

show how, if it is appropriate, it should be implemented in the case of

noisy database and/or noisy query images. Our method does not per-

form any denoising and cannot replace it in the applications where

the noise should be suppressed to improve the visual quality of the

image.

In the rest of the paper, we first describe the noise model we

are working with and show how this noise influences the image his-

togram. Then we present a noise-resistant representation of the his-

togram and demonstrate the advantage of this representation in CBIR.

In the experimental part, we compare the new method with sev-

eral traditional approaches and demonstrate their advantages on a

database of more than 70,000 images and 30,000 queries.

2. The noise model

As we already mentioned, we primarily consider the thermal

noise and electronic background noise of consumer cameras. It is a

common belief that such noise n can be modeled as a stationary ad-

ditive Gaussian white noise (AGWN) with zero mean and standard

deviation σ , and that the noise is not correlated with the original im-

age f. If this assumption were true, the noise normalized histogram

hn would have a Gaussian form

hn(t) = 1

σ
√

2π
exp ( − t2

2σ 2
), (1)

where t is the index of the graylevel. The histogram hg of the noisy im-

age g = f + n would then be a convolution of the original histogram

and the noise histogram

hg(t) = (h f ∗ hn)(t).

Apparently, such an ideal model can hardly be encountered in prac-

tice. Let us however demonstrate on an example that it performs a

reasonable approximation of a real noise. In Fig. 4(a), we can see a clip

of size 427 × 386 pixels of a real noisy image taken under low-light

conditions. In order to separate f and n, we took this image repeatedly

twenty-times and we estimated f by time-averaging these 20 frames

(see Fig. 4(b)). This allows us to calculate all three histograms hg, hf,

and hn and a synthetic histogram hc = h f ∗ hn (see Fig. 1 from top

to bottom). We can see that the noisy picture histogram in Fig. 1(c)

matches the synthetic histogram in Fig. 1(d). Additionally, in Fig. 2 we

can see the normality plot of the image noise n is very close to a nor-

mal distribution. We repeated this experiment for many images with

the same conclusion. Hence, we consider our noise model acceptable

and use it for deriving a proper histogram representation.

3. Histogram representation resistant to image noise

In this section, we present a representation of the image his-

togram by descriptors which are not affected by AGWN. These de-

scriptors are based on the statistical moments of the histogram,

which is a common approach to the characterization of pdf’s in prob-

ability theory. Let h be a pdf of a random variable X. Then the quantity

m(h)
p =

∫
xph(x)dx (2)

where p = 0, 1, 2, . . . , is called general moment of the pdf. Clearly,

m0 = 1, m1 equals the mean value and m2 would equal the vari-

ance (if the histogram was centralized) of X. In general, the existence

(finiteness) of the moments is not guaranteed, however if h is a (nor-

malized) histogram, its support is bounded and all mp’s exist and are

finite. On the other hand, any compactly-supported pdf can be ex-

actly reconstructed from the set of all its moments.1 In this sense

moments provide a complete and non-redundant description of a

pdf/histogram.

Unfortunately, the histogram moments themselves are affected by

image noise. As the histogram of the noisy image is a smoothed ver-

sion of the original histogram, it holds for its moments

m(g)
p =

p∑
k=0

(
p

k

)
m(n)

k
m( f )

p−k
. (3)

This assertion can easily be proved just using the definitions of mo-

ments and of convolution. Since the noise is supposed to be Gaussian,

hn has a form of (1) and its moments are

m(n)
p = σ p(p − 1)!! (4)

for any even p. The symbol k!! means a double factorial, k!! = 1 · 3 ·
5 . . . k for odd k, and by definition ( − 1)!! = 0!! = 1. For any odd p

the moment m
(n)
p = 0 due to the symmetry of the Gaussian distribu-

tion. Hence, (3) obtains the form

m(g)
p =

[p/2]∑
k=0

(
p

2k

)
σ 2k(2k − 1)!! · m( f )

p−2k
. (5)

