FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

MASTER THESIS

Be. David Honzatko

Generative Neural Networks in Image
Reconstruction

Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. Michal Sorel, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2017

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ... date signature of the author

Title: Generative Neural Networks in Image Reconstruction
Author: Be. David Honzatko
Department: Department of Software and Computer Science Education

Supervisor: RNDr. Michal Sorel, Ph.D., Institute of Information Theory and
Automation

Abstract: Recent research in generative models came up with a promising ap-
proach to modelling the prior probability of natural images. The architecture of
these prior models is based on deep neural networks. Although these priors were
primarily designed for generating new natural-like images, its potential use is
much broader. One of the possible applications is to use these models for solving
the inverse problems in low-level vision (i.e., image reconstruction). This usage
is mainly possible because the architecture of these models allows computing the
derivative of the prior probability with respect to the input image. The main
objective of this thesis is to evaluate the usage of these prior models in image
reconstruction. This thesis proposes a novel model-based optimization method
to two image reconstruction problems — image denoising and single-image super-
resolution (SISR). The proposed method uses optimization algorithms for finding
the maximum-a-posteriori probability, which is defined using the above mentioned
prior models. The experimental results demonstrate that the proposed approach
achieves reconstruction performance competitive with the current state-of-the-art
methods, especially regarding SISR.

Keywords: neural network generative image reconstruction MAP image prior

i

I would like to dedicate this thesis to all people that supported me throughout
the research and writing process. I would like to especially thank my super-
visor Michal Sorel for his expertise, friendly attitude, patient explanations and
hardware support.

1ii

Contents

(Introduction!

(1 Image Reconstruction|
(1.1 Denoisingl

(1.2.2 MAP Approachl
(1.3 Optimization|

2 Image Prior Modelling|
2.1 Generative Modeld oo

[3.2 Implementation| L
(3.2.1 Prior Model Definitionl
[3.2.2 Data Loading|
[3.2.3 Building the Computational Graph|
[3.2.4 Running the Computational Graphl

4 Experiments|

4.2 Prior Model Training|
4.3 Methodology|
[4.3.1 Comparison to Greyscale Methods|
[4.3.2 Execution Time Comparison|.
4.4 Denoisingl
[4.5 Super-Resolution| oL

Conclusion|

Bibliography]

G FAD] tions

N

© O© 3 3O Otutk

Introduction

Image reconstruction is an image processing problem of estimating uncorrupted
images from the degraded ones. The degradation can have a form of noise, low res-
olution, missing part, blur, distortion, etc.; thus, the corresponding reconstruction
tasks are denoising, super-resolution, inpainting, deblurring, inverse distortion,
etc. Since many of these degradations are inevitable during the natural-image
acquisition process, the image reconstruction is nowadays an essential operation.

There has been an extensive research addressing this topic for last several
decades. Many specialized methods for each reconstruction tasks were introduced
as well as some generic ones. These methods are usually based on filter theory,
spectral analysis, wavelets, partial differential equations, or stochastic modelling.
In this work, we focus on the latter one. We model images as random variables
that follow some prior distribution, which prefers images capturing real-world
scenes (i.e., natural images). This prior is then used to reconstruct the degraded
image using a maximum-a-posteriori (MAP) principle, where the objective is
to maximize the conditional probability of the reconstructed image given the
degraded one. For such approach, it is necessary to have a very good prior model
of the natural images. We obtain such model using machine learning.

In recent years, there has been huge progress in the field of machine learning.
In the beginning, in the image related problems, machine learning was applied
to image analysis; however, with the major break-through in deep feed-forward
convolutional neural networks, it is starting to be extensively used also in image
processing including image reconstruction. The feed-forward networks now pro-
vide the state-of-the-art performance for many reconstruction tasks. However,
the drawback of these methods is the fact that they are usually trained for a
certain task or a small set of tasks only. Conversely, in this work, we do not use
the neural networks for direct reconstruction, but we employ them for a much
more generic task, image prior modelling.

The long-term goal of machine learning is to build a model that understands
the real world. For such task, there is an almost infinite number of easily accessi-
ble training data. However, even if we abstract from the detail and consider only
the visual information about the world, learning of such model is not straight-
forward since it is necessary to specify how to evaluate the model. Following the
famous quote of Richard Feynman: "What I cannot create, I do not understand",
recent research came with a promising approach of training models that are able
to create data like the ones on which they are trained. Such models are called
generative models. These models can be trained in various manners; however, the
core idea is the same. The capacity of the model (i.e., the number of parameters)
is much smaller than the amount of training data; hence, the model is forced to
learn key features of the data. The ideal generative models should be therefore
able to capture the essential features of the real-world, in our case natural im-
ages. There are many types of generative models, but for the MAP approach to
image reconstruction the most useful models are those that can predict the prior
probability of an image.

The main objective of this work is to evaluate the employment of the latest
image prior models that are based on generative neural networks in MAP based

image reconstruction. We focus on two image reconstruction tasks — image de-
noising and super-resolution. We also develop a prototype implementation and
evaluate it against the existing state-of-the-art methods.

The image reconstruction problems with the main focus on denoising and
super-resolution are presented in Chapter [We mathematically describe the
problems, briefly introduce the existing methods and propose the MAP approach
to these reconstruction tasks. Chapter [2 discusses the natural image prior mod-
elling with emphasis on models based on generative neural networks. Particularly,
models based on Pixel CNN architecture are presented in detail. Chapter [3|briefly
introduces the programming framework and offers the implementation details of
the proposed image reconstruction methods. Finally, Chapter [4] discusses some
design choices and empirically evaluates the methods against the current state-
of-the-art.

1. Image Reconstruction

Image reconstruction is a typical example of an inverse problem. Given a set
observations resulting from a known forward model the task is to reconstruct its
cause. Regarding the image reconstruction, the set of observations is formed by
images of some scene, and the forward model represents the imperfect capturing
process. We simplify this task by the assumption that there is some original
image, and that the captured (degraded) images arose from the following linear
forward model:

y=Ax +n, (1.1)

where y denotes the degraded image, = stands for the original image, n is noise,
and A denotes a degradation matrix that determines the reconstruction problem.
For example, if A is an identity, the reconstruction problem is denoising. A can
also represent a down-sampling operator or a convolution with some kernel (e.g.,
Gaussian blur kernel).

We usually assume 7 to be an additive white Gaussian noise (AWGN) with a
standard deviation o

n~ N(0,Ic?).

Such noise model well approximates the noise produced by conventional cameras.
What makes the image reconstruction complicated is the fact that it is often
ill-posed (i.e., its solution is ambiguous or unstable). There are numerous ap-
proaches how to tackle this ill-posedness. In this work we focus on solving the
image reconstruction through the maximum-a-posteriori (MAP) principle:

T = argmax p(z|y) = arg max W = arg max p(y[2)p(2).
z z ply z

In this formula, & denotes the most probable estimate of the original image x given
the observed image y, p(y|z) is the likelihood determined by the forward model,
and p(z) denotes the image prior. When solving MAP problems on computers,
it is more convenient to work with negative log probabilities rather than with
probabilities themselves:

2 = arg min —In(p(z|y)) = arg min [~ In(p(y|2)) + —In(p(2))]. (1.2)
The density of the likelihood term p(y|z) can be directly inferred from the

forward model. For the linear model with AWGN defined in equation (1.1)) it is

computed in the following manner:

1 1
plyle) = (det(2rIo®) % exp (=30 =)T~ 0))
N 1
_ 2 2 o o ! o
- (27ra) exp (52 (y — Az) (y Az)) .
Negative log-likelihood is then:

—Inp(y|z) = jzln (2wo2> + %ig(y — Az)(y — Az). (1.3)

Unfortunately, the exact inference of the density of the true image prior p(z)
is infeasible if not impossible. Therefore, we approximate the prior from known
or learned properties of the image. A traditional approach was to approximate it
from the first and second order derivatives of the image. Newer methods usually
learn the prior distribution from real-world examples; however, until recently,
it was infeasible to learn a good prior model for generic natural images. That
changed with the recent breakthrough in the generative models, and we will take
a closer look at it in Chapter [2]

In this work, we present MAP approach to two reconstruction problems —
image denoising and single-image super-resolution. We describe these problems
in the next two sections. We formulate their forward models, define the cor-
responding likelihood terms and outline complete solutions following the equa-

tions ([1.2) and (1.3)).

1.1 Denoising

Images acquired by optical sensors of cameras are always corrupted by noise.
Especially if the target scene is insufficiently illuminated, and the camera is forced
to increase the sensitivity of the sensor (ISO). Since the presence of the noise
in the acquired images is inevitable, many methods for noise attenuation were
developed.

1.1.1 Related Work

Basic image denoising methods suppress the sharp differences between the adja-
cent pixels of the degraded image. Although this approach efficiently attenuates
the noise, it also suppresses the detail and leads to blurry images that are of-
ten less desirable than the noisy images themselves. Hence, the main objective
of image denoising is to attenuate the noise while preserving as much detail as
possible.

Some current state-of-the-art methods are based on non-local self-similarities.
It refers to the fact that natural images often exhibit repetitive patterns such
as geometric shapes and textures. Similar patches in the degraded image are
identified, grouped, collaboratively denoised and aggregated to the final image
estimate. The collaborative denoising can have different forms. For instance,
Block Matching and 3D Filtering (BM3D) method (Dabov et al. [2007a]) employs
the fact that these groups of patches have much sparser representation after a
three-dimensional decorrelating transform. Groups are transformed, filtered and
transformed back. Another method exploiting non-local similarities is Weighted
Nuclear Norm Minimization (WNNM) (Gu et al.| [2014]). This method uses the
MAP approach on image patches and approximates the negative log prior using
weighted nuclear norm of a matrix formed by the group of similar patches. The
minimization of the nuclear norm is a surrogate for minimizing the rank, which
is computationally demanding as it is an NP-hard task.

Another state-of-the-art approach to denoising has risen with the latest de-
velopment in deep learning. We list at least two successful methods: DnCNN
(Zhang et al|[2017a]) and IRCNN (Zhang et al|[2017b]). For denoising, these

methods share the overall architecture. They consist of several convolutional lay-
ers connected with rectified linear units (ReLUs), and they use residual learning
and batch normalization techniques. They differ in the number of layers and
type of convolutions. DnCNN uses 17 to 20 classic convolutional layers. IRCNN,
on the other hand, employs more expensive dilated convolutions, but it is re-
deemed by using roughly two times smaller number of layers. The main problem
of feed-forward denoising, which also applies to IRCNN, is that the best denoising
performance is achieved when the network is trained for a certain noise variance;
however, DnCNN overcomes this issue and gives competitive results for blind
denoising as well.

Our primary interest in this work lies in methods based on the MAP principle.
Many of such methods achieve state-of-the-art results. They can be divided into
two main categories — model-based methods and discriminative learning methods.
The model-based methods learn a generic prior model and use optimization algo-
rithms. Into this category we can classify also the methods proposed in this work.
Conversely, the discriminative learning methods encapsulate the entire optimiza-
tion process into a non-linear function, which is learned on pairs of original and
degraded images. So far, the most promising results have provided discriminative
learning methods that are based on deep learning.

One type of the discriminative learning methods are those that simulate the
gradient descent optimization with a pre-defined number of steps. We can list at
least Recurrent Inference Machines (RIM) (Putzky and Welling [2017]), whose
architecture is based on convolutional recurrent neural networks, or Unrolled
Optimization with Deep Priors (ODP) (Diamond et al|[2017]). The latter uses
a deep convolutional neural network (CNN) to model the prior; however, there is
a separate CNN for each gradient step that allows learning a specialized prior in
each step.

The second mentioned category of MAP methods, model-based methods, op-
timize the image using a generic prior model of natural images. Learning such
model is a severe task; therefore, some methods learn the prior model of small
image patches of fixed size only. One of these methods is Expected Patch Log
Likelihood (EPLL) (Zoran and Weiss [2011]). The optimization is made on an
entire image, but the image prior is approximated by a product of all patch priors.
Authors achieved best results with Gaussian Mixture Model for the patch prior;
however, this method works with any patch prior model.

1.1.2 MAP Approach

The objective of image denoising is to obtain an estimate of the original image
x given the noisy image y and noise variance 0. We consider the AWGN noise
n ~ N(0,I0?) to be the only source of degradation in the image; therefore we
assume the simplified forward model where A is an identity:

y=x+n.

