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1. General Introduction
How neuronal activity represents information in a network has been widely de-
bated topic and several conflicting theories have been proposed. We know that
neurons develop action potentials when they receive enough stimulation and sig-
nal to other neurons via synapses but do individual spikes and their timing mat-
ter or is the frequency of neuronal activity the only significant form of coding?
The beginning to this debate can be traced back to an experiment conducted by
Edgar Adrian more than 90 years ago. Weights were hung from a frog muscle and
the impulses produced by sensory nerve endings were recorded. Interestingly, as
the weight (as so the stimulus) increased, the frequency of spikes recorded from
sensory nerves increased as well (Adrian, 1926). This lead to a conclusion that
the frequency of spiking events has to play a role in information representa-
tion in neural networks. These ideas evolved into the classical firing rate theory
(Shadlen and Newsome, 1998) of neuronal coding where neurons modulate their
mean firing rates to transmit information. Due to the relative ease of experi-
mental recording of firing rates, the firing rate theory was successfully used to
describe the properties of many types of sensory and cortical neurons and their
interactions (Deschenes, 1989; Fuglevand et al., 1993; Fuglevand and Segal, 1997;
Tateno and Robinson, 2006; Enoka and Duchateau, 2017) In contrast, a number
of scientists have argued that neural computation critically relies on the tem-
poral coordination of spikes. Many observations of precisely repeating spiking
patterns in the network activity have been reported (Abeles, 1991; Abeles and
Gat, 2001; Lindsey et al., 1997; Prut et al., 1998; Villa et al., 1999; Mao et al.,
2001; Ikegaya et al., 2004; Riehle et al., 1997; Beggs and Plenz, 2004). Recent
in vivo research shows that neurons can generate these patterns with millisecond
temporal precision (Chang et al., 2000; Tetko and Villa, 2001).

Perhaps the most researched concept involving precise spiking patterns is that
of synfire chains (Abeles, 1991; Bienenstock, 1995; Diesmann et al., 1999; Ikegaya
et al., 2004). First mentioned in (Abeles, 1982), synfire chains are layered feed
forward structures naturally occurring in a network, where neurons from one
layer fire synchronously to excite activity in the next layers. It has been shown
that individual neurons can be part of many chains suggesting great capacity of
coding in networks where synfire chains develop. (Bienenstock, 1995) A counter
argument against the theory of synfire chains could be considered the findings
by (Swadlow, 1974, 1985, 1988). There, conduction delays have been shown to
be sometimes as small as 0.1 ms and other times as large as 44 ms, depending
on the type and location of the neurons. This would contradict the premise of
synfire chains where conduction delays between neurons from any two layers are
expected to be equal or negligible to elicit synchronous activity.

More recently, Izhikevich proposed concept of polychronous groups (Izhike-
vich, 2006) where neurons activate not necessarily synchronously but rather in a
precise, repeatable, time-locked patterns. He argued that polychronous firing is
not an obstacle for representing information in a network but rather an advantage
allowing for greater computational capacity. Early research in computer simu-
lations (Izhikevich, 2006; Maier and Miller, 2008; Martinez and Paugam-Moisy,
2009) suggests that the number of polychronous groups representable in spiking
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neural networks with conduction delays is extensive, far exceeding the number
of neurons. Furthermore, the studies show (Izhikevich, 2006; Maier and Miller,
2008; Guise et al., 2015) that while the number of polychronous groups repre-
sented in a random network is small, polychronous groups readily emerge when
the network is presented with various stimuli and synaptic weights are allowed
to adapt using mechanisms of long term plasticity. This has been speculated as
a possible mechanism how memories could be stored in the mammalian brain
(Izhikevich, 2006).

While several methods for detection of polychronous groups appearing in sim-
ulated recorded activity have been proposed (Izhikevich, 2006; Martinez and
Paugam-Moisy, 2009; Sun et al., 2015), they employ extensive search leading
to computation complexity that prohibits their use in large neural network sim-
ulations (Izhikevich, 2006). Moreover none of these methods have been designed
to operate on noisy networks, but noise in the form of spontaneous release of
synaptic neurotransmitter has been shown to play an important role in develop-
ment and formation of neural network structures (Andreae and Burrone, 2015;
Hartmann et al., 2015).

1.1 Aim of thesis
The aim of this thesis is to adapt an existing spiking neural network model
(Popelová, 2013) and to provide a software tool for polychronous groups detec-
tion. Algorithms for detection of stimuli-based polychronous groups as well as
polychronous groups emerging during spontaneous activity will be implemented.
The existing neural model will be revised and extended to provide more plausible
computation and polychronous group detection. In addition to the software im-
plementation, several experiments with varying model inputs will be performed
to observe how polychronous groups develop in response to different stimuli.

1.2 Structure of thesis
In Chapters 2 and 3, the basic concepts of neurobiology and neural modeling
are established. Chapter 4 analyses existing algorithms for polychronous group
detection. A new method is proposed in Chapter 5 and advantages and disad-
vantages of presented methods are discussed. Chapter 6 describes the adaptation
and revision of SUSNOIMAC simulator, which allowed for for experimentation on
emergence of polychronous groups in spontaneous activity. Methods and results
of these experiments are discussed in Chapter 7. The thesis is summarized and
concluded in Chapter 8.
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2. Introduction to neurobiology
Before we delve into the field of computational neuroscience, we find it necessary
to introduce some concepts of neurobiology, namely the basics of neural anatomy
and physiology, which form the pillars of understanding of structure and function
of nervous systems. After all, these concepts serve as the underlying model of
all neural simulations and many scientists strive to replicate their mechanisms as
closely as possible to further our understanding of human nature.

In this chapter we mention notable functions of the nervous system and de-
scribe its signature neuron cell. The basic mechanism of neuronal signaling, the
development of action potential is presented. Finally, the synaptic connection
between neurons is described.

2.1 Nervous system
Found in all vertebrates and most invertebrates, nervous system is a part of an
organism that directly or indirectly controls most organs in its body. Typically
composed of the central nervous system (the brain, brain stem and spinal chord)
and the peripheral nervous system (the nerves), its functions are numerous and
varied. It is responsible for transferring sensory information such as sight or
hearing through sensory nerves to the specialized centers in the brain where these
inputs get processed. It is also in the brain, where many of the high level functions
of nervous system reside. Different areas allow for forming memories, learning,
speech, instinctive behavior and self consciousness. The motor cortex, a part of
the most notable outside area of the brain called cerebral cortex, is responsible for
planning and execution of voluntary movements by sending signals through nerves
to skeletal muscles. The nervous system also mediates many other systems in a
body, for example it influences heart frequency, sleeps cycle or body temperature.
Many centers of these autonomous functions reside in the brain stem, a part of
brain adjoining and structurally continuous with the spinal chord.

2.2 Neurons
Neurons are the primary components of a neural system. They are cells able to
transmit electrical and chemical signals to other cells in the system. The number
of neurons in the nervous system is vast, 16 billions of neurons are reported in
the cerebral cortex alone (Herculano-Houzel, 2009). The interconnected neuronal
structures of nervous system are usually called neuronal networks. There are
many types of neurons differing both in anatomy and their signaling dynamics.
Here we focus on the basic properties of all neurons.
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2.2.1 Cell structure
Notable parts of the neuron cell include the soma, dendrites and axon (see Fig-
ure 2.1). The soma is the compact body of the neuron, the nucleus and other
organelles are situated here. The branch like structure of dendrites is the region
where most of the signal inputs to the neuron occur. Finally, the axon is usually
a long, cable like structure that can extend far from the soma and serves as a
carrier of signals to other neurons. Neuron has usually only one axon, however,
it typically branches out to allow for numerous connections to other cells. The
nerves of the peripheral nervous systems contain bundles of axons wrapped in
layers of connective tissue.

Figure 2.1: Diagram of a neuron, from (wikipedia.org, 2007).

2.2.2 Resting membrane potential
The most notable feature of the neuron cell is its excitable membrane. It is formed
by lipid bilayer separating the inside of the cell from the extracellular space.
Protein formations embedded in the membrane called ion pumps work to establish
concentrations of potassium (K+), sodium (Na+) and calcium (Ca2+) ions that
differ inside and outside the cell. Selectively permeable ion channels (another
example of membrane protein structure) allow specific flow of these ions according
to the established concentration gradient. This movement of ions charges the
membrane potential until an equilibrium is reached where the chemical gradient
force equals the electrical force acting on the charged ions. The result of this
interaction is a polarized membrane with resting membrane potential typically
around -70 mV, greater concentration of K+ ions inside the cell and greater
concentration of Na+ ion outside the cell.
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2.2.3 Action potential
Signals from other neurons result in small changes of membrane potential and
propagate to a place near the origin of the axon called the axon hillock. If
these changes are too small, the membrane potential returns to its resting value.
However, if this change in potential accumulates and crosses a certain threshold,
a special type of ion channels, the so called voltage-gated Na+ channels start
opening (see Figure 2.2). These ion channels remain shut until the membrane
potential reaches around -55 mV and then start letting positively charged Na+

ions into the cell. This strong inward rush of ions temporarily positively charges
the membrane to a peak value of about +30 mV. At this point the voltage gated
Na+ channels become inactive and at the same time, voltage gated K+ channels
open and let escape positively charged K+ from the cell. These potassium ions
now outside the membrane rapidly reverse the potential development back into
negative values until their voltage gated channels too become inactive. This
typically results in a small overshoot (hyperpolarization) before the membrane
potential settles back on the resting value.

Figure 2.2: Diagram of action potential development, from (wikipedia.org, 2015).
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This process, mediated by the voltage gated channels, is called action potential
and is the mechanism of neuronal signaling. Once a part of membrane becomes
positively charged during the development of an action potential, the inward
rush of Na+ ions pushes the voltage gated channels in neighboring regions of
the membrane beyond threshold as well. This causes a chain reaction of action
potential development along the axon until it reaches the axonal terminations
near other cells. A neuron developing action potential along its axon is said to
fire and the action potential is often called a spike. Once a neuron fires, the
mechanisms for development of action potential get depleted and a neuron is not
able to fire again for a short time, the so called refractory period.

One of the fundamental differences between neuron types is their firing char-
acteristic. Regular spiking (RS) neurons can develop an action potential every
20-60 ms while fast spiking (FS) neurons require only 10ms (Subkhankulova et al.,
2010). Yet another firing pattern exhibited by some neurons is the so called in-
trinsic bursting pattern (IB) where not a single spike but rather a tight group of
spikes in a quick succession is produced followed by a period of inactivity. Further
common firing patterns are the chattering (CH) and low threshold spiking (LTS),
for more information regarding firing patterns see (Izhikevich, 2007). Finally we
note that some neurons may develop action potentials without any stimulations
or signaling from other neurons. As such, they are called spontaneously firing or
spontaneously bursting neurons.

2.3 Synapses
The place where the axonal termination connects to another cell is called a
synapse. Common are synapses to other neurons, muscle cells or gland cells (cells
responsible for releasing hormones to the body). Two kinds of synapse connec-
tions exist. The fist is the electrical synapse also called a gap junction. Electrical
synapse allows direct connection between neurons and direct transmission of ac-
tion potential. As this is quite rare form of connection, it is not discussed further
in this text. By far more numerous is the second kind, the chemical synapse (see
Figure 2.3).

2.3.1 Mechanism of chemical synapse
The chemical synapse consists of presynaptic area of axon termination, the gap
between neurons called synaptic cleft and specialized, protein dense postsynaptic
area called postsynaptic density. In this case, the cells are not directly connected,
the width of the synaptic cleft is usually around 20-40 nm. Instead, the axon
terminal contains vesicles with neurotransmitter, a chemical messenger that is
released to the synaptic cleft upon arrival of action potential. The molecules of
neurotransmitter briefly bind to specific receptors on the postsynaptic side of the
connection causing changes to the postsynaptic membrane potential.
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Figure 2.3: Diagram of a synapse, from (wikipedia.org, 2006).