We can see that the moment of the noisy image histogram equals

the moment of the clear image histogram plus some additional terms

consisting of the moments of hf of lower orders multiplied by a cer-

tain power of σ . For the first few moments we have

m(g)
1

= m( f )
1

,

m(g)
2

= m( f )
2

+ σ 2,

m(g)
3

= m( f )
3

+ 3σ 2m( f )
1

,

1 A more general moment problem is well known from theory of probability: can

a given sequence be a set of moments of some compactly-supported function? The

answer is yes if the sequence is completely monotonic.
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Fig. 1. Histograms of individual components of the captured image. Histogram hf of

the clear image (a), histogram hn of the extracted image noise (note clear Gaussian

shape) (b), histogram hg of an originally captured noisy image (c), and the synthetic

histogram hc created as a convolution of the clear image histogram with the noise his-

togram (d). Notice the similarity of the noisy image histogram hg and the synthetic

histogram hc .

m(g)
4

= m( f )
4

+ 6σ 2m( f )
2

+ 3σ 4,

m(g)
5

= m( f )
5

+ 10σ 2m( f )
3

+ 15σ 4m( f )
1

.

To obtain noise-resistant descriptors, we have to eliminate the pa-

rameter σ . This can be done in a recursive manner, which leads to

the definition of our histogram features

Ip = mp −
[p/2]∑
k=1

(2k − 1)!! ·
(

p

2k

)
Ip−2kmk

2. (6)

Ip can be equivalently expressed in a non-recursive form

Ip =
[p/2]∑
k=0

(2k − 1)!! ·
(

p

2k

)
mp−2k( − m2)

k. (7)

For any integer p ≥ 0, the descriptor Ip is fully independent of the

image noise regardless of the noise variance. In other words, the Ip

value of an arbitrary noisy instance is the same as that of the original,

and can be calculated without any denoising or estimating the noise

variance (for the proof of this assertion see Appendix).

We use Ip values as histogram features for CBIR. Along with their

resistance to noise, they provide an “almost complete” representation

of the histogram. Having a full sequence of Ip, p = 1, 2, . . . , we can

recover from (7) all moments of the original histogram except m
( f )
2

.

This has a profound reason – since Ip is insensitive to noise, we can-

not in principle recover the noise parameter σ , which influences m
(g)
2

.

Hence, we could recover the shape of the image histogram while its

variance is a free parameter. This also corresponds to the fact that for

any image I2 = 0 while all other Ip’s are valid. In other words, the full

sequence of Ip’s provides as much information about the image as its

histogram itself with one degree of freedom allowing to incorporate

an arbitrary unknown Gaussian smoothing of the histogram. In prac-

tice, we of course use only a finite set of these features, the number

of which is determined by the user depending on the similarity of

the images in the database – the more similar the images are to be

discriminated, the more histogram features we need. For databases

with dissimilar images, only a few (typically between 6 and 10) fea-

tures are sufficient for histogram characterization, which provides an

excellent compression ratio.

The intuitive meaning of the Ip’s can also be understood as follows.

The joint null-space of all Ip’s is formed by all Gaussians, so the Ip’s

define the “distance” between the given histogram and the nearest

Gaussian distribution. Equivalently, the Ip’s actually measure the non-

Gaussian component of the histogram.

It should be pointed out that the existence of such features that

stay constant under a convolution of the histogram with a family of

parametric kernels is a very rare phenomenon. The necessary (but not

sufficient) condition is that this family must be closed with respect to

convolution. In probability theory, such distributions are called stable

distributions2 and only three stable distributions are known in terms

of elementary functions – Gaussian, Cauchy and Levy distributions.3

Among them, only the Gaussian distribution has all finite moments,

so our moment-based approach can hardly be extended to any other

noise model.

It is worth mentioning that all above equations remain valid if we

use central moments of the histogram instead of the general ones.

In that way we achieve an invariance of the method to the overall

brightness of the images without any histogram normalization.