By substituting A with the identity, the likelihood term defined in equa-

tion (|1.3) representing the forward model will change to the following:
N) 1 /
—Inp(ylz) = Eln (27m) + T‘Q(y —1z)(y—1z2)
N) 1 XN)
—Inp(ylz) = Eln (27ra) + 53 ;(yi —)2

If we incorporate this term into the MAP equation (1.2), we can omit all
members that do not depend on z as it does not affect the minimization. Putting
all pieces together, we get the complete MAP solution to image denoising;:

b= argmin 3 (u: — %) = In(o(2)). (14)

1.2 Single-Image Super-Resolution

The level of detail captured in an image is directly affected by the image reso-
lution, which is naturally limited by the camera hardware. It depends mostly
on the resolution of the image sensor and on the optical system of the camera
(e.g., lenses). To increase the resolution beyond the hardware limitations, one can
split the scene into multiple images that are captured separately and join these
images into one image of higher resolution. However, this approach is possible
only if we have suitable hardware equipment and enough time. Consequently,
several software techniques for increasing the image resolution, collectively called
super-resolution, have been developed.

Basic super-resolution is a task of increasing resolution of an image given
multiple slightly different images of the same scene. The images are aligned with
sub-pixel accuracy and combined into a single image of higher resolution. Given a
sufficient number of images of one static scene, the only limiting factor is usually
the optical system of the camera. However, sometimes the scene is so dynamic
that it is not possible to capture multiple images of it, or we are just provided
with a single image of the scene. Such problem is called single-image super-
resolution (SISR), and the task is to increase the resolution of an image given
only that image. In this case, traditional aligning methods that combine images
and do not use any prior information about them cannot be used. Nevertheless,
the recent research on SISR produced plenty of new methods specialized for this
problem.

1.2.1 Related Work

As baseline approach to SISR we consider simple interpolation-based methods like
bilinear or bicubic. Unfortunately, these methods tend to create overly smooth
images with chessboard effect at pixel boundaries. Any method that employs
some prior knowledge about natural images should, therefore, provide better re-
sults than these simple interpolations. Methods are usually evaluated in terms
of reconstruction performance which is mostly measured using PSNR and Struc-
tural Similarity Index (SSIM) (Wang et al.|[2004]) computed between the original
high-resolution (HR) image and degraded low-resolution (LR) image.

In the general case, the reconstruction of the subpixel details of a natural
scene from a single image is by definition ill-posed as there may be multiple
natural scenes that would result in the same image. However, having the prior
knowledge about the structure of natural images, we know that some details are
very probable given the LR image.

First methods for SISR used hard-coded prior knowledge. The most studied
priors for super-resolution are generic smoothness prior and edge smoothness
prior (Dai et al. [2007]). Other hard-coded priors include for example gradient
profile prior (Sun et al.| [2008]) and priors based on total variation (Rudin et al.
[1992]). Methods usually incorporate these priors into an optimization term that
they solve. These methods are particularly good in preserving the edges in the
image with increased resolution; however, they usually fail to reconstruct fine
textures.

In order to reproduce the textures more precisely, some methods (Glasner
et al.| [2009], Tsurusaki et al| [2016]) exploit the fact that the textures often
consist of repetitive patterns. They identify these patterns and use them to
improve the reconstruction. Such methods are denoted as self-similarity based
super-resolution.

All the aforementioned methods use only the input image and some hard-
coded prior knowledge. Although they well preserve the edges and sometimes
even the textures, they are unable to model arbitrary subpixel details of the
natural scene as there is no information about them in the LR image.

Another approach to SISR that deals with the previously stated problems,
is machine learning, where the prior (explicit or implicit) is learned from the
examples; hence also called example-based super-resolution. Until recently, it was
infeasible to learn a good prior on generic natural images; therefore, methods that
learn the prior knowledge for image patches only were introduced (e.g., |Chang
et al.| [2004], or ScSR by |Yang et al|[2010]). During the training, the mentioned
methods learn some representative pairs of LR and HR patches. Later, during the
reconstruction, they try to find a mapping between each patch of the LR image
and representative LR patches and then use this mapping with the corresponding
HR patches to reconstruct the image.

The newest and currently the most successful SISR methods use deep neural
networks and end-to-end learning. Many methods have been developed in re-
cent few years with continuously increasing performance (e.g., SRCNN by Dong
et al.| [2016], VDSR by Kim et al| [2016], SRGAN by Ledig et al.| [2016]). The
competition on SISR (Timofte et al.|[2017]) that took place in 2017 proved that
this approach is the current state-of-the-art as the best scoring methods used
it. The winner of this competition was method called Enhanced Deep Residual
Networks for SISR (EDSR) (Lim et al.| [2017]) that is using a network consisting
of convolution layers with ReLUs organized in ResNet blocks (He et al.| [2016]).

Aside from excelling in generic natural image super-resolution, the example-
based methods are the preferable choice also for restricted problems as super-
resolution of face images since they can be trained specifically for the restricted
problem. Although these methods produce the best reconstruction performance,
they can hallucinate the details that were not part of the original scene and yet
seem believable to the human, which may not be desirable in some applications.

1.2.2 MAP Approach

The objective of SSIR is to increase the resolution of a single image. In this work,
we focus on the most basic yet demanding task — doubling both the horizontal
and vertical resolution of an image. In this case, the forward model defined in
equation uses a degradation matrix A that down-samples the image by a
factor of 2. This degradation can be imagined so that the HR image is covered
by non-overlapping patches of size 2 x 2 where each patch determines a pixel of
the LR image and the value of this pixel is defined as an arithmetic average of

the patch pixels:
_ Tigg T Ty g+ Tigy + Ty

4

where 7; ~ N(0,0?%) is AWGN noise, y; denotes the i-th pixel of LR image, and
T4y, is the top-left pixel of the i-th patch of HR image (similarly defined for other
pixels of the patch). It is also possible to rewrite this forward model using the
matrix A, where each row would contain exactly four times value the of 1/4 on
the appropriate places and zeros elsewhere; however, the above-mentioned model
for single pixel should be more comprehensible.

The likelihood term for this forward model inferred from the equation (|1.3)) is
the following:

N 1 N ; + : 4) n i
—In(p(ylz)) = 51n(2m?) 55 3 <y Zigo T Zirg ! Zigs + 2 1,1) |
i=1

(1.6)
We substitute this term into the MAP equation (|1.2), and like in denoising, we
omit all the members that do not depend on z. Putting all pieces together, we
get the complete MAP solution to twofold single-image super-resolution:

1 X ioo T Zito + Zig, T Zi 2
2 = argmin 557 > (yi — Zino T Fiap 1 Fioa T 1’1> —In(p(2)). (1.7)
z o i

We have defined the forward model with the noise 1 of variance o?; however,
we usually consider the super-resolution problem to be noise free. One way how
to get around this issue is to assume sufficiently low noise variance and ignore
the inaccuracy of such model. An analytically correct solution, however, does not
assume any noise at all. This can be achieved by setting the variance infinitely
close to zero. The limit of the MAP equation for SISR as the noise variance
approaches zero produces the following constrained minimization problem:

& = argmin — In(p(z))

subject to: (1.8)
) Zig,0 + Zi10 + Zio,1 + Zi11
1T 4 .

1.3 Optimization

The minimization problems for denoising and SISR with noise that are defined in
equations ((1.4) and ((1.7)) can be solved by a simple gradient descent algorithm

or one of its variants (e.g., Momentum (Rumelhart et al. [1986]), Adam (Kingma
and Bal [2014]), etc.):

2=z — ajz (—Inp(y|z) —Inp(z)),

where « represents the gradient descent step size. However, this approach cannot
be applied to the constraint minimization problem for SISR defined in equa-
tion , and some constraint minimization technique has to be applied. For
the simplicity, let us rewrite this equation into the following form:

Z =argmin F(z) subject to Az—y=0,

where F/(z) here represents the negative log prior probability and A the down-
scaling operator.

The traditional approach to solve constraint optimization is to find stationary
points of the Lagrange function (Lagrangian):

La(z,\)=E(z) —)\T(Az -),

where A represents a vector of Lagrange multipliers. The gradient descent algo-

rithm cannot be used for finding the stationary points since they occur at saddle

points rather than at local extremes. Also, we cannot solve the equation analyt-

ically due to the complexity of the prior model. Consequently, we use a gradient

descent based method to find the stationary points called Augmented Lagrangian

Method (ALM) or Method of Multipliers (Hestenes [1969], Afonso et al.| [2011]).
The Augmented Lagrangian (AL) for this problem is defined as:

Lalzhu) = E(z) = X(Az = y) + 5|4z — 5

where the first two terms represent the standard Lagrangian, and the last term
serves as a quadratic penalty function with weight u. ALM is searching for a
stationary point z of the Lagrangian by alternating two steps — minimizing the
La(z, A\, u) with respect to z and updating the Lagrange multipliers A.

Algorithm 1 Augmented Lagrangian Method
1: choose > 0 and A
2: repeat

3: z=argmin, L4(z, A\, i)

4

5

A== p(Az —y)

: until some stopping criterion is met

For the imaging inverse problems as SISR, this algorithm can be simplified
using the complete-the-squares procedure:

7]
—AT(Az —y) + 5|4z — yll3 =
1 1 H
== 5 NI+ o NG = X (42 —) + G114z — ylls =

L+ 2a N
- — — Az —y — —
20 209 Y W

2

10

The first term of this equation is a constant independent of z, and therefore it
can be omitted in the minimization. Moreover, by substituting

1
d=y+ =\ (1.9)
W

we can simplify the minimization in the following way:
_ . H 2
z = argmin E(z) + 3 | Az —dJ]; .

Finally, we get rid of A in the update term by using the substitution ({1.9)):

N=X—pu(Az —y)
p(d —y) = p(d—y) — u(Az —y)
d=d—(Az —vy).

The prime symbol denotes the updated values that will be used in the next
step. The complete simplified ALM then looks as follows:

Algorithm 2 Augmented Lagrangian Method II

1: choose u > 0 and d

2: repeat

3. z=argmin, E(z) + 5|[Az — d|[3
4 d=d— (Az —y)

5: until some stopping criterion is met

The presented optimization methods for the MAP approach to denoising and
two-fold single-image super-resolution that we defined in equations (1.4)), (1.7),
and serve as a theoretical base to the implementation, which is presented
in Chapter |3, and provided with this work.

So far we have not talked much about the natural image prior, we only as-
sumed that it is complex enough for any direct solution. In order to use the
presented techniques, we have to be able to compute a derivative of the prior
with respect to the image. In the context of priors that are based on neural
networks and that we use in this work, we need to back-propagate the gradients
through the prior model back to the image. Depending on the model complexity,
this can be a severe task since the back-propagation has to be made in every
minimization step.

Since the a-posteriori term is not convex, the gradient descent may fail to find
the global solution if the initial image z is arbitrary. Consequently, we initialize
the image z to be close to the desired result. For denoising, we use the noisy
image as the initial value, and for SISR we use a simple bicubic or nearest-
neighbour interpolation of the LR image. However, we could also apply some
existing reconstruction method and then use this MAP approach to improve
on it. For constraint optimization it is also necessary to set the initial values
of Lagrange multipliers. We initialize them to zero as the first step of ALM
algorithm then corresponds to the super-resolution with noise. The initial values
are elaborated more in Chapter [4]

11

2. Image Prior Modelling

Traditionally, image reconstruction methods have used some specific hard-coded
prior knowledge about the images to tackle the ill-posed inverse problem (e.g.,
assumption of smoothness). However, with the growing interest of researchers
in machine learning, the hard-coded prior knowledge has started to be replaced
by learned prior knowledge. The drawback of this move to learned priors is
the loss of interpretability. While the hard-coded priors can have a form of a
sentence 'Image often consist of repetitive patterns', with learned priors there
is no straightforward way to present the learned knowledge in human-readable
format. Conversely, they have an opportunity to learn very complex knowledge
about the presented images.

The space of all possible images is very large, and the natural images (i.e.,
images capturing the real-world scenes) cover only a small fraction of this space.
For determination whether the image is natural or not serves the image prior
model, which assigns each image a probability of being natural.

The first priors used in image reconstruction modelled the presumption that
surface of objects is smooth, and that adjacent pixels have similar values. This
smoothness assumption was introduced by Tikhonov and Arsenin [1977] in the
form of a regularization term that we can rewrite in our notation as:

~Inp(z) = A | [Vaf,

where () denotes an image domain, and Vz is a gradient usually implemented
using convolution with a gradient filter. This prior penalizes all gradients, and
thus prefers not-noisy images. However, it also penalizes edges that are the
essential part of natural images. One of the first attempts to tackle the over-
smoothness was proposed by Rudin et al|[1992]. They have substituted the L?
with L' norm. Hence, the resulting prior is called total variation (TV) prior. The
best results with the TV prior were achieved if the L' norm was encapsulated
into some potential function ¢. In our notation such prior looks as follows:

~Inp(z) = A | 6(|Va))

Using a proper ¢ function, this prior prefers images formed by smooth regions
separated by sharp edges. For more information about the properties of the
¢ function and all the so-far presented priors, we refer to a book by |Aubert and
Kornprobst| [2006].

The idea of using the TV with potential functions was extended by [Zhu and
Mumford| [1997]. They proposed a framework that incorporates multiple different
linear filters instead of one gradient filter. These filters are chosen from a bank
of linear filters such as Gabor Filters. The particular set of filters from the bank
and their corresponding potential functions are learned from data by maximizing
the likelihood of the training set.

