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Abstract

In this thesis, we aim to improve forecast accuracy of a heterogenous auto-
regressive model (HAR) by including market sentiment indicators based on
Google search volume and Twitter sentiment. We have analysed 30 companies
of the Dow Jones index for a period of 15 months. We have performed out-
of-sample forecast and compiled a ranking of the extended models based on
their relative performance. We have identified three relevant variables: daily
negative tweets, daily Google search volume and weekly Google search volume.
These variables improve forecast accuracy of the HAR model separately or in
a Twitter-Google combination. Some specifications improve forecast accuracy
by up to 22% for particular stocks, others impair forecast accuracy by up to
24%. The combination of daily negative tweets and weekly search volume is a
superior model to the basic HAR for 17 stocks according to RMSE and for 16
stocks according to MAE and MASE. The daily negative tweets specification
outperforms the basic HAR for 17 and 19 stocks, respectively. And, the com-
bination of daily negative tweets and daily search volume outpaces the basic
HAR for 15 and 18 stocks, respectively. Based on the average MASE impro-
vement, the combination of daily negative tweets and weekly search volume is

a clear winner as it lowers the average MASE by 0.71%.
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Abstrakt

V této praci se snazime zlepsit heterogenni autoregresivni model (HAR) ro-
zsitenim o ukazatele trzniho sentimentu. Jako proxy trzniho sentimentu pouzi-
vame objem vyhledavani na Googlu a Twitter sentiment. Analyzovali jsme 30
spole¢nosti Dow Jones indexu po dobu 15 mésicti. Pomoci out-of-sample pred-
povédi jsme sestavili zebticek modelt podle jejich presnosti. Identifikovali jsme
tfi relevantni proménné: denni negativni tweety, denni objem vyhledavani a
tydenni objem vyhledavani. Tyto proménné zlepsuji presnost predpovédi HAR
modelu jednotlivé i v Twitter-Google kombinacich. Nékteré modely zlepsSuji
presnost predpovédi az o 22% pro urcité akcie, jiné zhorsuji presnost predpo-
vedi az o 24%. Kombinace dennich negativnich tweeti a tydenniho objemu
vyhledavani prekona zakladni model u 17 akcii podle RMSE a u 16 akcii podle
MAE a MASE. Samotné denni tweety zlepsuji presnost zakladniho modelu pro
17 a 19 spolecnosti podle uzitého méritka. Kombinace dennich negativnich
tweetlt a denniho objemu vyhledavani zlepsuje presnost zakladniho modelu pro
15 respektive 18 spolecnosti. Na zdkladé prumérného zlepseni MASE vitézi
jednozna¢né kombinace dennich negativnich tweett a tydenniho objemu vyhle-

davani, jelikoz snizuje prumérnou MASE o 0.71%.
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Chapter 1
Introduction

Volatility measures variation of a trading price over time. In other words, it
refers to an amount of uncertainty about a size of changes in returns. Higher
volatility means that a price of an underlying security may disperse over a
larger range of values. Thus, it is an important indicator of risk and subject to

many analyses.
Volatility modelling has evolved over last fifty years from the random walk

model to more sophisticated models accommodating unconditional and con-
ditional variances, a leverage effect, or heterogeneity of investment horizons
(Weron and Weron, 2000). Apart from more refined treatment of the informa-
tion embodied in a stock price, a behavioural approach to volatility has become
popular during past decades. Scholars have been concerned with phenomena
such as emotionality of investors, cognitive biases, or market sentiment. There
is no doubt that market sentiment affects stock price volatility. Baker and
Wurgler (2007) concluded that investor sentiment is an important factor of
stock market behaviour and showed that it can be measured. More scholars
have incorporated market sentiment into their models (Hong and Stein, 2003,
Shefrin, 2005). For instance, Uygur and Tas (2012) examined effect of noise
traders during high-sentiment and low-sentiment periods using EGARCH and
TGARCH models. They provide an evidence that a mean-variance relations-
hip is undermined during high-sentiment periods when noise traders are more

active.
With the advent of the big data and new technologies, novel data streams

have become available. Whilst, most data sources used in economy are typically
available with a significant delay, at a high level of aggregation, and for prede-
termined variables only, internet data are publicly available in real-time (Wu

and Brynjolfsson, 2015). Those novel data streams can be analysed to extract
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market sentiment. Thus, whereas aforementioned authors used market data,
e.g. trading volume, as a proxy for market sentiment, social networks, Goo-
gle search engine, or online news channels offer alternative market sentiment
indicators. Many authors have taken advantage of those novel sources of pu-
blicly available data. For instance, Bollen et al. (2011), Sprenger et al. (2014),
Zhang et al. (2011) employed a microblogging platform Twitter to investigate

link between market sentiment and stock returns.
The purpose of this thesis is to improve understanding of how can the inter-

net data enhance performance of volatility models. Or stated more generally,
whether are the internet data a good proxy of market sentiment. We have
analysed 30 companies of Dow Jones index for a period of 15 months between
May 31%* 2013 and September 18" 2014. As a basic model, we have chosen
the Heterogenous Auto-Regressive model (HAR) (Corsi, 2009) and we have
extended it by Twitter data and Google search volume. Since HAR-type mo-
dels work with high-frequency data and we work with daily data, we need to
choose an alternative procedure. Hence, we use Yang-Zhang volatility estima-
tor (Yang and Zhang, 2000) to capture volatility of underlying stocks. Twitter
data are adapted from the paper '"The Effects of Twitter Sentiment on Stock
Price Returns' by Ranco et al. (2015). They consist of a daily number of ne-
gative, positive and neutral tweets. Google search volume is represented by
a search index retrieved from https://trends.google.com/. We have performed

out-of-sample forecast and compared resulting measurement errors.
We attempt to define superior specification of the HAR model extended

by market sentiment indicators. Also, we would like to determine which are
the best performing variables. We assume that phenomenon commonly known
from recent literature, e.g. an asymmetric reaction to arrival of bad and good

news (Chen et al., 2003), will be apparent also in our research.
The thesis is structured in the following way. Chapter 2 summarizes lite-

rature on volatility modelling and describes used theoretical concepts. Par-
ticularly, it focuses on evolution of market hypotheses, stylized facts about
volatility and volatility models. Chapter 3 describes behavioural aspects of
financial markets, market sentiment and latest application of internet data in
financial modelling. Chapter 4 outlines used methodology and the dataset.
The results are presented and discussed in the chapter 5. Finally, chapter 6
provides conclusion, theoretical contribution, limitation and suggestions for the

further research.



Chapter 2
Theory of volatility

This chapter discusses literature on volatility modelling and describes used
theoretical concepts. Particularly, it focuses on evolution of market hypotheses,

stylized facts about volatility and volatility models.

2.1 Market theories

Economists have long time been interested in changes in stock returns. The first
consensus on the source of price variation had emerged in early 60’s suggesting
that price volatility could be well captured by a random walk and thus was
unforecastable. The random walk theory of asset pricing was advanced by
Samuelson in 1965 who showed that in an informationally efficient market price
variation must be unpredictable. Although the random walk model had proved
to be empirically valid, it is rather a statistical statement than a coherent theory

of asset pricing. (Pesaran, 2005)

2.1.1 Efficient market hypothesis
The efficient market hypothesis (EMH), developed based on the random walk

model, is a theory describing behaviour of stock markets. Fama (1970) origi-
nally introduced three forms of EMH. The weak form states that share prices
reflect all relevant information and thus their future movements cannot be pre-
dicted from past prices. The semi-strong form requires asset prices to change
to fully reflect all publicly available information. And finally, the strong form
postulates that stock prices reflect all information even if some investors have

monopolistic access to some information.
Since, under EMH, stock prices reflect all relevant information and are im-

mediately adjusted to new information, stocks are traded at their fair value
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(Jarrow, 1988). EMH works quite well when markets are stable but deterio-
rates in presence of turbulence and shocks. This is not a surprising result as
EMH is an equilibrium model and thus cannot deal with transition periods
(Weron and Weron, 2000). With increasing frequency and volume of trade
data, several other issues regarding clustering, slow-decaying autocorrelation
and non-linear response occur (Sewell, 2011). EMH failed to fit the observed
data and thus, there was a need to seek for a market hypothesis that would bet-
ter describe heterogeneous components present in the financial markets. The
fractal market hypothesis (FMH) introduced by Peters (1991, 1994) and the
heterogeneous market hypothesis (HMH) proposed by Muller et al. (1993) pro-
vide an alternative explanation of market behaviour based on a chaos theory
and fractal objects. Those hypotheses were proved to be suitable explanation
of investors’ heterogeneity with respect to their investment horizons. They pro-
vide a new theoretical background for more accurate modelling of non-linear
market reaction, discontinuity and heterogeneity present in today’s financial

markets.

2.1.2 Fractal market hypothesis

The EMH’s main weakness is a generic approach to market participants and
information. It considers investors to be homogenous with respect to their
behaviour, expectation, valuation technique and access to information. Mo-
reover, it assumes investors to be rational price-takers who maximize return
using all available information. Also, information is treated as a generic item
drawn from a pool. Homogeneity of investors and information implies that
a particular information influences all investors equally. (Weron and Weron,

2000)
Such conditions certainly do not reflect today’s real markets. Thus, the

fractal approach enables to embrace heterogeneity in data by analysing the
objects on different scales, with different degrees of resolution, and comparing
the results. (Muller et al., 1993). Peters (1994) proposed several assumptions
considering investors’ various investment horizons.

(i) The market is made up of many individuals with a large number of diffe-

rent investment horizons.
(ii) Information has a different impact on different investment horizons.

(iii) The stability of the market is largely a matter of liquidity (balancing of

supply and demand). Liquidity is available when the market is composed
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of many investors with many different investment horizons.

(iv) Prices reflect a combination of short-term technical trading and long-term

fundamental valuation.

(v) If a security has no tie to the economic cycle, then there will be no long-

term trend. Trading, liquidity, and short-term information will dominate.

These five assumptions enable more precise approximation of market pri-
ces. Unlike the EMH, the fractal market hypothesis (FMH) captures diverse
treatment of information in accordance with heterogeneity of investment ho-
rizons. Thus, as long as the market has a fractal structure, FMH proposes a

stable model of market behaviour even during the turbulence periods. (Peters,

1994)

2.1.3 Heterogeneous market hypothesis

The heterogeneous market hypothesis (HMH) proposed by Muller et al. (1997)
builds on the fractal theory and broadens heterogeneity of market participants
by aspects of risk tolerance, information, institutional constraints, transaction
costs etc. Muller et al. (1997) have described the HMH by following assumpti-
ons summarizing empirical findings.

(i) Different actors in the heterogeneous market have different time horizons
and dealing frequencies. The different dealing frequencies clearly mean
different reactions to the same news in the same market. The market is
heterogeneous, with a fractal structure of the participants’ time horizons

as it consists of short-term, medium-term and long-term components.

(ii) In a homogeneous market, the more agents are present, the faster the
price should converge on the real market value, on which all agents with a
rational expectation agree. In a heterogeneous market, different actors are
likely to settle for different prices and decide to execute their transactions

in different market situations. In other words, they create volatility.

(iii) The market is also heterogeneous in the geographic location of the parti-

cipants.

These additional assumptions describe better heterogeneity in markets and
lead to a framework that realized volatility is an aggregation of the hetero-
geneous components. Moreover, Muller et al. (1997) observed that long-term
volatility strongly influences short-term volatility but not vice versa. This is
quite reasonable inference of investors’ behaviour. Long-term volatility matters

for short-term traders because it forms expectations of future risks and trends.
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The statistical pattern created by traders of various frequencies can be statis-

tically described as a cascade of heterogeneous volatility components.
The geographical heterogeneity explains issues as the heat wave effect. This

meteorological analogy refers to persistence of market behaviour. In other
words, it is likely that a hot day in New York will be followed by another
one but it is not likely that it will be followed by another hot day in Tokyo.
The markets exhibit similar behaviour. Thus, a high-volatility day will be
likely followed by another high-volatility day in the same market.(Engle et al.,

1990)
Another meteorological metaphor for volatility spillovers is the meteor sho-

wer hypothesis. The volatility in one market transmits to another market and
causes increased volatility in a geographically distant market opening several
hours after closing of the original market. A combination of the heat wave
effect and the meteor shower hypothesis provides simplified description of vola-
tility dynamics. (Engle et al., 1990) The impact of a shock also on subsequent
returns, long memory and many other features have been formulated into sty-

liyed facts.

2.1.4 Stylized facts about volatility

Over the years, scholars have formulated several stylized facts about stock
market volatility. Cont (2001) in one of the most widely-cited articles in the
financial literature "Empirical properties of asset returns: stylized facts and
statistical issues" highlights some features of stock market returns relating to
volatility.
1. Absence of autocorrelations: (linear) autocorrelations of asset re-
turns are often insignificant, except for very small intraday time scales

(~ 20 minutes) for which microstructure effects come into play.
2. Heavy tails: the (unconditional) distribution of returns seems to display

a power-law or Pareto-like tail, with a tail index which is finite, higher
than two and less than five for most data sets studied. In particular this

excludes stable laws with infinite variance and the normal distribution.
3. Gain/loss asymmetry: one observes large drawdowns in stock prices

and stock index values but not equally large upward movements.
4. Aggregational Gaussianity: as one increases the time scale t over

which returns are calculated, their distribution looks more and more like
a normal distribution. In particular, the shape of the distribution is not

the same at different time scales.
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5. Intermittency: returns display, at any time scale, a high degree of
variability. This is quantified by the presence of irregular bursts in time

series of a wide variety of volatility estimators.
6. Volatility clustering: different measures of volatility display a positive

autocorrelation over several days, which quantifies the fact that high-

volatility events tend to cluster in time.
7. Conditional heavy tails: even after correcting returns for volatility

clustering (e.g. via GARCH-type models), the residual time series still
exhibit heavy tails. However, the tails are less heavy than in the uncon-

ditional distribution of returns.
8. Slow decay of autocorrelation in absolute returns: the autocor-

relation function of absolute returns decays slowly as a function of the
time lag, roughly as a power law with an exponent § € [0.2,0.4]. This is

sometimes interpreted as a sign of long-range dependence.
9. Leverage effect: most measures of volatility of an asset are negatively

correlated with the returns of that asset.
10. Volume/volatility correlation: trading volume is correlated with all

measures of volatility.
11. Asymmetry in time scales: coarse-grained measures of volatility pre-

dict fine-scale volatility better than the other way round.

Economists have been trying to explain those stylized facts in different ways.
For instance, long memory might be associated with many cognitive biases such
as conservatism. Or, the leverage effect might relate to asymmetric reaction to
positive and negative news. More about cognitive biases can be found in the

chapter 3.

2.2 \Volatility modelling

As the market theories have evolved, the underlying mathematical models fol-
low the same path. Besides a random walk and linear models such as ARIMA,
a new family of volatility models have arisen. During the eighties, the issue of
autoregressive heteroscedasticity became widely discussed and led to discovery
of non-linear models such as ARCH, GARCH and their modifications (Nelson,
1991). Recently, we have seen a surge of interest in models capturing volatility
cascading, such as HAR models (Corsi, 2009). In this section, we summarize

basic equations and properties of these models.
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2.2.1 Generalized Autoregressive Conditional Heteroskedas-
tic (GARCH) models

Conventional linear econometric models work with unrealistic assumption of a
constant one-period forecast variance. A class of stochastic processes caused
a breakthrough in volatility modelling. Engle (1982) introduced the ARCH
(Autoregressive Conditional Heteroskedastic) model which is able to recognize
unconditional and conditional variances. The ARCH processes are serially
uncorrelated, zero mean processes. They allow different treatment of each type
of variance. Whereas unconditional variance is constant over time, conditional
variance is non-constant as it is a function of past errors. Using conditional
densities, Engle specified ARCH as

€ | Y1 ~ N(0, hy)

v = ey

he = ao + X0y uyiy

where p is the order of the ARCH process and « is a vector of unknown

parameters and V' (e;) = 1.
ARCH processes have become important for modelling behaviour of many

economic variables. However, linear declining lag structure in the conditional
variance equation stemming from long memory property typical for many phe-
nomena occurred in many applications of ARCH processes (Goudarzi, 2011).
In response, Bollerslev (1986) introduced a new more general class of sto-
chastic processes called Generalized Autoregressive Conditional Heteroskedas-
tic (GARCH). GARCH-type models allow for a more flexible solution of a lag
structure, long memory and more parsimonious explanation of the selected phe-
nomena. The main advantage of GARCH processes is that they enable lagged
conditional variances to specify forecasted conditional variance as well, whe-
reas ARCH allows only past sample variances to enter the estimation process.
Bollerslev defined the GARCH process as follows.

"Let €; denote a real-valued discrete-time stochastic process, and ), the in-
formation set (o-field) of all information through time t. The GARCH (p,q)
(Generalized Autoregressive Conditional Heteroskedastic) process is then given
by (Bollerslev, 1986):"

€ = Y — xtTﬁ
€t | wH ~ N(O> ht)
hy = o+ Sty cuel + X0 Bihea
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= ag + A(L)e? + B(L) Iy
p =0, q>0
ag > 0, a; >0 1=1,.....q,

For p = ¢ = 0, ¢ is white noise, for p = 0 the process is described as
ARCH(q).