If the release of neurotransmitter causes depolarization of the postsynaptic
membrane, i.e. it charges the membrane positively towards the threshold of action
potential, we speak of excitatory postsynaptic membrane potential (EPSP) and
of excitatory synapse. By contrast, the release causing hyperpolarization of the
membrane is said to produce inhibitory postsynaptic membrane potential (IPSP)
and the synapse is called inhibitory. Neurons typically release either inhibitory
or excitatory neurotransmitters in all of their synapses and are therefore also for
simplicity called either inhibitory or excitatory neurons.

Some of the neurotransmitter release has been observed to happen sponta-
neously and not as response to any incoming signal. Only a small amount of
neurotransmitter is released this way and resulting postsynaptic potentials are
called miniature EPSPs/IPSPs or synaptic minis. It is generally considered a
source of noise in the network activity, since the activity seemingly does not
relate to signaling of input stimuli, however it has been shown to play an impor-
tant role in information processing in the brain (Trapani and Nicolson, 2011) and
network development (Andreae and Burrone, 2015).

2.3.2 Synaptic plasticity
The magnitude of change in the postsynaptic membrane potential due to the
release of neurotransmitter is usually referred to as synaptic strength or synaptic
weight. Synapses are believed to be plastic, meaning their strength can change
over time. Mechanism of both short-term (lasting seconds to minutes) and long-
term (hours to days) plasticity have been observed in chemical synapses. Short-
term plasticity is thought to play important role in short-term adaptations to
sensory inputs, transient changes in behavioral states, and short-lasting forms of
memory. The short term increase of strength of synapse (facilitation) is attributed
to the accumulations of the Ca+ ions in the axon terminal, which are responsible
for the release of a neurotransmitter upon arrival of an action potential. Short
term weakening of the synapse (depression) can be traced to insufficient re-uptake
of the neurotransmitter to the presynaptic neuron and subsequent weaker release
due to semi-depleted vesicles.
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The long term plasticity is assumed to be the possible mechanism of memory
retention and learning. Long term increase of synapse strength has been observed
in hippocampus (a component of vertebrate brain) in a pair of neurons where the
presynaptic neuron fires just before the postsynaptic neuron. Conversely, if the
presynaptic neuron fired shortly after the postsynaptic spike, the synapse trans-
mission would weaken. This timing of the firing of the two neurons (precisely
in sequence or out of sequence) was found to be the reason behind these phe-
nomena. The increase of synapse strength is usually referred to as long term
potentiation (LTP) and the weakening is called long term depression (LTD).
Long term plasticity in hippocampus relies on NMDA (N-methyl-d-aspartate)
and AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptors and
detailed mechanism can be found in (Citri and Malenka, 2008). Similar mecha-
nisms of the spike timing dependent plasticity (STDP) have been also observed
in cortical areas (D’amour and Froemke, 2015).
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3. Introduction to neural
modeling
The development of computational modeling greatly facilitated the research of
neural structures. Assuming we have a model faithfully representing a biological
network, an experiment that might require months of preparation and collecting
of in vivo data can be completed in the matter of days. The more experiments
are conducted, the better our understanding of the studied mechanisms becomes
and the better simulation models can be constructed. This positive loop resulted
in unprecedented growth of neuroscience in recent years.

An area where the models of neuronal networks are especially valuable is
exploration of new theoretical concepts in order to explain various higher level
functions of the brain. Each concept begins as a mere idea that needs to be
validated and computational models provide means of rapid testing. This way,
basic properties a dynamics can be observed much quicker compared to classical
approach of observing in vivo recordings of neural activity. One such concept, the
polychronous group (Izhikevich, 2006) was proposed as a possible mechanism of
information representation in neural networks with encouraging initial results in
computer models (Izhikevich, 2006; Maier and Miller, 2008; Chrol-Cannon et al.,
2012).

In this chapter we attempt to provide an overview of different type of ap-
proaches to simulating real neural networks. As polychronous groups necessitate
certain level of simulation detail, we remark on the choice of neural network sim-
ulations typically used when required to observe their formation. Such networks
are called spiking neural networks and their structures and dynamics are de-
scribed in greater detail. Finally we formalize the concept of polychronous group
itself and define its basic properties.

3.1 Model detail
When designing neuronal network models, a compromise has to be usually made
between the detail of network mechanics and computation efficiency. Existing
models can be generally classified into three major categories based on simulation
simulation detail.

3.1.1 Sub-cellular modeling
Sub-cellular modeling focuses on precise description of ion channels, whose ac-
tions make up the essential mechanism of cell to cell communication and signaling.
Ever since the discovery of the excitable membrane, the knowledge of these mech-
anisms expanded and increasingly detailed and complex models were possible to
construct. Nowadays with the fully atomistic description of structures of several
ion channels (Doyle et al., 1998) and and direct experimental observations of a
single channel’s action (Cha et al., 1999), the simulation detail has reached to
modeling individual molecules behaving according to their chemical properties.
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While these models provide unprecedented detail of the development transmis-
sion of action potential, their complexity is usually prohibitive for simulations
where great number of neurons must be simulated (e.g. simulations of regions of
mammalian cortex).

3.1.2 Cellular modeling
The next level of abstraction is modeling on the cellular level, where the elemental
units of simulation are individual neurons and synapses. The actions of individual
ion channels are aggregated and the main focus is on the resulting development
of action potentials in neurons. This emphasis on the spiking nature of neurons
gave name to the networks, where these neuron models are employed; such are
called the spiking neural networks (SNN).

Various neuron models have been proposed with different levels of biological
faithfulness and computational complexity. Perhaps the most influential were
the findings of (Hodgkin and Huxley, 1952) which lead to creation of the famous
Hodgkin-Huxley model. Based on their experiment on the squid giant axon, they
were able to describe the development of membrane potential using differential
equations for each type of ion channels. To this day, their model remains one of
the most biologically faithful simulation techniques on the cellular level and is still
used. However, its complexity still proved too high for large scale simulations.
Thus, much research has been put into developing new models with the goal of
making them simpler yet keeping the resulting neuronal behavior as faithful as
possible. Perhaps the simplest model of a spiking neuron is the integrate and
fire model. The development of membrane potential is described by a single
equation which is essentially aggregating postsynaptic potentials coming from
other neurons until a spike threshold is met. At that moment, a spike is generated,
the membrane potential is reset and and the neuron is prevented from firing during
its refractory period. Such a simple approach is easily computable, but is not very
precise in simulating actual neurons. One of the notable shortcomings is that its
incapable of producing bursting or other more complex neuronal behavior and
only simulations of regular spiking neurons are possible. The presented models
and a model attempting to combine their strengths will be further discussed in
section 3.2.

Similar to the neuron models, there are many approaches to simulating the
synaptic connection between neurons ranging from a single weight parameter
that is used as the final input to the postsynaptic neuron to full simulation of the
post synaptic currents. Techniques for short-term and long-term plasticity have
been developed, perhaps the most widely used is the simulation of spike timing
dependency plasticity.

3.1.3 Neural population modeling
The category of neural population modeling encompasses a wide range of ap-
proaches that have been in literature called neural mass models, mean field mod-
els, neural field models or firing rate models. Generally, an attempt is made to
describe the collective action of neural assemblies directly using some sort of pop-
ulation averaging. Collective state variables, typically defined as averages over
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the group of cells, are used in order to describe the population activity directly
in a single model. The reduction in model detail compared to spiking neural
networks results in significant reduction in computational complexity which lead
to widespread use in computer simulations. However such models cannot be used
when precise spatial and temporal dependencies between neurons need to be ob-
served (as is the case when observing synfire chains or polychronous activity) due
to the averaging of neurons in a population.

3.1.4 Modeling requirements for developing spiking pat-
terns

In order to observe the precise spiking patterns of polychronous groups, the sim-
ulation detail must allow for development of individual spikes in the network
(Izhikevich, 2006). This naturally prohibits the use of population models. By
contrast, sub-cellular modeling is usually too costly to simulate large networks
and such level of simulation detail is generally not necessary. Thus, it is almost
universal practice to remain withing the realm of spiking neural networks which
provide the best compromise between network size and faithfulness of neuron be-
havior. These can also model connection delays, which is essential of observing
polychronous groups (Izhikevich, 2006).

3.2 Spiking neural networks
The observation of polychronous groups necessitates (in computer simulations)
the use of spiking neural networks. Here we describe the typical techniques of
modeling network structure and network dynamics in SNNs in greater detail.
Later in the text when discussing computer simulations of behavior of poly-
chronous groups, we assume the availability of simulation detail at least on the
level displayed by SNNs.

3.2.1 Modeling of cortical areas
As already mentioned, the cerebral cortex contains distinct areas responsible
for processing sensory information. This close connection to real world stimuli
provides at least a basing understanding of what the function of these areas
might be and what the inputs to the neural networks are. As a result, many
of the models of real biological networks focus of modeling the cerebral cortex,
especially the visual and auditory cortex.

Knowledge of neuronal structures of the network is essential when modeling
real biological networks. Despite great efforts of researches, precise description
of biological neural networks is impossible mainly due to shear size of the net-
works (human cortex is reported to contain around 16 billion neurons (Herculano-
Houzel, 2009)). Such complexity necessitates significant simplifications when de-
signing the model structure. Fortunately many similarities exist between certain
neurons. The behavior of the neuron usually depends on its experimentally ob-
servable properties and location in the network. This makes it possible to cate-
gorize neurons into so called neuronal types and assume that neurons of a single
type exhibit similar behavior. Notable neuronal types found in cortical areas are:
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• pyramidal neurons (p): they are the primary excitation units of the mam-
malian cortex. They show typically regular spiking, or sometimes chatter-
ing, or intrinsically bursting firing patterns (Contreras, 2004).

• spiny stellate neurons (ss): they are star-like shaped, excitatory neurons
exhibiting regular spiking patters(Contreras, 2004).

• basket interneurons (b): they exhibit fast spiking patterns and are one of
the primary inhibitory neurons(Contreras, 2004).

• non-basket interneurons (nb): they are a group of morphologically different
neurons including double-bouquet cells, neurogliaform cells and Martinotti
cells and can show various firing patterns including low threshold spiking
and latent spiking patters.

Structure of the neural network of the cortical areas can be generally spit into
several layers. Typically, 6 layers are recognized (L1-L6) but layers 2 and 3 are
sometimes considered as one layer because the distinction between these layers
in real cortex is not clear. Types of neurons in different layers may differ in size
and other parameters . For example, pyramidal neurons in L6 layer are usually
different from pyramidal neurons in layer L4. This lead to definition of subtypes
of neurons based on their location in network. Layer subtypes are denoted in
this text by the type of the neuron and its location in cortical layer, for example,
basket neuron from L5 is denoted b5.

A critically important description of the network structure is the connectivity
between neurons (referred to as connectome). Unfortunately, this is possibly
the least complete information about the network structure, because the total
number of synapses greatly exceeds the number of neurons in a network. A
following simplification can be made. Each neuron of a certain neuronal type has
a typical number of synapses to other types. Neurons of the same type tend to
project axons to specified layers where they form set number of synapses to other
neurons in an determined radius. Which layers and how far the axons project
can be estimated from available research data. Further information about this
method of simulating the network connectome can be found in (Izhikevich and
Edelman, 2008; Popelová, 2013)

3.2.2 Neuronal dynamics
When the structure of simulation model has been determined, the question of how
to simulate the network dynamic arises. As mentioned, spiking neural networks
employ neuron models to simulate development of action potential of neuron
membrane. Models frequently used in computer simulations are presented bellow.