The next logical step was the usage of arbitrary non-parametric filters which
was done in the Field of Experts (FOE) model (Roth and Black| [2005]). It as-
sumes each potential to be a parametric t-distribution. The parameters together

12

with the filters themselves are again estimated by maximizing likelihood the of
the training data.

Although the so-far presented methods were able to capture some low-level
characteristics of the images such as edges and patterns, they were unable to
capture the high-level context of the image. That changed with deep architec-
tures (Bengio et al.|[2009]) that decompose the problem of image modelling into
multiple layers. While the first layer is able to extract some low-level features of
the image, the second layer is built on top of those features, and it could capture
a slightly higher structure of the image. In this manner, the layers are stacked
one by one in order to include higher and higher abstraction of the image. The
most promising results regarding natural image modelling offer deep generative
models that are subject of the next section.

2.1 Generative Models

In the case of images, standard feed-forward neural networks are usually used
for image analysis or for direct image reconstruction. Generative models, on the
other hand, are trained for the inverse task to image analysis, image generation.
It can be either conditioned on some input (e.g., text description) or uncondi-
tioned. Although the concept of generative models is very general, we stick to its
application to images in this work.

To generate a natural image, the model has to know what are all the features
of these images. In the language of probabilistic theory, it has to know the
prior information. Such features are learned from the existing natural images,
and they are stored in the parameters of the neural network to be used as a
generative model. Since the number of parameters is much smaller than the total
number of existing natural images, the network is forced to learn their defining
features.

The tricky part of generative models is their learning. Since it is an unsu-
pervised environment, we cannot use the simple end-to-end learning as in the
supervised case.

One of the successful approaches is to use Generative Adversarial Network
(GAN) (Radford et al|[2015]). It consists of two separate networks: generator
and discriminator. While the generator is responsible for generating new im-
ages, the discriminator has to recognize if the image was generated, or if it is
a real-world image. These two networks are connected so that the gradient can
backpropagate from discriminator to generator. The training of GAN consists
of two alternating phases. First, the parameters of the generator are fixed and
the discriminator, which is a standard binary classifier, is trained to distinguish
a natural image from a generated image. Second, the parameters of the discrim-
inator are fixed, and the generator is trained to produce images that are more
confusing for the discriminator. These two networks are competing with the ul-
timate goal of generating images indistinguishable from the real ones. The main
problem with GANSs is that it is not possible to directly extract prior probability
model p(z) and use it in other applications.

Another approach to generative models are Variational Auto-Encoders (VAESs)
(Kingma and Welling| [2013], Kingma et al.| [2016]). Generic auto-encoders also
consist of two networks. First, encoder transforms the image to a vector (also

13

called code) in a latent space that is much smaller than the original data space,
and second, decoder, which transforms the code from the latent space back to
the original data space. Due to the limited capacity of the latent space, the
auto-encoder is forced to learn an efficient representation of the data and the
corresponding transformations. In the case of Variational Auto-Encoders, the
encoder given an image yields parameters of the posterior approximation g4(z|z)
(e.g., mean and variance of a multivariate Gaussian), where z represents the
latent code. Then 2’ is sampled from this approximation 2’ ~ ¢,(2|z) and passed
to the decoder which yields parameters of the conditional distribution pg(x|z).
Conversely, the unconditional pg(x) follows the standard normal distribution.
The optimization criterion is KL-divergence between g,(z|z) and pg(z) combined
with expected conditional probability pg(x|z). Such criterion forces the latent
representation z to follow the normal distribution and forces the encoded image
to be close to the decoded one. Image generation is here possible by sampling
from the distribution pg(z) - pg(x|z). The described learning process is the basic
idea behind the simple VAE. Better performance was achieved by [Kingma et al.|
12016], who proposed a slightly more complicated version of this approach.

The last approach to generative models that we mention and that provides the
best results in terms of image likelihood models the prior as a product of para-
metric conditional distributions over the pixels, where each pixel is conditioned
on all the preceding pixels:

po(x) —ﬁp0($i|x1,--.7$¢_1). (2.1)

The term m - n denotes the size of an image and # stands for the distribution
parameters that are represented by a neural network. Learning is then achieved
using maximum likelihood principle on true natural images, and generation of a
new image is here done using sampling from the prior pixel by pixel, row by row.
The conditioning is illustrated in Figure

. predicted pixel
. conditioning

Figure 2.1: Illustration of a factorized conditional distribution for a pixel.

The parameters 6 of the conditional distributions pg(x;|z<;) are shared for all
pixels of an image. Therefore, it is relevant to think of recurrent neural networks
(RNNs), which are designed for processing of data streams. In our case, the
data stream consists of image pixels and the weights in RNN cells represent the
distribution parameters. The idea of employing RNNs for this task was adopted
by [Theis and Bethge| [2015] in Recurrent Image Density Estimator (RIDE) for
grey-scale images. It uses spatial (two-dimensional) Long Short-Term Memory
(LSTM) (Graves et al| [2007]) to create a latent vector for each pixel. This
vector then serves as a set of parameters to a certain Gaussian-based mixture
distribution. The image is processed by 2D LSTM from left to right from top

14

to bottom, and by definition, it captures the long-range dependencies in both
horizontal and vertical direction. RIDE network is trained by a simple stochastic
gradient descent algorithm on the negative log-likelihood (NLL).

This work was later extended by [van den Oord et al| [2016b] in many ways.
While RIDE models the pixels as continuous values, they have proposed to model
them as discrete values using a multinomial distribution, without any assumption
on its shape. Moreover, they have extended the method to colour images, and
they maintain the dependencies between individual RGB colour channels:

P(Xi|X<i) = p(@ir|X<i)D(Ti.6|X<is i r)P(%i B|X<i, Tio R, Ti)- (2.2)

In this equation x; represents the whole pixel and x; r, x; ¢, and z; p stands for
the corresponding colour channels of this pixel.

Regarding RNN, van den Oord et al.| [2016b] propose network architecture
called PixelRNN. It consists of multiple residual blocks each containing one LSTM
layer. The LSTM cells of these layers use masked convolutions in their state-to-
state and input-to-state operations. The masking ensures that only the valid
context for each pixel is taken into account. This design beat all preceding ap-
proaches in terms of likelihood on the CIFAR-10 dataset (Krizhevsky and Hinton
[2009]).

Besides PixelRNN, jvan den Oord et al| [2016b] also proposed solely convo-
lutional network called PixelCNN. The complex LSTM layers are substituted
by masked convolutional layers that offer much faster learning process since the
image can be processed in parallel. The drawback of this approach is the fact
that potentially unbounded receptive field (context of each conditional distribu-
tion) in the case of LSTM is here limited to large but bounded receptive field.
Consequently, the PixelRNN architecture performed better in terms of likelihood;
however, the Pixel CNN architecture offers much faster learning, and the networks
derived from it now offers the best likelihood scores. This is the reason why we
have chosen this type of architecture for our prior model in this work. In the next
section, we present this type of network and its derivations in detail.

2.2 PixelCNN

A generative neural network architecture that is based solely on convolutional
layers and that models the image prior as a product of conditional probabilities
over the pixels as it is described in Equation ([2.1f) was first introduced by van den|
Oord et al. [2016b]. The main idea is to capture the context of each conditional
distribution using two-dimensional convolutions. To ensure that only the valid
context is taken into account, the convolutions are masked so that for prediction
of a pixel only the preceding pixels can be read. An example of such mask
is depicted in Figure The size of the context that the network is able to
capture (i.e., the receptive field) depends on the sizes of convolutional kernels
and the number of convolutional layers. The growth of the receptive field with
the depth of the network is illustrated in Figure [2.3]

The original PixelCNN method is composed of multiple layers where each
layer, except the first and the last one, consists of one masked 3 x 3 convolution
with Rectifier Linear Unit (ReLU). It uses two types of masks: mask A and mask

15

1 0 O 1 1 0
0 0O 0 0O

Figure 2.2: Example masks for 2D convolution with kernel size 3 x 3. Left:
Mask A for the first convolutional layer. Right: Mask B for all subsequent
convolutional layers.

B predicted pixel
M receptive field of 1 layer

receptive field of 2 layers

receptive field of 3 layers
7 blind spot

Figure 2.3: The Growth of receptive field with the depth of Pixel CUNN assuming
masked convolutional layers with kernel size 3 x 3

B. The Mask A is applied to the first layer to ensure that the convolution reads
only pixels preceding the predicted pixel. Mask B is a relaxed version of mask
A that, in addition, allows connection from the predicted pixel to itself, and it is
used in all subsequent layers. In order to improve the learning process, the layers
are connected using residual connections (He et al|[2016]). The last layer is a
simple 256-way softmax.

Just like for PixelRNN, the conditioning is not done on whole pixels but
rather on their individual colour channels as it was presented in Equation (2.2)).
Therefore, the mask A is slightly more complicated than it was depicted as it
also allows reading of all preceding channels of the same pixel. In the end, each
colour channel is predicted separately using the softmax layer. For more detailed
description, we refer to the original work of [van den Oord et al.| [2016D].

2.2.1 Gated PixelCNN

One of the problems of the original PixelCNN architecture was the blind spot
in the receptive field illustrated in Figure [2.3] This problem was addressed by
van den Oord et al| [2016a] who introduced an architecture called Gated Pixel-
CNN. Besides the blind spot removal, they have proposed gated convolutional
layers allowing more complex interactions between layers.

Gated PixelCNN resolved the problem with the blind spot by combining two
stacks of convolutional layers: vertical and horizontal. While the vertical stack
has a receptive field consisting of rows above the current pixel, the receptive
field of the horizontal stack consists of pixels left of the current one that lie on
the same row. This division is illustrated in Figure 2.4, FEach stack contains
several convolutional layers with appropriate masking and the outputs of the
stacks after each layer are combined so that a layer in the horizontal stack takes
as an input the output of the previous layer in this stack as well as the output of
the corresponding layer from the vertical stack. Making the connection between

16

the stacks one-way ensures that only the pixels left or above the current pixel are
used as a context, which is required by the conditional distribution.

Figure 2.4: The growth of receptive field with the depth of Gated PixelCNN
assuming masked convolutions of size 3 x 3 for vertical stack and 1 x 3 for hori-
zontal stack assuming that the stacks are not connected (which is not true in the
network).

W predicted pixel
|| vertical stack
[| horizontal stack

Another contribution of Gated Pixel CNN is the usage of gated activation units
that replace the traditional ReLUs:

y = tanh(Wy s *) © o(Wy, * x),

where Wy, ; and W, 4 represent the convolutional kernels of the k-th layer, o is
a sigmoid non-linearity, * denotes a convolution operator, and ® is an element-
wise product. Although there are two convolutions, they can be implemented
using a single convolution where the output features are split into ¢ and tanh
non-linearities.

Similar to original Pixel CNN, residual connections between layers have been
added to the network but only to the horizontal stack, as adding it also to the
vertical stack did not appear to be beneficial in any way. A single layer of the
described architecture is illustrated in Figure 2.5

vertical stack A

p = #feature maps

Split feature maps I

Figure 2.5: Single layer in the Gated Pixel CNN architecture. Convolutions are
shown in green, element-wise operations in red, and non-linearities in yellow.
Based on a diagram by van den Oord et al. [2016a]

Gated version of Pixel CNN has achieved the likelihood scores of PixelRNN
while preserving the relatively fast learning time of PixelCNN. Moreover, this

17

network has served as a basis to an even better model called Pixel CNN++ (Sal-
imans et al| [2017]) that seems to be the most advanced architecture for image
prior modelling (see Table . Therefore, we use it in our experiments, and we
devote it the next subsection.

2.2.2 PixelCNN+4+4

The already outstanding performance of Gated Pixel CNN was improved by [Sal-
imans et al. [2017] in an architecture called PixelCNN++. It came up with four
principal modifications to the former architecture. First, it replaces the 256-
way softmax with discretized logistic mixture likelihood. Second, it conditions
on the whole pixels rather than on individual colour channels. Third, to cap-
ture the structure at different resolutions, it uses downsampling and upsampling
with short-cut connections. Finally, it employs dropout (Srivastava et al.| [2014])
during learning in order to avoid overfitting on the training data.

The problem with modelling the pixel values using 256-way softmax is, among
others, its inability to capture that the two adjacent values (e.g., 127 and 128) are
similar and such relationship has to be learned in the preceding layers. Therefore,
like in VAEs, the Pixel CNN-++ network has replaced the softmax with a simple
parametric continuous distribution of the latent colour intensity v where the
parameters of the distribution are produced by the network. The authors have
chosen the mixture of logistic distributions:

K

v~ Z milogistic(pu;, ;).
i=1

Such distribution allows to easily compute the probability of the discrete pixel
value x given the distribution parameters 7, p and s:

Pl ps) = 3 [a (H) . (H)] @y

i=1 S i

where o is the cumulative distribution function (CDF) of the logistic distribution
(i.e., sigmoid function). This equation is valid except the edge case of 0 and 255.
The probability for these cases is naturally defined using CDF as:

K 1
g = M
p('r = Olﬂ',[L,S) = Z’ﬁi la (W)])
i=1

Si

x . (2.4)
pla = 255|m, 1, 5) = ;w [1 p (‘T—Z_“ﬂ .