2 Equivalently, this property can be formulated such that the sum of two indepen-

dent random variables, whose distributions belong to the family, has a distribution also

from this parametric family.
3 Even the generalized Gaussian distribution is not stable for exponents other

than 2.
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Fig. 2. Normality plot of a camera noise. Blue points indicate the noise data, the red line shows the estimated normal distribution. If the data was precisely from the normal

distribution then the blue marks would be linear. Overlap of the blue marks with the dashed red line shows that the data is almost normal. The deviations on both ends are due to

the value cut-off in the image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

4. Experiments

4.1. Invariance on simulated AWGN

In the first experiment we demonstrate the invariance property of

Ip (7) on pictures with simulated noise. We use a testing database of

1,000 pictures randomly gathered from Flickr4. The average picture

size of is 1.3 Mpx and all pictures were converted to grayscale levels.

For each sample picture in the database, we created its noisy ver-

sion by adding a zero-mean Gaussian white noise of various vari-

ances. It should be noted that even though the original grayscale im-

age values range from 0 to 255, we do not cut off the values of noisy

image so they can range from negative values to values higher than

255.

For each picture and each signal-to-noise ratio (SNR), we ex-

tracted two histograms: hf of the original image and hg of its noisy

version. To show that the invariants Ip give the same results for both

clear and noisy pictures, we calculated the ratio

r = I( f )
p

I(g)
p

, (8)

where we have applied the invariant function (7) on the histogram of

the original image f divided by the invariant applied on the histogram

of the noisy image g. In Fig. 3 we show the distribution of ratio r for

invariants of orders p = 3, 6, 10 and 10 different SNRs from 5 to 32. It

can clearly be observed that a majority of the ratios is almost equal to

1. It is also evident that the variance of the distribution of r increases

as the SNR decreases. The fact that the ratio is not precisely 1 for all

cases is because the randomly generated noise is not always exactly

Gaussian. Distributions for all three chosen invariant orders are quite

4 In all our experiments we use original photographs without any postprocess mod-

ifications. Pictures are from the set used by the authors of [5].

similar. However, the higher the order of the invariant function, the

more significant the influence of the numerical errors. This can be

observed as a higher variance of the distributions in the higher-order

boxplots. This is an experimental verification that Ip is invariant under

ideal Gaussian noise.

4.2. Invariance on real pictures

In the second experiment we demonstrate the invariance of (7)

on photographs captured by a compact camera5. This is a much more

challenging situation namely because of the value cut-offs, which vi-

olate the normality of the noise distribution.

We captured 20 different scenes under various light conditions.

The light was always low to get a noticeable noise and by light

changes we controlled (at least roughly) the noise variance. The es-

timated SNR was between 15 and 20. We took each scene 20 times

and then we estimated the clear image by time-averaging, since un-

der low light it was impossible to obtain a clear image directly (see

Fig. 4 for an example).

As in the previous experiment, we evaluated the ratio (8) of in-

variant functions on histograms of noisy and clear pictures. To show

the invariance property, the ratio r should be close to 1. Unlike the

simulated noise, the real camera noise is subject to cut-off and the

histogram support is bounded by the values 0–255. This causes the

input data for (7) not to meet the required theoretical assumptions

perfectly. In any case, the results of the invariants are quite satisfac-

tory as we can see in Fig. 5. The median of the ratios is almost equal

to 1 for all chosen invariant orders p = 3, . . . , 10 and furthermore, a

majority of invariant ratios is very close to 1. For a comparison and to

show that this property is far from being obvious, we also calculated

the same ratios for the histogram moments themselves. As one can

5 SONY Cyber-Shot DSC-H50, the resolution 3.1 Mpx was used.
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Fig. 3. The boxplots show the distribution of 1,000 ratios of invariants calculated on original images and their noisy versions. The boxplots from left to right show the results for

invariant orders 3, 6 and 10 respectively. The central mark shows the median, thick bar depicts 50% of the data between 25th and 75th percentiles. Outliers outside this range are

marked as dots.

Fig. 4. A crop of the scene photographed in low light. Originally captured noisy image

(a) and the noise-free image constructed by averaging 20 noisy frames of the same

scene (b).

see in Fig. 5(b), their behavior is dramatically different. The plain his-

togram moments are affected heavily by the noise and their relative

error increases as the order grows. They do not exhibit any invariance

to noise. Hence, this experiment shows that the invariants actually

bring a significant added value.