Hodgkin-Huxley model

The model of Alan Hodgkin and Andrew Huxley is mathematical model that
describes how action potentials in neurons are developed and propagated . Ofter
referred to as conductance-based model, it is based on results of voltage-clamp
experiments on ion channels of the squid giant axon (Hodgkin and Huxley, 1952).
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The general form of the models is described by four non-linear ordinary differential
equations:

C
dV

dt
= −gKn4(V − EK)− gNam3h(V − ENa)− gL(V − EL)

dn

dt
= αn(V )(1− n)− βn(V )n

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h

where V is the membrane potential and C is the membrane capacitance.
Variables n, m, and h are dimensionless quantities between 0 and 1 representing
potassium channel activation, sodium channel activation, and sodium channel in-
activation, respectively. Values gL, gK , gNa are the maximal value of membrane
conductance for the leak current, potassium current and sodium current, respec-
tively. Parameters EL, EK , ENa represent the respective reversal potentials.
Functions αn(V ), αm(V ), αh(V ), βn(V ), βm(V ), βh(V ) describe the transition
between open and closed states for respective channels and were fitted using the
data from the experiment. Precise description of these functions can be found
in the founding work (Hodgkin and Huxley, 1952). The model shows highly de-
tailed and realistic development of action potential. Further, due to the numerous
parameters, many different neuronal types can be simulated displaying various
firing patterns. However, due to its complexity, its use in large scale simulations
is limited.

Leaky integrate and fire model

On the other side of the complexity spectrum of neuron models resides the Leaky
integrate and fire model. It is given by a single differential equation with a spike
generation criterion:

C
dV

dt
= −gL(V − EL) + Isyn(t)

if (V ≥ Vt) then V ← Vr

where V represents the membrane potential, C is the membrane capacitance,
gL is the leak conductance, EL is the leak potential. The neuron model integrates
the synaptic inputs Isyn and when the membrane potential exceeds the spiking
threshold Vt, the spike criterion is effectuated: a spike is registered and the mem-
brane potential is reset to its resting value Vr. The simple nature of this model
led to its widespread use in computer simulations even though its modeling ca-
pabilities are limited. The model can display only regular spiking pattern, the
shapes of action potentials are not modeled and assumed to be identical every
time a neuron fires and the spiking threshold and resting potential values are
fixed. The result is limited biological plausibility of the leaky integrate and fire
model.
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Izhikevich model

Both previously mentioned models have their limitations, the Hodgkin-Huxley
model is too costly to compute and the Leaky integrate and fire model is too
simple to simulate diverse behavior of neuronal types. As a result, many scientists
have tried to combine the strengths of both approaches to develop a model that
inherits some of the advanced featured of Hodgkin-Huxley model while keeping
the resulting model efficient. One of the successful models that emerged was
the model by Izhikevich. It was published in multiple versions; we present here
the generalized form found in (Izhikevich, 2007). The model is characterized by
differential equations:

C
dv

dt
= k(v − vr)(v − vt) + u+ I

du

dt
= a(b(v − vr)− u)

if (v ≥ vp) then v ← c, u← u+ d

where v is the membrane potential, u represents overall membrane recovery
current, C is the membrane capacitance, vr is the resting membrane potential,
vt is the instantaneous threshold potential, vp is a spike cutoff value, I is the
synaptic input current. Parameters a, b, c, d can be tuned to model different
spiking patterns of neuronal types. The most frequent patterns of spiking activity
(RS, FS, CH, IB, LTS, LS among others) can be modeled (Izhikevich, 2007).
Additionally, it has been shown to require much less computation time that the
Hodgkin-Huxley model (Izhikevich, 2007). This makes it one of the best models
for simulating large scale realistic networks.

3.2.3 Synaptic dynamics
The most important attributes of synaptic transmission are the conduction delay
and synaptic strength. The mechanism of chemical synapse is complicated and
varies significantly between neurons in the nervous system. Moreover, the process
is stochastic in nature and noise is introduces through the spontaneous release of
neurotransmitter. Precise modeling of these processes is thus very complex and
would be computationally costly considering the number of synapses in a typical
neural network. This usually necessitates simplifications when modeling large
networks such as visual or cortical areas of mammalian cortex.
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Synaptic strength

One of the simplest synaptic models employs a single weight parameter w to
represent the overall synaptic strength (the resulting EPSP/IPSP of synaptic
transmission). The input Isyn(t) of postsynaptic neuron np in time t is computed
as:

Isyn(t) =
k∑
i=1

wi

where wi are the weights of synapses to neuron np transmitting signals in time
t. Despite its simplicity, this synaptic model is used in many simulations of real
neural networks (Izhikevich and Edelman, 2008; Phoka et al., 2012; Popelová,
2013). It is often used in conjunction with models of short-term and long-term
plasticity which improve its limited plausibility (described in following sections).
Also, mechanisms for spontaneous activity can be simulated by introducing ran-
dom noise to neuronal inputs. More complex simulations of synaptic transmission
exist, for example models simulating synaptic conductances. More information
on synaptic modeling can be found in (Schutter, 2009).

Short term plasticity

The basic synapse model can be expanded by modeling short term synaptic
plasticity. One of the successful approaches is the phenomenological model by
(Markram et al., 1998) where n is the depression variable that models the avail-
ability of neurotransmitter and r the facilitation variable modeling the probability
of release of single synaptic vesicle. The values n(t) and r(t) are changing in time
and serve as scaling factors of the base synaptic weight. The development of the
short term plasticity is given by the following differential equations.

dn

dt
= 1− n

D
− nrδ(t− tn)

dr

dt
= ro − r

F
+ ro(1− r)δ(t− tn)

The parameter D is the time constant of neurotransmitter replenishment. Ana-
logically, F is the time constant of the return of the release probability back to
its baseline value ro. The function δ is the Dirac delta function. Parameters
D,F and ro have been experimentally determined for number of cortical neurons
(Markram et al., 1998). Each firing of a presynaptic neuron occurring at time tn,
decreases the depression variable n by nr, and increases the facilitation variable
r by ro(1− r).

Most synapses exhibit prominently only one of the possible forms of short
term plasticity (either facilitation of depression). This can be used to simplify the
modeled dynamics and combine both phenomena into single variable x. Similarly
to previous case, the synaptic weight gets scaled by the value of x(t). The dynamic
is given by the following differential equation.

dx

dt
= 1− x

τx

x← px when presynaptic neuron fires
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The value of the scaling factor x tends to return to equilibrium x = 1 with
the time constant τx and it is reset by each spike of the presynaptic cell to the
new value px. Any value p < 1 decreases x and results in short-term synaptic
depression, whereas p > 1 results in short-term synaptic facilitation (Izhikevich
and Edelman, 2008). Simulation results suggest (Izhikevich and Edelman, 2008)
that even the simplified model is capable of faithfully reproducing short term
synaptic plasticity observed in recordings of real neurons.

Long term plasticity

The most popular form of long term synaptic plasticity is the spike timing depen-
dent plasticity. Its general form can be found in (Song et al., 2000). As described
in previous chapter, repeated arrivals of presynaptic spikes shortly before the
postsynaptic spike lead to long-term potentiation (LTP) of the synapse, whereas
a repeated spike arrival after the postsynaptic spike leads to long-term depres-
sion (LTD). This behavior can be implemented modeling value M , which is a
modification value added to to the synaptic weight. Let ∆t be the time interval
between presynaptic and postsynaptic spike, The value of M is computed as:

M(∆t) =

A+ · e∆t/τ+ if ∆t < 0
−A− · e∆t/τ− if ∆t > 0

where A+, A− are the maximum values of change, which occurs when neurons
spike almost simultaneously, τ+ and τ− are parameters determined experimentally
(typically around 20 ms).

Conduction delay

The transmission of signal from presynaptic to postsynaptic neuron is not in-
stantaneous. Rather, the action potential developed at the axon hillock has to
traverse the entire presynaptic axon, opening and closing voltage gated channels
along its length. The speed of propagation ranges from 0.5 m/s for non myeli-
nated axons of some cortical neurons to 120 m/s in sensory and motor pathways
(Evarts, 1965; Swadlow, 1989). Further, typical chemical synapse introduces de-
lay of 0.5-4 ms (Chun-Hua et al.). Finally, the action potential is propagated
through the postsynaptic neuron’s dendrite until it reaches the soma. The result-
ing conduction delays reach up to 10 ms in cortico-cortical connections and the
cortico-spinal delays reach upwards of 70 ms (Swadlow, 1989).

The numerous properties of possible connections between neurons pose diffi-
culty when deciding how to model conduction delays in the network simulation.
Accepted practice is to note the structure of the nervous system the involved neu-
rons belong to (e.g. cortex, spine) and then assume the most likely connection
based on available research. A rough estimate of associated conduction velocity
is made and the modeled delay is computed from the distance between neurons
(Izhikevich, 2006; Popelová, 2013).
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3.3 Network activity and polychronous groups
In spiking neural networks, individual neurons develop action potentials according
to their neuron model and signal through synaptic connections. When observ-
ing network activity, the individual firing actions of neurons are collected in lists
called spike trains. These records hold the most important attributes of all indi-
vidual neuronal spikes: the involved neuron and the time of the firing. To avoid
confusion, we provide a definition of neuronal spike as regarded in the context of
neural computation and especially when discussing spiking patterns in a network.

Definition. Neuronal spike is an ordered pair (t, n) where n denotes the number
of a neuron and t denotes the time of development of action potential at the axon
hillock of the neuron n.

The observation that neural network activity exhibits patters of spikes has
been made decades ago (Abeles, 1982, 1991). Since then, it has been speculated
that these patterns might explain the mechanisms behind information represen-
tation and processing in networks.(Abeles, 1991; Izhikevich, 2006; Guise et al.,
2015). Researchers set to acquire evidence in the form of precise spike pattern
repetition using both computer simulations and data from real networks with
many positive results (Riehle et al., 1997; Villa et al., 1999; Chang et al., 2000;
Tetko and Villa, 2001; Izhikevich, 2006). One of the newest concepts belonging
to these spike patters is the so called polychronous group (PG) introduced by
Izhikevich in (Izhikevich, 2006). The novel idea behind the concept is that the
temporal pattern of firing (when the neurons fire) is as important as the spatial
component (which neurons fire) for information representation. Neurons typi-
cally require simultaneous arrival of multiple EPSPs to fire. If the EPSPs have
to arrive at the same time, the presynaptic neurons must also fire according to
the conduction delay. Conduction delays have been shown to be repeatable with
sub-millisecond precision and varying widely between pairs of neurons (Swadlow,
1974, 1985; Shadlen and Newsome, 1998). Thus not synchronous, but rather
precise, time locked activation of neurons would be the candidate of informa-
tion representation in a network. This is significant departure from the more
known theory of synfire chains (Abeles, 1991) where synchronous action is ex-
pected to transfer information through layers of neurons. Multiple experiments
in computer simulations were conducted supporting the existence of polychronous
groups (Izhikevich, 2006; Chrol-Cannon et al., 2012; Guise et al., 2015). We use
the formal definition of polychronous group as found in (Martinez and Paugam-
Moisy, 2009).

Definition. Let us have a set of trigger neurons N = {n1, n2 . . . nk}. A k-
triggered polychronous group is the set P of spikes in chain reaction following
activation of trigger neurons at a time pattern t1, t2 . . . tk. We call the initial
spikes TS = {(t1, n1), (t2, n2) . . . (tk, nk)} the spike trigger set. The size of a
polychronous group P is the size of the set |P |.

It should be noted that polychronous groups as defined above exist even in
absence of any network activity. One can imagine them as time-locked spike
patterns supported by the structure of connection delays in the neural network
that might emerge in neuronal activity if the trigger neurons are activated in a
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precise sequence. Those groups are referred to as supported polychronous groups
as per (Martinez and Paugam-Moisy, 2009).