The original Pixel CNN factorized the prior distribution over the colour chan-
nels as it is shown in Equation . Such factorization allows very complex
relations between the individual channels but it also unnecessarily complicates
the model since the relations between the colour channels of a single pixel are
likely to be simple, and they do not need a deep network for modelling them.
Therefore, Pixel CNN++ conditions on whole pixels and outputs the parameters
of the joint distribution of all colour channels. The joint distribution is a simple
factorized model of logistic distributions over the colour channels. Interactions

18

between the channels are possible in a linear way so that the mean of each logistic
distribution linearly depends on the values of the preceding colour channels. This
is clarified in the following equation:

K
p(l”ﬂ, W, S, &, 5? 7) = Z T+ p(xT“Liﬂ“? Siﬂ”) ’ p(xgyy’;,g? Si,g) ’ p(xb’u’;,lﬁ Si7b)7
1=1

/
'Ltizg = Mi)g + O{.TT,

o (2.5)
Hip = Hip + Bajr + Vg,

where u, s, a, B, and v are parameters of the joint distribution that are predicted
by the network and z, is the red colour channel of pixel z (green and blue channels
are denoted in the same manner).

Another problem of the original PixelCNN is a relatively small receptive field,
which is large enough to capture the local dependencies, but it is not able to
capture the high-level context of the image. To model the image structure on dif-
ferent resolutions, Pixel CNN++ uses several downsampling layers implemented
using convolutions of stride 2 in both horizontal and vertical direction, and the
corresponding upsampling layers implemented using transposed convolutions of
stride 2. Such architecture resembles an auto-encoder, where the layers between
the input and the smallest resolution form an encoder part, and layers between
the smallest resolution and the output form a decoder part. However, such archi-
tecture would lead to a significant loss of information; therefore, between layers of
the same resolution short-cut connections are added. Each layer of the encoder
is connected using a short-cut to the corresponding layer in the decoder. The
short-cuts have a form of 1 x 1 convolutions.

Like Gated Pixel CNN, Pixel CNN++ uses residual blocks with gated convolu-
tions with two connected stacks: horizontal and vertical (illustrated in Figure[2.5).
The complete architecture is visualized in Figure [2.6]

32x32 16x16 8x8 8x8 16x16 32x32
Vertical stack

Horizontal stack

™ Input (image)
Output (distr. parameters)
:‘, @I 5 Gated PixelCNN layers
7!

— —> Convolutional connection
------- » Identity

Figure 2.6: Architecture of PixelCNN++ for the CIFAR-10 dataset.

The comparison of the presented generative models that can be used for esti-
mating the natural image prior is shown in Table 2.1} The values represent the
likelihood, which is expressed in bits per dimension (bpd), of the CIFAR-10 test
set. The bpd for an image measures the minimal amount of information, addi-
tional to the prior, that would be necessary for lossless compression of the image.
Therefore, the lower the number, the better the prior represents the image. For
CIFAR-10 test images, it is clear that Pixel CNN++ architecture performs the
best, and therefore, we use it for the proposed image reconstruction method.

19

Model Bits per dimension

RIDE [Theis and Bethge [2015 3.47
PixelCNN jvan den Oord et al.| [2016D] 3.14
VAE with IAF Kingma et al. [2016] 3.11
Gated PixelCNN [van den Oord et al.| ﬂ2016aﬂ 3.03
PixelRNN |van den Oord et al. ﬂ2016bﬂ 3.00
Pixel CNN++ [Salimans et al.| [2017] 2.92

Table 2.1: Comparison of the presented generative image prior models in terms
of likelihood (expressed in bits per dimension) on the CIFAR-10 dataset. Source:
Salimans et al. [2017] and jvan den Oord et al.| [2016b].

20

3. Implementation

Implementing a simple neural network trained using the back-propagation algo-
rithm is a straightforward task; however, for deep networks, it is more convenient
to use an existing neural network framework such as TensorFlow (Abadi et al.
[2016]), Caffe (Jia et al.|[2014]), Microsoft Cognitive Toolkit (Microsoft Corpora-
tion [2017]), Theano (Theano Development Team| [2016]), etc.

Since the implementation of the prior model that we use in our work, Pixel-
CNN++, is maintained in TensorFlow and since there exists a pre-trained model
for it, we have chosen TensorFlow also for the implementation of the methods
proposed in this work.

3.1 TensorFlow

TensorFlow is an open source framework for numerical dataflow computation
developed by Google Brain team. The computation is described using directed
graphs, where the nodes define mathematical operations, and the edges represent
multidimensional arrays called tensors, through which the operations exchange
data. The framework allows deploying the computation not only to CPU but also
to GPU, where the execution time of operations on large tensors is significantly
reduced. It is most commonly used with neural networks; however, it is general
enough to be used for wide variety of other cases.

The TensorFlow framework is exposed to programmer through API in several
languages, such as C++, Java, or Python. We use the latter one since it is
comfortable to use, the Pixel CNN++ was developed in it, and it is at present the
most complete. The API range from very low-level functions as a simple element-
wise addition of two input tensors to high-level functions as multidimensional
convolutional neural network layers.

The program in this framework is divided into two main parts. First, building
the computational graph and second, running the computational graph. In the
building part, the programmer usually defines the shape and type of the input
tensors and the set of dependent low or high-level operations. To run the graph,
one has to create a Session that encapsulates the control and state of the Ten-
sorFlow runtime. The primary operation of the session is Run, which given a
set of output tensor names evaluates in the correct order all operations on which
they depend and returns the values of the output tensors. A frequently used but
optional parameter for the Run method is the data that should be fed into the
particular places in the graph. This option is used primarily to provide values to
some input tensors.

This framework was designed for the situation where the graph is created
once and then executed many times. Sometimes it is therefore convenient (e.g.,
in machine learning) to save the values of some tensors in the graph for the next
run without explicitly returning them. For this purpose, there exists a special
operation called Variable that returns a tensor that survives the execution of the
graph. These tensors can be updated during the execution, which is extensively
used in training of neural networks or generally in any optimization process.

TensorFlow was mainly designed for deep neural networks; therefore, it con-

21

tains many functions that make the building of the network (i.e., graph) easier.
It contains functions for creating individual layers, such as fully connected, or
convolutional. These layers usually include weight or kernel tensors that are
automatically created as trainable Variables. The graph for training neural net-
works must also include all operations necessary for computing the gradients and
updating the Variables. For that purpose, the API contains optimizers that given
an optimization criterion, a set of trainable Variables, and some other arguments
create the necessary nodes and edges of the graph and an operation that when
evaluated by Run method updates the Variables in the desired manner. A typical
graph for neural network consists of a single input tensor, single output tensor,
and several layers in between. Also, it usually contains target tensor used for
supervised training. Such graph is then executed in two modes: Either training,
where the evaluation of an optimizer operation is required and input, and target
tensors are fed with the desired data, or inference, where the value of the output
tensor is required, and only the input tensor is fed with the data.

TensorFlow can also save and restore the state of the network (e.g. values of
Variables). This is necessary not only for training deep architectures, which can
take hours or days, but also for the deployment of the trained network.

3.2 Implementation

We have developed a prototype implementation for testing of the proposed ap-
proach to image reconstruction tasks. Our code can be partitioned into several
segments — prior model definition, data loading, building a computational graph,
running of the graph, and evaluation. In this section, we show several simpli-
fied snippets of the code. For more detailed description, we refer to the actual
commented code provided with this work.

3.2.1 Prior Model Definition

For incorporating of the prior model to our code we have developed an interface
containing a constructor, a method to get prior in the form of negative log prob-
ability of the provided image and a method to load the pre-trained prior model
parameters from the specified file. This architecture allows us to experiment with
different image priors on different datasets. In the case of Pixel CNN++ model
we have encapsulated the code provided by the authors of the model into this
interface; however, our code should work with any prior model.

The Pixel CNN++ code itself consists of two parts — a model that given an
image predicts the parameters of discretized logistic distribution for each pixel,
and a logistic distribution that given the parameters and the image computes the
joint probability of such image.

The model follows the architecture depicted in Figure [2.6, It uses 192 feature
maps for all residual connections. The masked 3 x 3 convolutions in the vertical
stream are implemented as 3 x 2 convolutions on an image that are shifted down
by one row. The masked 1 x 3 convolutions in the horizontal stream could be
also implemented as 1 x 2 convolutions on an image shifted to the right by one
row; however, the authors of the code found beneficial to use 2 x 2 convolutions
on an image that is shifted in right-down direction by one row and one column.

22

It should be reminded that the horizontal stack conditions also on pixels above
since the vertical stack is connected to it. This shifting is used for all layers in
ResNet blocks and downsampling and upsampling layers in between. The first
layer of the vertical stream moreover shifts the output down by one row, so that
the subsequent layers read only the valid context. The first layer of the horizontal
stream is implemented similarly. It combines a convolution of size 3 x 1 that is
shifted down and a convolution of size 1 x 2 output of which is shifted to the
right.

The model predicts the parameters for the discretized mixture of logistics as
well as the parameters of the linear dependency between the colour channels. In
the default setting, the output tensor contains 100 values for each pixel. The first
10 values represent the log probability of each of the 10 mixture components. The
next 3 x 10 values predict the mean for each colour channel and each mixture
component. Another 3 x 10 values represent the scale parameter of the distribu-
tions corresponding to each mean value. The remaining 3 x 10 values describe the
linear dependency between the means of the logistic distributions of individual
colour channels as it was presented in equation ([2.2]).

The code provided by the authors of Pixel CNN++ has a very complex data
dependent initialization of variables; however, since we load the values of these
variables from a file, we slightly changed the code to omit this unnecessary ini-
tialization.

3.2.2 Data Loading

The source code of Pixel CNN++ contained data loaders for the CIFAR-10 dataset
(Krizhevsky and Hinton|[2009]) and for the ImageNet dataset (Russakovsky et al.
[2015]) downsampled to size 32 x 32. Based on these data loaders, we have
developed loaders also for the ImageNet downsampled to size 64 x 64 and the
BSDS-300 (Martin et al.|[2001]) datasets, and a loader for a single image. The
more detailed description of these datasets is provided in Section [4.1]

The architecture is designed to reconstruct multiple images of the same size
at once; therefore, the tensors containing images are four-dimensional (batch size
x height x width X number of channels). Because of this design, our code can
process only images of the same size on a single run. Consequently, we split
the BSDS dataset that contains images of size 481 x 321 or 321 x 481 into two
datasets, horizontal and vertical. Moreover, since the Pixel CNN+4 model as it
was written by its authors is unable to process images that are not divisible by
4, we crop the images of the BSDS dataset by one pixel both horizontally and
vertically.

3.2.3 Building the Computational Graph

Each of the reconstruction tasks we deal with requires slightly different compu-
tational graph; however, the overall architecture remains very similar. First, we
define the placeholders for degraded and initial images and optimization param-
eters (e.g., noise variance, initial values for Lagrange multipliers, etc.). In order
to avoid feeding these placeholders in each optimization step, we store them as
Variables, and we feed them only once at the beginning. Except for the optimized

23

image, the variables do not change during the optimization; therefore, they are
created as non-trainable.

#Placeholders

t_sigma2_ph = tf.placeholder(tf.float32, name="sigma2_ph", shape=[])

t_y_ph = tf.placeholder(tf.float32, name="degraded_ph", shape=...)

t_z_ph = tf.placeholder(tf.float32, name="initial_ph", shape=...)

#Variables

t_sigma2 = tf.get_variable("sigma2", initializer=t_sigma2_ph, trainable=False)
t_y = tf.get_variable("degraded", initializer=t_y_ph, trainable=False, ...)
t_z = tf.get_variable("estimate", initializer=t_z_ph, trainable=True, ...)

For the noiseless super-resolution, we do need neither t_sigma_ph nor t_sigma,
but we have to define the placeholder and Variable for the p parameter and d
variable of the ALM algorithm presented in Section [1.3

t_d_ph = tf.placeholder(tf.float32, name="lagrange_ph", shape=...)

t_mu_ph = tf.placeholder(tf.float32, name="mu_ph", shape=...)

t_d = tf.get_variable("lagrange", initializer=t_d_ph, trainable=True, ...)
t_mu = tf.get_variable("mu", initializer=t_mu_ph, trainable=False, ...)

