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Preface

This habilitation thesis consists of reprints of nine papers coauthored by Martin
Tancer, together with an introductory commentary.! The common topic of the
papers is that they focus on the interplay among combinatorics, combinatorial
geometry, topology and computational complexity. However, the motivation for
the results in these papers also partially comes from other areas of mathematics
such as algebra or Riemannian geometry.

The main aim of the introductory commentary is to quickly explain main
results of each of the individual papers and to provide the links among the papers.
We remark that many details regarding the motivation or the ideas for the proofs
are left out from the introductory commentary and we refer to the introductions
of each of the individual papers. The aim of the introductory commentary is
not to repeat these introductions (although some bit of repetition is perhaps
unavoidable in order to explain the results).

The nine papers forming the main body of the thesis are listed at the end
of preface. Namely, papers [3, 4, 6] relate to the combinatorial and algorithmic
properties of embeddability of simplicial complexes (and its applications) and
their contents is explained in Section 1.2. Papers [8, 9] focus on collapsibility and
shellability, two combinatorial ways how to simplify a topological space (given
as a simplicial complex or a poset). Their contents is explained in Section 1.3.
Papers [2, 5, 7] study combinatorial and topological properties of graphs and
curves drawn on surfaces and they are explained in Section 1.4. Finally, [1] is a
result on the growth of homology of certain complexes associated to graphs and
it is explained in Section 1.5

[1] Karim Adiprasito, Eran Nevo, and Martin Tancer. On Betti numbers
of flag complexes with forbidden induced subgraphs. arXiv preprint,
https://arxiv.org/abs/1602.01761, 2016.

2] Eric Colin de Verdi¢re, Vojtéch Kaluza, Pavel Patdk, Zuzana Patékové, and
Martin Tancer. A direct proof of the strong Hanani-Tutte theorem on the
projective plane. arXiv preprint, http://arxiv.org/abs/1608.07855, 2016. To
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On the interplay of combinatorics,
geometry, topology and computa-
tional complexity

1.1 Introduction

The fundamental task of combinatorics is to study properties of discrete objects
such as their enumeration, extremal properties, interactions or structural prop-
erties. Although it is often possible to solve combinatorial problems by intrinsic
combinatorial means, in general, combinatorics strongly benefits from interactions
with other areas of mathematics (and vice versa).

Combinatorics is strongly linked to the theoretical computer science. Under-
standing efficient algorithms for recognition of combinatorial objects with certain
property or for enumeration of objects is an integral part of combinatorics. For
instance, the Kuratowski’s planarity [Kur30] criterion is as central result in graph
theory as the existence of a linear time algorithm for recognition of planar graphs
by Hopcroft and Tarjan [HT74].

A rich mathematical world appears when we further combine these two sub-
jects with questions in combinatorial geometry and topology. From the point of
view of the way how these subjects interact, we may distinguish several areas.
They include algorithmic topology, combinatorial topology and graph drawings (on
surfaces).!

Algorithmic topology. The task of algorithmic topology is to design effi-
cient algorithms for topological problems. This usually comes together with some
combinatorial model for the topological spaces, maps, etc. in the question so that
we may have a finite input for the algorithmic question.

A prominent example in this line of research is the unknot recognition problem
which is currently known to belong to NP N co-NP [HLP99, Lacl6]; but no
polynomial time algorithm is known for this problem.

To this area of research we contribute with an algorithm for the 3-embeddability
problem [6] (see Section 1.2.1) and with a result on NP-hardness of recognition
of collapsible complexes [9] (see Section 1.3.1).

Combinatorial topology. By combinatorial topology we mean the area
studying the direct interactions of combinatorial and topological objects. This

IThis list is neither complete nor pairwise disjoint. As other areas we could name, for
example, topological methods in combinatorics or study of metric embeddings. However, we
focus only on the areas covered in this thesis. Regarding disjointness, for example [7] partially
belongs to all three mentioned areas.



is usually done via properties of simplicial complexes which can be seen both
as purely combinatorial objects (hereditary set systems) as well as topological
objects (triangulations of topological spaces).