However only a fraction of polychronous groups actually emerge during neu-
ral network activity. We call such groups activated polychronous groups (again
in accordance with (Martinez and Paugam-Moisy, 2009)) . We also follow their
practice to consider a group activated if the recorded activity in a network con-
tains the trigger spike set, because according to the definition once the trigger
spikes occur, the whole polychronous group appears. However it may happen
that the rest of the polychronous group fires slightly differently from the pre-
dicted structural pattern, especially in the presence of spontaneous activity and
other forms of noise (Izhikevich, 2006).
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4. Existing methods for
polychronous group detection
To evaluate properties and emergence of polychronous groups in neural networks,
a method capable of detecting such patterns needs to be employed. In this
chapter, we present existing methods for polychronous method detection in spik-
ing neural networks and make the distinction between scanning for all possible
polychronous groups in network structure and detection of activated groups in
recorded spike trains. Complexity analysis is carried out and existing algorithms
are further discussed highlighting several problems in actual use.

4.1 History and development of existing meth-
ods

Since the conception of polychronous groups in the founding literature (Izhike-
vich, 2006; Martinez and Paugam-Moisy, 2009), several methods searching for
polychronous groups were developed. Those methods reflect the authors’ needs
to establish polychronous group as a valid idea in the presence of similar concepts
e.g. synfire chains while also trying to provide evidence of precise spatio-temporal
patterns as an opposition to competing theories like the mentioned firing rate
model. As a result, existing methods employ an extensive scanning of neural
network structure for groups of neurons that might produce, if fired appropri-
ately, a non-trivial chain reaction of spikes in a network. In this text we call such
methods polychronous group scanning. It is important to make distinction be-
tween scanning algorithms and polychronous group detection algorithms that will
be discussed later in the chapter. Scanning algorithms search for polychronous
groups supported by network structure of synapse delays. In contrast detection
algorithms search through recorded spike data for activated polychronous groups,
meaning groups that actually appear during network activity.

Using scanning algorithms, researchers were able to show important facts
about spiking network structure including that the number of polychronous group
representable by a spiking neural network far exceeds the number of neurons,
which might imply a vast capacity of network memory (Izhikevich, 2006), or
that polychronous groups readily emerge in presence of spike timing dependent
plasticity, further establishing the connection to representation of memories in
the neural networks. (Izhikevich, 2006).

4.2 Polychronous group scanning
An example of an algorithm belonging to the group of polychronous group scan-
ning is presented here. Since those algorithms show many similarities and general
layout, for presentation the algorithm found in (Martinez and Paugam-Moisy,
2009) has been chosen, as it will later provide the most direct comparison to our
proposed method. Further methods can be found in (Izhikevich, 2006) (Maier and
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Miller, 2008). The variations between existing scanning algorithms are mentioned
in the algorithm description.

Algorithm description

The scanning algorithm assumes the knowledge of neuronal model, network dy-
namics and synapse connectivity matrices:

synapse_weight(Ni, Nj) : weight of synapse from neuron Ni to neuron Nj

synapse_delay(Ni, Nj) : delay of synapse from neuron Ni to neuron Nj

The layout of a scanning algorithm is then as follows:

Algorithm 1 Scanning algorithm
1: PGs = ∅
2: for all combination of s neurons out of n neurons of the network do
3: for i := 1 . . . n do
4: NbTriggeringConnectioni := 0
5: end for
6: for all trigger neurons TNk, k := 1 . . . s do
7: for all neurons Ni, i:=1 . . . n do
8: if synapse_weight(TNk, Ni) ≥ 0 then
9: NbTriggeringConnectioni := NbTriggeringConnectioni + 1

10: end if
11: end for
12: end for
13: for all neurons Ni, i := 1 . . . n do
14: if NbTriggeringConnectioni ≥ NbSpikesNeeded then
15: delay_max := maxs synapse_delay(TNk, Ni)
16: for all trigger neurons TNk do
17: tk := delay_max− delay(NTk, Ni)
18: end for
19: Run simulation to calculate the PG with trigger neurons
20: {NT1, NT2, . . . , NTs} firing with timing {t1, t2 . . . ts}
21: if size(PG) >= SizeNeeded then
22: Save the spike trigger set of PG to PGs
23: end if
24: end if
25: end for
26: end for
27: return PGs

It is assumed that neurons in the spiking neural network fire if they receive
EPSPs simultaneously from at least NbSpikesNeeded presynaptic neurons. Gen-
eral idea is to try every possible combination of s neurons to see if they could
form a meaningful set of triggers and then verify if such triggers produce large
enough polychronous group in the network. Algorithm proceeds by counting
the number of postsynaptic connections on every neuron in the network coming
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from the chosen neuron group. This number is stored for each neuron Ni into
field NbTriggeringConnectioni. If there arises postsynaptic neuron with more
then NbSpikesNeeded connections, one can be sure that it fires if correspond-
ing presynaptic neurons trigger in a sequence reflecting their delay so that the
EPSPs arrive simultaneously. This prevents trying every possible timing pattern
and saves computing time.

In the for-loop in step 13, every such postsynaptic neuron and resulting firing
sequence or trigger neurons is considered. The network activity is simulated and
the resulting polychronous group is observed. If it passes chosen size criterion, it
is accepted into the solution set.

The network simulation of polychronous group chain reaction (step 19) can
be carried out in many different approaches. It is mainly here where the existing
algorithms differ the most. Izhikevich uses his model of differential equations
(Izhikevich, 2007) in a discrete time simulation to simulate membrane potential
and observe spiking activity (Izhikevich, 2006) while Martinez and Paugam-Moisy
use event based simulation (Martinez and Paugam-Moisy, 2009). There, neurons
are considered firing (and registering their EPSPs into calendar queue) if they
either exceed given number of arriving spikes or if their membrane potential
exceeds certain threshold. Important to note here is that the simulation is carried
out without any noise in the network. This is because the simulation serves
as criterion describing which spikes (and the involved neurons) belong to the
resulting polychronous group and as such must be carried out deterministically.

Complexity

It is obvious that the complexity of the polychronous group scanning algorithm
depends on the complexity of network simulation. However general statement
about the layout can be made. Since s � n and all n neurons must be checked
for every combination of trigger neurons, the algorithm is at least Ω(ns+1) Further
analysis of complexity can be found in (Martinez and Paugam-Moisy, 2009) where
a proof can be found that using event based simulation and assuming realistic
connectivity in real networks, the complexity of O(ns+1) can be achieved.

Summary

To summarize thus far, regardless of which simulation method is used the basic
premise of scanning algorithm remains the same: search through the synaptic
delay structure of a network for activation pattern of neurons capable of producing
non-trivial activity in the network. These patterns may or may not surface during
network activity. Those that do, need to be detected by a separate class of
algorithms called polychronous group detection.

4.3 Polychronous group detection
Despite the promising results of the scanning algorithms, there is not much re-
search providing a complete solution of detection of polychronous groups actually
occurring either during spiking network simulation or in vivo spike trains (acti-
vated polychronous groups). To our knowledge, the only algorithms are due to
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(Martinez and Paugam-Moisy, 2009) and (Sun et al., 2015). They are a direct ex-
tension of scanning methods and require the use the scanning algorithm to create
database of polychronous groups supported in the network prior to their execu-
tion. Again, both methods are quite similar in their basic idea and the method
of (Martinez and Paugam-Moisy, 2009) was chosen as a direct continuation of
presented scanning algorithm.

Algorithm description

Using the scanning method, a database of supported polychronous groups in the
form of their corresponding spike trigger sets is created. Then the algorithm
searches through the recorded activity comparing activated and database pat-
terns.

Recorded spike trains are assumed in the form of matrix:

Spike(m, i): time of mth spike of neuron Ni

Algorithm 2 Detection algorithm of Martinez and Paugam-Moisy
1: Run scanning algorithm to obtain database of supported PGs
2: for all PG in the database do
3: retrieve trigger neurons {NT1, NT2, ..., NTs} from database
4: retrieve trigger timings {t1, t2, ..., ts} from database
5: for all m do
6: time := Spike(m,NT1)
7: if ∀k ∈ [2; s],∃l : Spike(l, k) = time+ tk − t1 then
8: Save PG as activated
9: end if

10: end for
11: end for

For every known polychronous group in the database, the first neuron whose
spiking activity belongs to the group is taken and its spiking record record is
ran through. Each spike in this record represents a potential placement of the
polychronous group. To verify activation of the rest of the group, the spiking
records of all other trigger neurons are checked if they contain spikes according
to the precise firing pattern associated with the spike trigger set of the group. If
so, the activation of the polychronous group is detected and is reported.

Complexity

For every polychronous group in the database, the firing of the first neuron of
the trigger set is fixated. On average, the spiking record of every neuron contains
O(S/n) spikes where S is the number of all recorded spikes. Thus O(S/n) fixations
are possible on average. The rest of the spike trigger set can be verified in constant
time Assuming that P denotes the number of polychronous group in the database,
resulting computational complexity of the detection algorithm is O(P ∗ S/n).
Further details can be found in (Martinez and Paugam-Moisy, 2009).
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4.4 Discussion
Martinez and Paugam-Moisy conclude that their proposed method is applicable
both to spiking neural network simulation and also to analysis of real data (Mar-
tinez and Paugam-Moisy, 2009). This claim certainly holds true for the detection
part of the algorithm if we already know possible polychronous groups supported
in the network structure and we are able to simultaneously record large number
of neurons. While difficult to provide, such recordings are becoming realistically
obtainable through advancing methods of data acquisition. However, we remind
that the detection algorithm can be used only in tandem with the scanning algo-
rithm and thus inherits any problems and restrictions of that algorithm.

And it is precisely the part of scanning for polychronous groups that we be-
lieve to be problematic. In the case of computer simulations, the complexity of
scanning algorithm prohibits analysis of larger networks. Because of that, scan-
ning methods have been restricted to use with network consisting of at most
several hundreds of neurons. However, much larger simulations already exist, not
to mention the size of real mammalian cortex.

The proposed application for real networks presents even more obstacles. Cer-
tainly infeasible is exciting real neurons and observing resulting responses espe-
cially considering the great number of combinations that must be explored. More
realistic could be simulating real neurons in a computer simulation. However
the current knowledge of neuronal and synaptic dynamics still doesn’t allow for
precise mapping between real and simulated neurons in non-trivial networks. For
example, we still have only a very incomplete description of cortex connectome.
More importantly, the simulation detail would have to be very high for faithful
mapping between neurons increasing computational complexity.

Finally, none of the existing methods account for noise in the network in the
form of spontaneous release of neurotransmitter despite being reported as impor-
tant part of neural network dynamics. (Andreae and Burrone, 2015; Hartmann
et al., 2015).
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5. Graph search based detection
method
We aim to address the issues of existing detection methods by proposing a new
method that does not need to employ a scanning phase to detect activated poly-
chronous groups. Rather, we attempt to directly interpret recorded data and
detect activated groups based of the spiking structure as this approach avoids
the restrictions of the scanning algorithm. We begin this chapter by discussing
the definition of polychronous groups. We establish the concept of a spike de-
pendency graph and general ideas behind the method. Two distinct algorithm
phases are described in greater detail. Discussed are method applications in noisy
networks and selectivity of the algorithm. Finally, our method is compared with
existing algorithms.

5.1 Requirements: polychronous group constraints
Following the definition of polychronous group strictly, we notice that the defi-
nition allows for structures that do not actually correspond to the general idea
of neural activity that begins with a group of triggering spikes which are then
followed by a fixed chain reaction propagating in the network. For example, no re-
striction is posed on the delay between triggering spikes. Presumably, trigger sets
spanning absurdly large periods of time are of little use for analysis of spiking
activity being extremely unlikely to ever occur in the spiking data. This con-
straint is posed implicitly on the polychronous groups detected by the algorithm
of Martinez since the only combinations of neurons that are considered have all
trigger neurons connected to the same postsynaptic neuron. In order to activate
the postsynaptic neuron, they must spike within a time window no larger than
maximum synaptic delay in the network. The period between the first and last
spike of a polychronous group is a good candidate for a user selectable parameter
depending on their intended use of detected polychronous groups. We denote this
parameter dmax.