Second, we construct the sub-graph for the prior model using the aforemen-
tioned interface. The output of this sub-graph is the negative logarithm of the
prior probability of the optimized image:

#Prior model
model = PixelCNNpp(nr_resnet=5, nr_filters= , nr_logistics=10, ...)
t_prior = model.get_prior(t_z)

The essential part of the graph regarding the image reconstruction is MAP
minimization term. For denoising task, this term is derived from equation (|1.4):
#Loss for denoising
t_sse_loss = tf.reduce_sum((t_y - t_z)**2, reduction_indices=(1,2,3))

t_loss = t_sse_loss + 2 * (t_sigma2**2) * t_prior

The resulting graph is visualized in Figure [3.I} For super-resolution with noise,
we derive the graph from equation (|1.7)):

#Loss for two fold SISR with noise

t_avg=(t_z[:,::2,::2,:] +t_z[:,1::2,1::2,:1 + \
t zl:,1::2,:0:2,:]+t _z[:,::2,1::2,:1)/
t_see_loss = tf.reduce_sum((t_y - t_avg)**2, reduction_indices=(1,2,3))

t_loss = t_sse_loss + 2 x (t_sigma2+%*2) * t_prior

Finally, for constraint minimization that is used for super-resolution without
noise, we infer the graph from equation (1.8)) and ALM algorithm:

#Graph for SISR without noise

t_avg=(t_z[:,::2,::2,:] +t_z[:,1::2,1::2,:] + \
t zl:,1::2,::2,: 0+t _=z[:,::2,1::2,:1)/
t_see_loss = tf.reduce_sum((t_d - t_avg)**2, reduction_indices=(1,2,3))

t_loss = (t_mu/2) * t_sse_loss + tf_prior

Last but not least, we define an optimizer that will be used for minimization.
We have experimented with various optimizers, and it seems that the best results
provide simple gradient descent with exponential learning rate decay.

24

y M trainable variable

L o? constant variable
- element-wise operation

*%) |

x

reduction sum —— +

Figure 3.1: Illustration of computational graph for denoising

#Gradient descent on the image

t_lr = tf.train.exponential_decay(learning rate=..., decay_rate=..., ...)
optimizer = tf.train.GradientDescentOptimizer (t_lr)
t_minimize = optimizer.minimize(t_loss, var_list=[t_z], ...)

The evaluation of the t_minimize tensor by Run method makes one step of the
optimizer algorithm. For the constraint optimization using the ALM algorithm,
we also need an operation to update the d variable.

#Update the "Lagrange multipliers"
t_update_d = t_d.assign(t_d - (t_avg - t_y))

3.2.4 Running the Computational Graph

For the evaluation purposes, we use the described graph in the following way.
First, a Session is created, and the parameters of the prior model are loaded.
Then, each batch of images from a dataset is degraded using the forward model of
the reconstruction task. From the degraded images, depending on the particular
task, the initial estimates of the reconstructed images are created. For denoising,
the initial value is the degraded image itself, for super-resolution, the bicubic or
zero order interpolation is used. All these values together with the noise variance
in the case of noisy reconstruction or with the p parameter and initial values for
d variable in the case of constraint optimization are fed into the graph.

After the initialization, the optimization process is started. For the standard
gradient descent, it looks as follows:

with tf.Session(...) as sess: #Create session

model .restore(sess, ...) #Load pre-trained prior

for x in test_data: #Loap over images of dataset
y = forward_model(x, sigma) #Corrupt the images
z = get_initial_value(y) #Get initial image to be optimzied
#Initialize the TensorFlow Variables with data
initializer = tf.variables_initializer([t_y,t_z,...])
sess.run(initializer, feed_dict={t_y_ph:y,t_z_ph:z, ...})
#0ptimize using pre-defined number of steps
for epoch in range(nr_steps):

sess.run(t_minimize)

reconstructed = sess.run(t_z) #Return reconstructed images

25

For the constraint minimization using the Augmented Lagrangian Method, where
the minimization alternates with the update of d variable. In this case, the last
three lines of the above code snippet are substituted by the following lines:

for i in range(nr_iterations):
for epoch in range(nr_steps[i]): #Minimization
sess.run(t_minimize)
sess.run(t_update_d) #Update of "Lagrange multipliers"
reconstructed = sess.run(t_z) #Return reconstructed images

The best performance is achieved when the number of steps of the optimization
and eventually the number of iterations is pre-defined. The stopping criterion is
elaborated in Chapter[d At the end of the optimization process, the reconstructed
images are gathered from the graph.

The Pixel CNN-++ prior model was defined for images where the pixel values
are scaled from the range [0;255] into the range [—1;1]. To avoid unnecessary
conversions in the graph, and to be consistent throughout the computational
graph, we use this range in our method as well. Consequently, it is necessary to
rescale also the noise variance appropriately: ¢’ = o - 12772

These were very simplified code snippets. Our implementation is also able to
log the optimization process and evaluate the reconstruction performance in every
step, which is necessary for tuning the hyper-parameters such as the number of
optimization steps, learning rate, decay rate, or used optimizer. The optimal val-
ues of these parameters along with their dependencies on datasets are elaborated
in the next chapter.

26

4. Experiments

We have proposed methods for image reconstruction based on MAP approach
that exploits the currently most advanced natural image prior models. We have
developed a prototype implementation, the details of which are described in Chap-
ter [3] In this chapter, we explain some design choices we made and evaluate our
solution in terms of reconstruction performance and run-time. Also, we com-
pare the results with the current state-of-the-art methods for the corresponding
reconstruction tasks.

4.1 Data Sets

For proper training and evaluation of the proposed methods, it is necessary to
get a dataset of images that are close to what we would consider the ideal natural
images. They should not be distorted, blurry, corrupted by any noise, they should
not contain any artefacts, and so forth. Although there is a tremendous amount
of images available for usage, plenty of them do not satisfy the constraints of
an ideal image. Fortunately, most datasets that were initially created for image
analysis fulfil those conditions, and we can employ them in the reconstructions
tasks; although, no exact measure of ideality exists.

One of the widely used datasets for image analysis that can be employed in
image reconstruction is the CIFAR-10 dataset (Krizhevsky and Hinton| [2009]).
It consists of 60000 colour images of size 32 x 32. These images were captured
in much higher resolution; therefore, the presence of noise and other inevitable
degradations in the captured images is negligible after downsampling. Each image
is labelled by one of 10 classes (e.g., bird, ship, or deer) according to the main
object of the image. For reconstruction, these labels are not interesting, but if
this dataset is used for training of the natural image prior, it might be slightly
biased as it could learn that on each image, there has to an object belonging to
one of these classes. The images are divided into a training set containing 50,000
images and a test set containing 10,000 images. We use the train set for training
the prior model and test set for the evaluation the reconstruction capabilities.

More suitable for the natural image prior modelling seems to be the ImageNet
dataset (Russakovsky et al. [2015]). The images of this dataset are also labelled
but there are more than 80,000 classes, and therefore it should not be a limitation.
We use this dataset in two downsampled versions that were created for training
of PixelRNN (van den Oord et al. [2016b]) prior. One contains images of size
32 x 32, and we denote it as ImgNet-32. The other one consists of images of
size 64 x 64, and we denote it as ImgNet-64. Again, the downsampling makes
the degradations that occurred during capturing process negligible. The dataset
is also divided into a training and validation set. The first of them contains
over million of images, and we use it for image prior training. The latter one
consists of almost 50,000 images, but due to the high computational demands of
the proposed method, we use only a subset of it to evaluate the reconstruction.

Although these datasets contain a huge number of images, their resolution is
small. Therefore, we also employ Berkeley Segmentation Data Set 300 (BSDS300)
(Martin et al. [2001]) that consist of slightly larger colour images. There are

27

200 training images and 100 test images of size 481 x 321 or 321 x 481 in the
dataset. Since the PixelCNN++ implementation we use is not able to handle
image dimensions that are not divisible by 4, we crop them by one row and one
column. This dataset contains too few images for learning a good prior model;
therefore, we use it only for the reconstruction assessment. The images in this
dataset are not that ideal as in the previous ones, but we consider them to be
good enough.

We had also considered using DIV2K dataset, which was created for the
NTIRE2017 (Agustsson and Timofte [2017]) competition on single-image super-
resolution. It consists of 1000 images that were manually chosen with special
attention to image quality and dataset diversity. Each image has 2K resolution,
meaning that it is over 2000 pixels high or wide. The dataset is divided into a
training, validation, and test set so that the diversity of each set remains high
enough. Unfortunately, the size of the images is not only too large for training of
the neural network that we use as a prior model but also too large for the recon-
struction using the proposed methods as well. We list this dataset here mainly
because it might be interesting for the future work.

4.2 Prior Model Training

One of the advantages of the proposed reconstruction methods is the fact that the
image prior model can be learned separately regardless the actual reconstruction
task. In this work, we use the Pixel UNN++ model that was briefly described in
Section It is based on a neural network consisting of masked convolutional
layers, and by design, it is scalable to images of arbitrary sizes. However, for
performance reasons, the TensorFlow implementation provided by the authors of
the model requires being trained on images of the same size as the size has to be
known during the construction of the computational graph.

Although the Pixel CNN++ model can be potentially used on images of ar-
bitrary size, the architecture was optimized for the CIFAR-10 dataset that con-
tains images of size 32 x 32 only. The encoding part of the model uses 3 ResNet
blocks containing 5 residual layers with 192 feature maps that are connected by
2 x 2 downsampling convolutions. The same architecture uses the decoding part,
except it uses upsampling convolutions between the blocks. This architecture
is illustrated in Figure 2.6] For the training, the authors use Adam optimizer
(Kingma and Ba [2014]), learning rate decay, and a dropout rate of 0.5 for each
residual layer.

In our experiments, we use the Pixel UNN++ prior trained on the CIFAR-10,
ImgNet-32, and ImgNet-64 datasets. The first trained model is provided directly
by the authors of Pixel CNN++. It was trained for 5 days on 8 NVIDIA TITAN
X GPUs and reached 2.92 bits per dimension (bpd) on the CIFAR-10 test set.
For training of the prior on the ImgNet-32 dataset, we use exactly the same
architecture. Unfortunately, we do not have such computational power available
as the best hardware we could use was a single NVIDIA P100 GPU. We had
trained the model for 8 epochs, which took about five days, and reached 4.02 bpd
on the test set. The last prior model that we use was trained on the ImgNet-64
dataset. It had been trained for 5 epochs, which also took about 5 days, and it
reached 3.69 bpd on the test set. The comparison to other trained prior models

28

Dataset Pixel CNN++ GatedPixel CNN PixelRNN

CIFAR-10 2.92 3.00 3.03
ImgNet-32 4.02* 3.83 3.86
ImgNet-64 3.69%* 3.57 3.63

Table 4.1: Test performance of different models on different datasets. Values
marked with * are suboptimal, because of the lack of computation power. Other
values are provided by the authors of the respective models.

is shown in Table Compared to GatedPixel CNN, for example, our models
reach much lower bpd. This is, however, caused by the fact that the authors had
been training the model for 2.5 days on 32 GPUs, while we had to fit into 5 days
on one GPU only.

Because we use the model for MAP optimization, naturally, we were interested
in how the model behaves and what images it prefers. To address this question,
we have tested the model, which was trained on the CIFAR-10 dataset, on the 5
images of the test set. We used the same framework as we use for reconstruction,
but we optimized only the prior term. The results after 4000 steps of gradient
descent, with an initial step size of 5-107% and step size decay of 0.9999, are
shown in Figure 4.1} The size of a gradient descent step was chosen so that it
would not add any noteworthy noise and thus change the image significantly. The
optimization process is depicted in Figure 4.2

Figure 4.1: Upper: 5 original images from the CIFAR-10 test set. Bottom:
More probable versions of the images according to the Pixel CNN-++ model.

The images show that the model prefers smoother images, but it well preserves
smooth edges. During the reconstruction, this over-smoothing will be reduced by
the likelihood term. Other options include decay of the gradient step size or early
stopping.

Since we were not able to learn the optimal parameters of the prior model
on all datasets, we have evaluated the trained prior models across the different
datasets. The results presented in Table[4.2] show that the lowest score is achieved
if the training set and the test set come from the same dataset. However, later
we will demonstrate that the model with the lowest score on some dataset need
not lead to the best MAP reconstruction on that dataset.

29

2.0 A

1.8 1

1.6 A

bpd

1.2 1

1.0 4

0.8 A

0 500 1000 1500 2000 2500 3000 3500 4000
optimization step

Figure 4.2: Minimalization of negative log prior probability (expressed as bpd)
of the 5 CIFAR-10 images using Pixel CNN++ model. Value at step 0 represents
the average bpd over the original images.

Test \ Training set CIFAR-10 ImgNet-32 ImgNet-64

CIFAR-10 2.92 3.25 3.19
ImgNet-32 4.27 4.02 4.03
ImgNet-64 3.93 3.71 3.69
BSDS-300 2.79 2.52 2.43

Table 4.2: Test performance (bpd) of PixelCNN++ model trained and tested on
different datasets. Each row represent one test set and each column one training
set.