Such interactions include, for example, combinatorial questions on embed-
dings of simplicial complexes into R? or other topological spaces initiated by van
Kampen and Flores [vK32, Flo34], study of clique complexes of graphs with for-
bidden certain subgraphs as a discrete analogue of bounded curvature [J SOG] or
study of Morse spectra of triangulated spaces as in [ABL14], for example.

To this area, we contribute by results on the homology growth of clique com-
plexes of graphs with forbidden certain subgraphs [1] (see Section 1.5) and a signif-
icant progress towards Kiihnel’s conjecture on embeddings of skeleta of simplices
into manifolds [3] (see Section 1.2.2). We also provide a very general topological
Helly-type theorem [3] (see Section 1.2.2), which can be seen as a result partially
belonging to this area and partially to ‘topological methods’ in combinatorics.
Similarly, the result [8] on shellability of higher pinched Veronese posets (see Sec-
tion 1.3.2) can be seen as result partially belonging to topological combinatorics
and partially belonging to combinatorial commutative algebra.

Drawings of graphs on surfaces. It could be easily argued that studying
various aspects of drawings of graphs on surfaces is just a part of combinatorial
topology described above. However, the lower-dimensional nature of drawing of
graphs on surfaces causes that there are very different interesting questions in
this area and it brings the area even closer to combinatorics. That is why we
consider this area separately.

Classical questions in this area include to determine which graphs can be
drawn on which surface without crossings or what are the other combinato-
rial properties of graphs drawn on surfaces (such as the chromatic number);
see [MTO1]. Regarding drawings where we allow crossings, it is very interest-
ing to study various aspects of the crossing number of such graphs [Sch13a].

To this area, we contribute with an alternative proof of the strong Hanani-
Tutte theorem on the projective plane [2] (see Section 1.4.3) and with results on
drawings of graphs on surfaces with shortest paths [5] (see Section 1.4.2).

Finally, contribution [7] interacts with all three areas. Here we show that two
systems of pairwise disjoint curves can be untangled with a self-homeomorphism
of a surface applied to one of the systems so that there are not too many inter-
sections among the two systems (see Section 1.4.1). Systems of curves are closely
related to drawings of graphs. In addition a part of the main result in [7] serves
as a verification of the algorithm in [6].

On preliminaries. We assume that the reader is familiar with basic notions
from combinatorics, computational complexity and topology. In particular, we
frequently use basic properties of simplicial complexes in the text below and we
also use the basics of the homology theory. For further reading, we refer, for
example, to [Hat01, Mat03].

Organization of the remaining sections. In the forthcoming sections, we
briefly explain the contents of the individual papers that are part of this thesis.
We group the papers together according to the similarity of the topics, as sketched
in Preface. It turns out that this is not the same as what we described in this
introductory section according to the way how the fields interact.



1.2 Embeddability of simplicial complexes

Let X and Y be two topological spaces, does X embed into Y7 This is a classical
important general question in topology. We cannot expect that there would be a
simple criterion that would answer this question. Indeed, it includes, for example,
the homeomorphism problem for manifolds which is known to be algorithmically
undecidable. Nevertheless there are important classes of spaces X and Y for
which the question can be either fully answered or there are important sufficient
and /or necessary conditions to be understood.

We will mostly focus on the case where X and Y are topological spaces trian-
gulated as finite simplicial complexes. In this setting, it is possible to represent
X and Y in computer and thus we may ask algorithmic questions on embeddabil-
ity.? From theoretical point of view, the structure of simplicial complex allows
linking topological and combinatorial questions on embeddings which has fruitful
consequences as we will argue in 1.2.2.

1.2.1 Algorithmic aspects

From algorithmic point of view one of the most natural settings is the following
algorithmic question EMBED,,_,4, which depends on two positive integers k and d,
k < d: Given a simplicial complex K of dimension at most k, does K (piecewise
linearly) embed into R%?