In the early 1990s, economists revealed features associated with time depen-
dence of conditional volatility that cannot be properly captured by GARCH
models. Discovery of new volatility properties have called for modifications of
the GARCH model. For instance, Baillie and Bollerslev (1990) found seaso-
nal patterns in intra-day exchange spot rates, which can be well captured by
seasonal GARCH with hours dummy. These patterns are also in line with pre-
viously discussed hypotheses, such as meteor shower hypothesis (Engle et al.,
1990). GARCH models have been extended by jumps (Chen and Shen, 2004),
leverage (Rodriguez and Ruiz, 2012) and many other effects.

2.2.2 Heterogeneous Auto Regressive (HAR) model

The idea that realized volatility is aggregation of a cascade of heterogeneous
components leads to a Heterogeneous Auto-Regressive model proposed by Corsi
(2009). Despite of its simplicity, it is able to accurately fit the observed market

data and describe persistence of volatility.
A simple HAR model assumes that a variable X (e.g. a stock log-price) is

driven by the stochastic process:

dXt = /,Ltdt —+ O'tth + Ctht (21)

where p; is predictable, o, is cadlag and NV, is a stochastic Poisson process
whose intensity is an adapted stochastic process \;, the timing of corresponding
jumps is (75)j=1,..n, and ¢; are i.i.d adapted random variables measuring the
size of the jump at each time 7;. Resulting quadratic variation is defined

as:

t+1
U}:/ olds+ Y cij (2.2)
¢

t<r<t+1
where the time unit is one day. For estimation of quadratic volatility, we

use n observations in the interval [0, T]. The estimator of realised volatility
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is:

n—1
RV, = Y (A X)? (2.3)
=0
given
A X = Xivjm — Xer(G1y/n (2.4)

which is consistent estimator, as n — oo, of d;.
Let’s denote V; a generic unbiased estimator of quadratic variation such

that:

logs, = log‘A/; + wy (2.5)

where w; is a zero mean and finite variance error term. We use a log
form in order to avoid negativity issues and get approximately normal dis-

tribution.
To incorporate heterogeneity of components, we consider the aggregated

values of logV; as:

NP A .
logVi" = —(logVi + ... + 10gVi-ns1) (2.6)

Let’s assume two different time scales, of length ny and no, with n; > n..

For the largest time scale, assume that &, is determined by:

logayt, = ¢ + " logV™ + €1, (2.7)

where ¢ is IID zero mean and finite variance noise independent on wy.
To capture influence of long-term volatility on short-term volatility, a volati-
lity cascade from low to high frequencies is constructed so that shorter time
scale volatility ny is influenced by the expected value of the largest time scale

volatility n; (but not vice versa).

logyia, = ¢ + " logV,2) + 0™ Eyllogai iy ] + €%, (2.8)
where €;'? is IID zero mean and finite variance noise independent on w; and

€.
By substitution, and using the equation 2.5 we obtain:
logVi2) = ¢+ B"1ogV"™ + B 1ogV™ + € (2.9)

where ¢, is IID noise dependent on w; and €;* and €;?. This model can be

extended to d horizons such that: ny > ny > .... > ng. Usually, there are three
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time horizons (monthly, weekly, daily) with length n; = 22 days, ny = 5 days
and n3 = 1 day. Since the shorter time-scale volatility is affected by the longer
time-scale components, the auto-correlation function of the model (its memory)
persistence increases. Thus, the HAR model is able to capture long memory as
well as models belonging to the family of long memory processes. Similarly to
GARCH-type models, HAR model has been extended by heterogenous jumps
or leverage Corsi and Reno (2009).



Chapter 3

Market sentiment and financial

modelling

This chapter briefly describes a behavioural approach to financial markets and
market sentiment. Then, it highlights the current literature on financial mo-

delling employing internet data.

3.1 Behavioural sources of mispricing

Whereas the efficient markets hypothesis has defined investors as rational,
utility-maximizing individuals, cognitive psychology suggests that human de-
cision processes are prone to several illusions. Behavioural finance proponents
argue that biases caused by heuristic or arising from the adoption of "mental
frames" cause market prices to deviate from their fundamental values (Singh,

2012).
The efficient market hypothesis fully neglects irrationality of investors and

other behavioural aspects of pricing. On the other hand, the EMH does not
require every single investor to act in a rational manner as long as the economic
dominance of rational investors ensures the fair market prices (Singh, 2012).
The FMH and the HMH incorporate investor-specific response to information
and thus allow for behavioural elements. This is one of the most compelling
reasons why incorporating market sentiment into the HAR model is interes-
ting. It is possible that behavioural aspects mirrored in investors sentiment
are already contained in the original HAR model. Since this thesis strives for
deeper understanding of predicative value of market sentiment, we need to dive

deeper into the behavioural features of volatility.
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3.1.1 Cognitive and emotional biases

Behavioural finance employs principles that are less narrow than those based
on Von Neumann-Morgenstern expected utility theory (Neumann and Morgen-
stern, 1953). The leading paradigm of behavioural approach is the Prospect
theory. Kahneman and Tversky (1979) found that people assign value to gain
and losses rather than to final assets and moreover, that people evaluate the
outcomes with respect to a current level of status-quo. Resulting value function
is concave for gains (due to risk aversion), convex for losses (risk seeking) and

steeper for losses than for gains (as a result of risk aversion).

VALUE

LOSSES GAINS

Figure 3.1: Hypothetical value function, Source: Kahneman and
Tversky (1979)

The decision process itself comprises of two phases: the editing and the
evaluation phase. During the editing, an individual organizes and reformulates
outcomes according to certain rules in order to obtain simple preferential orde-
ring. In many cases, an individual use heuristics and various cognitive easing
to facilitate the process. In the second phase, the prospects are evaluated by
the value function and the one with the highest utility is chosen. Some of the

cognitive shortcuts are discussed below.

Heuristics Using the rule of thumb is the simplest approximation, which pe-
ople use in order ease their choice. For example, when it comes to division
of funds among n different investment possibilities, many people follow the
1/n rule. Benartzi and Thaler (2001) have described many cases when people
use the naive diversification heuristics when investing their retirement savings.
They have conducted an experiment with two groups of employees, one was
presented with four equity funds and one fixed-income securities fund and the
second group was presented with one equity fund and four fixed-income securi-
ties funds. The first group allocated 68 percent of its funds to equity, whereas

the second group ended up with only 43 percent in equities. Considerable
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influence of the 1/n rule (20% per option in this case) frequently leads to a

suboptimal solution.

Overconfidence An overconfident investor overestimates her knowledge or
abilities. As a result, she holds less diversified portfolio and sticks to what
she is familiar with. Investors overestimate their ability to predict evolution of
domestic markets and thus incline to invest more into local companies despite
the potential gains from international diversification (Tesar and Werner, 1995).
Another example of pernicious influence of overconfidence is that an overconfi-
dent CEO overestimates his ability to generate return and therefore undertakes

value-destroying mergers and overpays for a target company (Malmendier and
Tate, 2008).

Mental accounting Investors tend to categorize their current and future we-
alth into different, non-transferable groups. According to Thaler (1999), people
divide financial assets into the separate mental accounts (current income versus
future income) or budgets (housing, food, etc.). Each account operates within
different propensity to consume and is re-evaluated at different frequency (daily,
monthly, etc.). Mental accounting violates the economic principle of fungibility
as it separates decisions that should be done together and thus distorts efficient

decision-making process.

Representativeness Investors frequently label companies as good or bad ba-
sed on their recent performance and fall in a trap of extrapolation bias. This
leads to overpriced stocks of companies showing recent growth regardless of sus-
tainability of the growth and vice versa. Ignoring a long-term average is also
known as a law of small numbers as sufficient number of observations creates
an image of what is "'normal’. For instance, high equity returns between 1982
and 2000 have led to a believe that high equtiy returns are normal. (Ritter,
2003)

Conservatism Conservatism bias is a counterpart to the representativeness
bias. Whilst investors tend to overreact in a case of a sufficiently long pattern,
they underreact to a sudden change. This phenomenon arises from anchoring on
the expectations. Steenbergen (2001) showed that an information inconsistent
with expectations is likely to be assigned a smaller weight than the expectations
themselves and thus, even moderate amounts of new information contradicting

the decision may not be enough to change it.
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Anchoring Anchoring is the tendency to hold on to a one piece of information
that is not adjusted in future. Individuals often base their decisions on the first
information to which they are exposed (as initial purchase price of the stock).
Many investors still anchor on the financial crisis 2008 what results in overall

higher level of risk aversion. (Baker and Ricciardi, 2014)

Availability bias Information that is easily accessible, i.e. that is easily recal-
led from memory, overweighs others. Investors are likely to remember events
that received a lot of attention by the media and base their evaluation on them.
(De Bondt et al., 2008)

Herd behaviour Under certain circumstances, investors mimic the investment
decisions of other investors and ignore substantive private information. Herd
behaviour could partially explain excessive market volatility. By mimicking the
behaviour of others rather than reacting to their private information, herd mem-

bers amplify exogenous stock price shocks. Scharfstein and Stein (1990)

These are just few examples of cognitive and emotional biases leading to
mispricing and inadequate volatility. The behavioural biases result, among
others, in asymmetric reaction to price movements: returns and conditional
volatility are negatively correlated (Bekaert and Wu, 2000). Morover, Veronesi
(1999) found that in equilibrium, investors endeavour to hedge against changes
in their own wuncertainty drives stock prices overreact to bad news in good
times and underreact to good news in bad times. Asymmetric reaction has
given rise to a new class of models accommodating asymmetric volatility such
as TGARCH (Zakoian, 1994, Glosten et al., 1993), EGARCH (Nelson, 1991),
or extended version of the HAR model (Corsi and Reno, 2009). Those models
are widely used. For instance, Chen and Shen (2004) found strong evidence
supporting the asymmetrical hypothesis of stock returns by employing a double-
threshold GARCH model. In other words, negative news causes a larger decline

in a national stock return than an equal magnitude of good news.

3.1.2 Market sentiment

Behavioural finance advocates the effect of emotions on individual decision-
making. However, does this also apply to societies at an aggregate level? The
overall mood or tone of investors is captured by market sentiment. Market

sentiment is the general prevailing attitude of investors towards anticipated
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development in a market (Baker and Wurgler, 2007). The question is no longer
whether market sentiment influences stock prices but rather how to measure

the effect.
One approach to quantify the effect of market sentiment is "bottom-up'.

Market sentiment is formed by investors’ cognitive and emotional biases (see
the subsection 3.1.1) and a variety of fundamental and technical factors. Consi-
dering irrationality and emotionality of investors, the standard finance models
must have been augmented with alternative models. Related models explain
mispricing by differences of opinion across investors combined with short sales
constraints. They aspire to predict patterns in investor sentiment. (Hong and

Stein, 2003, Shefrin, 2005)

However, real investors are too complicated to be neatly summarized by
a few selected biases and trading frictions and thus, many of the bottom-up
models result in a similar reduced form of variation over time in collective psy-
chology (Baker and Wurgler, 2007). Thus, Baker and Wurgler (2007) define a
"top-down" market sentiment approach operating on two assumptions. Firstly,
investors are subject to sentiment that can be defined as a belief about future
cash flows and investment risks (DeLong et al., 1990). Secondly, there are li-
mits to arbitrage as betting against sentimental investors is costly and risky
(Shleifer and Vishny, 1997). The top-down approach measures reduced-form,
i.e. aggregate sentiment, and tracks its effects to returns of individual stocks.
Therefore, this approach attempts to explain which stocks are likely to be most
affected by sentiment, rather than simply arguing that the level of stock pri-
ces in the aggregate depends on market sentiment. Baker and Wurgler (2007)
suggest that stocks of low capitalization, younger, unprofitable, high volati-
lity, non-dividend paying, growth companies, and stocks of firms in financial
distress are more likely to be disproportionately sensitive to broad waves of

market sentiment.
We use the "top-down" market sentiment approach in our analysis. Aggre-

gate market sentiment is a one-dimensional variable affecting all stocks to some
extend but it affects some more than others. We analysed Twitter sentiment
separately for each stock and thus, we can anticipate that some of those stocks

will be more correlated with tweets based sentiment than the others.
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3.2 Internet data and financial modelling

Social networks and new media have attracted a great deal of attention in the
past. One of the greatest strength of the internet data is their availability for
real-time predictions. Whilst, most data sources used in economy are typically
available with a significant delay, at a high level of aggregation, and for prede-
termined variables only, internet data are publicly available in real-time (Wu
and Brynjolfsson, 2015). Some researchers suggest that those novel data stre-
ams can be analysed to extract public sentiments to improve prediction of the

market indicators (Lavrenko et al., 2000, Schumaker and Chen, 2009).
Some scholars tried to increase forecast accuracy of financial models by in-

corporating market sentiment. For instance, Bollen et al. (2011) investigated
whether Twitter based the public mood is predictive of economic indicators.
They approximated collective mood (e.g. Calm, Alert, Sure, Vital, Kind, and
Happy) by large-scale Twitter feeds and analysed its correlation with the value
of the Dow Jones Industrial Average (DJIA) over time. Their results indicate
that the accuracy of DJIA predictions can be improved by the inclusion of spe-
cific public mood dimensions (particularly 'Calm"). They obtained an accuracy
of 86.7% in predicting the daily up and down changes in the closing values of
the DJIA and a reduction of the Mean Average Percentage Error (MAPE) by

more than 6%.
Si et al. (2013) improved performance of a VAR model for short term (one

day ahead) predictions of the S&P100 Index by including topic-based sentiment
form Twitter. Their topic-based model shows better performance than existing

state-of-the-art non-topic based methods.
Zhang et al. (2011) also aimed to predict stock market indicators by analy-

sing Twitter posts. They got a randomized subsample of about one hundredth
from a pool of the twitter feeds for a period of six months. They measured
daily collective hope and fear and analysed the correlation with the stock mar-
ket indicators. They discovered negative correlation between emotional indices
and Dow Jones, NASDAQ and S&P 500, but significant positive correlation to

VIX.
Recently, Ranco et al. (2015) examine the effect of twitter sentiment on stock

price returns. In their paper, they present evidence of dependence between
stock price returns and Twitter sentiment in tweets about the companies. The
drawback is that dependence is significant only at the moments of increased
activity of Twitter users. Their results show that aggregated Twitter sentiment

predicts the direction of market response during the pre-selected events. This
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can be expected for both "known" events, like earnings announcements, and

unexpected news.
Sprenger et al. (2014) arrived at similar results. There is an association

between tweet sentiment and stock returns. Buy signals are accompanied and
followed by abnormal returns but sell signals have no predictive power. Mo-
reover, message volume corresponds to trading volume but not returns and
volatility. In addition, they provide an analysis of information diffusion and
revealed that users providing above-average investment advice are given credit

via higher retweets and followers.
Twitter based sentiment is not the only one used for financial modelling.

Antweiler and Frank (2004) used text classification to study Yahoo!Finance and
Raging Bull message boards for the 45 companies of the Dow Jones Industrial
Average and Dow Jones Internet Index. They point out that message volume
implies trading volume and volatility. However, due to the presence of the

internet bubble in the sample, the study has severe limitations.
Wu and Brynjolfsson (2015) used data from Google search engine to predict

future housing market sales and prices. They showed strong correlation between
the housing search index and house sales in the next quarter. They provided
out-of-sample predictions, too. The extended model shows a mean absolute
error of just 0.102 that is substantially lower than a mean absolute error of the

baseline model (0.441).
Smith (2012) studied a link between Google Internet searches for particu-

lar keywords and volatility prediction in the market for foreign currency. He
found that the keywords economic crisis, financial crisis and recession have

incremental predictive power beyond the GARCH(1,1).
These papers have already shown that there is a great potential in investiga-

ting internet data as a storehouse of information for financial markets. Social
network analysis might be used as a proxy for market sentiment. Google In-
ternet search activity might be also a convenient method of detecting market

turbulence and forecasting.



Chapter 4

Methodology and Data

This chapter outlines used methodology and the dataset. Firstly, it presents the
dataset, including adjustment of the Google search volume. Then, it describes
the volatility estimators used for simplified HAR model and our specification
of the HAR model. Finally, it describes forecast accuracy measures used for

evaluation of out-of-sample forecasts.

4.1 Data

In this section, we present the data and their transformation. Firstly, we des-
cribe market data, the Twitter data and the Google search volume. Secondly,
we define winsorization: the transformation applied to the data to limit poten-

tially spurious outliers.

4.1.1 Market data

The analysis is conducted on 30 companies of the Dow Jones index for a period
of 15 months between May 31% 2013 and September 18" 2014. The volatility
estimators (see section 4.2) are computed from opening, closing, high and low
prices. This data are publicly available and can be downloaded from various
sources, such as https://finance.yahoo.com/. The ticker list of the investigated
stocks and the amounts of corresponding tweets are presented in the Table
4.1.