4.3 Methodology

In order to evaluate the proposed against the selected state-of-the-art methods in
terms of reconstruction performance, we first degrade the original images using
the assumed forward model. Then we measure how well each reconstruction
method restores the image. Although the individual methods may work with
various pixel scales, all degradations and measurements are made on images with
pixels in standard 8-bit format. We use two measures — peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) (Wang et al.| [2004]).

The first one, PSNR, measures the ratio between the maximal possible power
of the signal (i.e., original image) and the power of the noise (i.e., the difference
between original and reconstructed image) and it is expressed in decibels. The
formula for computing PSNR on images where the value of the pixel is in the

30

range [0; 255] is following:

2552

N
+ 3 (x; — fi)Q
N &

1=

J

where x represents the original and 2 the reconstructed image. Generally, the
higher the value, the more similar the images are.

The drawback of measuring the reconstruction error using PSNR is that it
is not consistent with the impact of the error on human perception. It may
happen that the change in two degraded images with the same PSNR would be
perceived entirely differently. This imbalance is partially addressed by the second
measure we use, SSIM (Wang et al. [2004]). It estimates the structural similarity
of two images as a correlation between two normalized images. This measure also
takes into account that perception of a luminance change is lower with growing
luminance and the similar relation is also applied to contrast. The formula we
use is following:

(240 5 + 2552)(20'13? + 7652)
(12 + p2 + 2.552)(02 + 02 + 7.652)

SSIM(x, &) =

where p,, 02, 11z, and o2 represents the local mean and variance of the original
image = and the reconstructed image z. Similarly, o,; denotes the local covariance
of z and z. The overall image SSIM is measured as a mean of SSIM of all local
Gaussian windows with a standard deviation of 1.5. The SSIM ranges from —1
to 1, and the higher is the value, the more similar the images are perceived.
Conversely to the PSNR, we measure the SSIM on the luminance channel only.
We obtain the luminance channel using the algorithm presented in the following
subsection.

4.3.1 Comparison to Greyscale Methods

To compare the colour reconstruction methods with single-channel methods, we
convert either the degraded or the reconstructed image to grey-scale using the
linear combination of colour channels:

Ty = ALy + 5:Eg + YZp,

where x,. denotes the red colour channel of pixel x (similarly defined for green and
blue channels). We use the following standard constants: a = 0.2989, 5 = 0.5870,
and v = 0.1140. In the case of colour methods, we take the colour degraded im-
age, reconstruct it and then convert it to grey-scale. In the case of single-channel
methods, we first convert the degraded image into grey-scale, and then we recon-
struct it. Afterwards, we measure PSNR and SSIM on the reconstructed grey-
scale images. It must be acknowledged, however, that the comparison favours the
colour reconstruction methods as they have more information about the image
available for reconstruction.

The conversion to grey-scale also affects the parameters of the grey-scale for-
ward model of the reconstruction task. One of these parameters is the noise

31

variance var(n). Since we assume uncorrelated noise in each channel, the for-
mula for computing the noise variance for the grey-scaled image is following:

var(an, + Bn, +yny) = o - var(n,) + B* - var(ng) ++* - var(ny),

where n,. represents the noise added to the red channel (green and blue channels
are defined similarly). Since we assume the colour forward model where all chan-
nels are corrupted with the noise of the same variance o2, the variance of the
grey-scale image is:

0 = (o + 2+ 7)o
With the linear combination we use, the standard deviation of the greyscaled

image is: o, = 0.66850.

4.3.2 Execution Time Comparison

Not only the reconstruction performance is an important measure but also the
execution time of the methods. Some applications may prefer fast processing
at the cost of lower reconstruction performance and vice versa. The proposed
methods are mainly focused on the quality of reconstruction; therefore, we have
not elaborated any detailed statistics regarding the execution. The provided
results should serve for a rough comparison only.

We have measured the execution time for reconstruction of a single image
including any initialization the method needs (e.g., building the computational
graph or loading the pre-trained model). In the case of methods that are im-
plemented in MATLAB, the measured time does not include the time necessary
to start the MATLAB software. All methods were measured in the same envi-
ronment — a server computer with 2 Intel Xeon E5-2643 v4 CPUs with a base
frequency of 3.40GHz, 377GB RAM, single NVIDIA Tesla K40m graphics card,
Windows 10 operating system, and MATLAB 2017b software (if needed). Dur-
ing the testing, we have tried to minimize the impact of other user and system
processes.

4.4 Denoising

One of the reconstruction problems on which we have evaluated the proposed
methods is denoising. Based on the experiments with prior models (presented
in Section , we assume that the highest reconstruction performance should
be achieved on the CIFAR-10 test set using the Pixel CNN-++ prior trained on
the CIFAR-10 training set. First, we have searched for the best optimization
parameters for a small subset of the test set. Then, we used these parameters
to evaluate the reconstruction performance against the state-of-the-art methods
on the entire test set. Finally, we evaluate the performance on other datasets as
well.

In our case, the parameters that are affecting the optimization process (also
called hyper-parameters) are — the stopping criterion, the employed optimizer
algorithm, and the parameters of such algorithm as gradient step size, decay
rates, and so forth. It should be stated, that these hyper-parameters are often
bound to the implementation we presented in Section since they depend on

32

the scale of the optimized term. We have tried to find the best hyper-parameters
on a subset of 20 images from the CIFAR-10 test set. We consider this subset
size sufficient since the differences in the optimization process of individual images
are not that large. We have tested several different optimizer algorithms — simple
gradient descent, momentum, and Adam. Out of this set, the most promising
results gave simple gradient descent with a step size of 0.0018.

Although the likelihood term of the MAP equation reduces the over-smoothing
tendency of the used prior model, it does not avoid it completely. This leads to
highly peaked reconstruction performance with respect to the number of gradient
steps and poor performance if the reconstruction is not stopped after a certain
number of iterations. To tackle this issue, we found beneficial to use exponential
decay of the gradient descent step size with a decay rate of 0.9965 in each step.
Not only it slows down the drop in the performance after the peak is reached, but
also it leads to actually lower reconstruction error. The difference in optimization
process with and without the decay is visualized in Figure [£.3] From there it
follows that the decay positively affects the optimization process, but the problem
is not solved completely. The performance still slowly deteriorates after reaching
the maximum. Another option how to attenuate this property is to lower the
weight of the prior model by altering the ¢ in the equation . Nevertheless,
the experiments have shown that this altering reduces the deterioration but at the
cost of high computational demands and with no improvement in the maximum
reconstruction performance. Consequently, we use early stopping that halts the
optimization after a certain number of steps that we found to be optimal.

/"'k decay
31.0 A no decay

30.5 A

30.0 1

PSNR

29.5 1

29.0 1

28.5 1

200 400 600 800 1000 1200 1400
Gradient descent step

Figure 4.3: Influence of step size decay on optimization process for denoising of
images corrupted by noise with standard deviation o = 15.

We have discovered that the optimal hyper-parameters vary with the noise
variance. If we use the same setting for noise with ¢ = 50 as we used for noise
where o = 15, we reach the best value much sooner; therefore, the early stopping
with the same number of steps would not lead to the optimal solution. To solve

33

this issue, we have tried to alter the step size, decay rate and weight of the prior
term; however, the best results we obtained when we stopped the optimization
early enough. Therefore, we use the same hyper-parameters for arbitrary noise
variance except the number of gradient steps, which we alter accordingly. To find
a dependency between the noise variance and the optimal number of gradient
steps (also called epochs in this context), we have concluded several experiments
on a batch of 40 images from the CIFAR-10 test set. The results are visualized in
Figure[d.4 It shows that there is a difference between the average best epoch over

® ® Batch best epoch
700 A ® Average best epoch
° —— Quadratic interpolation of batch best epoch
650 -
S
g 600 -
(0]
550 -
500 A

10 20 30 40 50
noise standard deviation

Figure 4.4: Influence of the noise variance on the optimization process of a batch
of 40 images from the CIFAR-10 test set.

the individual images and the epoch that leads to the best average reconstruction
performance. As a stopping criterion, we naturally use the latter one. The
measured values suggest the following quadratic dependency:

opt. number of steps = —0.0734 % 6> 4+ 1.07 % o + 609

While this curve, which was inferred from the measured data using the method
of least squares, explains the dependency for the variance in range o € [10, 50], it
does not work for extreme cases. However, for extremely high noise, the recon-
struction is by principle impossible, and for the extremely low noise, it is pointless
since the degradation is negligible.

Finally, we have measured the denoising performance using the above men-
tioned hyper-parameters on the entire CIFAR-10 test dataset. The results com-
pared to the selected state-of-the-art colour denoising methods, which were men-
tioned in Section [[.1.1], are shown in Table [£.3] The proposed method is denoted
as VIRGNN, which stands for Variational Image Restoration using Generative
Neural Networks. Other compared methods are CBM3D by Dabov et al.| [2007b],
IRCNN by [Zhang et al. [2017b], and DnCNN |Zhang et al.| [2017a]. For the last
two methods, we use the already trained model provided by the authors of these

34

o | Noisy | VIRGNN | CBM3D | IRCNN | DnCNN |
15 [2479 | 3153 30.96 | 31.82 | 31.13
25| 2049 | 28.25 27.92 | 28.79 | 2847
50 | 14.94 | 23.83 23.66 | 24.53 | 2451

Table 4.3: Comparison of PSNR of colour denoising methods on the CIFAR-10
test dataset

methods. However, since these models were trained on larger images than we use,
the comparison may be slightly biased. Unfortunately, we do not have hardware
capacities to neither train nor test the proposed method on larger images. The
results show that the proposed approach has its place among the state-of-the-
art denoising methods, although it has slightly lower reconstruction performance
compared to the IRCNN and DnCNN. Due to the small resolution of images of
the CIFAR-10 datasets, the methods based on non-local similarities as CBM3D
performs worse as they use relatively large patches and do not have enough con-
text available. There is a possibility that if the compared methods were optimized
for this dataset, they would provide even better results. Examples of restoration
capabilities of VIRGNN are depicted in Figure [£.5]

r.-' i’ w

Figure 4.5: Denoising of the CIFAR-10 images degraded by noise with standard
deviation o = 25 using the proposed method.

The extended comparison that also includes the greyscale methods and that
evaluates the reconstruction of the luminance channel is presented in Table [4.4]
and We compare the proposed VIRGNN method to BM3D by
[2007a), EPLL by [Zoran and Weiss| [2011], and WNNM by [Gu et al| [2014]. The
greyscale methods are, however, disadvantaged since they can use only a fraction
of information about the degraded images.

Regarding the execution time, out of the compared methods, the presented
solution performs the worst. The disadvantage of the proposed method is the
need of backpropagation through the prior model in each step of the optimiza-
tion. This puts high demands not only on the processing time but also on the
memory as the output of each layer has to be stored during the forward pass in
order to speed up the otherwise even slower backpropagation. This property to-
gether with the hardware and time limitations made it impossible to reconstruct

35

o | Noisy | VIRGNN* | CBM3D* | IRCNN* | DnCNN* | BM3D | EPLL | WNNM |

15 | 28.23 32.67 32.15 32.92 32.69 31.51 | 31.67 31.78
25 | 23.92 29.21 28.94 29.72 29.64 28.34 | 28.63 28.53
50 | 18.32 24.64 24.38 25.28 25.34 24.11 | 24.48 23.96

Table 4.4: Comparison of PSNR of greyscale and colour (marked with *) denoising
methods on the CIFAR-10 test dataset. The displayed noise variance o is related
to the colour images. PSNR values are calculated on luminance channel of the
images.

o | Noisy | VIRGNN* | CBM3D* | IRCNN* | DnCNN* | BM3D | EPLL | WNNM |

15| 0.846 0.950 0.945 0.954 0.952 0.937 | 0.942 | 0.941
25| 0.717 0.901 0.898 0.916 0.913 0.886 | 0.897 | 0.890
50 | 0.489 0.777 0.773 0.811 0.815 0.760 | 0.780 | 0.754

Table 4.5: Comparison of SSIM of greyscale and colour (marked with *) denoising
methods on the CIFAR-10 test dataset. The displayed noise variance o is related
to the colour images.

large images (e.g., DIV2K dataset), or large datasets (e.g., the entire ImageNet
dataset). Conversely, the reconstruction methods that are based on feed-forward
neural networks as IRCNN or DnCNN use only single pass through the network,
and therefore, their computational and memory demands are negligible compared
to the proposed solution. To put this into perspective, Table shows the com-
parison of the execution time of the all tested methods.