The question EMBED;_,4 was introduced by Matousek, the author and Wagner
in [MTW11] and based on this paper it was one of the central topics of the
author’s PhD thesis. It was previously known that the cases EMBED; 5 (graph
planarity [HT74]) and EMBEDy_,» [GR79] are solvable in linear time and that
for every k > 3 fixed, EMBEDj_,o; can be decided in polynomial time (this is
based on the work of Van Kampen, Wu, and Shapiro; see [MTW11] for a detailed
explanation).

For dimension d > 4, the currently known understanding of the computational
complexity of EMBEDy_,4 is the following: for all k£ with (2d —2)/3 < k < d
it is NP-hard (and even undecidable if & > d — 1 > 4) [MTW11], while for
k < (2d — 2)/3 it is polynomial-time solvable, assuming d fixed, as was shown
in a series of papers on computational homotopy theory [CKM*M&, CKM™*14b,
KMS13, CKV13].

Dimension 3. The new contribution (when compared with [MTW11]), pre-
sented as a part of this thesis, is the joint work with J. Matousek, E. Sedgwick
and U. Wagner [6] where we show the following.

Theorem 1 (Thm 1.1 & Cor. 1.2in [6]). The problems EMBEDs_,3 and EMBED3_,3
are algorithmically decidable.

Here we only very briefly sketch the main steps; for a more detailed overview
of the idea of the proof we refer to Sections 1, 2 and 3 of [6].

In fact, it is sufficient to show algorithmic decidability of EMBED,_,3; solution
for EMBED;3_,3 then follows by a combinatorial reduction. The first step is to

2However, this is not the only possible representation. For example, a representation as a
simplicial set might be a more efficient representation of the same space.
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show that it is actually sufficient to establish the following variant of the problem
for 3-manifolds.

Theorem 2 (Thm. 1.3 in [6]). There is an algorithm which decides whether a
given triangulated 3-manifold X with boundary embeds into the 3-sphere S3.

Indeed, given a 2-complex K (that is, an instance of EMBED,_,3), we can test
all possible thickenings of K to a 3-manifold with boundary (up to a homeomor-
phism). That is, to a manifold which contains K and collapses to K. Then K
embeds into R3 if and only if at least one thickening of K embeds into S3. By an
algorithm of Neuwirth, it is possible to generate all possible thickenings [Neu68|
(see also [Sko95]).

The bulk of our contribution is to prove the following result.

Theorem 3 (Thm. 1.4 in [6]). Let X be an irreducible 3-manifold, neither a
ball nor an S3, with incompressible boundary and with a 0-efficient triangulation
T. If X embeds in S, then there is also an embedding for which X has a short
meridian v, i.e., an essential® normal curve v C 0X bounding a disk in S®\ X
such that the length of v, measured as the number of intersections of ~v with the
edges of T, is bounded by a computable function of the number of tetrahedra in T .

Here an rreducible manifold is such that every embedded 2-sphere in X
bounds a ball in X; it has incompressible boundary if any curve in 90X that
bounds a disc in X also bounds a disc in 0X. A 0-efficient triangulation is a
technical term that we do not define here (and we refer to the reprint of [6]). A
normal curve on 0X is a closed curve which avoids vertices of the triangulation;
it crosses each edge transversally; and it meets each triangle in a finite number
of arcs with endpoints on different edges of the triangle. Finally, the length of a
normal curve is the number of edges of the triangulation it crosses.

Theorem 3 allows to prove Theorem 2 recursively. After standard transfor-
mations, we may assume that X satisfies the assumptions of Theorem 3. Then
we may enumerate all normal curves up to the length provided by Theorem 3 as
candidate meridians, fill them with a thickened disc and recurse.

For the proof of Theorem 3, we already refer to [6].

1.2.2 Combinatorial aspects

From a combinatorial point of view, we plan to present two results regarding
embeddability of simplicial complexes.

Almost embeddings. First, we need to introduce a certain important notion.
Given a simplicial complex K and a topological space Y, an almost embedding is
amap f: |K| — Y such that f(|o|) N f(]7|]) = 0 whenever o and 7 are disjoint
simplices of K.* Every embedding is an almost embedding but the converse is
not true.