4.1.2 Search volume

We employ Google internet search volume as a proxy for interest in the specific
companies. We use daily Google searches for each company that are publicly

available at https://trends.google.com/. Google enables to adjust a searched
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Ticker Company Total Negative Positive
Tweets Tweets Tweets

AXP American Express Co 21,941 1,340 3,369
BA Boeing Co 51,799 3,780 9,461
CAT Caterpillar Inc 38,739 4,840 6,698
CSCO  Cisco Systems Inc 57,427 5,380 10,235
CVX Chevron Corp 29,477 2,547 4,958
DD E I du Pont de Nemours and Co 17,340 1,076 2,594
DIS Walt Disney Co 46,439 1,652 8,854
GE General Electric Co 61,836 2,465 8,680
GS Goldman Sachs Group Inc 91,057 10,050 13,850
HD Home Depot Inc 30,923 2,374 6,316
IBM International Business Machines Co 101,077 9,070 15,986
INTC  Intel Corp 68,079 4,802 13,630
JNJ Johnson & Johnson 40,503 2,775 7,314
JPM JPMorgan Chase and Co 108,810 19,762 12,412
KO Coca-Cola Co 45,339 3,031 6,865
MCD McDonald’s Corp 45,971 6,311 6,312
MMM  3M Co 17,001 794 2,846
MRK  Merck & Co Inc 54,986 1,875 8,125
MSFEFT  Microsoft Corp 183,184 12,278 30,532
NKE Nike Inc 29,220 1,927 7,523
PFE Pfizer Inc 71,415 3,243 10,705
PG Procter & Gamble Co 25,751 1,566 3,530
T AT&T Inc 75,886 2,804 9,024
TRV Travelers Companies Corp 12,184 912 1,587
UNH UnitedHealth Group Inc 15,020 2,051 2,555
UTX United Technologies Corp 16,123 995 3,065
\Y Visa Inc 43,375 2,786 6,785
VZ Verizon Communications Inc 45,177 2,284 8,508
WMT  Wal-Mart Stores Inc 63,405 8,562 7,318
XOM Exxon Mobil Corp 46,286 3,381 7,275
Total 1,555,770 126,713 246,912

Table 4.1: Data overview

term related to the company for unrelated searches. For instance, it maps the

number of searches for DuPont (a chemical company) adjusted for searches

DuPont referring to DuPont analysis of ROE decomposition.
Google searches are normalized. In other words, for each selected period, the

maximum equals to 100 and the rest of the time series is adjusted accordingly

to preserve the trend. We need data for the time interval from May 2013

to September 2014. Since the longest period, for which the daily data are

available, is 3 months we need to control for the period-specific normalization.
We downloaded the overlapped data such as: May13-Julyl3, Julyl3-Sepl3,
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Sep13-Nov13 etc. and normalized them over the entire period. We used the
overlapping month to narrow imbalance of the subsamples. The weight W;
equals to a ratio of the i*" observations G; from the two consecutive periods
t and t + 1 (Equation 4.1), where i denotes a date. We calculated an average
misalignment of the consecutive subsamples and used it as a weighing factor
for the latter period observations (Equation 4.2). Repeating this process, we

obtained a consistent chain of searches S; for the entire period.

GIZ§+1
t+1 n ]
5 = G 2= Wi (4.2)

n
The search volume follows similar pattern for all companies except Disney,

Home Depot, McDonnalds’, Nike and Walmart. The searches are highest on
Tuesday, Wednesday and Thursday and moderate on Monday and Friday (Ta-
ble 4.2). Searching activity decreases by average 66% on weekends. With
respect to internet activity, this behaviour resembles an email open rate pat-
tern revealed by many marketing agencies. According to Pietras (2013), the
lowest email open rate is on Monday (18.2%) whereas the highest open rate
is on Tuesday (19.9%). Tuesday is the day with the highest amount of email
sent, too. Wednesday and Thursday also display high open rate and sent rate.
The reasonable explanation for this is that people begin their work week on
Monday and are overwhelmed by emails, planning and backlogs from the last
week. On the other hand, on Tuesday, employees catch up with their work and
are ready to solve new tasks. Similar reasoning could be used for high search

volume on Tuesday, Wednesday and Thursday.
In terms of emails, Friday has the second higher open rate (19.6%). This

could be caused by necessity to close up many weekly issues before a weekend.
However, there is an opposing force of shifting people’s focus to a weekend and
postponing important decisions on the next week. As it is visible at Google
searches, the second force overrules the first one and Friday’s average search

volume is only slightly higher than Monday’s volume.
Moreover, revealed pattern of Google search volume is in line with research

on trading activity. The day-of-the-week effects is a common phenomenon of
trading activity and volatility. Chordia et al. (2001) argue that Fridays accom-
pany significant decrease in both trading activity and liquidity, while Tuesdays

show the opposite pattern. Berument and Kiymaz (2001) have examined se-
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veral patterns regarding stock market volatility and returns. They studied the
S&P 500 market index during the period of January 1973 and October 1997
and found presence of the week effect in volatility and returns. Wednesdays
are associated with the highest returns and the lowest volatility while the hig-

hest volatility is observed on Friday and the lowest returns are observed on

Monday.
Email Volume of
Day of the Search .
open rate email sent
week volume (%) (%)
Monday 67 18.2% 16.59%
Tuesday 71 19.9% 17.93%
Wednesday 70 19.0% 16.08%
Thursday 69 18.9% 17.25%
Friday 67 19.6% 14.90%
Saturday 48 16.9% 8.58%
Sunday 45 17.1% 8.68%
Weekly average 62 18.61% 14.28%
Mon - Fri average 69 19.26% 16.55%

Table 4.2: Weekly pattern of Google search volume and emails

Regarding the five above mentioned companies with a different search pat-
tern, the weekend searches are on average 17% higher than those during the
workdays. Interest in these companies might be induced by general public se-
arching for their services on the internet. Those searches overweight searching

volume induced by financial analysts.

4.1.3 Twitter data

The second proxy of market sentiment stems from the micro-blogging platform
Twitter and consists of relevant tweets during the period between June 1, 2013
and September 18, 2014. The data were used by Ranco et al. (2015) in their
paper examining the effect of Twitter sentiment on stock price returns. The
data was collected by the Twitter Search API using the stock cash-tag (e.g. BA
for Boeing). All available tweets with cash-tags should be acquired. In total,
the dataset consists of more than 1.5 million tweets sorted by their sentiment
(Table 4.1).
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Figure 4.1: Volatility, Twitter data and Google data, Source: based
on Ranco et al. (2015) and own analysis
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The method of sentiment evaluation consists of two phases. Firstly, over
100,000 of tweets were evaluated by financial experts who labelled them with
three sentiment labels: negative, neutral, positive. Afterwards, this labelling
was used to set Support Vector Machine classification model, which was applied
to the entire set of 1.5 million tweets (Ranco et al., 2015). The final dataset
comprises the time series of total, negative, positive and neutral tweets for each

day and company.
Figure 4.1 depicts volatility measured by Yang-zhang estimator, a number of

positive and negative tweets, and Google search index of four randomly chosen
stocks over time. Volatility is assign to the left axis while the rest is measured
on the right axis. Visually, CSCO’s tweet spikes corresponds to upturns in
volatility better than those of AXP. On the other hand, PFE lacks visual link
between tweets and volatility. Generally, negative tweets show higher fidelity

than positive tweets. Google search volume is quite steady in all charts.

4.1.4 Winsorizing

The examined period has stable volatility and does not include any market
crashes or bubbles. Also, the internet data are distributed steadily. There are
six companies in the sample that show spikes in positive, neutral or negative
tweets that are not reflected in neither market activity nor Google searches.

These spikes are presented in the table below.
The spikes might be a product of wrong sentiment evaluation methodology

or data collection. If we would suppose that those values are correct, the ex-
planations may be twofold. Either, missing cardinality of sentiment evaluation
equals market news that have different magnitude. Or, the spikes represent

market anomaly or irrelevant event.
To reduce the effect of the outliers, we winsorized the time series (Dixon,

1960). This transformation replaces extreme values by upper and lower limits.
Since the data are constrained by 0, we capped only the right tail outliers.
We set mean (u) plus three standard deviations (o) as a limiting value. For
normal distribution, this value corresponds to 99.73% probability distribution.
Using this simple heuristic, we can assume that nearly all values lie within this

interval.
To support reliability of our conclusions, we performed robustness analysis.

Additionally to p 4 3o limit, we transformed data using u + 2.50, pu + 20, and
1+ 1.50 values. More about robustness analysis can be found in the Section
4.4.4.
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Spike Spike

Company Variable Mean St dev
value date

Home Depot Inc T~ 7.00 20.31 311 20.05.2014
Home Depot Inc Tms+ 18.63  50.83 266 20.05.2014
Home Depot Inc T30 5b.44  79.84 632 20.05.2014
IBM Tns+ 47.16  76.70 1165 03.07.2014
IBM Tms+ 47.16  76.70 339 15.07.2014
IBM Tns+ 47.16  76.70 313 16.07.2014
IBM Tns+ 47.16  76.70 368 17.07.2014
IBM Tms0 187.20 234.53 764 15.07.2014
IBM Tms0 187.20 234.53 2104 16.07.2014
IBM T30 187.20 234.53 1755 17.07.2014
Merck & Co Inc s+ 23.97  88.50 1354 09.04.2014
Merck & Co Inc Tms+ 23.97  88.50 833 10.04.2014
Pfizer Inc Tms+ 31.58  102.96 1497 21.04.2014
Pfizer Inc Tms+ 31.58  102.96 483 27.05.2014
Pfizer Inc Tns+ 31.58 102.96 563 23.06.2014
Pfizer Inc Tms+ 31.58  102.96 466 24.06.2014
Pfizer Inc Tms+ 31.58  102.96 729 21.07.2014
Pfizer Inc Tns+ 141.11  299.00 1219 21.04.2014
UnitedHealth Group Inc  T73~ 6.05 54.97 1009 17.04.2014
UnitedHealth Group Inc 773 2547  23.25 213 17.04.2014
UnitedHealth Group Inc 773 7.54 10.32 40 17.04.2014
Visa Inc Tms~ 8.22 19.94 139 25.04.2014
Visa Inc Tms0 78.01  82.49 295 25.04.2014
Visa Inc Tms+ 20.01  56.80 1005 25.04.2014

Table 4.3: Spikes in Twitter variables

4.2 Measuring realized volatility

The original HAR model assumes high-frequency data. Since we do not use
high frequency data, we need to seek for an alternative solution, i.e. a volati-
lity estimator which is able to handle low frequencies. We focus on traditional
methods of volatility estimation using high, low and close price data, which are
available. Magdon-Ismail and Atiya (2003) introduced maximum likelihood ap-
proach to the volatility modelling for an instrument following Brownian motion.
They compare the results with three classical methods. The first estimator uses
the close prices only (i.e. Close), the second one is Parkinson’s estimator using
the high and low values (Parkinson, 1980), and the third method is Rogers-
Satchell estimator using the high, low and close prices (Rogers and Satchell,
1991). Comparison of RMS (root-mean-square) prediction error is depicted in
the figure 4.2.
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Figure 4.2: Comparison of the volatility estimators, Source: Magdon-
Ismail and Atiya (2003)

The maximum likelihood estimator obtains improvement relative to the ot-
her estimators especially with less observations. Brandt and Kinlay (2005) also
investigate methods of measuring historical volatility. They challenge the re-
sult of previous researches using geometric Brownian motion, that alternative
volatility estimators offer efficiency improvements over the standard deviation
estimators. Such conclusion depends on unrealistic assumptions of nature of
the underlying process. Typically, the process is assumed to be continuous
geometric Brownian motion with constant volatility and zero drift. Every de-
parture from the ideal Brownian motion such as process drift, opening gaps or
time-varying volatility may have effect on the performance of both the standard
deviation estimators and the alternative estimators. They compare efficiency
of traditional estimators, namely Parkinson (1980), Garman and Klass (1980),
Rogers and Satchell (1991), Alizadeh et al. (2002) and Yang and Zhang (2000),
and integrated volatility estimator with respect to sample size and frequency
on simulated data. In comparison with classical close to close estimator, these
estimators have 5 times greater efficiency, or even 7 to 8 times greater ef-
ficiency in the case of the German-Klass and Yang-Zang estimators. They
conclude that each of selected estimators, except Alizadeh-Brandt-Diebold es-
timator, produces biased estimates unless very high frequencies are used. The
anomalies further deteriorate performance of selected estimators. Since depar-
tures from geometric Brownian motion are almost certain, these findings call
into question additional information obtained by the alternative (for instance

maximum-likelihood) estimators.
Rogers and Satchell (1991) do not neglect the issue of non-zero process

drift and thus their estimator significantly outperforms others with presence of

time-varying drift in asset process. Yang and Zhang (2000) build their volatility



4. Methodology and Data 27

estimator on a solid base of the Rogers-Satchel estimator. Their estimator is
able to cope with a time-varying level of drift and is equipped to handle open
price jumps. Since large amounts of information arrive during the period when
the market is closed, there is a price gap between the opening and closing price.
With respect to Yang-Zhang estimator ability to deal with these two common
anomalies and its robust performance in Brandt and Kinlay measurement, we

decided to use it for our study.
The Yang and Zhang estimator is composed by overnight volatility ¢,, open

to close volatility o, and Rogers-Satchell estimator org. The Yang-Zhang es-

timator (Equation 4.3) is given by:

Oyz = \/F\/ag +ko?+ (1 —k)okg (4.3)

o2 = _1Zm —in( o)

2 1 N 0; TZ 2
o=\ o () ()

C; C;
h l; h;
JRS:\I Zln c )+ in (O)l (C—)

where F' denotes frequency, N denotes the number of observations, h denotes
the high price, [ denotes the low price, ¢ denotes the close price and o denotes

the opening price.
For the given data point ¢, we examine volatility using prices from previous

21 days and the day ¢t. In order to obtain weekly and monthly volatilities, we
use moving average of daily volatilities of previous 5 and 22 days, respectively,

as it corresponds to the number of trading days.

4.3 HAR specification

We constructed a three-levels volatility cascade with time horizons n,; = 22
days, ny = 5 days and n3 = 1 day. Thus, we arrive to the following equa-

tion:

Vi = By + BV + BV + BV + e (4.4)
where,

_—
Vi =oyzi-1
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Vt’i?’l is the daily volatility obtained directly from Yang-Zhang estimator,
Vﬁ?l is the weekly volatility, and ‘A/t?lll is the monthly volatility, and € is an error
term. Weekly and monthly volatilities equal moving average of previous 5 or

22 days, respectively.
We extended the basic model by Twitter sentiment and Google search vo-

lume. We defined fifty specifications including the basic HAR. All models were
estimated by Cochrane-Orcutt method. We did not control for stationarity
because the HAR model implicitly assumes cointegration among the volati-
lity cascade. To confirm this notion, we performed Englea€“Granger proce-

dure.

4.3.1 Searching for the right specification

Due to a short period used for in-sample prediction (200 observations), the
model can be easily over-specified by a large amount of market sentiment va-
riables. Hence, we gradually added variables to balance trade-off of additional
information and measurement error. Firstly, we enriched the basic model (4.4)

by individual variables, as it is presented in the table 4.4.

Name Tag Description

Daily positive tweets ~ T™%"  daily values

Daily negative tweets T3~ daily values
Daily neutral tweets 779 daily values
Daily search volume Sns daily values

Weekly positive tweet ~ T"»+  5-days moving average
Weekly negative tweets 717>~ 5-days moving average

Weekly search volume — S™ 5-days moving average
Monthly positive tweet 7™  22-days moving average
Monthly negative tweets 71"~ 22-days moving average
Monthly search volume  S™ 22-days moving average

Table 4.4: Market sentiment variables

According to the performance of individual variables, we constructed various



4. Methodology and Data 29

models including couples, triplets and more examined indicators as presented in
the list 4.3.1. A list of all specifications can be found in the Appendix A.

o Daily positive tweets + Daily search volume

o Daily negative tweets + Daily search volume

 Daily positive tweets + Weekly search volume

o Daily negative tweets + Monthly search volume

o Weekly positive tweets + Daily search volume

e Monthly positive tweets + Daily search volume

« Daily positive tweets 4+ Daily negative tweets + Daily search volume

o Daily positive tweets + Daily negative tweets + Monthly search volume
o Daily positive tweets + Daily negative tweets + Monthly positive tweets

+ Monthly negative tweets
o Daily positive tweets 4+ Daily negative tweets + Daily neutral tweets +

Daily search volume
o Daily positive tweets + Daily negative tweets + Monthly positive tweets

-+ Monthly negative tweets + Monthly search volume
e ctc.

List 4.3.1: An example of model extensions

Additionally, we constructed an alike cascade of market sentiment variables
to preserve dynamic of the model. Thus, we create weekly, and monthly va-
lues of each variable using 5 and 22 days moving averages of the daily values

respectively. The resulting equation is given by:

Vi = Bo + BV BV 4 BVl T 4 o 10
F TP T T b T 4 T 4 T+ ST+
+ 11582 + Y1250 + €
(4.5)

where T denotes a number of positive tweets, T~ denotes a number of
negative tweets, T° denotes a number of neutral tweets, and S represents the
searching volume. Each variable follows the month-week-day cascade so that
T3~ denotes daily negative tweets, 7”2~ stands for weekly average of negative
tweets etc. We assume that as the volatility cascade captures different treat-
ment of information with respect to different investment horizons, risk aversion
and other investor-specific characteristics, the sentiment cascade could capture

different effect of market sentiment on various types of investors.
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4.4 OQut-of-sample forecast approach

Firstly, we divided the time series into a training set (200 observations) and a
test set (138 observations). Then, we estimated the parameters using the trai-
ning set and performed an out-of-sample forecast using the test set. To evaluate
accuracy of our models, we used following measures: Root Mean Squared Er-
ror (RMSE), Mean Absolute Error (MAE), and Mean Absolute Scaled Error
(MASE). Furthermore, we ran Diebold-Mariano test to test statistical signifi-

cance of resulting forecasts.