To ensure non-triviality of polychronous groups, methods for polychronous
group detection usually allow either groups larger than specified minimum size
as in (Martinez and Paugam-Moisy, 2009) or require the longest path along acti-
vation chain to be at least a set number (Izhikevich, 2006). Both constrains are
valid criteria and either can be chosen based on the computation complexity and
the intended use for the detected polychronous groups. For out method, we have
chosen to detect groups where a path can be found between two spikes longer
than a number pathLength specified by the user.

As for the size of spike trigger set, the scanning algorithm fixes its size in the
beginning and returns only trigger sets of that size. If different sizes are required,
the user must run the scanning algorithm for every size specified. With increasing
size, the complexity of algorithm increases and so the size is usually kept low. For
example (Martinez and Paugam-Moisy, 2009) searches for trigger sets of size 3,
(Maier and Miller, 2008) uses sets of size 2 to explore properties of polychronous
groups. Reasonable might be to require trigger sets of size in a certain range
[minSize,maxSize] selectable by the user.
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To recapitulate, it is reasonable to require a detection method to report poly-
chronous group such that:

• the delay between the first and the last spike of a trigger group is at most
dmax

• the size of trigger set is in the interval [minSize,maxSize]

• the longest path along the activation chain is longer than pathLength pa-
rameter

where algorithm parameters path, dmax, minSize, maxSize are user selectable.

5.2 General concept
Let us first consider a spike from the recorded activity in a network without
noise, we deal with possible sources of noise later in the chapter. Such spike
is typically result of previous network activity in the form of spikes arriving
from presynaptic neurons. Different types of neurons behave differently and have
different spiking characteristics, however, general assumption is that in order to
provoke spike or bursting activity on postsynaptic neuron, several EPSPs must
arrive together within a short period of time called jitter. (Izhikevich, 2006;
Martinez and Paugam-Moisy, 2009). To achieve that, the spiking sequence of
presynaptic neurons must happen in precise time sequence matching the synapse
delays.

Every pair of recorded spikes of connected neurons that corresponds to the
synapse delay between them thus represents causality in the spiking structure
since when a presynaptic neuron fires, it propagates change in membrane po-
tential along its synapses to every postsynaptic neuron. The presynaptic spike
contributes to the postsynaptic spike and the postsynaptic spike depends on it.
The level of contribution and dependence may vary between presynaptic neurons
and alone they may have not been enough. However, one can be sure that to-
gether they were able to produce the postsynaptic spike (because it was indeed
recorded). In another words, this precisely timed spike set is enough to propagate
activity further and thus directly corresponds to a part of polychronous group.
This leads us to a following definition of spike dependency graph.

Definition (Spike dependency graph). Let S = {(n, t); neuron n fired at time
t} be a set of neuronal spikes representing recorded activity in spiking neural
network. Spike dependency graph is a directed graph G = (V,E) where V = S
i.e. graph vertices are the recorded spikes. Let s1 = (n1, t1) ∈ V, s2 = (n2, t2) ∈ V .
Set E consists of directed edges e = (s1, s2) such that there exists synapse between
n1 and n2 and presynaptic spike of neuron n1 in time t1 elicits an EPSP on neuron
n2 contributing to generation of postsynaptic spike in time t2.

Further in the text in the context of spike dependency graph, we use terms
spike and graph vertex interchangeably since they describe the same concept.

Comparing definitions of polychronous group and spike dependency graph we
obtain weak condition for detecting polychronous groups:
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Lemma 5.1. Let G = (V,E) be a spike dependency graph corresponding to
recorded activity in a network. Let P be the set of vertices of connected subgraph
of G, TS ⊆ P . Let P satisfy condition:

∀s, s′[s ∈ P \ TS ∧ (s′, s) ∈ E =⇒ s′ ∈ P ]

Then P is subset of polychronous group with spike trigger set TS.

Polychronous groups that do not follow such condition may be present in
the spiking recording. Some of the predecessors of a spike may not have played
any role in the development in cascading activity at all and merely got con-
nected because the neurons happened to trigger in convenient time. Consider
the spike dependency graph from figure 5.1. At first glance, we might recog-
nize that it contains polychronous group P = {1, 2 . . . 17} with spike trigger set
TS = {1, 2, 3, 4, 9}.

Figure 5.1: Example of a spike dependency graph.

However, this is not the only polychronous group present in the graph. Figure
3.2 shows a subgraph highlighted green. Let us imagine that only the spike set
TS ′ = {1, 2, 3} has fired in isolation. Surely the activity must cascade through
spikes C = {5, 6, 11, 3, 14, 16}. This is because the set respects every dependency
in the firing cascade and no other influence is needed to activate respective neu-
rons. We can successfully prove the existence of polychronous group P ′ = TS ′∪C
with trigger set TS ′ and report it.

In contrast, were the set of spikes TS ′′ = {1, 2, 4, 9} to trigger in isolation,
one might be able to observe response as in figure 5.3 highlighted red. This
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might be the case if spike 15 wouldn’t depend on spike 13 meaning neuron 5
would not require neuron 12 to spike precisely 5 ms earlier in addition to other
activity coming form neurons 1, 2 and 7 (producing spikes 9, 10 and 12). However
as this information is not present in the spiking data, we have to expect that
the dependency indeed exists. If the user requires polychronous groups with
maximum path length at least 4, this polychronous group cannot be reported
based on the structure present in the recorded data even though in reality the
maximum path is 6 (from spike 1 to spike 17). However we are still able to
at least report an approximation of such group in the form of the previously
mentioned group P and its trigger set TS satisfying TS ′′ ⊆ TS. We acknowledge
this limitation and focus on detecting as many (approximate) groups as possible.

Figure 5.2: Example of a detected activated polychronous group
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Figure 5.3: Example of a possible activated group that cannot be reported

5.3 Method structure
Instead of scanning for all the possible polychronous groups in a network like in
the method of Martinez, we try to directly interpret recorded data. This skips
the scanning phase of algorithm or rather performs scanning implicitly using the
structure present in the spike recording. The method can be split into two distinct
phases of graph construction and graph decomposition. During the first phase,
the spike dependency graph is constructed from the recorded spike data. The
algorithm then proceeds with the graph decomposition phase where it applies
lemma 5.1 to detect as many polychronous groups as possible and report their
trigger sets. Any additional constraints that may be posed on the polychronous
groups and their trigger sets are applied during this phase. For better clarity, both
phases are presented separately, each with its own set of associated variables and
procedures.
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5.4 Graph construction
Let us begin with the description of the first phase, the construction of a spike
dependency graph.

Description of variables

We assume spike list and synapse connectivity matrices:

spikes : list with fields neuron and time describing individual recorded spikes,
sorted by time field

synapse_weight(Ni, Nj) : weight of synapse from neuron Ni to neuron Nj, value
is zero if no synaptic connection exist between neurons

synapse_delay(Ni, Nj) : delay of synapse from neuron Ni to neuron Nj, value
is zero if no synaptic connection exist between neurons

Algorithm phase results in a spike dependency graph in the form of neighbors
lists:

successors(s) : list of spikes directly dependent on spike s

predecessors(s) : list of spikes on which spike s directly depends

Algorithm description

Algorithm 3 Construction of spike dependency graph
1: for all spikes s do
2: successors(s) := ∅
3: predecessors(s) := ∅
4: end for
5: for all spikes s do
6: preT ime = s.time
7: preNeuron = s.neuron
8: if preNeuron is excitatory then
9: for all postNeuron: synapse_delay(preNeuron, postNeuron) > 0 do

10: for jitter := 0 . . . maxJitter do
11: postT ime := preT ime+ synapse_delay + jitter
12: if ∃s2: s2.neuron = postNeuron and s2.time = postTime then
13: successors(s).add(s2)
14: predecessors(s2).add(s)
15: break
16: end if
17: end for
18: end for
19: end if
20: end for
21: return successors,predecessors
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For every spike of presynaptic neuron, we check if its postsynaptic connections
fired as well. If they happen to fire just after arrival of spike from presynaptic
neuron than there is spiking dependency between them and edge is added to the
graph. We allow for a short gap between supposed and real postsynaptic spiking
in the parameter maxJitter which is equivalent to jitter in the polychronous
group scanning algorithms.

Precise value of maxJitter should be tuned by the user and set with the
predicted neuronal model in mind. Larger values lead to more interconnected
and perhaps more faithful polychronous groups however care must be taken not
to create too many false edges. False edges lead to connecting otherwise sepa-
rate groups together and prevent the algorithm from individually reporting these
groups.

The use of maxJitter parameter is based on the convention mentioned in
(Martinez and Paugam-Moisy, 2009; Maier and Miller, 2008). However we note
that stronger EPSP probably influences the postsynaptic neuron longer that a
weaker one and thus an arbitrary, fixed value might not be ideal to determine
the spike dependency. Moreover, the relation is likely not simple. For simplicity,
we have decided not to model such dynamics, however, this allows for possible
improvement of the method in the future.

5.5 Graph decomposition
Once the dependency graph is created, the algorithm proceeds with the graph
decomposition phase. We present our algorithm description in two steps. The
general idea of the algorithm are briefly laid out followed by a detailed description
of the algorithm phase.

We are tasked with detecting groups passing the path criterion meaning we
need to find a path between two vectors in the group of at least a given size.
An existence of a single pair of spikes would suffice to accept the polychronous
group. An important observation is made in (Izhikevich, 2006) and (Martinez
and Paugam-Moisy, 2009) stating that if the trigger set of polychronous group is
activated, the rest of the group will trigger as well. This reduces the problem of
detecting the whole polychronous group to detecting the trigger set and proving
that there is large enough subset of the chain reaction present in the recorded
data to pass path criterion. For that, the condition from lemma 5.1 is used.

An effective way to do this is to take any spike in the graph, let us call this
spike a root, and look at its predecessors. Lemma 5.1 gives that if we take all the
predecessors as a spike trigger set, than together with the root spike we have found
a subset of polychronous group. The maximal path length is 1. To obtain larger
paths, new valid trigger set can be generated by replacing any of the trigger spikes
with all of its predecessors. At one point, the trigger sets start being sufficiently
far away from the root spike to be reportable while still satisfying condition from
lemma 5.1 along the way, thus forming a polychronous group.

General idea is then to consider every spike in the graph as root spike. For
every root spike, the recursive exploration of possible trigger sets is done as de-
scribed above. Care must be taken not to repeatedly visit already explored trigger
sets and to prevent the exploration from being exponential. A hash map contain-
ing a list of already explored trigger sets can be effectively used to cut recursion
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and achieve polynomial algorithm with respect to the number of polychronous
groups found in the recorded data.

Chronological order is used to process the root spikes in a graph. That is
because single trigger set may be obtainable from multiple root neurons. Let
us assume this trigger set has been already accepted during exploration from
previous root spike. Having already considered the trigger set before, it would be
pointless to re-explore from this point, the only novel information being larger
maximum path than before due to the new root spike being successor of the
former one. This can lead to large saving in computation time.