The classical results of van Kampen and Flores [vK32, Flo34] state that the
following k-dimensional complexes do not embed into R2*:

3Meaning that v does not bound a disk in 9X.

4Unless stated otherwise, we work with abstract simplicial complexes. For a face (simplex)
o € K, the symbol |o| denotes the geometric simplex corresponding to o in some fixed geometric
realization of K. Finally, |K| denotes the underlying space of K, that is |J, ¢ |o].

7



o Ag,?w that is, the k-skeleton of the (2k + 2)-simplex, and

o Dg(kﬂ), that is, the (k 4 1)-tuple join of the three-element discrete set.

However, the standard proofs provide a stronger conclusion: these complexes do
not even almost embed into R?*. In general, almost embeddings are useful tool
for understanding embeddings as they are often easier to handle.

(Almost) embeddings on the level of chain maps. For further applica-
tions it turned out that it is important to study the (almost) embeddings on
the level of chain maps (in Zs-homology). In a joint work with X. Goaoc, P.
Paték, Z. Patakova and U. Wagner [4] we have developed an inductive Ramsey-
based approach how to build a certain combinatorially well behaved chain map
C.(K) = C,(R%) where K is a simplicial complex. As an application of this
approach, we have obtained a Helly-type theorem with very weak topological
assumptions (see Theorem 4 below). Subsequently, in a joint work with the
same group of coauthors and in addition with I. Mabillard [3], we have utilized a
modification of this technique to a different problem regarding embeddability of
simplicial complexes into manifolds. (In fact, a simplification of this technique is
sufficient in [3] which allows to remove the use of the Ramsey theorem and yields
improved quantitative bounds.)

A Helly theorem for collections of convex sets with very weak topolog-
ical assumptions. Now we explain the statement of the main result of [4].

Helly’s classical theorem [Hel23| states that a finite family of convex subsets
of RY must have a point in common if any d + 1 of the sets have a point in
common. In the contrapositive, Helly’s theorem asserts that any finite family
of convex subsets of R? with empty intersection contains a sub-family of size at
most d+ 1 that already has empty intersection. This inspired the definition of the
Helly number of a family F of arbitrary sets. If F has empty intersection then
its Helly number is defined as the size of the largest sub-family G C F with the
following properties: G has empty intersection and any proper sub-family of G
has nonempty intersection; if F has nonempty intersection then its Helly number
is, by convention, 1. With this terminology, Helly’s theorem simply states that
any finite family of convex sets in R? has Helly number at most d + 1.

Helly already realized that bounds on Helly numbers independent of the cardi-
nality of the family are not a privilege of convexity: his topological theorem [Hel30]
asserts that a finite family of open subsets of R? has Helly number at most d + 1
if the intersection of any sub-family of at most d members of the family is either
empty or a homology cell> Subsequently, several other topological generaliza-
tions of the Helly theorem were found. However, as far as we know, all these
generalizations require vanishing homology in certain dimension.

Here we offer a generalization that requires only a bounded homology (but
possibly non-zero). We consider homology with coefficients in Z,, and denote by
3:(X) the ith reduced Betti number (over Zj) of a space X. Furthermore, we use
the notation (| F := (U as a shorthand for the intersection of a family of
sets.

By definition, a homology cell is a topological space X all of whose (reduced, singular,
integer coefficient) homology groups are trivial, as is the case if X = R? or X is a single point.
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Theorem 4 (Thm 1. in [4]). For any non-negative integers b and d there exists
an integer h(b,d) such that the following holds. If F is a finite family of subsets

of RY such that 8; (N G) < b for any G C F and every 0 <i < [d/2] — 1 then F
has Helly number at most h(b,d).

Theorem 4 subsumes many other existential Helly-type theorems as well as
it helps to identify new Helly-type theorems for concrete collections of sets. For
a detailed overview of consequences and additional background, we refer to Sec-
tions 1.1, 1.2 and 1.3 of [4]. For a sketch of a proof, which also explains the
relation to (almost) embeddings, we refer the reader to Section 1.4 of [4].