4.4.1 Scale-dependent errors

The scale dependent errors are based on forecast errors e; = y; — ¢;. They are
on the same scale as the data and thus cannot be used to make comparisons
between series that are on different scales. The two scale-dependent measures
that are used in this study are Mean absolute error (MAE), and Root Mean
Square Error (RMSE) (Hyndman and Athanasopoulos, 2014).

1 N
MAE = =% e, (4.6)
N =1
1 N
RMSE = |~ Y ¢2 (4.7)
N =1

Both measures are indifferent to the direction of errors and can range from
0 to infinity, where lower values indicate the better performing model. The
main difference is that RMSE gives relatively high weight to large errors as the
errors are squared before they are averaged. The high sensitivity to outliers
is particularly useful when large errors are undesirable. RMSE grows larger
than MAE with increasing test samples and thus may be problematic when
comparing different sized test samples (Chai and Draxler, 2014). This is not
our concern as all test samples have equal number of observations. To increase

reliability of our study, we use both measures.

4.4.2 Scaled errors

Scaled errors were proposed by Hyndman and Koehler (2006) as an alternative
to percentage errors for comparing forecast accuracy across series on different
scales. The percentage errors have extreme values or are undefined when y; is
close to zero. This might be easily the case of volatility estimators and thus we
decided for Hyndman and Koehler (2006) specification.
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The Mean absolute scaled error (MASE) is MAE scaled by scaling sta-
tistics () calculated from in-sample naive forecasts for non-seasonal time se-
ries(Equation 4.8), in-sample seasonal naive forecasts for seasonal time series

(Equation 4.9) and in-sample mean forecasts for non-time series data (Equation
4.10) (Hyndman and Koehler, 2006).

1 N
Q= N_1 ; |Yi — il (4.8)
1 N
Q=xv_—— i:%:ﬂ |Yi — Yi-m| (4.9)
1 N
Q=3 lu-dl (410
MASE = MSE (4.11)

MASE is asymptotically normal and symmetric, i.e. positive and negative
errors are penalized equally as well as errors in large and small forecasts. It is
easily interpretable. MASE is lower than one if it arises from a better forecast
than the average naive forecast computed on the training set and greater than

one if the forecast is worse.(Hyndman and Koehler, 2006)

4.4.3 Diebold-Mariano test

Error-based measures compare forecast accuracy across the examined sample.
Thus, the result does not say anything about statistical significance of the
forecasts in the population. Diebold-Mariano test (DM test) makes inference
on the population rather than on the sample (Diebold and Mariano, 1995)
and therefore shows statistical strength of predictions. Diebold (2015) does
not encourage using it for comparing models so we use it as a complementary

measure to look at the phenomenon from a different angle.
The DM test compare forecast accuracy of two forecasts (Equation 4.12).

Under the null hypothesis, competing forecasts have the same accuracy. We
use the one-sided version of the test, where the alternative hypothesis is that

second forecast is more accurate than the first one.

dy = g(ew) — g(ear) (4.12)
Hy:E(d) =0 Vt
Hy: E(d) >0
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where g(ey;) and g(ey) are loss functions of the first and the second forecast

respectively.
The nature of DM test may be particularly problematic when comparing

forecasts from nested models. If the null hypothesis is true, the forecast errors
from the examined models are exactly the same and perfectly correlated at
a population level. Hence, the numerator and denominator of a DM test are
each limiting to zero as the estimation sample grows. But, when the size of
the estimation sample remains finite, parameters are prevented from reaching
their probability limits and the DM test is asymptotically valid. (Giacomini
and White, 2003)

4.4.4 Ranking

To decide on predictive power of particular models, we created ranking system
based on the obtained measurement errors. This procedure is described in steps
below.

1. All 50 models were executed for all 30 companies.
2. The models were ordered in ascending orders according to obtained me-

asurement errors, i.e. the first model shows the lowest error and the last

one shows the highest error.
3. Percental difference (§) relative to the winning model was assigned to

each specification. Such that:
51 - 0%

Error; — Errory

0; = i€(2,30) CN

Errory
where i stands for the ordered model, i.e. i = 2 for the second best

performing model, i = 2 for the third best performing model etc., and

Error refers to MAE, RMSE, and MASE respectively.
4. Total error rate A/ and average error rate 37 were calculated by averaging

and summing deltas for each specification over the 30 companies. Such
that:

B 130

= J
5j_”¢§::1éz

. 30 .
INEDN:
=1
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where ¢ denotes a company and j indicates a model. This has been done

for each error separately.
5. The models were ordered according to the sum of deltas A7, which is

scale independent. We obtained three different rankings as it has been

done for each measurement error separately.
6. This procedure was executed for all dataset, i.e. original data, and pu+30,

W+ 2.50, i+ 20, and p + 1.50 winsorized data.
Top ten performing models according to each measurement error were furt-

her investigated.



Chapter 5
Results

This chapter presents results of out-of-sample forecast and robustness analy-
sis. Firstly, out-of-sample approach is summarized. The measurement errors
are presented and models’ predictive power is evaluated. Moreover, results
of Diebold-Mariano tests are outlined. Secondly, an output of the robustness

analysis is discussed.

5.1 Out-of-sample forecast results

The tables 5.1 and 5.2 summarize averaged measurement errors 6/ and summed
errors A7 of the top ten performing models and the basic model. Complete
results can be found in the Appendix A. The first table presents error rates
based on the original dataset whereas the other shows errors stemming from

the p + 30 winsorized time series.
The average error rate and the total error rate can be interpreted as indi-

cators of the model fit. A benchmark is the best performing model, i.e. the
model with lowest RMSE, MASE and MAE respectively, for each company. A
unit of the average error rate is percent, as it averages the percentage error
rates (0;) across examined companies. It can be interpreted as model’s average
error relatively to other examined models. On the other hand, the total error
rate does not have any direct interpretation. It is a sum of the percentage error

rates (d;) and thus it represents an absolute indicator of the model fit.
There is significant disparity between errors obtained from the original da-

taset and the winsorized dataset. Deltas have greater variance as well as a
larger mean for the original data suggesting model sensitivity to extreme va-
lues. Speaking of MASE and MAE, the difference between the best and worst

performing model is approximately 2.5 larger for the original data than for
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Average error rate 67 (%) Total error rate A7
Model RMSE MASE MAE  RMSE MASE MAE
Sn2 0.36 0.00 0.00 1.79 2.34 2.33
S 0.00 0.09 0.18 1.74 2.42 2.41
HAR basic 0.10 0.78 0.50 1.77 2.62 2.62
Tnme= 4 5™ 11.98 1.41 1.50 5.87 2.86 2.85
S 0.58 1.57 1.49 1.92 2.88 2.88
T3~ 12.16 2.09 1.98 5.98 3.11 3.11
Tne= 4 S 12.33 2.13 2.23 6.05 3.14 3.13
= 4 5™ 12.24 2.28 2.44 6.03 3.23 3.22
Trst 4 gne 15.73 4.21 4.01 6.29 3.56 3.5
Tr>= 4 5™ 13.13 3.75 3.76 6.19 3.66 3.66
Tms:+ 15.24 4.68 4.34 6.17 3.74 3.73
Average error | 8.53 2.09 2.04 4.53 3.05 3.05

Table 5.1: Average and total error rates, Original data, Source: own
analysis

the winsorized one. Also, the average delta is larger for the original data, i.e.
0.0209 for MASE and 0.0204 for MAE on average, than for the spike-adjusted

data, i.e. 0.0090 for MASE and 0.0083 for MAE on average.
In terms of RMSE, the difference is even more apparent. No wonder, as

RMSE penalizes large errors, Twitter-driven outliers pronouncedly affect the
overall performance of our models. The difference between the best and worst
performing model is approximately 27 times larger for the original data than

for the winsorized one and the average delta is 10 times larger.
The common feature of all top-performing models is an low amount of ex-

tending variables. The most complex model contains three sentiment variables
in addition to the basic volatility cascade. Even among these specifications,
the more parsimonious models win. Since we estimate the models over a rela-
tively short period, the regression equations might become easily overspecified.
Also, all additional variables are a proxy of market sentiment. Using a proxy
variable is naturally accompanied by risks of inappropriate selection. Assu-
ming that google searches and Twitter data well-capture market sentiment,
they are still burdened by measurement error and unrelated noise. Inappro-
priate methodology in data collection or data evaluation might be a source
of such noise. Despite all limitations, selected variables contribute worthwhile

information.
The Figure 5.1 shows development of an error rate of the top performing

models. The total error rate is measured by total sum of RMSE deltas and
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Average error rate 67 (%) Total error rate A7

Model RMSE MASE MAE | RMSE MASE MAE
Tnme= 4 Sm2 0.08 0.00 0.00 1.67 2.27 2.26
S 0.36 0.21 0.21 1.71 2.29 2.29
Sns 0.00 0.31 0.40 1.66 2.38 2.36
Tns= 0.07 0.66 0.46 1.71 2.53 2.52
= 4 Sms 0.21 0.70 0.70 1.77 2.55 2.55
Trs= 4 Tt 4 S22 | 2,78 1.09 1.05 2.44 2.59 2.58
HAR basic 0.10 0.99 0.71 1.69 2.59 2.58
Tne= 4 S™m 0.16 0.85 0.92 1.76 2.63 2.62
Trst 4 Sn2 3.33 1.83 1.64 2.54 2.74 2.73
Sm 0.58 1.79 1.71 1.83 2.83 2.83
Trs— 4 Tmet 2.68 1.77 1.58 2.45 2.84 2.83
Average error 0.94 0.93 0.85 1.93 2.57 2.56

Table 5.2: Average and total error rates, pu + 30 winsorized data,
Source: own analysis
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Figure 5.1: Original and winsorized errors comparison, Source: own

analysis

MASE deltas respectively across all companies as described in the Chapter 4.

The term is more stable for the winsorized data. The difference is naturally

present only in specifications containing Twitter variables T3~ T"2~ and

T~ because google searches and volatility estimators were not adjusted.

By creating percentage difference 0, we obtained scale-independent MAE

and thus, it is not surprising that MAE and MASE results are similar. On
the other hand, RMSE based deltas differ due to the sensitivity to large errors.

Therefore, we present two different rankings according to the used error (see

Tables 5.3 and 5.4).

As can be seen, limiting the extreme values have a significant effect on fore-

cast accuracy. Spurious effect of the Twitter spike tumble performance of the
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Rank MASE (MAE) RMSE
total error rate ranking total error rate ranking

1 Sn2 Sn3
2 S HAR basic
3 HAR basic Sn2
4 Tms= 4 Sm2 S
bt S ns= 4 §™
6 Tn= Tns=
7 = 4 Sns = 4+ S™
8 Tns= 4 ™ Tns= 4 5™
9 Tms.+ + Sn2 Tms.+
10 Tm» 4 5™ Tn2= 4 §™
11 Tms.t Tmnst 4 Gn2

Table 5.3: Top ten performing models, Original data, Source: own

analysis
Rank MASE (MAE) RMSE
total error rate ranking total error rate ranking
1 Tns= 4 §™ Tns= 4 §™
2 Sn2 S8
3 S8 HAR basic
4 Tms— s, —
5 Tms= + 9" Sne
6 Tms:— 4+ T+ 4+ SN2 Tns:— 4 g
7 HAR basic = 4 Sns
8 Tms= 4 5™ S
9 Tms.t + Sn2 T~ 4 T3+ 4+ §n2
10 Tme— 4 Tmst T~ 4 Trst
11 Sn Tns+ 4 Qne

Table 5.4: Top ten performing models, p+30 winsorized data, Source:
own analysis

model regardless of additional information. Whilst the basic model occupies

the second, respectively the third, position for the original dataset, six, re-

spectively two, extended models outperform the basic model for the winsorized

data. RMSE ranking is more sensitive to noise induced by the internet varia-

bles and thus, the basic model performs relatively better. However, the overall

results are satisfactory as both rankings contain eight common specifications.

It indicates a certain level of robustness to the error methodology.
Hereafter, we decided to focus on results based the winsorized data only

for reasons discussed above. Differences in predictive power of the individual
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specifications are rather subtle. The average error rate of the basic model is
only 0.99% larger than that of the winning model in case of MASE. In terms
of RMSE is this difference even smaller, approximately 0.1%. Even difference
between the best and worst performing model does not exceed 2% in terms of

MASE and MAE. B
RMSE offer interesting view into impact of positive tweets. Whereas 07

takes value from 0% to 0.58% for most of the selected models, it goes up to
3% for specifications containing positive tweets. It suggests that there is more

irrelevant noise in the positive tweets than in the negative tweets.
The table 5.5 shows average values of MASE of the top performing models.

The complete overview of average MASE, MAE and RMSE can be found in
the Appendix A. All values are very closed to 1 and varies in the third decimal
place. It indicates high quality of the original model. Nevertheless, six models

including the basic HAR attain values lower than 1 a thus outperform a naive

forecast.
Model MASE
Trs— + Sm2 0.99223
Sm2 0.99437
S 0.99618
Tms— 0.99675
Trs— + S"s 0.99918
HAR basic 0.99931
s~ + S™ 1.00135
Tns=  Tnet 4 Sz  1.00266
Tms~ + Tmst 1.00787
Tns+ + Sn2 1.00854
Sm 1.00919

Table 5.5: Average MASE, u + 30 winsorized data, Source: own
analysis

We performed Diebold-Mariano test to reveal statistical significance of pre-
dictive power of examined models. We set an alternative hypothesis that the
extended model outperforms the basic HAR. Tables 5.6 and 5.7 present the
test results. Apart from six companies, i.e. Boeing, Caterpillar, Goldman Sa-
chs Group, 3M, Merck & Co, and Procter & Gamble, p-values always exceeded
10% level. We conclude that the results are not statistically significant. Howe-
ver, it is not a surprising result considering negligible differences in the model

performance.
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As we stated in the Chapter 4, we performed Engle-Granger test to check
for cointegration. We ran a Dickey-Fuller test on residuals of the basic HAR
model. A resulting p-value is smaller than 0.01. Thus, we can confirm that

volatility variables are cointegrated.

Model/Company | AXP BA CAT CSCO CVX DD

S 0.3762 0.2313 0.2723 0.3018 0.4312 0.1976
Sn2 0.4681 0.1284 0.1483 0.2661 0.3893 0.3342
Sm 0.3676 0.2509 0.3182 0.4576 0.4416 0.3084
st 0.3793 0.1598  0.0504 0.4055 0.3143 0.2007
Tms:~ 0.2156 0.2368 0.2203 0.2904 0.1853 0.1724
Tnme= 4 S™m 0.2098 0.2105 0.2193 0.2909 0.1802 0.1500
Tnme= 4 Sm2 0.2166 0.1358 0.1895 0.2547 0.1836 0.1892
Tnme= 4 Sms 0.2093 0.2233 0.2193 0.2805 0.1680 0.1700
Trst 4 Sn2 0.3791 0.1065  0.0435 0.2630 0.3015 0.2089
T"s~ 4 Tt 0.2863 0.1607 0.1570 0.2701  0.1847 0.1762
Tr= 4 Sm2 0.3618 0.0706 0.1567 0.1356  0.3895 0.3395

Tmst + T~ 4 8™ | (0.2853 0.1080 0.1377  0.2401  0.1829 0.1838
Model/Company | DIS GE GS HD IBM INTC

S 0.3903 0.1778 0.3147 0.3934 0.2664 0.4808
Sne 0.4387 0.3121 0.4301 0.2005 0.1359 0.4926
Sm 0.4105 0.4855 0.4582 0.4653 0.1547 0.3977
T"s* 0.2216 0.4888  0.0698 0.3174 0.3703 0.3106
Tms~ 0.2772 0.4801 0.1524 0.2126  0.3225 0.3659
Tne= 4 S™m 0.2689 0.4785 0.1534 0.2126 0.3118 0.3582
= 4 Sm2 0.2741 0.3192 0.1524 0.1904 0.2841 0.3682
Tnme= 4 Sms 0.2675 0.1858 0.1518 0.2125 0.3073 0.3644
Tret 4 Sm2 0.2061 0.3113  0.0710 0.2898 0.1959 0.3126
Trs— 4 Tmet 0.1712 0.4762 0.1121 0.2114 0.3202 0.3118
Tn= 4 Sm2 0.3111 0.3224 0.3217 0.2060 0.2060 0.4215