We have also evaluated the proposed approach with different priors on CIFAR-
10, ImgNet-32, and ImgNet-64 datasets. The BSDS-300 dataset was excluded
from this experiment as the model for a single image from this set could not
fit the GPU memory, and optimization on CPU is too slow for conducting any
meaningful experiments. We have measured the best possible performance on a
subset of 20 images with the presented hyper-parameters ignoring the stopping
criterion. The results are presented in Table[4.7] Even though the best likelihood
score on prior was always achieved using the pair of test and training set of the
same dataset, in the case of denoising much better results, especially for higher
noise variance, are obtained using the prior that was trained on the CIFAR-10
dataset. Hence, we use this prior for all tested datasets. Here we have to remain,
that this could have been different if we would have trained the other two prior
models until the convergence. We have also tried to alter the hyper-parameters for
each dataset and each prior; nevertheless, no significant increase in performance
was achieved compared to the presented hyper-parameters. We have found out,

VIRGNN* | CBM3D* | IRCNN* | DnCNN* | BM3D | EPLL | WNNM
167s | 0.03s | 342s | 3.26s | 0.03s | 0.88s | 1.08s

Table 4.6: Execution time of denoising methods on a single image from CIFAR-10
test dataset with noise variance o = 25. (Colour denoising methods are marked
with *)

36

test \ train | o | Noisy | CIFAR-10 | ImgNet-32 | ImgNet-64
CIFAR-10 | 15 | 24.77 31.18 30.60 30.83
CIFAR-10 | 25 | 20.49 27.84 27.25 27.46
CIFAR-10 | 50 | 14.97 23.32 22.81 22.92
ImgNet-32 | 15 | 24.84 29.68 29.74 29.83
ImgNet-32 | 25 | 20.57 26.47 26.4 26.46
ImgNet-32 | 50 | 15.05 22.18 21.94 22.02
ImgNet-64 | 15 | 24.87 30.64 30.64 30.76
ImgNet-64 | 25 | 20.61 27.51 27.40 27.50
ImgNet-64 | 50 | 15.09 23.24 22.93 23.05

Table 4.7: Comparison of maximal denoising performance of the proposed ap-
proach with different priors on several datasets. The values represent average
PSNR values over the highest PSNR values. Each row stands for a subset of
20 images from a test set that were corrupted by the noise of the corresponding
variance o2. Last three columns represent the individual prior models.

that the optimal stopping criterion (i.e., number of gradient descent steps) vary
for the individual datasets. Nevertheless, the biggest difference between using the
optimal stopping criterion for the dataset and the presented stopping criterion
we found was in the magnitude of 1-1072 PSNR. Consequently, we use the same
hyper-parameters and same stopping criterion for all tested datasets.

With the CIFAR-10 prior and the presented hyper-parameters, we have eval-
uated the proposed method on the ImageNet and BSDS datasets. Unfortunately,
due to the limited hardware capabilities, we were not able to evaluate the method
on entire datasets, but only on a fraction of each of them. For ImageNet it was
1000 images and for BSDS only 9 images. For BSDS the model was forced to
work on CPU only as it could not fit the GPU memory. Just to give a perspec-
tive, the optimization of 9 BSDS images on CPU took about three days using
the aforementioned hardware. The results may be seen in Table and[4.9] The
differences between the methods on the ImageNet datasets roughly correspond
to the CIFAR-10 results; although, the PSNR scores of all methods are slightly
lower due to the more complex images.

The results on a fraction of the BSDS-300 dataset suggest that the prior
we use does not scale well with the increasing image size. While the edges are
preserved well in the reconstructed images, on smooth surfaces, we can observe
a vast number of significant artefacts. This is especially visible for higher noise
variance, which is illustrated in Figure 4.6, This property could be probably
solved by using a better prior trained on larger images that contain much larger
flat areas and that uses a larger receptive field.

4.5 Super-Resolution

The second reconstruction problem we are dealing with in this work is two-fold
Single-Image Super-Resolution (SISR). The forward model we assume is a simple
two-fold downsampling as in equation but without any noise. We evaluate
both the proposed approaches to this problem — reconstruction using uncon-

37

dataset o | Noisy | VIRGNN | CBM3D | IRCNN | DnCNN
ImgNet-32 | 15 | 24.91 29.82 29.31 29.86 28.33
ImgNet-32 | 25 | 20.62 26.59 26.10 26.70 26.04
ImgNet-32 | 50 | 15.08 22.27 21.67 22.51 22.53
ImgNet-64 | 15 | 24.92 30.69 30.42 30.85 29.50
ImgNet-64 | 25 | 20.65 27.52 27.29 27.77 27.19
ImgNet-64 | 50 | 15.12 23.17 22.84 23.55 23.59
BSDS-300 | 15 | 24.72 32.37 32.67 32.98 32.96
BSDS-300 | 25 | 20.42 29.37 29.82 30.22 30.29
BSDS-300 | 50 | 14.93 25.20 25.65 26.13 26.36

Table 4.8: Comparison of PSNR of colour denoising methods on first 1000 images
from the ImageNet test sets and first 9 vertical images of BSDS-300 test set.

dataset o | Noisy | VIRGNN | CBM3D | IRCNN | DnCNN
ImgNet-32 | 15 | 0.882 0.948 0.942 0.949 0.941
ImgNet-32 | 25 | 0.775 0.895 0.886 0.901 0.895
ImgNet-32 | 50 | 0.564 0.753 0.724 0.771 0.780
ImgNet-64 | 15 | 0.828 0.936 0.934 0.940 0.933
ImgNet-64 | 25 | 0.699 0.878 0.878 0.890 0.885
ImgNet-64 | 50 | 0.477 0.737 0.725 0.763 0.775
BSDS-300 | 15 | 0.740 0.916 0.920 0.928 0.928
BSDS-300 | 25 | 0.573 0.847 0.861 0.877 0.878
BSDS-300 | 50 | 0.342 0.706 0.728 0.755 0.772

Table 4.9: Comparison of SSIM of colour denoising methods on first 1000 images
from the ImageNet test sets and first 9 vertical images of BSDS-300 test set.

38

Figure 4.6: A cutout of an image from a BSDS-300 dataset degraded by noise
with standard deviation ¢ = 50 and reconstructed using the proposed method.
Left: degraded, middle: reconstructed, right: original.

strained optimization assuming that there is a noise of very low variance, and
reconstruction using constraint optimization that correctly does not assume any
noise at all.

The first problem regarding the optimization process of SISR is the initial-
ization. While for denoising, the choice of the initial value was apparent, the
degraded image, for SISR the choice is not that clear. We cannot use the same
initialization as for the denoising problem since the degraded image has a differ-
ent resolution than the optimized image. One of the straightforward approaches
we have tried is a bicubic interpolation. Using this baseline SR method for ini-
tialization led to the best reconstruction results at the end regardless of using
constrained or unconstrained optimization. Another approach is to use the same
principle as in denoising and choose initial value so that the likelihood term
(defined in equation (|1.6)) is zero. This can be achieved for example by inter-
polation of zero order, which in our case splits each pixel of the degraded image
into four pixels of the same value. Experiments we concluded showed that this
initialization leads to smoother optimization, but slower convergence. Both of
the aforementioned approaches produce differently over-smoothed initial images.
This smoothness can be reduced by introducing noise to the initial image and thus
encouraging the optimizer to generate some details in the reconstructed image.
Nevertheless, we have found out that this noise rather decreases the overall per-
formance. Last initialization we have tried uses an entirely random image (where
each pixel is sampled independently from the uniform distribution). However, as
we stated before, the prior term is not convex, and thus any gradient descent fails
in this case completely.

Like in denoising, on a subset of 20 images from the CIFAR-10 dataset, we
have tried to find the best hyper-parameters for both constrained and uncon-
strained approaches. We have experimented with various optimizers — gradient
descent, momentum, and Adam, their parameters (e.g., step size, step size decay,
momentum, etc.), stopping criteria, and noise variance in case of unconstrained
optimization. Again, we have to remind, that the hyper-parameters are bound
to the implementation proposed in Chapter |3| since they depend on the scaling
of the minimized term.

39

Regarding the unconstrained optimization, the best performance was achieved
using assumed noise variance o2 = 1, simple gradient descent optimizer with step
size 0.1, and no step size decay. The step size has to be set relatively high in
order to significantly change the pixel values and thus discover new and more
probable images. Setting the step size low as in the case of denoising would stuck
the optimization in local optima close to the initial image. The reconstruction
performance does not deteriorate with increasing number of gradient descent
steps. Nevertheless, we stop the optimization after 9,000 steps since on average
after this number it stops improving.

For the constrained optimization, we use the Augmented Lagrangian Method
(ALM) presented in Section [I.3] where the goal is to find the minimum of the
Augmented Lagrangian (AL) in every iteration of the method. Therefore, not only
we need a stopping criterion for the minimization of AL in each iteration but also
for the whole ALM. We have tried to create robust stopping criterion based on
the loss; however, like in denoising the best performance we achieved with fixed
optimization process, where the number of epochs in each iteration is pre-defined.
For ALM it is also necessary to set the initial values of Lagrange multipliers. We
found optimal to initiate them with zero. Speaking in the language of the ALM
algorithm [2] we initialize d variable with the degraded image. The first iteration,
therefore, corresponds to the unconstrained minimization where 02 = p~!. The
subsequent iterations then improve on the first one.

We have experimented with various settings of hyper-parameters, many of
them led to the similar performance; nevertheless, the best results were achieved
having the first iteration same as in the unconstrained case. After proper rescal-
ing, which is necessary since we work with pixels in the range [—1; 1], the gradient
step size is set to 0.1/127% and parameter p to 127%. In each subsequent iteration,
we lower the step size by a decay factor of 0.7. With this setting, the number
of steps was empirically chosen as 9,000 for the first iteration and 200 for every
subsequent iteration. The number of iterations we use is 6 since after that the
optimization process stagnates. One may also alter the u value in each iteration,
but we have not found it beneficial in any way for this problem.

The progression of the reconstruction performance with increasing number
of steps for both constrained and unconstrained optimization is depicted in Fig-
ure [£.7] From there it follows that the constrained optimization is more powerful
than the unconstrained one; hence all the following experiments are made using
this method. The example of the performance of the proposed super-resolution
method is depicted in Figure [4.8]

We have tried to find the best settings of the hyper-parameters systematically;
however, since the parameters are not independent on each other and the space
of all possible values is relatively large, there may exist some better setting than
the presented one.

We have evaluated the proposed constrained minimization approach denoted
as VIRGNN and compared it against the selected state-of-the-art methods — ScSR
by Yang et al.|[2010], VDSR by |Kim et al.|[2016], EDSR+ by |Lim et al.| [2017],
and SRCNN by Dong et al.| [2016]. The results are presented in Table and
M.11] Unfortunately, the provided implementation of the SRCNN method works
with grey-scale images only; therefore, we alter it so that the luminance channel is
reconstructed using the method and chromatic channels are reconstructed using

40

27.627 —— Constrained (ALM)
—— Unconstrained (GD)

27.60 A

27.58 1

27.56 A1

PSNR

27.54 A

27.52 4

27.50 A

27.48

4000 5000 6000 7000 8000 9000 10000
Gradient descent step

Figure 4.7: Optimization process of two-fold super-resolution using constrained
and unconstrained optimization

bicubic interpolation. The same principle is employed by ScSR or VDSR. Like
in denoising, we use the already trained models provided by the authors of the
methods. These models were trained on larger images, and therefore, the com-
parison might be slightly biased. However, since the training is usually performed
on patches of size around 40 pixels, the bias should not be large. We also tried to
train our own VDSR model on the CIFAR-10 dataset. It achieved slightly better
PSNR scores on all three tested datasets, but the increase did not exceed a value
of 0.4. In terms of SSIM, the results remained the same.

The results show that the presented approach significantly exceeds all the
tested methods and can be considered the current state-of-the-art in terms of
reconstruction performance. However, it should be stated that the results might
have been different if the methods had been trained on the same dataset as the

Figure 4.8: 2x super-resolution of images from CIFAR-10 dataset using VIRGNN.
Upper: bicubic interpolation. Middle: VIRGNN. Bottom: original.

41

dataset ‘ Bicubic ‘ VIRGNN ‘ ScSR ‘ VDSR ‘ SRCNN ‘ EDSR+
CIFAR-10 26.36 28.41 26.94 | 27.27 27.09 27.52
ImgNet-32 22.16 23.27 22.39 | 22.49 22.44 22.56
ImgNet-64 | 23.68 24.95 24.06 | 24.19 24.13 24.15

Table 4.10: Comparison of colour single-image super-resolution methods in terms
of PSNR on different datasets. Only first 500 images from CIFAR-10 and ImgNet-
32 and 100 images from ImgNet-64 are evaluated.

dataset ‘ Bicubic ‘ VIRGNN ‘ ScSR ‘ VDSR ‘ SRCNN ‘ EDSR+
CIFAR-10 | 0.871 0.913 0.892 | 0.902 0.894 0.895
ImgNet-32 | 0.758 0.813 0.790 | 0.800 0.792 0.809
ImgNet-64 | 0.783 0.833 0.814 | 0.826 0.817 0.829

Table 4.11: Comparison of colour single-image super-resolution methods in terms
of SSIM on different dataset. Only first 500 images from CIFAR-10 and ImgNet-
32 and 100 images from ImgNet-64 are evaluated.

proposed method and tuned for processing of small images. Since the number
of gradient steps is more than 15 times higher compared to the denoising, the
execution time corresponds to this fact. While the VDSR method process one
image in about 3 seconds, our method needs about 40 minutes for the same task.
Consequently, we were not even able to measure its reconstruction abilities on the
entire CIFAR-10 and ImageNet datasets. Moreover, we removed the evaluation
on BSDS-300 dataset as the processing time for a single image on the available
hardware would take about one week.