On a conjecture of Kiihnel. Now we explain the contents of [3].

The fact that the complete graph K5 does not embed in the plane has been
generalized in two independent directions. One generalization is coming from the
solution of the classical Heawood problem for graphs on surfaces which implies
that the complete graph K, embeds in a closed surface M (other than the Klein
bottle) if and only if (n — 3)(n —4) < 6by(M), where by (M) is the first Z,-Betti
number of M. Second generalization is the aforementioned van Kampen—Flores
theorem saying that the k-skeleton of the n-dimensional simplex embeds in R%*
if and only if n < 2k + 1.

In [Kiith94], Kiihnel conjectured the following common generalization.

Conjecture 5 (Kiihnel). Let n,k > 1 be integers. If AP embeds in a compact,
(k — 1)-connected 2k-manifold M with kth Zo-Betti number by, (M), then

(o) (2 o

In [3], using the aforementioned technique, we obtained the following bound
towards the Kiihnel conjecture.

Theorem 6 (Thm. 2 in [3]). If AY) almost embeds into a 2k-manifold M then
2 2
n < 2( k; )bk(M) 42k 44,

where b(M) is the kth Zs-Betti number of M.

The quantitative bound on n from Theorem 6 is much weaker that the bound
conjectured by Kiihnel. On the other hand Theorem 6 does not require that the
manifold is (k— 1)-connected and also the assumption that AP almost embeds is
weaker. As far as we know, the bound from Theorem 6 is a first finite bound on n
of this type. In addition, Theorem 6 further generalizes to the case of mappings
not covering a same point ¢-times (where ¢ is a parameter, power of a prime
number); see Theorem 3 in [3].

As usual, we refer to the introduction of [3] for more detailed background.

1.3 Collapsibility and shellability

There are various ways how to simplify a simplicial complex step by step while
keeping certain topological or combinatorial properties of interest. Two of the
most important notions in this respect are collapsibility and shellability of a sim-
plicial complex which we introduce below.

9



1.3.1 Collapsibility

Let K be a simplicial complex and let o be a nonempty non-maximal face of K.
We say that o is free if it is contained in only one maximal face 7 of K. Let K’
be the simplicial complex obtained from K by removing ¢ and all faces above o,
that is,

K =K\{9eK:oCd}.

We say that K’ arises from K by an elementary collapse (induced by ¢ and 7).
We say that a complex K collapses to a complex L if there exist a sequence of
complexes (K1 = K, Ks,..., K1, K,, = L), called a sequence of elementary
collapses (from K to L), such that K, arises from K; by an elementary collapse
for any i € {1,...,m —1}. A simplicial complex K is collapsible if it collapses to
a point.

An important property of elementary collapses is that they preserve homotopy
type. Thus, for example, collapsibility of some complex serves as a certificate that
the complex is contractible (homotopically trivial). However, even if we start
with a complex that is not contractible, it may be very useful to simplify it with
collapses to a smaller complex for which we can determine the homotopy type
more easily.

From purely theoretical point of view, collapsibility plays an essential role,
for example, in PL-topology where it helps to determine properties of regular
neighborhoods [RS72] or it is strongly related to the discrete Morse theory [For98§]
where the Morse functions (roughly) correspond to sequences of collapses. From
more practical point of view, an application of collapsibility can be found, for
example, in shape reconstruction [AL15].

In [9], we prove the following algorithmic result on collapsibility.

Theorem 7 (Thm. 1 of [9]). It is NP-complete to decide whether a given 3-
dimensional simplicial complex is collapsible.

In the statement above ‘3’ can be replaced with any d > 3. On the other hand,
recognition of collapsible 2-dimensional complexes is polynomial time solvable.