Tt 4 T 4+ S | 01669 0.3142  0.1119  0.1894 0.2817 0.3135

Table 5.6: D-M test (p-values), i + 30 winsorized data, Source: own
analysis
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Model/Company | JNJ JPM KO MCD MMM MRK
Sne 0.2595  0.2244 0.3692 0.1983 0.4462 0.1741
Sne 0.3354  0.3644 0.4671 0.3187 0.1893  0.4446
Sm 0.3667  0.4956 0.4752 0.4915 0.4794  0.4705
Tms 0.1391  0.2175 0.1500 0.4814 0.2986  0.0236
Tns= 0.1905  0.4237 0.4140 0.2640 0.4138  0.0546
Tns= 4 5™ 0.1749  0.4249 0.4059 0.2636 0.4128  0.0552
Tms™ 4 Sm2 0.1366  0.3339 0.4016 0.2544 0.1786  0.0660
Trs=  Sne 0.1655  0.2282 0.3317 0.2523 0.4081  0.0946
Tret 4 Sn2 0.1283  0.2062 0.1971 0.3107 0.1781  0.0233
Tre= 4 Tret 0.1203  0.1890 0.1470 0.2345 0.2987  0.0236
Tme= 4 Sm2 0.2079  0.3523 0.4146 0.2944  0.0474 0.1393
Tt 4 T 4+ 8™ | 0.1065  0.1748 0.1963 0.2276  0.1784  0.0234
Model/Company | MSFT NKE PFE PG T TRV
Sne 0.2080  0.2055 0.3763 0.2216 0.4741  0.3671
Sne 0.3671  0.2697 0.4558 0.3855 0.4311  0.4357
Sm 0.4915  0.3296 0.2742 0.4573 0.3942  0.4150
Tmst 0.2184  0.2246 0.1877 0.4233 0.4443 04777
Tns= 0.1408  0.2619 0.2436 0.2680 0.1650  0.2266
Tme= 4 5™ 0.1408  0.2393 0.2000 0.2677 0.1660 0.2114
Tms™ 4 Sm2 0.1433  0.2417 0.2409 0.2323 0.1578  0.2208
Trs=  Sne 0.1387  0.2271 0.2379 0.0940 0.1647  0.2227
Tret 4 Sn2 0.2184  0.1961 0.1805 0.3818 0.4187  0.4463
Tre™ 4 Tt 0.1910  0.2351 0.1557 0.2969 0.1677  0.1791
Tm>™ 4 Sm2 0.2220  0.2067 0.3569 0.0945 0.2540  0.3620
T+ 4+ Tm~ 4+ S™ | 0.1910  0.2172 0.1493 0.2644 0.1618  0.1723
Model/Company | UNH UTX V VZ WMT XOM
Sne 0.3747  0.1369 0.4851 0.4956 0.2935 0.3611
S 0.2415  0.3293 0.4251 0.4507 0.3923  0.1980
Sm 0.4132  0.2138 0.3897 0.4846 0.2800  0.3157
Tms 0.2463  0.2236 0.2530 0.3919 0.3987  0.2061
s~ 0.1703  0.4406 0.4113 0.3398 0.1212  0.3613
Tms ™ 4 5™ 0.1706  0.2081 0.4007 0.3398 0.1162  0.3058
Tne ™ 4 5" 0.1637  0.3211 0.4087 0.3346  0.1202  0.2478
Tms= 4 9" 0.1702  0.1401 0.4113 0.3331 0.1198  0.3445
Trst 4 5m2 0.2189  0.2094 0.2525 0.3862 0.3863  0.1373
Trs= 4 Tret 0.1672  0.2083 0.2245 0.3509 0.1118  0.2516
Tm>™ 4 5" 0.2536  0.2953 0.2329 0.3980 0.2757  0.1617
T+ 4 Tm~ 4+ S™ | 0.1611  0.1978 0.2241 0.3462 0.1104  0.1760

Table 5.7: D-M test (p-values), u + 30 winsorized data, Source: own

analysis
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5.1.1 The best performing specifications

Let’s focus on the models outperforming the basic HAR. We arrive at seven

specifications:

Daily negative tweets + Weekly search volume

Weekly search volume

Daily search volume

Daily negative tweets

Daily negative tweets + Daily search volume

Daily negative tweets + Daily positive tweets + Weekly search volume
Daily negative tweets + Monthly search volume

N

The reason why we include also the last specification Daily negative tweets
+ Monthly search volume is twofold. Firstly, it outperforms the basic HAR
in terms of the average error term. Secondly, the total error rate differs only

negligibly and thus we cannot infer any ultimate conclusions out of it.

T”Sa*

MASE  HAR Tma- . s s T e T

value basic + 5™ + .57 4 gm + 5™

Average 0.9993 0.9922 0.9944 0.9962 0.9968 0.9992 1.0027 1.0013
Median 0.9815 0.9941 0.9763 0.9659 0.9572 0.9773 0.9959 0.9718

Max 1.4397 1.4455 1.4399 14416 1.4451 1.4482 1.4603 1.4613
Min 0.5438 0.4941 0.4791  0.4850 0.5407 0.5119 0.5343 0.5403
Stdev 0.2124 0.2166 0.2265 0.2208 0.2085 0.2144 0.2268 0.2148

PriX <1] 56.67% 50.00% 53.33% 56.67% 53.33% 53.33% 50.00% 56.67%

Table 5.8: MASE values statistics, u + 30 winsorized data, Source:
own analysis

Table 5.8 summarizes MASE values of top performing models. The complete
results, i.e. MASE, RMSE and MAE values of the top performing models, can
be found in the Appendix A. The last two models (Daily negative tweets +
Daily positive tweets + Weekly search volume, and Daily negative tweets +
Monthly search volume) show comparatively worse results than rest of the mo-
dels. In terms of absolute values, the most sophisticate model combining Daily
negative tweets, Daily positive tweets, and Weekly search volume is among
top 3 performing models for 15 stocks (see the Appendix A). However, it does
not show robust results across all examined stocks. If it does not fit the stock
well, the results deteriorate significantly. Thus, it is outperformed by more

parsimonious models.
Differences in other MASE results are subtle and almost contradictory. For

instance, Daily negative tweets + Weekly search volume specification has the
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lowest average MASE but almost the highest median MASE. Moreover, the
probability that MASE will be equal or lower than 1 is only 50% compared
56,67% for the basic HAR. On average, the Weekly search volume specification
and the Daily search volume specification bring the most robust results and
outperform HAR almost in every aspect described in the table. Diving dee-
per into MASE statistical distributions, good performance of daily and weekly

search volume is apparent in Figure 5.2.
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Figure 5.2: Distributions of MASE, Source: own analysis

Generally, selected models exploit overall activity expressed by Google sear-
ches and arrival of negative news (innovations) represented by negative tweets.
Whereas Google search volume indicates a magnitude of the innovation rather
than its sign, negative tweets represent a sign of the news as well as its mag-
nitude. With respect to these relations, the best performing model combines
the effect of Daily negative tweets and support them by a mid-term activity
measure, i.e. Weekly search volume. It leads the table regardless of measure
used. Also, both variables increase accuracy of the basic HAR individually.
Daily search volume is another important variable suggesting that searching

volume is a suitable proxy of market activity.
These findings are in line with recent literature. Many studies refer to an

asymmetric reaction to positive and negative news. For instance, Laakkonen
and Lanne (2008) studied the impact of positive and negative macroeconomic
news in different phases of the business cycle on the high-frequency volatility of
the EUR/USD exchange rate. They conclude that bad news increases volatility
more than good news and the news effect depends on the state of the economy.
Bad news increases volatility more in good times than in bad times, while there

is no difference between the volatility effects of good news in bad and good
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times. Goudarzi (2011) found a similar pattern in the Indian stock markets,
i.e. that the negative news has a greater impact on volatility than a positive

news. More recent literature is presented in the 3.
Coherence of negative tweets effect and the state of art of volatility behaviour

is certainly a positive sign. But how can we explain short-term nature of the
significant variables? All influential factors are daily or weekly. Monthly search

volume shows satisfactory results only together with a daily variable.
Figure 5.3 shows Google searches associated with four randomly chosen com-

panies. A dotted green line denotes daily search volume, a solid red line shows
weekly search volume and a blue dashed line shows monthly search volume. An
obvious consequence of averaging daily values into weekly and monthly clusters
is smoothening the volatility. However, a method of moving average is accom-
panied by another detrimental effect: shifting the ups and downs in the data.
This trend is visible in all charts. In particular, the more is the spike "sharp’,
i.e. it lasts a short period, the more is the shift visible. This may be a source

of a low predicative value of the monthly variables.
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Figure 5.3: Google searches, Source: own analysis
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5.2 Individual stocks analysis

The drawback of our approach is that it aggregates results across examined
companies. As discussed in the chapter 3, market sentiment affects all stocks
to some extend but it affects some more than others. Since we have analy-
sed companies separately, we can observe link between market sentiment and

volatility at a company level.

The best stocks RMSE MAE MASE

JNJ 0.00051  0.00041  1.10808
MMM 0.00045  0.00034  0.65880
XOM 0.00044  0.00036  0.77927
MSFET 0.00070  0.00059  0.54380
DIS 0.00059  0.00046  0.67121
Average 0.00078 0.00058 0.99931

Table 5.9: Original HAR model: the best stocks, Source: own analy-
sis

The worst stocks RMSE MAE MASE

CSCO 0.00132  0.00098  0.96921
INTC 0.00113  0.00093  1.13783
KO 0.00096  0.00069  1.43971
T 0.00085  0.00057  1.36575
WMT 0.00087  0.00065  1.39228
Average 0.00078 0.00058 0.99931

Table 5.10: Original HAR model: the worst stocks, Source: own
analysis

Firstly, the original HAR model performs best for JNJ, MMM and XOM
in terms of MAE and RMSE!. In terms of MASE, DIS, MMM and MSFT
show the best results. Interestingly, the basic HAR model is outperformed
by naive forecast for JNJ (see the table 5.9). On the other hand, the basic
HAR model reveals the worst forecast accuracy for CSCO, INTC and KO
according to MAE and RMSE and KO, T and WMT according to MASE (see
the table 5.10). Discrepancy between MAE, RMSE and MASE performance

indicates different nature of underlying volatility processes. MASE is scaled

'For company names, see the table Data overview in the chapter 4.
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by scaling statistics () calculated from in-sample naive forecasts. The naive
forecast assumes the value t to be equal to the value ¢t — 1. In terms of the
HAR model, the daily volatility ¢ equals to the daily volatility ¢ — 1, i.e. the
first part of the volatility cascade. The results suggest different contribution
of individual elements of the volatility cascade for individual companies. For
instance, Cisco (CSCO) shows poor values of RMSE and MAE but a superb
value of MASE. It indicates importance of weekly and monthly elements of the

volatility cascade.
No wonder, extended models perform similarly to the basic HAR model. But

interestingly, sentiment variables contribution differs across companies and spe-
cifications. MSFT, XOM and CSCO are among models with highest positive
impact of market sentiment variables. Table 5.11 presents improvement of fore-
cast errors of extended models. Negative values indicate enhanced performance
of the extended models over the basic HAR model. Besides those three stocks,
few stocks show substantially lower forecast errors for particular specifications.
For instance, weekly Google searches improve MAE and MASE of HD by 15%
and negative tweets improve MAE and MASE of IBM by 11%. The complete
results can be found in the Appendix A.

ng,— nz,— s + ng,—

Stock | Error gn: T ogne o gne s gn: + 763”3* + gnf +

n2

RMSE | -9% 9% 5% -3% -6% 1% -3%
MSFT | MAE -9% -12%  -11% -1% -6% 2% -1%
MASE | -9% -12% -11% -1% -6% -2% -1%
RMSE | -9% 9% 4% 2% -4% -1% -3%
CSCO | MAE -21% -19% -9% -4% -8% -22% -6%
MASE | -21% -19% 9% -4% -8% -22% -6%
RMSE | -9% 8% 2% -1% 2% -10% -5%
XOM | MAE -10% 9% 2%  -1% -3% -12% -5%
MASE | -10% 9% 2%  -1% -3% -12% -5%

Table 5.11: The difference between errors of the extended model and
those of the original model: the best stocks, Source: own analysis

Table 5.12 outlines the worst performing stocks, namely PFE, CAT and
DD. The higher values suggest worse performance compare to the basic HAR
model. Extending the basic HAR model by any Google search variable sig-
nificantly hinders performance of the model in the case of CAT. For DD and
PFE, tweets impair forecast accuracy of the model more. HD and IBM show
an interesting mirror effect. Whilst, weekly Google searches improve MAE and
MASE of HD by 15% they deteriorate the same errors of IBM by 14%. Also,
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MAE and MASE of HD are negatively influenced by negative tweets, i.e. hig-
her by 11% (see table 5.13). Apart from these stocks, the most sophisticated
model combining negative and positive tweets, and weekly Google search vo-
lume deteriorates measurement error of MRK substantially. RMSE is higher
by 54% and MAE and MASE are higher by 25%. Those extreme values impair

average performance of the model.

%=

Stock | Error | L7+ Sn2 §na Tms =+ T+ 4 =+
Sn2 Sns gna Sm
RMSE | 10% 0% 1% 12% 14% 24% 9%
PFE | MAE | 9% 0% 1% 10% 12% 19% 6%
MASE | 9% 0% 1% 10% 12% 19% 6%
RMSE | 7% 8% 2% 0% 0% 13% 2%
CAT | MAE | 12% 16% 2% 2% 2% 17% 6%
MASE | 12% 16% 2% 2% -2% 17% 6%
RMSE | 7% 1% -4% 6% 0% 3% 11%
DD MAE | 13% 3% 4% ™% 9% 9% 18%
MASE | 13% 3% 4% % 9% 9% 18%

Table 5.12: The difference between errors of the extended model and
those of the original model: the worst stocks, Source: own analysis

- - e —

Stock | Error | L7t g gma pra- T4 e T

Sn2 Sn:s S”Q Sm
RMSE | 0% 0% A% % % 0% %

HD | MAE | 7% 5% 4% 1% 10% 6% 11%
MASE | 7% 5% 4% 1% 10% 6% 11%
RMSE | 1% 8% 3% 6% 3% 2% 1%

IBM | MAE | 2% 4% 4% -11%  -1% 2% 1%
MASE | 2% 14% 4% -11%  -1% 2% 1%

Table 5.13: The difference between errors of the extended model and
those of the original model: HD and IBM, Source: own analysis

Table 5.14 presents a number of stocks where the extended model outper-
forms the basic HAR model. In terms of RMSE, performance of the extended
model and the basic model is comparable. Four out of seven models show equi-
valent performance for the extended and the basic model. MAE and MASE
results are identical. The best performing models contain 773~ and S™2, T3,
77~ and S™, T™~ and 7"+ and S™. The last specification performs very
poorly for few stocks. Considering RMSE errors, we conclude that 7™~ and

Sr2 T~ and T™~ and S™ are the best performing models across examined

stocks.
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5. Results
Trs—
Better model | Error T,nay_ Togne gns s T,nsy_ + T3+ er e
Snz S’ns gna Sm
Extended RMSE | 17 15 11 17 15 15 14
Basic HAR RMSE | 13 15 19 13 15 15 16
Extended MAE 16 14 13 19 18 17 15
Basic HAR MAE 14 16 17 11 12 13 15
Extended MASE | 16 14 13 19 18 17 15
Basic HAR MASE | 14 16 17 11 12 13 15

Table 5.14: Comparison of extended model performance and the basic
HAR model performance: number od stocks , Source: own analysis
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Figure 5.4: Out-of-sample forecast plots, CAT and CSCO, Source:
own analysis

Figure 5.4 depicts out-of-sample forecasts of the basic HAR and the spe-
cification combining daily negative tweets and weekly search volume. As an
example, we present CSCO and CAT. The difference between those two models
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is apparent in the chart. Whereas in the CSCO plot, a line of the extended
model copies true volatility values more accurately than that of the basic HAR
model, in the CAT plot, the HAR model plot is the more precise. Generally,
all depicted models show very solid performance as a low level of measurement

errors suggests.

5.3 Robustness analysis

Winsorizing significantly affects performance of our models. As a final spike-
adjusted time series, we use data capped by p+ 30 value. Figure 5.5 shows the
density functions of adjusted variables of the six critical companies. A solid
black line is assigned to positive tweets and a dashed red line denotes negative

tweets. Vertical lines show the winsorizing limit equal to u + 30.
We do not include density functions of neutral tweets, although we constrai-

ned them, as they do not have a positive effect on model’s performance. All
densities are leptokurtic and positively skewed. The minimal values are 0, as
an underlying variable is a number of daily tweets. Disbalance between positive
and negative tweets is apparent in the chart 5.5. The table Data overview in
the chapter 4 shows that the absolute number of positive tweets is almost twice
larger than the number of negative tweets. However, the density plots show
that positive tweets have mean similar to that of negative tweets but differs in

variance.
It brings us to the interesting point regarding our dataset. How were the

tweets collected and evaluated? Why are there more positive tweets than ne-
gative tweets? And, is a magnitude of a positive tweet comparable to that of

a negative tweet? These questions are discussed in the last chapter.
The p + 30 limit is a very conservative level considering a field of social

science where 20 limits are commonly used. Thus, we performed a robustness
analysis in order to support reliability of our conclusions. We additionally
constrained the data by p + 2.50, u+ 20, and p + 1.50 values. We arrived at

five different rankings including the original dataset.
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Figure 5.5: Density functions and limiting vaulues, Source: own ana-
lysis

The results of robustness analysis are satisfactory. MASE was used as a
measure for the ranking presented in Table 5.15. Exact values of MASE coef-
ficients can be found in the Appendix A. The original data and the p + 1.50

data are extreme cases where either outliers are not limited at all or are limited
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very insolently. Nevertheless, even those rankings contain almost the same spe-
cification. The exception are T~ 4 T"" 4+ S™ that occurs only in strictly
winsorized datasets, i.e. p+2.50 and less, 7" that occurs only in the original
data, and S™ that occurs in the original data and the u 4 30 data. However,
all of these specifications occupy the bottom places of an ranking ladder and

none outperforms the basic HAR.