Description of variables

Let us now describe the phase of graph decomposition in full detail. The algorithm
phase requires spike dependency graph connection data in variable:

predecessors : adjacency lists of incoming edges obtained from graph construc-
tion phase

successors : adjacency lists of outgoing edges from graph construction phase

We output spike trigger sets of polychronous groups into variable:

accepted : hash set data structure containing accepted spike trigger sets

We output only trigger spike sets that fit the parameters:

minSize : minimal size of trigger set

maxSize : maximal size of trigger set

pathLength : path length required

dmax : maximal delay between first and last spike in the trigger set, it is required
that dmax is larger that maximum synapse delay in a network

In the algorithm we further make use of the variables:

max_path(v) : shortest path from root spike to spike vertex v

visited(v) a flag indicating if the vector was visited during search

ingraph : list of all vertices visited during search

vertex : current spike vertex during search

timeLimit : time limit on exploration

newTriggerSet : new candidate trigger spike set

rejected : hash set data structure containing rejected spike trigger sets

Finally, to implement breadth first search, we use the data structures:

queue : queue for searching through subgraph

exploreList : queue for trigger spike set exploration
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Algorithm description

During the algorithm we consider every spike vertex in the graph as a root vertex.
The first part of algorithm computes the longest path from any spike in the
predecessor subgraph to the root spike as these would be the candidates for
longest paths in the detected polychronous groups. If the algorithm proceeds
from the latest to the earliest spike in the subgraph than once the maximum path
is computed for any vector, all of its successors have already had the maximum
their own maximum path computed. This is because the spikes are ordered by
the time of their occurrence and synapse delays are positive only.

Next comes the exploration of possible trigger sets itself. It is started by
queuing the root vector as a trivial spike trigger set. Trigger set dequeued from
exploreList is modified to obtain new candidate spike trigger sets. In the for cycle
on line 36, every member is one by one replaced by all its predecessors in the spike
dependency graph. The resulting new trigger sets are tested if they still fall into
the time limit of search. If not, the search is stopped there and the set is not
placed into the queue for further exploration. The exploration is also stopped if
the new trigger spike was already created by a differ parent set and thus is already
recorded either in accepted or rejected spike trigger set hash maps. Finally, if the
newly created trigger set represents novel polychronous group, it is tested for size
and path length, either accepted or rejected and placed into an appropriate list.

The exploration may possibly take too long to compute, since polychronous
groups may span long periods of time in the recorded activity. This can be
reduced by limiting the simulation time depth of search by the user. This sig-
nificantly speeds up the computation but potentially causes the algorithm to
miss valid polychronous groups. However, the reliability of the activation of the
polychronous group was observed very high only for the initial part of activation
chain and then deteriorating with time as polychronous groups convolve with
others (Izhikevich, 2006). Thus it may be prudent to set a upper limit on a
polychronous group time span anyway. This is also the practice in (Martinez and
Paugam-Moisy, 2009).

Finally, the reason why the list of rejected spike trigger groups is reinitialized
for every new root vertex, is that the rejection might have happened due to the
path criterion. With a later root spike, the trigger set may increase its longest
path from the new root vertex compared to the previous one, thus having a new
chance of being accepted.
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Algorithm 4 Decomposition of dependency graph
1: accepted = ∅
2: for all spikes s do
3: max_paths(s) := 0
4: visited(s) := false
5: end for
6: queue = ∅
7: for all spikes root do
8: queue.enqueue(s)
9: shortest_paths(s) := 0

10: ingraph := root
11: visited(s) := true
12: while queue is not empty do
13: vertex = queue.dequeue()
14: for all predecessors p of vertex do
15: if visited(p) == false then
16: visited(p) := true
17: ingraph.add(p);
18: if vertex.time− p.time ≤ timeLimit then
19: queue.enqueue(p)
20: end if
21: end if
22: end for
23: end while
24: sort ingraph in descending order by spike time
25: for all spikes v in ingraph do
26: if v == root then
27: max_paths(v) := 0
28: else
29: max_paths(v) := maxs∈successors(v)(max_paths(s)) + 1
30: end if
31: end for
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Algorithm 4 Decomposition of dependency graph (continued)
32: rejected = ∅
33: exploreList.enqueue(root)
34: while exploreList is not empty do
35: triggerSet := exploreList.dequeue()
36: for all spikes s of triggerSet do
37: newTriggerSet := triggerSet \ {s} ∪ predecessors(s)
38: if minv∈newTriggerSet(v.time) ≥ root.time− timeLimit then
39: if newTriggerSet /∈ accepted ∪ rejected then
40: exploreList.enqueue(newTriggerSet)
41: if minSize ≤ |newTriggerSet| ≤ maxSize

and maxv∈newTriggerSet(v)(max_paths(s)) then
42: accepted.add(newTriggerSet)
43: else
44: rejected.add(newTriggerSet)
45: end if
46: end if
47: end if
48: end for
49: end while
50: for all spikes v in ingraph do
51: max_paths(v) := 0
52: visited(v) := false
53: end for
54: end for
55: return accepted

5.6 Complexity of graph search based method
During the first phase of algorithm i.e. the graph construction, we run through
every spike and look for all possible synaptic connections for spike response in
order to detect spiking dependency. Since maxJitter is a constant, we get com-
plexity of O(cS) where c is the maximum number of connections of a neuron in
neural network and S is the number of recorded spikes.

For the part of graph decomposition, we consider every spike as a root spike
and run breadth first search into predecessor subgraph to compute maximal paths
of predecessor spikes. Since the maximum depth is limited, at most cl edges and
vertices are explored, l being the time limit of search depth. The complexity
of the computation of longest paths is then O(clS). Then, the exploration of
spike trigger sets is carried out. Every spike trigger set is explored at most once
for each root. If we assume that the size of any trigger set is much lower than
number of spikes recorded spikes and that we use appropriate hashing function to
avoid frequent collisions, the complexity of exploration of algorithm is on average
O(PG∗S), PG being the number of polychronous groups present in the recorded
data.
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Since probability of synaptic connection between cortical neurons diminishes
with increased distance and there is only finite number of neurons in an area
of network, many network models consider maximum number of connection per
neuron to be constant. Moreover, only a fraction of possible synaptic connection
results in dependency in the graph, due to the precise temporal requirement thus
limiting vector degree. The complexity of the whole algorithm can be estimated
as O(cS + clS + PG ∗ S) = O(PG ∗ S) for realistic networks.

5.7 Noise in the network
So far, we have been dealing with noiseless networks. As noise is considered
any spiking activity that is not result of incoming spikes from recorded neurons.
The problem with noise in the network is that lemma 5.1 relies on causality of
spikes. If there are edges created in the graph leading to spikes that occur without
involvement of other recorded neurons, the lemma no longer holds true and this
might lead to reporting wrong or altered polychronous groups. Most common
sources of noise are:

• spontaneously firing or bursting neurons

• artificial inputs (e.g. electrode stimulation)

• activity coming from non recorded neurons (e.g. different parts of cortex)

• synaptic minis

The common denominator of all these phenomena is that they are capable of
producing spiking activity in the network on their own without involvement of
recorded neurons. However their different origins may prove useful in reducing
their influence on detection algorithm.

A list of potentially spontaneously firing neurons can be created and used to
filter recorded spiking activity; no edges will be added leading to these spikes
during graph construction phase. Especially in the case of computer simulation,
complete information about neurons in the network is available and the behavior
may be detected even in the case of complicated neuron models. This could be
done as a part of preprocessing before actual simulation.

In the case of artificial inputs to the network (stimulating with electrodes),
one can simply filter the initial spikes that are obviously result of stimulation.
Again, no edges are added leading to this spike vertices.

Activity coming from non recorded neurons generally falls into two categories.
Activity coming from other parts of cortex is best treated as inputs to the network
since it is hopefully not numerous, this of course requires precise tracking of
such inputs. Activity from the region of interest is typically simulated in full
and every neuron is recorded. This is probably not the case in real network
recordings, however, the more neurons are recorded, the better the performance
of the algorithm will be.

Perhaps the most interesting source of noise in the network are the miniature
postsynaptic potentials caused by spontaneous release of neurotransmitter. Many
functions have been attributed to spontaneous activity, among them keeping a
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sort of base line activity in a network. It has been repeatedly reported that synap-
tic minis play a crucial role in forming of shaping neural connections (Andreae
and Burrone, 2015). To distinguish between miniature and normal releases of
neurotransmitter, it is generally sufficient to consider the size of generated post-
synaptic potential, being much smaller in the case of minis compared to regular
EPSP/IPSP.

5.8 Selectivity of group detection
It must be re-emphasized that using the graph search method, it is impossible to
report every polychronous group present in the spiking activity due to the weak
nature of lemma 5.1 This may potentially cause difficulties with application of
the method to analysis of spiking activity, for example the method is obviously
not fit to report absolute number of activated polychronous groups present in the
data, since some of the groups may be unintentionally connected and reported
only as a union of separate groups. Still, many valid groups can be successfully
detected by the method which might prove useful in different scenarios especially
involving large networks, where no other methods are computable in reasonable
time.

5.9 Summary of presented methods
Finally, methods for polychronous group detection are compared (see Table 5.1
for comparison of method properties) and we summarize the analysis of presented
methods.

Table 5.1: Comparison of presented methods for detection of polychronous
groups.

Properties Martinez detection Graph detection
network dynamics required not required
synapse connections required required
PG scanning required not required
trigger set size increases complexity implicitly
scanning complexity O(ns+1) O(PG ∗ S)
detection complexity O(PG ∗ S/n) O(PG ∗ S)
detection full partial

The main improvement introduced by graph search method is the lifting of
several prohibitive requirements placed upon the knowledge of neural network
in order to detect activated polychronous groups. This leads to much easier
application to different simulation and potentially application to analysis of read
data. Only a rough idea of neuronal and synapse dynamics is required to tune
jitter parameter. Full knowledge of synapse connections in networks is required
by both methods though.

Another improvement is the omission of scanning phase of the existing de-
tection methods. The complexity of existing scanning algorithm required before
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actual detection increases sharply with the network size prohibiting application
on larger networks (as discussed in previous chapter).

It must be noted, that the result of graph search is an approximation of the full
detection of activated groups in the network. Certain groups cannot be reported
individually based solely on the information contained in the spiking structure.
However every reported group satisfies the definition of polychronous group due to
the application of lemma 5.1. By contrast, the detection using scanning method
uses pre-computed information in the form of database of supported polychronous
groups to exactly detect all activated groups.

Finally, existing methods of detection of activated polychronous groups can
not be used while working with noisy networks, e.g., networks exhibiting spon-
taneous activity of synapses. While this poses some complication for the graph
search method, it is capable of detecting activated polychronous groups even in
the presence of noise.
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6. Spiking neural network
simulation
In order to conduct experiments analyzing behavior of polychronous groups emerg-
ing in neural networks, we needed to be able to simulate simulate such networks
with sufficient level of detail. As discussed earlier, polychronous groups neces-
sitate the use of spiking network simulations. In this chapter, we describe our
choice of simulator and describe our involvement in revising its parameters and
network dynamics to improve the realism and plausibility of simulated activity.
Results of the applied modifications are discussed. Simulations of neural networks
are used to provide data for experiments presented in the next chapter.

6.1 Simulator requirements
When introducing the concept of polychronous groups, Izhikevich formulated the
minimal required properties of networks that are able to exhibit formation of such
groups. As these were pivotal for the choice of our network simulator, we provide
a recapitulation here. Namely the are:

• The networks simulation needs to allow for development of spikes of in-
dividual neurons. Appropriate neuron model should be used for plausible
results.

• Conduction delay must be simulated and has to be non-trivial (i.e. not
unitary). Emergence of polychronous groups relies on the delay structure
of the network, its concept being both spatial and temporal pattern of
spiking activity.

• Simulation of synaptic dynamics must include simulation of some for of
long term plasticity to allow for formation and development of polychronous
groups.