Fig. 5. (a) The boxplots show the ratio (8) of invariants calculated on histograms of

real clear and noisy images. Central mark is the median of the distribution. Thick bar

depicts 50% of the data between 25th and 75th percentiles. Outliers outside this range

are marked as dots. (b) The boxplots show the same ratio where plain moments mp

were used instead of invariants Ip . This graph illustrates that the histogram moments

cannot be used instead of the invariants since they are heavily affected by the noise.

4.3. Image retrieval

Content-based image retrieval is a challenging task where the

user selects a query image to retrieve a list of “similar” images (the
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similarity measure is pre-defined by the user, here we measure the

similarity by image histograms) from a large database of pictures. The

natural requirement is to avoid mismatches where the CBIR method

returns images that are not related to the query image. For the hu-

man perception, two images with the same content seems similar

even though one of them is affected by noise. On the other hand, CBIR

methods based on comparing image histograms are sensitive to noise

that modifies the histogram (see Fig. 7) and therefore standard meth-

ods may produce many mismatches. If the database system contains

pictures of a similar histogram and either the input query image or

the database images are affected by noise, then the danger of mis-

matches is high.

The aim of this experiment is to show a practical application of

the proposed invariants (7) to CBIR. In this experiment the database

contained clear images (or at least images with invisible noise) while

the query image was always a noisy version of one database image.

To make the task challenging, we intentionally included pictures of

similar histograms into the database. We randomly gathered 71,842

photographs from Flickr and categorized them into 314 clusters based

on histogram similarity. The image clustering was used here only to

select the images for the experiments. To save time, we always lim-

ited the search to the respective cluster only. Each query image was

matched only against that cluster of images with similar histograms.

Matching to dissimilar histograms does not make sense because all

methods correctly reject such trials. It should be noted that the simi-

larity of the histograms may or may not correspond to the visual sim-

ilarity between the images. In Fig. 6(a) we can see an example of vi-

sually different images while Fig. 6(b) provides an example of very

similar images. In both cases, the histograms inside the groups are

similar.

We performed 31,400 queries to achieve a statistical significance.

We created query images of five SNR levels (5, 10, 15, 20 and 25). For

each SNR we generated 20 different instances of the noise. The his-

tograms of the query images were heavily smoothed due to the noise

(see Fig. 7). Each query was independently answered by the following

methods.

• The above mentioned invariants I1, . . . , I10 calculated from the

histogram of the graylevel image. To convert the original color im-

ages into graylevels, the Matlab function rgb2gray was used.

The database image with the minimum Euclidean distance was

retrieved. Since the invariants grow rapidly as the order p in-

creases, we normalized the Ip’s to keep them in a comparable

range before calculating the distance. This method is referred to

as Invariants Gray.
• Invariants applied on the color image channel-wise and subse-

quently concatenated. The feature vector was IR
1
, . . . , IR

10
, IG

1
, . . . ,

IG
10

, IB
1
, . . . , IB

10
. The rest of the method was the same as in the pre-

vious case. This method is referred to as RGB Vectors.
• Invariants applied on the color image channel-wise. The concate-

nation was replaced by a voting scheme. The distance is calculated

for each channel separately and a majority vote is applied. If at

least two channels vote for the same database image, this image

is retrieved. No image is retrieved if each channel votes for differ-

ent database image. This method is referred to as RGB Vote.
• A method similar to the first one but instead of using invariants,

we used plain moments m0, m1, . . . , m10 of the (graylevel) his-

togram. This method is referred to as Moments Gray.
• Full histogram matching. In this method, we match a complete

graylevel histogram (256 bins) by the minimum Euclidean dis-

tance. This method is referred to as Histogram.
• The last method is the only one that contains denoising as a pre-

processing. We denoised the query images first by a wavelet-

based denoising [1] and then applied full histogram matching as

in the Histogram method. This method is referred to as Denoised.