Rank dOrlglnal 3Jsigma 2.5 sigma 2 sigma 1.5 sigma

1 S%}a T"’lg.* + Snz Tn3,* + S'ﬂrz T”S,* + S’VL2 T’ﬂ3,* + STZQ

2 Sns Sn2 Sne Sn2 Sn2

3 HAR basic S Sns Sns Sns

4 T~ 4 S"2 T s~ Tne= 4 Tmet 4 §n2 s~ 4 Tnst 4 gne
5 Sm Tms= + S"3 Trs= 4 Tt 4 Gz e T~

6 "~ Tne= 4 Tnat 4 Gn2 e 4 9N Tns= 4 S8 Tms= 4 S8

7 T~ + S™  HAR basic HAR basic HAR basic Trs= 4+ S™m

8 A e A L Tns= 4 Sm Tns= 4 Sm Trst 4 Sn2

9 Tret 4 §nz et 4 Gne Trst 4 Sm2 Tnst 4 G2 HAR basic

10 Tr>= 4 Sm2 gm Trs= 4 Tt Trs= 4 Tt Trs= 4 Tmst

11 st Trs ™ 4 Tret Tns= 4 TreT 4 §m Tns— 4 Tt 4o gm hss 4 st 4 gm

Table 5.15: Ranikng for various winsorization levels, Source: own
analysis

By closer analysis of the middle datasets, i.e. from p 4+ 30 to p + 20, we
may confirm that the ranking is stable and thus, relatively robust to a level
of winsorization. Moreover, we can observe a trend in improvement forecast
accuracy of more complex models with increasing winsorization. As extreme
values are more dramatically capped, the more complex models are shifting
upward at the expense of the more parsimonious models. Interestingly, the

upper 3 ranks remain unchanged for all levels of winsorization.

5.4 Results summary

Out-of-sample approach has shown some minor improvements in forecast accu-
racy. Notably, the MASE based error rate and the MAE based error rate have
improved for some extended models. The RMSE based error rate has decreased
only slightly due to lower robustness to irrelevant noise induced by market sen-
timent proxies. However, Diebold-Mariano test has shown that the difference
in forecast accuracy is not statistically significant. A ranking of the top ten
models according to predictive power contains almost the same specifications
for the original data and the pu + 30 winsorized data. Although, the basic
HAR occupies higher ranks for the original data due to the detrimental effect
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of Twitter spikes. Thus, we decided to elaborate on the p + 30 winsorized

data.
The models outperforming the basic HAR contain particularly Daily nega-

tive tweets, Weekly search volume, and Daily search volume. Daily positive
tweets have satisfactory results only in combination with Daily negative tweets
and Weekly search volume. Robustness analysis has shown that the ranking is

robust to a level of winsorization.
In terms of individual stocks, all models show decent results. The basic HAR

model fit some stocks better and thus subsequently, all extended models attain
higher accuracy. Considerable discrepancy between MAE, RMSE and MASE
performance suggests different nature of underlying volatility processes. For
instance, strong MASE performance and poor RMSE and MAE performance
indicate importance of weekly and monthly elements in the volatility cascade.
Contribution of sentiment variables differs across companies and specifications.
Whereas, some specifications for particular stocks improve forecast accuracy up
to 22%, others impair forecast accuracy up to 24% (in one extreme case up to
54%). By a thorough analysis of a number of stocks where the extended model
outperforms the basic HAR model, we arrived at following results. The best
performing models contain 773~ and 5™, T"*~, and T™*~ and S™. Moreover,
by analysing relation between market sentiment and volatility at a company
level, we can efficiently identify stocks which volatility is strongly correlated
with market sentiment. Although, we cannot decide on which specification is
the ultimately best performing models for all stocks, we can say which stocks

are interesting for market sentiment analysis.



Chapter 6
Conclusion

The aim of this thesis is to improve understanding of information hidden in
social networks and internet data. Particularly, can it serve as a market senti-
ment indicator and improve predictive power of volatility models? The answer
is yes.

As the basic model, we had chosen the heterogenous autoregressive model
(HAR) and extended it by a variety of market sentiment factors. We have
approximated market sentiment by Google search volume and a quantity of
positive, negative and neutral tweets. The Twitter variables contain extreme
values and thus, we winsorized them using p + 30 limit. To support reliability
of our results, we performed robustness analysis. We have used two different
methodologies to evaluate the effect of market sentiment. Firstly, we have per-
formed out-of-sample forecast, compared measurement errors, tested statistical
significance of the difference in forecast accuracy, and compiled a ranking of the
extended models based on their relative performance. Secondly, we have car-
ried out an analysis on the top seven performing models at a stock level. The

final ranking indicates models that outperform the basic HAR model.
We have arrived at seven specifications that slightly outperform the basic

HAR. Those models include the basic HAR enriched by daily negative tweets
and weekly search volume, weekly search volume, daily search volume, daily
negative tweets, daily negative tweets and daily search volume, daily negative
tweets and daily positive tweets and weekly search volume, and daily nega-
tive tweets and monthly search volume, respectively. These extended models
have shown better performance, particularly in terms of MASE and MAE. The
RMSE based error rate has decreased only slightly due to lower robustness to
irrelevant noise induced by market sentiment proxies. Robustness analysis has

shown that the ranking is robust to a level of winsorization. However, as the
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Diebold-Mariano test has shown, the differences in forecast accuracy are not

statistically significant.
The individual stocks analysis has brought affirmative results. By an ana-

lysis of a number of stocks where the extended model outperforms the basic
HAR model, we have shown that the best performing models contain 773~
and S™, T™~ and T"~ and S™. The first model combining daily negative
tweets and weekly search volume is a superior model for 17 stocks according to
RMSE and 16 stocks according to MAE and MASE. The daily negative tweets
outperforms the basic HAR for 17 and 19 stocks, respectively. And, the last
specification containing daily negative tweets and daily search volume outpaces
the basic HAR for 15 and 18 stocks, respectively. Based on the average MASE
and MAE improvement, a combination of daily negative tweets and weekly
search volume is a clear winner. It lowers the average MAE and the average
MASE by 0.98% and 0.71% respectively. Based on the average RMSE, the

daily search volume model leads the table with 0.05% improvement.
Moreover, three important findings have been revealed. Firstly, the basic

HAR model has very good predictive power even without additional variables.
This is not a surprising phenomenon. For instance, Hansen and Lunde (2005)
compared 330 ARCH-type models in terms of their ability to describe the
conditional variance. They did not find any evidence that a GARCH(1,1) is
outperformed by more sophisticated models apart from those accommodating

a leverage effect.
Secondly, assessment of the ultimate best model is difficult. A model that

captures well volatility of one stock is outperformed by other models for the
other stocks. Moreover, the difference between individual HAR-type models
is so subtle that within a certain range, the used error methodology is unable
to distinguish superior and inferior models. Therefore, we present a set of the

best performing models.
Thirdly, market sentiment variables contain a substantial amount of infor-

mation. We identified three relevant variables, daily negative tweets, daily Goo-
gle search volume and weekly Google search volume. These variables improve
forecast accuracy of the basic HAR model separately or in a Twitter-Google
combination. The absence of positive tweets suggests that negative news influ-
ence volatility more than positive news. In terms of more sophisticated models,
a set of daily negative tweets, daily positive tweets and weekly Google search
volume outperforms the basic HAR. This model is among top 3 performing

models for 15 stocks and outperforms the basic model for 17 stocks but, it
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does not show robust results across all examined stocks. The main drawback
of this model is that if it does not fit the stock well, the results deteriorate

significantly. Thus, it is outperformed by more parsimonious models.
All relevant market sentiment variables are in a weekly or daily form. The

absence of monthly values is arguably caused by a shift in the data. The
averaging of monthly values introduces long-memory and thus shift extreme
values forward. Interestingly, the weekly search volume outperforms the daily
search volume particularly, in a combination with negative tweets. There are
multiple ways how to explain it. Either, it suggests that weekly search volume
better reflects market activity. Or, the short-term market activity is embodied
in a magnitude of tweets, i.e. the number of tweets, and thus, daily Google
search volume provide partially duplicate information. Or, different types of
investors, with respect to various investment horizons, use different information
channels. For instance, increased daily market activity does not have such a
significant impact on search volume since investors may use Bloomberg services
instead of googling the company. Alternatively, investors betting on short-term
market activity might have a better idea of what they are looking for and thus

do not increase google activity as significantly as short-term investors.
A combination of market sentiment and a HAR model is particularly inte-

resting due to the heterogeneous component contained in both concepts. The
HAR model implicitly assumes heterogeneity in volatility generating process.
Market sentiment encompasses cognitive and emotional biases of heterogenous
investors and a variety of fundamental and technical factors. Those compo-
nents might be partially overlapping. Thus, extending a heterogenous model
by market sentiment indicators, that are by definition formed by heterogenous
elements, may introduce additional noise that is not compensated by additional

information.

6.1 Theoretical contribution

From a theoretical perspective, the research brings novel findings about infor-
mation contained in publicly available data. It has shown that Google search
volume that can be easily obtained and processed in real time contains a suf-
ficient amount of information to improve predictive power of an econometrics
model. We have also pointed out the challenges associated with Twitter data.
Evaluation and classification of tweets is a technically and intellectually diffi-

cult task. Twitter posts contain a lot of unrelated noise that can, if untreated,
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impair their forecasting power.
Moreover, we have confirmed strong performance of HAR-type models even

without use of high-frequency data. The basic HAR model as well as other
selected models have shown excellent results. Mean absolute scaled errors take
values significantly lower than 1 for most of the stocks. Even average MASE
including all examined stocks is below 1. Those are results that are commonly

arduous to achieve.

6.2 Limitation

One of the limitations is uncertain origin of twitter data. We have to believe
in methodology of Ranco et al. (2015) as we do not know how were the tweets
collected and evaluated. Disbalance between positive and negative tweets dis-
cussed in the chapter 5 bring us to an interesting point. Why are there more
positive tweets than negative tweets? Is a magnitude of a positive tweet com-
parable to that of a negative tweet? Or, is more unrelated noise present in
positive tweets than in negative tweets? Since we cannot answer these questi-
ons, we cannot make any conclusions on worse performance of positive tweets
than negative tweets. It is very likely, and in line with literature, that arrival
of negative news influence volatility more than arrival of positive news but it is

also possible that this effect is caused by inappropriate selection of tweets.
The next limitation is also associated with a system of tweets evaluation.

A positive-neutral-negative scale enables sort tweets in three disjointed sets
but does not allow for cardinality. In other words, are the more and less
negative tweets in the same set? We might assume that a number of tweets,
i.e. a magnitude of news, might foster the relevance of the post. The logic
behind that is that a relevant post should be re-tweeted by peers and therefore
increased in a magnitude. However, reasons for re-tweeting might vary from
economical relevance to personal affection to a writer or a subject. Such tweets
may create clusters of economically unrelated noise and reduce performance of

the models.
Another great limitation is the used methodology. We made many decisions

about model selection, length of a sample in out-of-sample forecast, error rate
ranking, or a stock level analysis. Each of these decisions might influence re-
sults and thus, researchers using different methodology might arrive at slightly
different results. However, we tried to describe and follow used methodology

as precisely as possible in order to increase reliability and replicability of our
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results.

6.3 Future research

The topic of extending models by market sentiment is still relatively unexplo-
red. Channels such as social networks hide untapped potential of novel data
streams. Hand in hand, latest technologies in big data analysis or artificial
intelligence offer more efficient way how to process those data. This combi-
nation represents unique opportunity in unravelling a new class of financial

models.
In this research, we have shown that market sentiment variables contain a

substantial amount of information. However, we did not arrive at the ultimate
best model. It can be achieved by another methodology of model selection
or, for instance, averaging models. Averaging models is widely used technique
in forecasting and thus, extending this research by weighted average of the

selected models is a logical step.
Furthermore, we described substantial discrepancy among MAE, RMSE and

MASE performance, and distinct contribution of sentiment variables across
companies and specifications. New questions have arisen. Does volatility of
individual stocks follow slightly different processes? For instance, various ele-
ments of the volatility cascade are of various importance for diverse stocks.
And, which stocks tend to be more sensitive to market sentiment? Those and

many other questions should be properly answered.
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Figure A.1: All specifications of HAR model
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A.2 Measurement errors

Average error rate

Total error rate

Model

RMSE MASE MAE  RMSE MASE MAE
HAR basic 0.10% 0.78% 0.50% | 1.7691 2.6206  2.6152
s+ 15.24%  4.68% 4.34% 1 6.1702  3.7389  3.7335
Tms— 12.16%  2.09% 1.98% | 5.9828 3.1160  3.1106
T30 7.41% 7.63% 7.34% | 4.1988  4.9758  4.9706
ST 0.00% 0.09% 0.18% | 1.7444  2.4177  2.4123
ST2 0.36% 0.00% 0.00% | 1.7937 2.3350 2.3294
S™ 0.58% 1.57% 1.49% | 1.9215 2.8815 2.8761
Tm2— 13.98% 5.10% 491% |6.5174  4.1518  4.1462
Tro— 14.59% 17.67% 17.26% | 6.7458  8.3899  8.3845
T2t 26.57% 13.85% 12.77% | 9.2588  6.4053  6.4000
Tt 22.43%  22.50% 22.30% | 8.4635  9.3580  9.3526
T+ 4 S™m 15.58% 5.27% 515% | 6.2824  3.9544  3.9490
Tms— 4 S™ 12.24%  2.28% 2.44% | 6.0274  3.2261  3.2207
Tns= 4 Tmst 26.33%  5.65% 5.53% | 10.0999 4.1533  4.1479
Trs+ 4 Sn2 15.73% 4.21% 4.01% | 6.2850  3.5599  3.5543
Tms:— 4 Sn2 11.98% 1.41% 1.50% | 5.8715 2.8605  2.8549
Tms= 4 Sms 12.33% 2.13% 2.23% 16.0499  3.1403  3.1349
Tms:— 4 Sns 15.76% 4.67% 4.48% | 6.3500  3.7538  3.7485
Tm2— 4 S 13.84%  4.56% 4.69% | 6.4823  3.9964  3.9909
Tme— 4 Sns 13.66% 16.28% 16.56% | 6.4962  8.0146  8.0092
Tr2+ 4 gns 25.49% 13.53% 12.55% | 8.9469 6.2884  6.2832
Tt 4 gns 21.39% 20.21% 20.61% | 8.1862 8.6879  8.6826
Tn2— 4 Sn2 13.13%  3.75% 3.76% | 6.1899  3.6627  3.6570
Tm— 4 §n2 10.96% 13.50% 13.71% | 5.4747  6.9561  6.9506
Tre2+ 4 G2 27.78%  13.94% 12.72% | 9.5871  6.3494  6.3440
Tt 4 Sne 22.18% 20.51% 20.78% | 8.3367  8.6679  8.6623
T2 4 g™ 13.97% 4.83% 512% | 6.5410 4.1561  4.1505
= 4 §m 14.83% 17.78% 18.33% | 6.8821  8.5432  8.5378
Tret 4 Sm 27.42% 14.50% 13.69% | 9.5235  6.6661  6.6609
Tret 4 Sm 22.94% 22.90% 22.71% | 8.6738  9.5635  9.5580
Tr2= 4 Tms~ 17.22%  5.15% 4.94% | 7.6577 4.1684  4.1628
o= o T~ 17.17%  8.80% 8.97% | 7.8347  5.5699  5.5646
T2t 4 Tms— 34.04% 13.43% 12.43% | 12.1210 6.3662  6.3609
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Model Average error rate Total error rate
RMSE MASE MAE RMSE MASE MAE
Trt 4 Trs- 31.92% 20.05% 20.19% | 11.9231 8.6801  8.6837
Tra 4 Tt 2651% 8.04%  T7.86% | 10.1567 4.9941  4.9385
T 4 Tt 23.27% 15.56% 15.61% | 9.1316  7.6096  7.6042
Tt 4 ot 20.14% 13.32% 12.10% | 10.0398 6.2439  6.2386
Tt 4 Tt 2427% 18.36% 18.49% | 8.9315 7.9996  7.9942
Trs— £ Tt 4 S™ | 26.36% 5.71%  5.83% | 101203 4.2223  4.2168
Trs— £ Tt 4 S | 2647%  4.98%  5.02% | 10.0983 3.9134  3.9078
Trs— et 4 S | 2731%  6.16%  6.09% | 10.4199 4.3316  4.3262
TET o+ TR 4
- 26.30% 5.72%  5.84% | 10.1453 4.2284  4.2229
t—1
;: * nTTT Tolass%  27.21%  27.50% | 150515 112763 109331
oo W e
32.25% 9.69%  10.01% | 12.2475 57947  5.7896
Pt e
o 32.07% 8.38%  8.64% | 12.0047 52451  5.2399
;:0 ++Sn3Tn3’+ T 13249%  919%  9.53% | 123220 56179 5.6130
TR+ TR g 060 ss6%  8.64% | 119402 53106 49891
27 + Sy
Tro— 4+ Tret 4
Tm- oTmot 4 4251%  28.46% 29.10% | 15.3834 11.6892 11.3453
TZ;* + Tt +
Trs0 o Tme 4| 56.56% 44.24%  44.10% | 19.6035 16.3099 15.9945
Tt 4 7m0 4 gns
Complete cascade 66.89%  47.28%  47.72% | 22.7639 17.4464 17.1355