6.2 SUSNOIMAC
To satisfy our the requirements on the simulator, we have decided to adapt the
SUSNOIMAC simulator presented in (Popelová, 2013). The name stands for Sim-
ulator Using Spiking Neurons Originally Intended for Modeling Auditory Cortex
and the notable features of the simulator are:

• The simulator belongs to the category of spiking neural networks and uses
Izhikevich neuron model for realistic development of action potential

• Simulations of large scale networks are possible thanks to its high com-
putational efficiency resulting from parallel implementation. Models with
100 thousand neurons and 21 millions of synapses have been successfully
simulated.
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• It allows for high flexibility in network structure definition (neurons, their
types and density and synaptic connection with given weights and delays)
and high flexibility in definition of inputs.

• High amount of detail of synaptic dynamics is achieved by implementing
models of spike-timing dependent plasticity and spontaneous activity in a
form of spontaneous synaptic release

• The simulator is able to batch process multiple experiments aiding in the
experiment design.

As such, the simulator satisfies all requirement posed above. Moreover, its ca-
pabilities allow for large scale, physiologically faithful simulations of mammalian
cortex as demonstrated in (Popelová, 2013). Last but not least, we were able to
closely cooperate with its creators; this greatly facilitated its adaptation for our
intended use.

6.3 Revising the simulator
Upon completion in 2013, the simulator was suitable for faithful simulations de-
veloping advanced network properties such as tonotopy of the auditory cortex
(Popelová, 2013). However, due to time constraints, certain features were miss-
ing in the simulator, notably a mechanism for simulating short term plasticity.
In addition, certain neuronal types showed non physiological firing frequency.
Following are the applied methods addressing presented issues.

6.3.1 Modeling of short term plasticity
To improve the realism of simulated network activity, we have decided to im-
plement a mechanism for short-term plasticity, which was missing in the original
version of simulator. When deciding on the possible simulation method, the over-
fall focus of the simulator had to be considered. The simulator was designed to
allow for efficient stimulations of large networks. Thus the implemented mecha-
nism needed to be simple enough not to worsen its computation performance.

We have decided to implement the simplified model of short term plasticity
as presented in section 3.2.3. We have used following parameters published in
(Izhikevich and Edelman, 2008) to differentiate the effect of short-term plasticity
in different types of neurons. Synapses of neuronal types not in the table are
assumed not to exhibit short term plasticity. The implementation parameters
are in Table 6.1.

Table 6.1: Parameters used in the implementation of short-time plasticity based
on (Izhikevich and Edelman, 2008).

neuronal types (to)
(from) p,ss (RS) b (FS) nb (LTS)

p,ss (RS) τx=150, p=0.6 τx=150, p=0.6 τx=100, p=1.5
b (FS) τx=150, p=0.6 τx=150, p=0.6 no plasticity
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6.3.2 Update of model connectivity
The SUSNOIMAC simulator is suitable for modeling of the primary auditory
cortex of mammalian brain. One of the greatest challenges when creating realistic
models of real networks is the acquisition of structure data. The types of neurons
in the network, their location in the network structure and synaptic connections
must be known. The research of these network parameters is far from complete,
sometimes with conflicting results.

The precise parameters used in the SUSNOIMAC simulation of the primary
auditory cortex are specified in (Popelová, 2013, pp. 103-107). Resulting network
activity was observed and compared to data from real networks (Popelová, 2013,
Chapter 8). Model showed generally very plausible behavior developing many
properties observed in real networks. Notable exceptions were the firing rates of
neuronal types b2/3 and b5 (basked neurons in layers 2/3 and 5). Typical firing
frequencies in the simulated model were 40-45 Hz for b2/3 neurons and 15-30 Hz
for b5 neurons. By contrast, real network observations report values of 3.5-5 Hz
for for b2/3 neurons and 6-8 Hz for b5 neurons (Li et al., 2014; Sakata and Har-
ris, 2012). Although comparing absolute values of firing rates can be deceiving,
reasons to suspect the simulation values are twofold. Firstly, the b2/3 neurons
fire more frequently than b5 neurons in the model, while it is contrariwise in both
studies. Secondly, all other neuronal types in the simulated model show plausible
firing rates in the range of 0.5-20 Hz agreeing with observations in (Sakata and
Harris, 2012). To resolve the non-physiological firing rates of certain types of
neurons (most noticeably b2/3), the connectome was revised in cooperation with
Institute of Experimental Medicine, Academy of Science of, Czech republic. The
original and updated connectivity data used in the revised model can be found
in the electronic attachment. The change in the firing rate of different neurons is
documented in the next section.

6.4 Results
The network activity was observed both without and with input noise. 50000
neurons were simulated. Only spontaneous activity was present in the network
without input noise. Simulated model time was 10 minutes in each experiment.
Further details and simulation properties setup was as described in (Popelová,
2013, chapter 7). Activity in model without revisions (Figures 6.1a,b), with re-
vised connectome (Figures 6.1c,d) and with both revised connectome and imple-
mented short term plasticity was recorded (Figures 6.1e,f). Significant decrease in
firing rate of b2/3 and b5 neurons was observed in the simulations using revised
connectome (Figures 6.1c,d,e,f) compared to simulations using original connec-
tome (Figures 6.1a,b). The mean firing rate of b2/3 decreased from 40 Hz to
around 3 Hz in the simulation without noise input and from 45 Hz to 5 Hz in the
simulation with noise. Similarly, the mean firing rate of b5 decreased from 10 Hz
to around 5.5 Hz in the simulation without noise input and from 30 Hz to 8 Hz in
the simulation with noise. Addition of the short-term plasticity had further, but
smaller effect on firing rate in the network. Notably, it led to further decrease in
firing rates of b2/3 and b/5 neurons in the simulation with input noise, from 5
to 3 Hz and from 8 Hz to 4 Hz respectively (See figures 6.1d,f).
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(a) No revision, no noise (b) No revision, input noise

(c) Revised connectome only, no noise (d) Revised connectome only, input noise

(e) Revised connectome + plasticity,
no noise

(f) Revised connectome + plasticity,
input noise

Figure 6.1: A comparison of the mean network activity between networks without
revision (a, b), with revised connectome (c, d) and networks with model imple-
menting short-term plasticity and revised connectome (e, f). First column (a, c,
e) displays simulations without input noise, second column (b, d, f) with input
noise.
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6.5 Discussion
The simulation results suggest that firing rates observed in the revised model
improved both absolutely and relatively when using the revised connectome, i.e.
firing rates of both concerned neuronal types are now close to values observed
in real networks (Lindsey et al., 1997) and type b5 neurons now appear more
active than type b2/3 neurons (Sakata and Harris, 2012). Other neuronal types
showed comparatively minor changes in their firing rated as stayed withing their
expected ranges from (Sakata and Harris, 2012).

The addition of mechanism for short term plasticity had further minor but
positive effect on firing rates in the network. Its effect was noticeable in the
simulations with input noise where it further reduced firing rates of concerned
neuronal types closer to expected values. More importantly, the implemented
mechanism increases the realism of simulated model.

Both revisions improved behavior of the network activity in the simulated
model. This was important for conducting plausible experiments on behavior in
polychronous groups, since the emerging polychronous groups depend closely on
the network structure and dynamics.
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7. Analysis of polychronous
groups in spiking neural networks
Before any analysis of emergence and behavior of polychronous groups in neural
networks was possible, a compilation of published research was needed to estab-
lish basic knowledge of the subject. Being a relatively new concept, not many
results have been published so far, however this situation changes by the year. In
this chapter, we present in detail the most influential results published so far. We
remark on the the lack of research of behavior of polychronous groups in noisy net-
works, i.e networks where spontaneous synaptic activity occurs, despite it being
important mechanism of formation real neural networks. Finally we conduct an
experiment exploring emergence of polychronous groups in spontaneous activity
in network subjected to noisy inputs. The results are presented and discussed.

7.1 Related works
The article (Maier and Miller, 2008) provides an overview of various character-
istics of polychronous groups emerging in a minimal model of spiking neural
network able to exhibit such groups. The network model obviously plays a major
role in the results of the experiments and in this case it had following properties:

• Integrate and fire neuronal model

• Varied size, up to 1500 neurons

• Variable connectome with up to 30000 synapses

• Synapse delays based on distance between neurons

• Long term plasticity using STDP

Following figures are due to the authors of the experiments. The structure of
synaptic delays in a spiking network was examined for supported polychronous
groups using scanning method similar to the one presented in chapter 4. Figures
7.1 and 7.2 summarize the idea that the number of supported groups in a network
grows as the size of the network increases. The data suggest that the relation
seems to be linear in case of increase of the number of neurons. As for increasing
the number of synapses, the rate of increase is even faster suggesting possible
exponential growth. These findings are consistent with those of (Izhikevich, 2006).

The final figure 7.3 compares the number of groups present in network where
synapse delays are chosen randomly and those where the neurons are connected
deterministically meaning the delays reflect the distances between neurons. The
data suggest that that the number of polychronous groups was much higher for
the network with the proportionally chosen delays.
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Figure 7.1: A plot showing the number of polychronous groups as a function of
N, the number of neurons in the system (Maier and Miller, 2008).

Figure 7.2: The number of polychronous groups as a function of m, the number
of input connections to each neuron in the network (Maier and Miller, 2008).
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Figure 7.3: The number of polychronous groups as a function of N , the number
of neurons in the system, for networks with random vs. deterministic delays.
The random network graph is marked by small circles, the deterministic graph
by inverted triangles (Maier and Miller, 2008)

.

Another research article (Chrol-Cannon et al., 2012) set to explore the emer-
gence of polychronous groups under varying input patterns. The simulation setup
was following:

• Izhikevich neuron model

• 1000 neurons

• 0.1 connection probability (100000 synapses)

• Synapse delay in {0, 20} ms for excitatory, in {0, 1} ms for inhibitory neu-
rons

• Long term plasticity using STDP

The experiments were carried out with varying number of input patterns
presented to the network (1, 2, 4, 8 inputs). Each input pattern consisted of 100
spike trains fed to 100 pre-selected input neurons chosen at the beginning of the
simulation. Each input pattern lasted a whole second before switching to the next
one. After such stimulation, the network structure was examined for supported
polychronous groups using scanning algorithm. Authors compared experiments
where 1, 2, 4 or 8 patterns were repeatedly alternated throughout the duration
of the simulation. The results are summarized in Figure 7.4.
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Figure 7.4: Emergence of groups over a 5,000 second time period while being
stimulated by; 1, 2, 4 or 8 alternating patterns. Snapshots of numbers of groups
within the network are taken at 250 second intervals (Chrol-Cannon et al., 2012).

The main finding was that the number of supported polychronous groups
seems to decrease with growing number on presented input patterns. It was
hypothesized that this development might be due to the competition of input
patterns in the network structure.

7.2 Polychronous groups emerging in sponta-
neous activity

So far, the behavior of polychronous groups in noisy networks developing spon-
taneous activity is not documented. We believe that this is due to the lack of
methods are capable of detecting polychronous group even in the presence of
noise. As mentioned earlier, spontaneous activity is an important element in
development and function of the network and models missing mechanisms of its
development lack the biological plausibility of more realistic models like the SUS-
NOIMAC simulator described in previous chapter. Our graph search method
detection is, to the best of our knowledge, the only method capable of analyzing
data from such advanced simulators.

We decided to evaluate the polychronous groups present in spontaneous activ-
ity in a network. So far, we are not aware of any research analyzing polychronous
groups emerging in spontaneous activity. The published research so far, presented
in the previous section, helped us form the basic assumption about the behavior
of polychronous group in such conditions. We hypothesized that spontaneous
activity can be viewed of as a self imposed input to the network structure repeat-
edly occurring with intensity and frequency oscillating around a baseline given by
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parameters of minis. We assumed that the greater the number of supported PGs
in a network, the more polychronous groups would get activated by random input
such as spontaneous activity and thus present in the recorded data. We aimed
to explore the development of polychronous groups present in network subjected
to noise input of varying intensities to observe potential differences in network
structure.