Fig. 6. Sample images from the test database. Pictures were clustered according to

their histogram similarity. When considering histograms simplified into four bins, all

pictures within one cluster have the same simplified histogram. In (a) and (b) there

are previews of pictures from two clusters with corresponding histograms in (c) (on

the left is a histogram for cluster (a) and on the right for cluster (b)). Some clusters

contain pictures that have the same histogram but look differently (e.g. cluster (a)),

some clusters contain pictures that look similar (e.g. cluster (b)).

Since we know the ground truth, we can evaluate the correct re-

trieval rate. Fig. 8 shows the results of retrieval for all the methods as

a function of the SNR. The results mostly confirmed our theoretical

expectation.

The RGB Vectors performed best, followed by the Invariants Gray

method. The overall performance of both is very good. The RGB Vote

performs slightly worse, which may look a bit surprising. The rea-

son is that the majority vote from three votes is very strong crite-

rion (we actually decide on the 2/3 majority and not on the abso-

lute majority) and that is why we miss some correct matches. Since

the Invariants Gray is three times faster, it may be an optimal com-

promise for large-scale tasks. The difference between these three
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Fig. 7. Example of the query image affected by noise (SNR = 5) (right) and the clear version of the image in the database (left). On the bottom there are histograms of the images.

It can be seen that the noise causes significant modification of the histogram.

Fig. 8. Image retrieval experiment results. The graph shows percentages of correct matches for 6,280 queries for each SNR (total is 31,400 queries in 314 databases). The methods

based on moment invariants outperform the methods based on plain moments or histogram matching.

methods and the other methods increases as the SNR decreases. The

plain moments perform better than a complete histogram matching.

The explanation is that we used only 10 low-order moments that

describe global characteristics of the histogram which are less influ-

enced by the noise than the complete histogram itself.

The most surprising result is the poor performance of the Denoised

method. The reason is that the denoising decreases the noise level in

the image but does not restore the original histogram well. It should

be noted that we did not use the knowledge of the SNR when setting

the parameters of the denoising algorithm. Another serious drawback

of this approach is that it requires a significant extra time to per-

form the denoising. We also tried to replace the wavelet denoising

by BM3D algorithm [2], which is one of the highest rated existing

denoising methods and re-run the experiment. However, the BM3D
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Fig. 9. Retrieval of images corrupted by heavy-tailed (β = 1), Gaussian (β = 2), and light-tailed (β = 3) noise. The graph shows percentages of correct matches by means of

histogram invariants for 71,842 queries for each SNR.

Table 1

Picture database summary.

Number of databases 314

Total number of pictures 71,842

Number of queries 31,400

Average pictures count per DB 229

algorithm is so slow (10 min for one query image with 20 instances of

noise) that we ran it on a small subset only to conclude that the suc-

cess rate is comparable to that of the wavelet denoising. Hence, an in-

teresting conclusion is that denoising followed by histogram match-

ing is absolutely not suitable in terms of both success rate and speed,

regardless of the particular denoising algorithm.

Finally, we tested the performance of the proposed method in the

presence of noise which is not exactly Gaussian. We generated the

noise underlying the generalized normal distribution

hα,β(t) = β

2α�(1/β)
exp

(
−|t|

α

)β

, (9)

This probability density function is equivalent to the Gaussian distri-

bution for β = 2. For β < 2, it has heavier tails and for β > 2 lighter

tails than the Gaussian distribution. We used two distinct β-values in

this test: β = 1, which yields the Laplace distribution, and β = 3. For

a comparison, we included the Gaussian case β = 2. We run the ex-

periment with these three β-values on 71,842 test images (Table 1).

We successively generated a noise of SNR ranging from 5 to 25. The

retrieval results achieved by the invariants of a grey-level histogram

(the same method as Invariants Gray in the previous experiment) are

summarized in Fig. 9. One can observe two noticeable trends. The

noise distribution with lighter tails does not cause any problems.

The retrieval rate is fully comparable (or even slightly better in some

cases) to the Gaussian noise and the method could be applied to this

type of noise, too. The heavy-tailed noise significantly decreases the

performance of the method on low SNR levels. As the SNR increases,

the performance approaches (logically) the performance achieved for

Gaussian noise.