Table A.1: Average and total error rates, Original data, Source: own

analysis




A. Appendix V
Model Average error rate Total error rate
RMSE MASE MAE  RMSE MASE MAE
HAR basic 0.10%  0.99%  0.71% | 1.6850  2.5868  2.5814
Tms 2.99%  2.31% 1.98% | 24725  2.9301  2.9247
s~ 0.07%  0.66%  046% | 1.7110  2.5269  2.5215
0 T17%  7.776%  7.47% | 4.0410  4.8993  4.8941
Sn3 0.00%  0.31%  0.40% | 1.6596  2.3803  2.3750
Sn2 0.36%  0.21%  0.21% | 1.7084  2.2904  2.2848
Sm 0.58% 1.79% 1.71% | 1.8335  2.8321  2.8267
T2~ 7.03%  6.30%  5.65% | 3.6581  4.2069  4.2013
Tr— 10.10% 14.93% 14.34% | 5.0751  7.3042  7.2988
Tt 12.61% 10.85% 9.81% | 5.0766  5.3775  5.3723
Tt 8.94% 13.30% 13.14% | 4.4181  6.4737  6.4683
T+ 4 Sm 3.31%  291%  2.80% | 25735 3.1298  3.1244
= 4 Sm 0.16%  0.85%  0.92% | 1.7552  2.6278  2.6224
Trs= 4 Tnst 2.68% 1.77% 1.58% | 2.4465 2.8380  2.8326
T+ 4 Sne 3.33% 1.83% 1.64% | 2.5419  2.7369  2.7313
= 4 5" 0.08%  0.00%  0.00% | 1.6655 2.2687  2.2632
Tnme= 4 Sms 021%  0.70%  0.70% | 1.7659  2.5475  2.5421
ns= 4 Sns 3.18%  231%  2.12% | 2.5533  2.9454  2.9400
= 4 Sns 6.88%  5.61%  5.28% | 3.6168 3.9949  3.9894
= 4 S 9.41% 13.63% 13.75% | 4.9130 6.9671  6.9617
T2t 4 Sns 12.35%  10.57% 9.62% | 5.0067  5.2715  5.2662
Tt 4 Sns 8.20% 11.22%  11.65% | 4.2355  5.8867  5.8813
ns= 4 Sn2 6.51%  4.73%  4.29% | 3.4520 3.6441 3.6384
e 4 52 8.35% 11.66% 11.76% | 4.4644  6.1702  6.1647
T2t 4 Sne 12.97% 10.42% 9.24% | 5.1527  5.1580  5.1526
Tt 4 §ne 8.50% 11.34%  11.63% | 4.2461  5.8040  5.7984
Tnm= 4 Sm 7.49%  6.48%  6.24% | 3.8109 4.3032  4.2976
e 4 Sm 9.80% 14.79% 15.16% | 5.0346  7.3715  7.3661
T2t 4 8™ 13.41% 11.51% 10.70% | 5.3129  5.6027  5.5975
Tt 4 9m 9.25% 13.90% 13.72% | 4.5713  6.72564  6.7200
Tr2= + T~ 7.39%  6.40%  5.70% | 3.7797  4.2181  4.2125
e  Imsm 5.24%  7.26%  7.29% | 3.5988  4.9123  4.9070
Tn2t 4 T 11.01%  9.55%  8.49% | 4.7097  5.0489  5.0436
Tt 4 T 727%  9.84%  9.89% | 3.9726 54540  5.4486
T2~ 4 Tt 856%  6.53%  5.92% | 4.0971 4.2338  4.2282




A. Appendix Vi
Model Average error rate Total error rate
oce RMSE MASE MAE | RMSE MASE MAE
Trs— 4 Tnst 8.78%  11.44% 11.35% | 4.5911  6.1615  6.1562
Tr2t 4 Trst 13.00% 10.77% 9.52% | 5.1885  5.3252  5.3200
Tt 4 Tt 8.63%  11.02% 11.10% | 4.2335  5.6688  5.6634
Tn37— + Tns,-i- +
2.71%  1.84%  1.88% | 2.4740  2.9018  2.8964
ni
ns,— ns3,+
T+ I 4 o000 1.00%  1.05% | 24449 2.5860  2.5804
n2
n3,— ns3,+
g T g 04% 290%  2.06% | 2.6120  2.9803  2.9839
n3
Tns,* Tn3,+
o TR T 9630%  5.95%  6.07% | 10.0433 42042 41987
t—1
Tns,* Tn3,+
+ T 155%  27.55%  27.78% | 14.9460 11.2659 10.9227
Tm,* _|_Tn1,+
Tns,* + Tn3,+ +
9.23%  6.00%  6.21% | 4.6891 4.5188  4.5137
Tng,o +Sn1
Tns,* + Tn3,+ +
9.14%  4.69%  4.85% | 4.5779 3.9732  3.9680
Tng,o +Sn2
Tns,* + Tn3,+ +
9.07%  5.43%  5.67% | 4.6485  4.3281  4.3231
Tng,o +Sn3
% 4+ T3 +
. . 31.96% 9.10%  8.87% | 11.8376 5.2873  4.9658
T.20 + Siy
Tns,* + Tn3,+ +
Tr— 4 ot 4| 4251%  28.74%  29.38% | 15.2768  11.6768  11.3330
Sm
Tnsﬁ + Tn3,+ +
Trs0 4+ T 4| 56.56%  44.55%  44.41% | 19.4924 16.2973 15.9819
Tn1,++Tn1,O+Sn3
Complete cascade | 66.89% 47.60% 48.04% | 22.6612 17.4673 17.1563

Table A.2: Average and total error rates, pu + 30 winsorized data,
Source: own analysis




A. Appendix

VII

Model MASE RMSE MAE

HAR basic 0.99931 0.00078 0.00058
Sne 0.99437 0.00078 0.00058
S 0.99618 0.00078 0.00058
Tms~ 1.01404 0.00088 0.00059
Sm 1.00919 0.00078 0.00059
Tms+ 1.03747 0.00090 0.00060
Tm2~ 1.04319 0.00089 0.00061
a0 1.06731 0.00084 0.00062
Tm2t 1.12138 0.00099 0.00066
Tt 1.21609 0.00096 0.00071
me- 1.16600 0.00089 0.00068
Tme= 4 Sm2 1.00929 0.00087 0.00059
e 4 Sms 1.01650 0.00088 0.00059
Tms = 4 S™ 1.01862 0.00088 0.00059
Trs = 4 Tret 1.04934 0.00099 0.00061
Trst 4 Sne 1.03425 0.00090 0.00060
T~ 4 5" 1.03890 0.00090 0.00060
Tret 4 Sm 1.04562 0.00090 0.00061
Tm2= 4 Sm2 1.03180 0.00088 0.00060
Tn= 4 " 1.04101 0.00089  0.00060
n2= + 1"~ 1.04349 0.00091 0.00061
Tr—  Tret 1.07256  0.00099 0.00062
Tnm= 4 S™ 1.04523 0.00089 0.00061
e + 1ms 1.08351 0.00091 0.00063
Tt 4 Tre 1.11801 0.00105 0.00066
Tret 4 §ne 1.12083 0.00100 0.00066
Tret 4 Tret 1.11472  0.00101  0.00065
Tret 4 S8 1.11912 0.00098 0.00066
Tt s 1.19515 0.00103 0.00069
Tt 4 S™m 1.13046  0.00099 0.00066
Tt 4 Tret 1.17818 0.00097 0.00068
T  Tret 1.14954 0.00096 0.00067
Tt  Sne 1.20096 0.00095 0.00070
Tt  Sms 1.19927 0.00095 0.00069
Tme= 4 S 1.13072  0.00087 0.00066
Tmt 4 S™m 1.22014 0.00096 0.00071




A. Appendix VIII

Model MASE RMSE MAE

T 4§78 1.15905  0.00089  0.00067
Tm— 4 §m 1.17659  0.00090 0.00068
Trs— 4 Tract 4 gna 1.04427  0.00099  0.00061
TS + T+ SMy 1.05231  0.00099  0.00061
Trs= 4 Trst 4 §m 1.05231  0.00099  0.00061
Trs— 4 Tract 4 Gns 1.05495  0.00099  0.00061

TP~ + T + 130 4+ 5, | 1.09542  0.00104  0.00064

mng,— ns,+ mni,—
T 3+ T A T E L on191 0.00111 0.00074
Tnla

Trs— 4 et 4oTna0 4 ogne | 1,08028  0.00103  0.00063
Tra— 4 Tract 4 oTns0 4 gns | 1.08914  0.00103  0.00063
Trs— 4 et 4orna0 4 g | 1.09386 0.00103  0.00063

ns,— ns,+ ni,—

T T+ T+ 98909 0.00111 0.00075
T"1’+ + Sm

T~ 4 Tmss+ + 3,0 + T~
+Tn1,+ +Tn1,0 +Sn3
Complete cascade 1.49279 0.00132 0.00086

1.43532 0.00122 0.00083

Table A.3: Average MASE, RMSE and MAE, Original data, Source:

own analysis



A. Appendix

Model MASE RMSE MAE
HAR basic 0.99931 0.000781 0.000582
S 0.99437 0.000783 0.000578
S 0.99618 0.00078  0.000578
Tms~ 0.99675 0.000781 0.00058
Sm 1.00919 0.000785 0.000587
Tms+ 1.01191 0.000804 0.00059
Tm2~ 1.04832 0.000835 0.000613
T30 1.06634 0.000836 0.000621
Tm2t 1.08958 0.000879 0.000639
Tt 1.12260 0.00085  0.000653
Tme- 1.13450 0.000859 0.000662
Tme= 4 Sn2 0.99223 0.000781 0.000576
Tne= 4 Sms 0.99918 0.000782  0.00058
e~ 4 S™m 1.00135 0.000782 0.000581
Trs— 4 Tret 1.00787 0.000801 0.000587
Trst 4 Sn2 1.00854 0.000806 0.000587
Tne= 4 Sms 1.01329 0.000805 0.00059
Tret 4 Sm 1.02004  0.000806 0.000593
Tne= 4 Sm2 1.03481 0.000831 0.000604
Tn= 4 " 1.04459 0.000834 0.000609
r2= 1™ 1.04878  0.000838 0.000613
Tre—  Tret 1.05101 0.000847 0.000614
T~ 4 S™ 1.05414 0.000839 0.000614
e 4+ 1ms 1.06459 0.000821 0.000618
Tt 4 Tre 1.07650 0.000866 0.000631
Tret  Sne 1.08394 0.000882 0.000636
Tret  Tnet 1.08671 0.000882 0.000638
Tret 4 S8 1.08773  0.000877 0.000637
Tt 4 T 1.09032 0.000837 0.000633
Tt 4 S™m 1.09842 0.000885 0.000643
Tt 4 Tret 1.10232  0.000848 0.00064
T  Tmet 1.10484 0.000849 0.000642
Tt  Sn2 1.10759 0.000847 0.000642
Tt 4 Sms 1.10784 0.000844 0.000641
Tme= 4 Sn2 1.10891 0.000846 0.000644
Tt 4 Sm 1.12842  0.000853 0.000656




A. Appendix

Model MASE RMSE MAE

T 4 §7s 1.12868  0.000854 0.000655
Tm= 4 §m 1.14267 0.000857 0.000662
Trs— 4 Trst 4 Gmo 1.00266  0.000802 0.000583
TP + T+ SMy 1.01001  0.000805 0.000588
Trs— 4 Trat 4 gm 1.01093  0.000802 0.000587
Trs— 4 Tmat 4 Gns 1.01265 0.000805 0.000589

TR~ + T + 1030 4+ §7, | 1.05544  0.000858  0.000614

n3,— mn 7+ ni,—
§3+ B + 1.16590 0.000893 0.000678

Trs— 4 st 4 7m0 4 gm2 | 1.04037  0.000852  0.000603
Tra— 4 Tmact 4 Tna0 L gna | 1.04848  0.000851  0.000608
Trs— 4 st 4 7m0 4 gm | 1.05388  0.000852 0.000611

ns,— ns,+ ni,—

TP I T 568 0.000897  0.000681
Tn1,+ + Sm

T3~ 4 Tnss+ + 3,0 + T~
+T’n1,+ +Tn1,0 +Sn3
Complete cascade 1.43316 0.001141 0.000833

1.29954  0.000998 0.000758

Table A.4: Average MASE, RMSE and MAE, i+ 30 winsorized data,
Source: own analysis



A. Appendix Xl
n3,— n3,— s + n3,—
MASE |HAR T g, g e T s m
basic + 5™ + 5™ 1 gm + S™
AXP 0.79059 0.82013 0.79420 0.79475 0.80876 0.81386 0.80355 0.83912
BA 0.90672 0.91787 0.93717 0.88616 0.90242 0.89677 0.89575 0.91763
CAT 0.91788 1.03079 1.06450 0.93877 0.89803 0.89889 1.07252 0.97495
CSCO 0.96921 0.76977 0.78333 0.88002 0.93260 0.89442 0.76000 0.91491
CVvX 0.87690 0.86443 0.86016 0.88480 0.87753 0.90214 0.87547 0.91598
DD 0.82180 0.92469 0.84983 0.85348 0.87843 0.89167 0.89424 0.96857
DIS 0.67121 0.65868 0.67463 0.67330 0.65882 0.65830 0.65320 0.65067
GE 0.93387 0.96889 0.96827 0.92867 0.93772 0.92889 0.97280 0.94088
GS 0.93069 0.92160 0.93069 0.92780 0.92160 0.92162 0.91677 0.91971
HD 0.97928 0.91502 0.83082 0.94090 1.08498 1.08091 0.91660 1.08826
IBM 1.06863 1.08739 1.22319 1.11634 0.95256 0.99508 1.04991 1.10882
INT 1.13783 1.14319 1.15117 1.14886 1.11551 1.13984 1.14092 0.89229
JNJ 1.10808 1.05985 1.08088 1.08763 1.08232 1.07685 1.04826 1.05019
JPM 0.83853 0.85395 0.85531 0.82838 0.83671 0.82907 0.85469 0.83822
KO 1.43971 1.44546 1.43989 1.44160 1.44507 1.44817 1.46031 1.44704
MCD 1.17647 1.20758 1.19672 1.17318 1.18771 1.18414 1.21240 1.18392
MMM 0.65880 0.65767 0.65880 0.66254 0.65792 0.66000 0.65182 0.66249
MRK 1.02958 1.05066 1.01780 1.04425 1.05143 1.05604 1.29176 1.05419
MSFT 0.54380 0.49409 0.47914 0.48504 0.54073 0.51191 0.53431 0.54033
NKE 1.15682 1.13618 1.16093 1.15762 1.13563 1.13294 1.13050 1.12793
PFE 0.98564 1.07638 0.98381 0.99592 1.08813 1.10773 1.17243 1.04007
PG 1.28829 1.31544 1.30387 1.31084 1.28269 1.32159 1.31200 1.28351
T 1.36575 1.27515 1.34010 1.36849 1.31908 1.31676 1.31935 1.34213
TRV 1.12575 1.13244 1.13629 1.13762 1.11647 1.12413 1.13537 1.16535
UNH 0.98367 0.92909 0.96443 0.96763 0.95574 0.95952 0.92408 0.94928
UTx 1.05210 1.01923 1.01843 1.03765 1.05255 1.03715 1.01907 0.98347
\% 0.96519 0.96456 0.96876 0.96411 0.95859 0.95847 0.96621 0.95658
VZ 1.08487 1.07517 1.07693 1.08528 1.08532 1.09227 1.07133 1.08456
WMT 1.39228 1.35229 1.37558 1.40343 1.36804 1.37931 1.33973 1.46134
XOM 0.77927 0.69935 0.70534 0.76020 0.76948 0.75699 0.68451 0.73804
Average | 0.9993 0.9922 0.9944 09962 0.9968  0.9992 1.0027 1.0013
Median | 0.9815 0.9941 0.9763  0.9659  0.9572  0.9773 0.9959 0.9718
Max 1.4397 1.4455 1.4399 1.4416  1.4451 1.4482 1.4603 1.4613
Min 0.5438 0.4941 0.4791  0.4850 0.5407 0.5119 0.5343 0.5403
Stdev 0.2124 0.2166 0.2265  0.2208 0.2085  0.2144 0.2268 0.2148

Table A.5: MASE values of the top performing models, p + 30 win-
sorized data, Source: own analysis