42

Conclusion

We have proposed a maximum-a-posteriori probability (MAP) approach to im-
age reconstruction that employs the currently most successful natural image prior
models based on generative neural networks. We focused on two reconstruction
tasks — image denoising and two-fold single-image super-resolution; however, the
proposed approach can be easily adapted to a vast variety of other inverse prob-
lems.

Throughout this work, we used PixelCNN++ generative architecture that
models the image prior as a product of conditional distributions over pixels. The
conditioning is modelled using convolutions that are masked, stacked and con-
nected so that the receptive field for the single pixel is large and valid. The design
of the proposed method, however, makes it possible to replace this prior model
with any other model that allows backpropagation. The prototype implementa-
tion for these two tasks is provided along with this work.

Due to our limited computational capabilities, we used the PixelCNN+4-+
model trained on the CIFAR-10 dataset. Using this model, we have achieved
denoising performance approaching the current state-of-the-art on the CIFAR-
10, ImageNet-32, and ImageNet-64 datasets. Regarding super-resolution, the
proposed solution beat all the tested state-of-the-art methods. The already ex-
cellent results on ImageNet datasets might be even better if we would use a good
model trained on these datasets.

From the practical point of view, the usability of the proposed denoising
method remains very limited. The existing solutions providing similar or slightly
better results runs about 50 times faster than the proposed one. For super-
resolution, the difference in execution time is even bigger as it runs more than
15 times longer than denoising. However, since for super-resolution the proposed
method gives the best results, it might be worth to wait for it.

The main drawback of the proposed MAP approach to image reconstruction
is the need for backpropagation through the complex prior model in each gradient
descent step. This puts high demands not only to the computational time but also
to the memory. Moreover, we use rather a simple TensorFlow implementation
of the prior model that process the entire image at once. Such implementation
limits the usage of the method to small images only. More robust implementation
should consider the fact that receptive field is limited, and therefore, the image
areas can be processed serially with lower memory demands.

Future Work

The primary objective of this work was to evaluate the usage of the generative
models of natural images. The reconstruction abilities of the proposed approach
show that it is worth studying. The drawbacks of the methods then point out
specific problems that should be solved.

It remains unclear how the Pixel CNN++ prior behaves on larger images. For
evaluation of that, it will be necessary to develop an implementation that can
handle arbitrarily large images, which is possible due to the restricted receptive
field of the Pixel CNN networks.

43

Due to the complexity of the reconstruction problem, it might also be inter-
esting to evaluate the approach proposed by [Zoran and Weiss [2011] where the
prior is not computed on the entire image but rather on the individual image
patches. In this way, it would be possible to process much larger images even
with the existing simple implementation of the Pixel CNN-++ model.

While the reconstruction process alone is computationally demanding, espe-
cially for super-resolution, learning a good prior model is even more demanding.
Throughout this work, we mostly used the prior trained by the authors of Pix-
elCNN++. We tried to train the prior on ImageNet datasets; however, it was
infeasible with the hardware capacities we had. Moreover, for ImageNet, van den
Oord et al. [2016a] propose to use a slightly more complex model which would
make the training even harder. In the future, some effort should be made to eval-
uate the reconstruction possibilities using priors trained on more natural-looking
dataset than CIFAR-10.

Recently, [Kolesnikov and Lampert, [2017] proposed two novel PixelCNN ar-
chitectures called Pyramid Pizel CNN and Grayscale PixelCNN. Both of them
address the tendency of Pixel CNN++ model to focus on low-level details. The
first of them tackle it by factorizing the prior probability over different resolu-
tions. The second one uses only one level of this factorization, but it conditions
on grayscaled low-resolution image quantized into 4-bit pixels. Although for re-
construction problems we were dealing with, the focus on low-level detail might
not be a big issue, it would be interesting to investigate the usage of these two
new models in the proposed approach.

Last but not least, since the proposed approach was rather successful on the
denoising and two-fold single-image super-resolution problems, it should be in-
vestigated how it behaves on other inverse low-level vision problems such as de-
blurring, inpainting, or other super-resolution problems.

44

Bibliography

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al. TensorFlow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016.

Manya V Afonso, José M Bioucas-Dias, and Mario AT Figueiredo. An augmented
lagrangian approach to the constrained optimization formulation of imaging in-
verse problems. IEEE Transactions on Image Processing, 20(3):681-695, 2011.

Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image
super-resolution: Dataset and study. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2017. CVPRW 2017., pages 1122-1131,
2017.

Gilles Aubert and Pierre Kornprobst. Mathematical problems in image process-

ing: partial differential equations and the calculus of variations, volume 147.
Springer Science & Business Media, 2006. ISBN 0-387-95326-4.

Yoshua Bengio et al. Learning deep architectures for Al. Foundations and
Trends® in Machine Learning, 2(1):1-127, 2009.

Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-resolution through neigh-
bor embedding. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 1, pages
[-1. IEEE, 2004.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian.
Image denoising by sparse 3-D transform-domain collaborative filtering. IEEFE
Transactions on Image Processing, 16(8):2080-2095, 2007a.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian.
Color image denoising via sparse 3D collaborative filtering with grouping con-
straint in luminance-chrominance space. In IEEE Conference on Image Pro-
cessing, 2007. ICIP 2007., volume 1, pages [-313. IEEE, 2007b.

Shengyang Dai, Mei Han, Wei Xu, Ying Wu, and Yihong Gong. Soft edge smooth-
ness prior for alpha channel super resolution. In IEEE Conference on Computer
Vision and Pattern Recognition, 2007. CVPR 2007., pages 1-8. IEEE, 2007.

Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. Unrolled
optimization with deep priors. arXiv preprint arXiv:1705.08041, 2017.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-
resolution using deep convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(2):295-307, 2016.

Daniel Glasner, Shai Bagon, and Michal Irani. Super-resolution from a single
image. In IEEE Conference on Computer Vision, 2009. ICCV 2009., pages
349-356. IEEE, 2009.

45

Alex Graves, Santiago Fernandez, and Jiirgen Schmidhuber. Multi-dimensional
recurrent neural networks. In Joaquim Marques de Sa, Luis A. Alexandre,
Wtodzistaw Duch, and Danilo Mandic, editors, Artificial Neural Networks —
ICANN 2007: 17th International Conference, Porto, Portugal, September 9-13,
2007, Proceedings, Part I, pages 549-558. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear
norm minimization with application to image denoising. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2014. CVPR
2014, pages 28622869, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016. CVPR 2016., pages 770778, 2016.

Magnus R Hestenes. Multiplier and gradient methods. Journal of Optimization
Theory and Applications, 4(5):303-320, 1969.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-
resolution using very deep convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016. CVPR 2016.,
pages 1646-1654, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, and Max Welling. Improving variational
inference with inverse autoregressive flow. arXiv preprint arXiv:1606.0493/,
2016.

Alexander Kolesnikov and Christoph H. Lampert. Pixel CNN models with auxil-
iary variables for natural image modeling. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning Research, pages 1905-1914,
International Convention Centre, Sydney, Australia, 06-11 Aug 2017. PMLR.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. 2009.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. Photo-realistic single image super-resolution using a generative
adversarial network. arXiv preprint arXiv:1609.04802, 2016.

46

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee.
Enhanced deep residual networks for single image super-resolution. In IEEFE
Conference on Computer Vision and Pattern Recognition Workshops 2017,
CVPRW 2017., July 2017.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of
human segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics. In Proceedings of the IEEE
Conference on Computer Vision, 2001. ICCV 2001., volume 2, pages 416—423.
[EEE, 2001.

Microsoft Corporation. Microsoft cognitive toolkit (cntk), 2017. URL https:
//github.com/Microsoft/CNTK/.

Patrick Putzky and Max Welling. Recurrent inference machines for solving inverse
problems. arXiv preprint arXiv:1706.04008, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

Stefan Roth and Michael J Black. Fields of experts: A framework for learning im-
age priors. In IEEE Conference on Computer Vision and Pattern Recognition,
2005. CVPR 2005., volume 2, pages 860-867. IEEE, 2005.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):
259-268, 1992.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252,
2015. doi: 10.1007/s11263-015-0816-y.

Tim Salimans, Andrej Karpathy, Xi Chen, Diederik P. Kingma, and Yaroslav
Bulatov. PixelCNN++: A Pixel CNN implementation with discretized logistic
mixture likelihood and other modifications. In International Conference on
Learning Representations (ICLR), 2017.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Jian Sun, Zongben Xu, and Heung-Yeung Shum. Image super-resolution using
gradient profile prior. In IEEE Conference on Computer Vision and Pattern
Recognition, 2008. CVPR 2008., pages 1-8. IEEE, 2008.

47

https://github.com/Microsoft/CNTK/
https://github.com/Microsoft/CNTK/

Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL
http://arxiv.org/abs/1605.02688.

Lucas Theis and Matthias Bethge. Generative image modeling using spatial Istms.
In Advances in Neural Information Processing Systems, pages 19271935, 2015.

A.N. Tikhonov and V.I.LA. Arsenin. Solutions of Ill-Posed Problems. Scripta
series in mathematics. Winston, 1977. ISBN 9780470991244.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang,
Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, Kyoung Mu Lee, et al.
NTIRE 2017 challenge on single image super-resolution: Methods and results.
In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2017. CVPRW 2017., pages 1110-1121. IEEE, 2017.

Hiroki Tsurusaki, Masashi Kameda, and Prima Oky Dicky Ardiansyah. Single
image super-resolution based on total variation regularization with gaussian
noise. In Picture Coding Symposium (PCS), 2016, pages 1-5. IEEE, 2016.

Aédron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex
Graves, et al. Conditional image generation with pixelcnn decoders. pages
4790-4798, 2016a.

Aéaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. arXiv preprint arXiv:1601.06759, 2016b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image qual-
ity assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600-612, 2004.

Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-
resolution via sparse representation. IEEE Transactions on Image Processing,
19(11):2861-2873, 2010.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond
a gaussian denoiser: Residual learning of deep cnn for image denoising. I[EFFE
Transactions on Image Processing, 2017a.

Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep CNN
denoiser prior for image restoration. arXiv preprint arXiv:1704.03264, 2017b.

Song Chun Zhu and David Mumford. Prior learning and gibbs reaction-diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11):
1236-1250, 1997.

Daniel Zoran and Yair Weiss. From learning models of natural image patches
to whole image restoration. In IEEE Conference on Computer Vision, 2011.
ICCYV 2011., pages 479-486. IEEE, 2011.

48

http://arxiv.org/abs/1605.02688

List of Abbreviations

AL Augmented Lagrangian

ALM Augmented Lagrangian Method
AWGN Additive White Gaussian Noise
bpd bits per dimension

CDF Cumulative Distribution Function
CNN Convolutional Neural Network
HR High-Resolution

LR Low-Resolution

LSTM Long Short Term Memory
MAP Maximum a-posteriori

NLL Negative Log Likelihood

PSINR Peak signal-to-noise ratio
ReLU Rectifier Linear Unit

RNN Recurrent Neural Network

SISR Single-Image Super-Resolution
SSIM Structural similarity index

TV Total Variation

BM3D Block-Matching and 3D Filtering

DnCNN Denoising Convolutional Neural Network
EDSR Enhanced Deep Residual Networks for SISR
EPLL Expected Patch Log Likelihood

FOE Field of Experts

GAN Generative Adversial Network

ODP Unrolled Optimization with Deep Priors

RIDE Recurrent Image Density Estimator

RIM Recurrent Inference Machines

SRCNN Super-Resolution Convolutional Neural Network
VAE Variational Auto-Encoder

VIRGNN Variational Image Reconstruction using Generative Neural Networks
WNNM Weighted Nuclear Norm Minimization

49

	Introduction
	Image Reconstruction
	Denoising
	Related Work
	MAP Approach

	Single-Image Super-Resolution
	Related Work
	MAP Approach

	Optimization

	Image Prior Modelling
	Generative Models
	PixelCNN
	Gated PixelCNN
	PixelCNN++

	Implementation
	TensorFlow
	Implementation
	Prior Model Definition
	Data Loading
	Building the Computational Graph
	Running the Computational Graph

	Experiments
	Data Sets
	Prior Model Training
	Methodology
	Comparison to Greyscale Methods
	Execution Time Comparison

	Denoising
	Super-Resolution

	Conclusion
	Future Work

	Bibliography
	List of Abbreviations