5. Extension to color histograms

The presented invariants can be extended from 1-D graylevel his-

tograms to color or even multispectral histograms. A complete his-

togram of an image with N spectral/color bands is an array of 2bN inte-

gers, where b is the number of bits used to encode the pixel intensity

in one band (typically b = 8). The size of the multispectral histogram

grows exponentially with N which makes it very inefficient for small

images of many bands. As the histogram size does not depend on the

image size, this representation can be useful for large images with

a low band number, e.g. for traditional color images with N = 3. As-

suming a Gaussian noise is added to each band, the N-D histogram of

a noisy image is again a convolution of the original histogram and the

N-D Gaussian density function, which is given as

hn(t) = 1√
(2π)N|C| exp

(
−1

2
tC−1t′

)
, (10)

where t ≡ (t1, . . . , tN) and C is the noise covariance matrix.

If C is diagonal, i.e. if the noise in any two spectral bands are mutu-

ally uncorrelated, then (10) is a product of 1-D Gaussians and we can

easily derive N-dimensional analogies of the invariants (6) and (7)

Ip = mp −
[p/2]∑

k=0
0<|k|

(2k − 1)!! ·
(

p

2k

)
Ip−2kmk

2 (11)

Ip =
[p/2]∑
k=0

(2k − 1)!! ·
(

p

2k

)
( − 1)|k|mp−2kmk

2 (12)

where the boldface characters are used for standard vector notation

and m2 ≡ (m20...0, m02...0, . . . , m00...2).
The assumption of C being diagonal seems to be natural and it

actually holds for multispectral sensors where individual bands are

captured independently, such as satellite and aerial scanners, and for
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Fig. 10. An example of 2D histograms of the noise extracted from a real image. Red

and green bands are correlated � = 0.33, blue and red bands are almost independent

� = 0.06.

multimodal medical images. This is however not true for color im-

ages captured by single-chip consumer cameras, where the enter-

ing light is split into red, green and blue channels by a color filter

array, most commonly arranged into Bayer pattern. To enhance the

spatial resolution, the camera applies embedded interpolation algo-

rithms on raw data (including the noise). This interpolation may in-

troduce between-channel correlation not only of clear image data

(where the correlation is expected anyway) but also of the noise

components which theoretically should be independent. To illustrate

this phenomenon, we extracted the noise components of a real color

image using the same technique as described in Section 2 and visual-

ized 2-D histograms of the noise (see Fig. 10). While the blue and the

red bands are uncorrelated, the correlation between red and green is

about � = 0.33. We performed this test on several images with basi-

cally the same results (the particular values of course depend on the

camera type, on the setting and on other conditions). Note also that

the noise variances in individual channels typically differ from each

other, but this is not a serious problem.

If C is not diagonal, it would still be possible to derive histogram

features insensitive to such kinds of correlated noise, assuming that

the eigenvectors of C are of a known orientation, which is constant

for all images in question. We could rotate the histogram such that

the noise becomes uncorrelated, which is always possible, and then

proceed as described above. This is, however, not the case of real color

noise, where the eigenvectors of C are basically random. Under such

conditions, the invariant approach cannot be used correctly and we

are limited to channel-wise histograms.

6. Conclusion

Histogram of a noisy image, both visual appearance and common

numerical characteristics, are significantly affected by additive noise

in the image. Provided the noise is Gaussian, we proposed original

histogram descriptors which are invariant w.r.t. the noise. We proved

that along with the theoretical invariance the descriptors are suffi-

ciently robust on real images corrupted by thermal and electronic

sensor noise. As demonstrated experimentally, the proposed descrip-

tors can be used as the features in a histogram-based retrieval if the

database and/or query images are heavily noisy and standard descrip-

tors fail. We approved that the retrieval based on the new invari-

ants significantly outperform the other more traditional methods in-

cluded in our tests. We also proved that the method can be used even

if the noise distribution is not exactly Gaussian, but has lighter tails.
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Appendix

In this Appendix we present a formal proof that the image fea-

tures defined in Eq. (6) do not change under Gaussian white noise. To

prove this, it is sufficient to show that they do not change if the image

histogram is convolved by an arbitrary zero-mean Gaussian pdf (1) of

an unknown parameter σ . We prove this by induction over p. The va-

lidity is trivial for p = 0, 1, 2 and can be verified easily for p = 3 by

substitution of (5) into (6). Let us now prove (6) for an arbitrary p > 3

provided that it holds for all lower indices.