In detail, we hypothesized that:

• Noise would behave as large number of input stimuli presented to network
inputs

• The number of supported PGs would drop gradually during simulation (as
per (Chrol-Cannon et al., 2012))

• As a result, the number of activated PGs during spontaneous activity would
drop as well

• Input noise intensity could play a role in the rate at which PG count di-
minishes

7.2.1 Experiment method
We used the revised SUSNOIMAC simulator to simulate a network consisting of
5000 neurons with topology found in primary auditory cortex. Detailed descrip-
tion of network model can be found in (Popelová, 2013, Chapter 7). Experiment
was conducted in 2 phases. First phase was a general adaptation of network
to the presented noisy input that was carried out in a simulation of 10 minutes
of model time. All throughout this period, the synaptic weights were allowed
to adapt using spike-timing-dependent plasticity. Changing values of synaptic
weights were saved every minute to allow for examination of network state.

Second phase consisted of simulating 10 seconds of emerging spontaneous
activity using saved network states from previous phase. We call these alternate
reality experiments since they allow for a different network development while
beginning at exactly the same state as the saved network snapshot. This time
the STDP was disabled so that the activity better represents the saved network
and not a new development. The overall experiment structure is summarized in
figure 7.5.

Figure 7.5: The structure of conducted experiment. Snapshots of the adapting
network were taken every minute for later simulation of spontaneous activity.
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When a SUSNOIMAC simulation starts, there is an erroneous behavior of
neurons caused by the initial development of membrane potential of neurons.
The simulation settles quickly and normal network characteristics are established
after 2 seconds of simulation. To eliminate this boundary effect of simulation
start, the first 5 second of recorded spontaneous activity is discarded and only
the remaining 5 seconds are used for the analysis to avoid possible misleading
data, see figure 7.6.

Figure 7.6: The first 5 second of recorded spontaneous activity from the alternate
reality experiment is discarded to reduce boundary effect of simulation start.

Noise levels of 0.0025, 0.01 and 0.5 were tried in separate simulations (rep-
resenting inputs in the form of minis, weak noise and strong noise respectively).
Each simulation was repeated 10 times for each level of noise and observed values
were averaged respectively.

The numbers of activated polychronous groups in the simulations were de-
tected using the graph search method of detection. For further analysis, we have
decided to observe the number of groups that occur multiple times during the
simulation suggesting their strong support in the network structure. As the graph
search method may miss activation of some groups, we needed to combine our
method with the algorithm of Martinez. Our graph search method was used
to provide approximation of the database of polychronous groups present in the
network. Such database would be unobtainable using existing scanning methods.
The method of Martinez (without the initial scanning phase) was then used to
precisely count the number of occurrences of activated polychronous groups.

7.2.2 Results
A significant drop in the amount of PGs present in spontaneous activity was
detected by the algorithm (see figure 7.7). More gradual descent was expected,
however recorded data are feasible and seem to agree with existing experiments
(Chrol-Cannon et al., 2012). Faster descent rate was expected for stronger noise
levels, but no difference was detected; all experiments reach the reduced values
of activated polychronous groups by the end of the first minute (figure 7.7).
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Figure 7.7: The numbers of detected activated polychronous groups during 5s of
spontaneous activity during the alternate reality experiments. The x-axis denotes
the time of the snapshot of adapting network defining the synaptic weights used
in alternate reality experiment.

Figure 7.8: The numbers of spikes recorded during 5s of spontaneous activity.
The x-axis denotes the time of the snapshot of adapting network defining the
synaptic weights used in alternate reality experiment.
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Figure 7.9: The percentages of recurring polychronous groups during 5s of spon-
taneous activity. The x-axis denotes the time of the snapshot of adapting network
defining the synaptic weights used in alternate reality experiment.

Similar number of spikes were recorded in the 10s alternate reality experiments
for the initial weights as for the subsequent minutes (roughly 95000 spikes, see
figure 7.8) and similar number of spikes were discarded from the first five seconds
of every simulation. The difference in the number of activated PGs thus indeed
seems to be the result of STDP adaptation to the noisy input and not a side
effect of change in overall network activity.

The data suggest, that while the number of activated polychronous groups in
the adapted network sharply decreases, those that are present actually reappear
with higher probability during a period of time in the adapted network. The
percentage of polychronous groups that occurred more than once during analyzed
period went from 5% to around 14% (see figure 7.8).

7.2.3 Discussion
Despite the exposition to a noisy input, the network structure seems to be devel-
oping strong support for certain polychronous groups. This is supported by the
increased reappearance of polychronous in spontaneous activity in adapted net-
work compared to the initial state with randomized weights. This occurred, even
when adapting without additional input (inputs were minis) supporting existence
of the self-organizing mechanisms of spontaneous activity in network.

Our data seem to support the hypothesis that input noise behaves similarly to
a large number of input stimuli regarding adaptation of polychronous groups. The
study (Chrol-Cannon et al., 2012) observed decrease of supported polychronous
groups when increasing the number of inputs presented to the network. Simi-
larly in our experiment, a sharp decrease in activated polychronous groups was
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observed between the adapted (to a large number of stimuli) and randomized
networks (no stimuli yet presented for adaptation). Interestingly, no significant
difference was found between different intensities of input noise. This suggests
that it is the number of input stimuli, rather than their strength, that has greater
effect on adaptation of polychronous groups.

Another possible explanation of the similarities between varying levels of input
noise could be that even self-organization resulting from spontaneous activity is
enough to saturate the supporting capacity of the network. Polychronous groups
have to compete for network support and if there exists a maximum support
capacity of a network, stronger input might just replace the existing groups faster
while keeping the overall number the similar.

We speculate that besides the self-organization mechanism of spontaneous re-
lease of neurotransmitter, its activity can actually have positive effect on capacity
of support in the neural network. By introducing weak inputs to the network,
the supported polychronous groups get weaker thus potentially allowing for addi-
tional supported groups in the network. However, our experiment provides only
indirect support and further examination would be necessary.
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8. Conclusion
In this thesis, we have presented a new method for polychronous group detection
based on the concept of spike dependency graph in the recorded activity of a neu-
ral network. Our approach avoided the universally employed extensive scanning
for polychronous groups resulting in several improvements over existing methods.
Most notably, it reduced the computation complexity allowing the use with large
neural network simulations. It also allows for detection of activated polychronous
groups in noisy networks, which is feature missing in the existing methods. Fi-
nally, comparatively less detailed description of the neural network dynamics is
required further facilitating its use with various neural networks. The trade-off
for these improvements is the reduced sensitivity of detection.

Using the presented detection method, we were able to conduct experiments
exploring emergence of polychronous groups in spontaneous activity. We have
shown that input noise leads to reduced overall activation of polychronous groups
suggesting saturation of the supporting capacity of a network. While the over-
all number of activated groups decreased, groups that remained in the recorded
activity appeared with higher probability hinting a development of network sup-
port for certain groups. Our findings seem to support the claim that noise and
spontaneous activity contribute to self-organizing behavior of neural networks.

To conduct the experiments, an advanced simulation model of auditory cortex
(SUSNOIMAC) was adapted. We were able to revise the simulated network
structure and enrich the simulated synaptic dynamics by implementing short-
term plasticity. The revised simulation model exhibits more realistic firing rates
of basked interneurons.

As discussed earlier, the single jitter parameter is not optimal when modeling
spike dependency. More complex criteria of spike dependency could be developed
in the future to improve the detection performance of proposed method. More
experiments examining emergence of polychronous groups can be conducted, es-
pecially with polychronous groups representing various sensory stimuli.
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A. User documentation
Here we provide the user documentation for the implementation of our graph
search method. Input and output parameters are defined. Interpretation of
output is provided. The application of our method on data from SUSNOIMAC
simulation is facilitated by provided loading scrip which is described at the end
of the guide.

A.1 Environment version
The implementation was developed and tested in Matlab version 2016b.

A.2 Installing the implementation
The implementation of the graph search method can be found in the source folder
of electronic attachment. This folder needs to be added to the Matlab path by
following command:
>> addpath ( ’ path_to_implementation_folder ’ ) ;

A.3 Function call
The main function of the graph search detection method is contained in the file
graphDetection.m and is called from the Matlab environment as:
>> PGs = graphDetect ion ( sp ikes , exc i t a to ry , de l ayL i s t s , . . .

weights , weigthLimit , j i t t e r , . . .
t imeLimit , maxDelay , maxPath , . . .
minSize , maxSize ) ;

A.4 Function parameters

A.4.1 Input parameters
The function requires 11 input parameters. Their order is fixed and they can be
split into 3 categories:

Network data

Let us assume that a network has n neurons and s spikes have been recorded.

• spikes - list of spikes in the network (recorded activity) in the form of s× 2
matrix, each row contains one spike, first column represents time of spike,
second column denotes neuron number, list of spikes must be in ascending
order by the time of spike
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• excitatory - mask denoting excitatory status of neuron in the form of 1× n
vector, field containing 1 represents inhibitory neuron, field containing 0
represents excitatory neuron

• delayLists - connectivity data in the for of n × 1 cell array D, cell D{i}
contains a m × 2 matrix Di containing synaptic delays of neuron i to its
postsynaptic connections, each row of Di represents one synaptic connec-
tion, first column ofDi is the number of postsynaptic neuron, second column
of Di is the conduction delay

• weigths - synaptic weights of the network simulation in the form of n × n
matrix W , W (i, j) denotes the weight from presynaptic neuron i to postsy-
naptic neuron j, W (i, j) = 0 it there is no connection between neurons

Graph construction parameters

• weightLimit - minimum weight of synapses able to form a connection in the
spike dependency graph, serves to filter weak synapses, must be in range
[0, wMax], where wMax it maximum weight allowed in the network

• jitter - jitter parameter of allowed concurrency of spikes

Graph decomposition parameters

• maxPath - length of path required to be present in the group graph for it
to be reported

• minSize - minimum allowed size of spike trigger set

• maxSize - maximum allowed size of spike trigger set

• timeLimit - maximum allowed time difference between first and last spike
belonging to the detected group, serves to cut long polychronous groups

• maxDelay - maximum allowed time difference between first and last spike
of the trigger set of detected group, must be greater that the maximal
conduction delay in the network

A.4.2 Output parameters
• PGs - detected activated polychronous groups

A.5 Interpreting the output
When the main function finishes its computation, it stores the detected in the
output parameter PGs. Its content can be observed by typing the parameter
name to the console. An example output might look like :
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>> PGs

PGs =

1x3 c e l l array

Columns 1 through 3

[ 3 x2 double ] [ 4 x2 double ] [ 4 x2 double ]
We can interpret the output as follows. The method detected 3 groups and
reported them in cell array of size 1× 3. Each cell contains corresponding spike
trigger sets. To obtain the spike trigger set of first detected group we query the
console with command:
>> PGs{1}

ans =

0 586
4 3032

58 412
The first column of the output matrix represents the firing pattern of the spike
trigger set, the second column the trigger neurons. Each row represents one
trigger spike. For example, the first row represents the spike of neuron 586 at a
time 0.

A.6 Loading script
To facilitate loading data from the SUSNOIMAC simulator, a loading script
was created. For full guide to the SUSNOIMAC simulator, see (Popelová, 2013,
Chapter 3). For our purposes we need the following simulation files:

• myname_firings.csv

• myname_neuronsStatistics.csv

• myname_synapsesStatistics.csv

• table1.csv

The loading script is called loadAll.m and has to be placed in the same folder
as the simulation files. Before running the loading script, the filename variable
in the Matlab workspace needs to be defined:
>> f i l ename = ’myname ’ ;
Finally, the loading script is called as:
>> loadAl l ;
The script loads the network parameters into Matlab workspace satisfying the
input parameter definitions of the detection method.
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