A. Appendix XII
n3,— n3,— s + n3,—
RMSE | HAR T g g e T s m
basic + 5™ + S 1 gm + S™
AXP 0.00057 0.00059 0.00058 0.00058 0.00059 0.00059 0.00058 0.00060
BA 0.00091 0.00100 0.00103 0.00093 0.00092 0.00092 0.00100 0.00094
CAT 0.00096 0.00103 0.00104 0.00098 0.00096 0.00096 0.00108 0.00098
CSCO 0.00132 0.00120 0.00121 0.00127 0.00130 0.00127 0.00123 0.00128
CVvX 0.00055 0.00055 0.00055 0.00056 0.00055 0.00057 0.00056 0.00057
DD 0.00075 0.00080 0.00074 0.00072 0.00079 0.00075 0.00077 0.00083
DIS 0.00059 0.00060 0.00061 0.00061 0.00058 0.00060 0.00059 0.00060
GE 0.00076 0.00080 0.00080 0.00077 0.00076 0.00077 0.00080 0.00077
GS 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089
HD 0.00083 0.00083 0.00079 0.00082 0.00089 0.00089 0.00083 0.00089
IBM 0.00092 0.00092 0.00099 0.00095 0.00086 0.00089 0.00090 0.00092
INT 0.00113 0.00113 0.00114 0.00114 0.00111 0.00113 0.00111 0.00099
JNJ 0.00051 0.00050 0.00050 0.00050 0.00050 0.00050 0.00049 0.00049
JPM 0.00083 0.00084 0.00084 0.00082 0.00083 0.00082 0.00084 0.00083
KO 0.00096 0.00097 0.00096 0.00096 0.00097 0.00097 0.00098 0.00097
MCD 0.00070 0.00068 0.00070 0.00070 0.00069 0.00069 0.00069 0.00069
MMM 0.00045 0.00044 0.00044 0.00045 0.00045 0.00045 0.00044 0.00045
MRK 0.00079 0.00080 0.00079 0.00079 0.00080 0.00080 0.00122 0.00080
MSFT 0.00070 0.00064 0.00064 0.00067 0.00069 0.00066 0.00071 0.00069
NKE 0.00087 0.00085 0.00087 0.00087 0.00085 0.00085 0.00085 0.00085
PFE 0.00078 0.00086 0.00078 0.00078 0.00087 0.00089 0.00097 0.00085
PG 0.00054 0.00055 0.00055 0.00056 0.00054 0.00056 0.00055 0.00054
T 0.00085 0.00079 0.00084 0.00085 0.00080 0.00080 0.00082 0.00081
TRV 0.00077 0.00075 0.00077 0.00077 0.00075 0.00075 0.00076 0.00076
UNH 0.00069 0.00072 0.00069 0.00069 0.00074 0.00075 0.00072 0.00074
UTx 0.00084 0.00083 0.00083 0.00084 0.00085 0.00084 0.00082 0.00081
\% 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00086 0.00084
VZ 0.00078 0.00078 0.00077 0.00078 0.00078 0.00079 0.00077 0.00078
WMT 0.00087 0.00083 0.00087 0.00088 0.00084 0.00084 0.00084 0.00088
XOM 0.00044 0.00040 0.00041 0.00043 0.00044 0.00043 0.00040 0.00042
Average | 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00080 0.00078
Median | 0.00079 0.00080 0.00079 0.00079 0.00080 0.00080 0.00082 0.00081
Max 0.00132 0.00120 0.00121 0.00127 0.00130 0.00127 0.00123 0.00128
Min 0.00044 0.00040 0.00041 0.00043 0.00044 0.00043 0.00040 0.00042
Stdev 0.00019 0.00019 0.00020 0.00019 0.00019 0.00019 0.00021 0.00018

Table A.6: RMSE values of the top performing models, p + 30 win-
sorized data, Source: own analysis




A. Appendix Xl
n3,— n3,— s + n3,—
MAE | HAR T g g e T s m
basic + 5™ + S 1 gm + S™
AXP 0.00044 0.00045 0.00044 0.00044 0.00045 0.00045 0.00044 0.00046
BA 0.00068 0.00069 0.00070  0.00067 0.00068 0.00067 0.00067 0.00069
CAT 0.00067 0.00075 0.00077 0.00068 0.00065 0.00065 0.00078 0.00071
CSCO 0.00098 0.00078 0.00079 0.00089 0.00095 0.00091 0.00077 0.00093
CVvX 0.00042 0.00041 0.00041 0.00042 0.00042 0.00043 0.00042 0.00044
DD 0.00055 0.00062 0.00057 0.00057 0.00059 0.00059 0.00060 0.00065
DIS 0.00046 0.00045 0.00046 0.00046 0.00045 0.00045 0.00045 0.00045
GE 0.00064 0.00067 0.00067 0.00064 0.00065 0.00064 0.00067 0.00065
GS 0.00066 0.00065 0.00066 0.00066 0.00065 0.00065 0.00065 0.00065
HD 0.00054 0.00051 0.00046 0.00052 0.00060 0.00060 0.00051 0.00061
IBM 0.00068 0.00070 0.00078 0.00071 0.00061 0.00064 0.00067 0.00071
INT 0.00093 0.00093 0.00094 0.00094 0.00091 0.00093 0.00093 0.00073
JNJ 0.00041 0.00039 0.00040 0.00040 0.00040 0.00039 0.00038 0.00038
JPM 0.00059 0.00060 0.00060 0.00058 0.00059 0.00058 0.00060 0.00059
KO 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00070 0.00069
MCD 0.00045 0.00046 0.00045 0.00045 0.00045 0.00045 0.00046 0.00045
MMM 0.00034 0.00034 0.00034 0.00034 0.00034 0.00034 0.00033 0.00034
MRK 0.00058 0.00059 0.00057 0.00058 0.00059 0.00059 0.00072 0.00059
MSFT 0.00059 0.00054 0.00052 0.00053 0.00059 0.00056 0.00058 0.00059
NKE 0.00068 0.00067 0.00069 0.00068 0.00067 0.00067 0.00067 0.00067
PFE 0.00060 0.00066 0.00060 0.00061 0.00067 0.00068 0.00072 0.00064
PG 0.00043 0.00044 0.00044 0.00044 0.00043 0.00045 0.00044 0.00043
T 0.00057 0.00053 0.00056 0.00057 0.00055 0.00055 0.00055 0.00056
TRV 0.00051 0.00051 0.00051 0.00051 0.00050 0.00051 0.00051 0.00053
UNH 0.00054 0.00051 0.00053 0.00053 0.00053 0.00053 0.00051 0.00052
UTx 0.00061 0.00059 0.00059 0.00060 0.00061 0.00060 0.00059 0.00057
\% 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060 0.00059
VZ 0.00060 0.00059 0.00060 0.00060 0.00060 0.00060 0.00059 0.00060
WMT 0.00065 0.00063 0.00065 0.00066 0.00064 0.00065 0.00063 0.00069
XOM 0.00036 0.00033 0.00033 0.00035 0.00036 0.00035 0.00032 0.00034
Average | 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058
Median | 0.00059 0.00059 0.00058 0.00058 0.00059 0.00060 0.00059 0.00059
Max 0.00098 0.00093 0.00094 0.00094 0.00095 0.00093 0.00093 0.00093
Min 0.00034 0.00033 0.00033 0.00034 0.00034 0.00034 0.00032 0.00034
Stdev 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00013

Table A.7: MAE values of the top performing models, i + 30 winso-
rized data, Source: own analysis
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RMSE T"377 + S7L2 S'flz Sng T?’Lg,* T?Lg,* + S7L3 T7L3,* + Tn3,+ + STLZ T?’Lg,* + Snl
AXP 3% 0% 0% 2% 3% 1% 5%
BA 10% 14% 2% 1% 2% 10% 3%
CAT % 8% 2% 0% 0% 13% 2%
CSCO -9% -9% -4% -2% -4% -7% -3%
CVX -1% -1% 1% 0% 2% 1% 3%
DD % 1% 4% 6% 0% 3% 11%
DIS 1% 3% 3% -2% 1% -1% 0%
GE 5% 5% 1% 0% 1% 5% 1%
GS 0% 0% 0% 0% 0% 0% 0%
HD 0% -4% -1% % 7% 0% 7%
IBM 1% 8% 3% 6%  -3% -2% 1%
INT 0% 1% 1% -1% 0% -2% -13%
JNJ -2% -1% -1% -1% -1% -3% -3%
JPM 1% 2% -1% 0% -1% 1% 0%
KO 1% 0% 0% 1% 1% 1% 1%
MCD -2% 0% 0% -2% -2% -2% -2%
MMM 0% -1% 0% 0% 1% -1% 1%
MRK 1% -1% 0% 1% 1% 54% 1%
MSFT -9% -9% -5% -3% -6% 1% -3%
NKE -3% 0% 0% -3% -3% -3% -2%
PFE 10% 0% 1% 12% 14% 24% 9%
PG 2% 1% 3% 0% 4% 2% 0%
T -7% 1% 0% -6%  -6% -3% -5%
TRV -2% 0% 0% -3% -3% -2% -2%
UNH 5% 0% -1% 8% 8% 4% 7%
UTX -2% 2% 0% 0% 0% -3% -4%
\Y% -1% 0% 0% -1% -1% 1% -1%
VZ -1% -1% 0% 0% 1% -1% 0%
WMT -5% -1% 0% -4% -4% -5% 0%
XOM -9% -8% -2% -1% -2% -10% -5%
Average | 0.02% 0.14% -0.05% 0.11% 0.30% 2.58% 0.31%

Table A.8: The difference between RMSE of the extended model
and that of the original model the top performing models, u + 30
winsorized data, Source: own analysis
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MAE s~ 4+ §m2 G2 Sns Trs— T 4 §ns T 4 TsT 4 G2 s 4 G
AXP 4% 0% 1% 2% 3% 2% 6%
BA 1% 3% 2% 0% -1% -1% 1%
CAT 12% 16% 2% -2% -2% 17% 6%
CSCO -21% -19% -9% -4% -8% -22% -6%
CVX -1% 2% 1% 0% 3% 0% 4%
DD 13% 3% 4% % 9% 9% 18%
DIS -2% 1% 0% -2% -2% -3% -3%
GE 4% 4% -1% 0% -1% 4% 1%
GS -1% 0% 0% -1% -1% -1% -1%
HD -% -15% -4% 11% 10% -6% 11%
IBM 2% 14% 4% -11% -T% -2% 4%
INT 0% 1% 1% 2% 0% 0% -22%
JNJ -4% 2% 2% 2% -3% -5% -5%
JPM 2% 2% -1% 0% -1% 2% 0%
KO 0% 0% 0% 0% 1% 1% 1%
MCD 3% 2% 0% 1% 1% 3% 1%
MMM 0% 0% 1% 0% 0% -1% 1%
MRK 2% -1% 1% 2% 3% 25% 2%
MSFT -9% -12% -11% -1% -6% -2% -1%
NKE 2% 0% 0% 2% 2% 2% 2%
PFE 9% 0% 1% 10% 12% 19% 6%
PG 2% 1% 2% 0% 3% 2% 0%
T -7% 2% 0% -3% -4% -3% 2%
TRV 1% 1% 1% -1% 0% 1% 4%
UNH -6% 2% 2% -3% 2% -6% -3%
UTx -3% -3% -1% 0% -1% -3% -T%
\% 0% 0% 0% -1% -1% 0% -1%
V7 -1% -1% 0% 0% 1% -1% 0%
WMT -3% -1% 1% 2% -1% -4% 5%
XOM -10% -9% 2% -1% -3% -12% -5%
Average | -0.98% -0.77% -0.68% -0.33% -0.30% 0.10% -0.14%

Table A.9: The difference between MAE of the extended model and
that of the original model the top performing models, u + 30 winso-
rized data, Source: own analysis



A. Appendix XVI

MASE Trs— 4 Sn2 - gn2 Sns s — Trs:— 4 Sns s, + Tns:+ + Sn2 s, — + Sm
AXP 4% 0% 1% 2% 3% 2% 6%
BA 1% 3% -2% 0% -1% -1% 1%
CAT 12% 16% 2% -2% -2% 17% 6%
CSCO -21% -19%  -9% -4% -8% -22% -6%
CVX -1% -2% 1% 0% 3% 0% 4%
DD 13% 3% 4% ™% 9% 9% 18%
DIS 2% 1% 0% 2% -2% -3% -3%
GE 4% 4% -1% 0% -1% 1% 1%
GS -1% 0% 0% -1% -1% -1% -1%
HD -T% -15% -4% 11% 10% -6% 11%
IBM 2% 14% 4% -11% -T% 2% 4%
INT 0% 1% 1% -2% 0% 0% -22%
JNJ -4% -2% -2% -2% -3% -5% -5%
JPM 2% 2% -1% 0% -1% 2% 0%
KO 0% 0% 0% 0% 1% 1% 1%
MCD 3% 2% 0% 1% 1% 3% 1%
MMM 0% 0% 1% 0% 0% -1% 1%
MRK 2% -1% 1% 2% 3% 25% 2%
MSFT -9% -12% -11% -1% -6% 2% -1%
NKE 2% 0% 0% -2% 2% 2% 2%
PFE 9% 0% 1% 10% 12% 19% 6%
PG 2% 1% 2% 0% 3% 2% 0%
T -m% -2% 0% -3% -4% -3% 2%
TRV 1% 1% 1% -1% 0% 1% 4%
UNH -6% -2% -2% -3% -2% -6% -3%
UTX -3% -3% -1% 0% -1% -3% -7%
\% 0% 0% 0% -1% -1% 0% -1%
VZ -1% -1% 0% 0% 1% -1% 0%
WMT -3% -1% 1% -2% -1% -4% 5%
XOM -10% -9% -2% -1% -3% -12% -5%
Average | -0.71% -0.49% -0.31% -0.26% -0.01% 0.34% 0.20%

Table A.10: The difference between MASE of the extended model
and that of the original model the top performing models, u + 3o
winsorized data, Source: own analysis
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Model MASE ~ MASE  MASE MASE  MASE
Original p+ 30 uw+250 pu+20 un+ 1.50
HAR basic 0.99931 099931 099931  0.99931  0.99931
st 1.03747  1.01191  1.00998  1.00829  1.00648
Tma— 1.01404  0.99675  0.99616  0.99560  0.99500
Tns0 106731  1.06634  1.06592  1.06560  1.06535
S 0.99618  0.99618  0.99618  0.99618  0.99618
gn2 0.99437  0.99437  0.99437  0.99437  0.99437
gm 1.00919  1.00919  1.00919  1.00919  1.00919
e 104319 1.04832  1.04713  1.04594  1.04480
.- 116600 113450  1.13311  1.13173  1.13033
ot 112138 1.08958  1.08596  1.08238  1.07881
Tt 121609 112260 111784  1.11332  1.10889
Trst 4 gm 104562  1.02004  1.01812  1.01643  1.01462
s 4 gm 1.01862  1.00135  1.00076  1.00019  0.99960
Tre— g et 1.04934  1.00787  1.00556  1.00356  1.00142
Trst 4 Gne 1.03425  1.00854  1.00661  1.00493  1.00312
Tns— 4 G2 1.00920  0.99223  0.99165  0.99109  0.99050
Tns— 4 Gns 103890  1.01329  1.01142  1.00979  1.00805
Trs 4 gns 1.01650  0.99918  0.99859  0.99802  0.99742
Tre 4 gns 1.04101  1.04459  1.04341  1.04223  1.04111
T 4 gns 115905 112868 1.12733  1.12600  1.12465
Tret 4 Gns 111912 1.08773  1.08450  1.08128  1.07809
Tt 4 gns 119927 110784 1.10350  1.09940  1.09543
Tre 4 G2 1.03180  1.03481  1.03373  1.03265  1.03184
Tm 4 g 113072 110891  1.10778  1.10667  1.10561
Trat 4 Gre 112083 1.08394  1.08028  1.07670  1.07315
Tt 4 gn2 120096 110759  1.10344  1.09953  1.09573
T 4 gm 104523  1.05414  1.05204  1.05175  1.05059
Tm 4 gm 117659 1.14267  1.14109  1.13953  1.13794
Trat 4 gm 113046 1.09842  1.09484  1.09127  1.08771
Tmt 4 gm 122014 112842 1.12416  1.12000  1.11593
Tre 4 s 1.04349  1.04878  1.04815  1.04755  1.04693
Tm 4 s 108351  1.06459  1.06379  1.06304  1.06228
Tret 4 s 111801  1.07650  1.07281  1.06914  1.06544
Tt 4 s 119515 1.09032  1.08573  1.08130  1.07699
Tre 4 st 107256 1.05101  1.04819  1.04561  1.04296
T g et 114954 110484  1.10198  1.09936  1.09661
Trect g et 111472 1.08671  1.08230  1.07820  1.07402
Tt g et 117818 110232 1.09761  1.09318  1.08880
s 4 st 4 gm 105231 1.01093  1.00868  1.00675  1.00464
Tms 4 et 4 gna 104427 1.00266  1.00039  0.99841  0.99627
s~ 4 Tt 4 gns 1.05495  1.01265  1.01037  1.00839  1.00624
T T 70 4 ogm 1 1.00542  1.05544  1.05311 1.05117  1.04904
Tra 4 Tt 4o sm, 105231 1.01001  1.00776  1.00582  1.00372
;z; + I T 07191 116590 116081 115612 1.15155
Trs— 4 st o 7ee0 4 gmo | 109386 105388 1.05155  1.04961  1.04748
s 4 st o Tee0 4 gne | 108028 1.04037  1.03804  1.03609  1.03393
Trs— st o Tee0 4 gns | 108914 104848  1.04613  1.04417  1.04200
Trom 4+ T IO 4T 1y yasao 190954 129604 129288  1.29024
+ T+ :Cflf +5m
P fgm T T 28000 117368 117057 116573 116117
Complete cascade 1.49279 1.43316 1.42580 1.41905 1.41250

Table A.11: Robustness analysis: average MASE values for various

winsorization levels, Source: own analysis
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