I(g)
p = m(g)

p −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
I(g)
p−2k

(m(g)
2

)k

where K = [p/2]. Using (5) and the assumption that I
(g)
p−2k

= I
( f )
p−2k

we

get

I(g)
p =

K∑
k=0

(
p

2k

)
σ 2k(2k − 1)!! · mp−2k

−
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
Ip−2k(m2 + σ 2)k

= mp −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)

×
(

Ip−2k

k∑
j=0

(
k

j

)
σ 2 jmk− j

2
− σ 2kmp−2k

)
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= I( f )
p −

K∑
k=1

(2k − 1)!! ·
(

p

2k

)

×
(

Ip−2k

k∑
j=1

(
k

j

)
σ 2 jmk− j

2
− σ 2kmp−2k

)

= I( f )
p −

K∑
k=1

(2k − 1)!! ·
(

p

2k

)
Ip−2k

k∑
j=1

(
k

j

)
σ 2 jmk− j

2

+
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
σ 2kmp−2k

= I( f )
p − Ap + Bp.

In the above expressions, we dropped the index (f) for the sake of

simplicity whenever it is clear from the context. Now we show that

Ap = Bp, which will complete the proof. To express the double facto-

rial, we use the relation (2k − 1)!! = (2k)!/2kk!.

Ap =
K∑

k=1

k∑
j=1

(2k − 1)!! ·
(

p

2k

)(
k

j

)
Ip−2kσ

2 jmk− j
2

=
K∑

j=1

K∑
k= j

(2k − 1)!! ·
(

p

2k

)(
k

j

)
Ip−2kσ

2 jmk− j
2

=
K∑

j=1

K− j∑
k=0

(2(k + j) − 1)!! ·
(

p

2(k + j)

)(
k + j

j

)
Ip−2(k+ j)σ

2 jmk
2

=
K∑

j=1

p!σ 2 j

j!2 j

K− j∑
k=0

mk
2

k!(p − 2 j − 2k)!2k
Ip−2 j−2k

=
K∑

j=1

p!σ 2 j

j!2 j

(
K− j∑
k=1

mk
2

k!(p − 2 j − 2k)!2k
Ip−2 j−2k + Ip−2 j

(p − 2 j)!

)

The inner sum equals, according to (6), to

mp−2 j − Ip−2 j

(p − 2 j)!
.

Hence,

Ap =
K∑

j=1

p!σ 2 jmp−2 j

j!(p − 2 j)!2 j
= Bp. �

In a similar way, by means of induction over p, it is also possible

to prove the equivalence between (6) and (7). We briefly show the

induction step.

Ip = mp −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk

2Ip−2k

= mp −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk

2

×
K−k∑
j=0

(2 j − 1)!! ·
(

p − 2k

2 j

)
( − m2)

jmp−2k−2 j

= mp −
K∑

k=1

K−k∑
j=0

( − 1) j p!

2k+ jk! j!(p − 2k − 2 j)!
mk+ j

2
mp−2k−2 j

= mp −
K∑

k=1

K∑
j=k

( − 1) j−k p!

2 jk!( j − k)!(p − 2 j)!
mj

2
mp−2 j

= mp −
K∑

j=1

j∑
k=1

( − 1) j−k p!

2 jk!( j − k)!(p − 2 j)!
mj

2
mp−2 j

= mp −
K∑

j=1

( − 1) j p!

2 j(p − 2 j)!
mj

2
mp−2 j

j∑
k=1

( − 1)k

k!( j − k)!

Since

j∑
k=1

( − 1)k ·
(

j

k

)
= −1

for any j, we obtain

Ip = mp +
K∑

j=1

(2 j − 1)!!

(
p

2 j

)
( − m2)

jmp−2 j

=
K∑

j=0

(2 j − 1)!!

(
p

2 j

)
( − m2)

jmp−2 j,

which exactly matches Eq. (7).
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