It is easy to see that the problem in Theorem 7 belongs to NP by guessing
a right sequence of collapses. Thus, the core is to show that the problem is
NP-hard. The proof of the NP-hardness builds on a previous work of Malgo-
uyres and Francés [MFO08] showing that it is NP-hard to decide whether a given
3-dimensional complex collapses to 1-complex. The reduction of Malgouyres and
Francés uses complexes that are (typically) homotopically non-trivial and there-
fore the resulting 1-complexes (for positive instances) do not further collapse to
a point. The key new step in [9] is to overcome this difficulty by gluing suitable
fillings to the ‘holes’ (despite the fact that the exact position of the holes is un-
known prior to collapses). This requires introducing several auxiliary triangulated
topological spaces including a Bing’s house with three rooms, a modification of
famous Bing’s house with two rooms.

For more detailed background on Theorem 7, we refer to Section 1 of [9] and
for a sketch of a proof, we refer to Section 3 of [9].
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1.3.2 Shellability

Shellability of a simplicial complex is traditionally considered from a dual per-
spective when compared with collapsibility: this time, we start with an empty
complex and we gradually add faces following certain rules until we reach the
target complex.

More concretely, we say that a d-dimensional simplicial complex is pure if
all its maximal faces (called facets) have dimension d. For simplicity we restrict
ourselves to finite pure complexes when it is easier to grasp the definition. For
such a complex K, a shelling of K is an ordering oy, ..., 0, of all facets of K

such that for all k& € {2,...,t} the complex By := o N (Uf:_ll al-) is pure and

(dim o, — 1)-dimensional; here we regard o; as geometric simplices. A complex is
shellable if it admits a shelling.

When compared with collapsibility, shellings do not necessarily preserve the
homotopy type of the complex. However, they still may affect homology (or the
homotopy type) only in certain ways. In particular, every shellable complex is
homotopy equivalent to a wedge of spheres.

Shellability of posets. An important class of simplicial complexes is obtained
as order complexes of posets. That is, given a poset P = (P, <), the vertices of
the order complex A(P) are elements of P and the simplices are the chains in P.

We will be interested especially in the following restricted case. Let P = (P, <)
be a graded poset with rank function rk. By 0 we mean the minimum element of
P (if it exists) and similarly by 1 we mean the maximum element (if it exists).
For a,b € P we say that a covers b, arb, if a > b and there is no ¢ with a > ¢ > b.
Equivalently, a > b and rk(a) = rk(b) + 1. Pairs of elements a,b with a > b are
also known as edges in the Hasse diagram of P. Atoms are elements that cover
0. That is, atoms are elements of rank 1 in a poset that contains the minimum
element.

From now on, let us assume that P contains the minimum element. Let A be
a set of some atoms in P. By P(A) = (P(A), <) we mean the induced subposet
of P with the ground set

P(A) = {0}yU{be€ P: b>a for some a € A}.

Now we assume that P contains both the minimum and the maximum element.
Let C(P) be the set of maximal chains of P. A shelling order is an order of chains
from C'(P) satisfying the following condition.

(Sh) If ¢ and ¢ are two chains from C(P) such that ¢ appears before ¢, then
there is a chain ¢* from C'(P) appearing before ¢ such that cN¢* 2 eNd and
also ¢ and ¢* differ in one level only (that is, |[cAc*| = 2 where A denotes
the symmetric difference).

A poset P is shellable if it admits a shelling order. This is equivalent with
saying that the order complex of P (which is pure) is shellable as a simplicial
complex.

Shellability of a poset serves as a tool how to show that a poset is Cohen-
Macaulay. This has further consequences on intrinsic properties of the poset;

11



see [BGS82]. On algebraic side, the fact that a certain polynomial ring is Koszul
can be verified by checking that all intervals of a certain poset associated to the
ring are Cohen-Macaulay; see the results of Peeva, Reiner and Sturmfels [PRS9S|
(this result is explicitly stated as Proposition 1.2 in [8]).

There are various sufficient criteria how to establish shellability of poset.
Such criteria were pioneered by Bjorner [Bj680] who proved that a certain edge-
lexicographic labelling of the poset implies shellability. This criterion was later on
extended by Bjorner and Wachs [BW82] to chain-lexicographic labellings. In the
next paragraph we describe a new criterion to prove shellability obtained in [8],
that we call A-shellability. This criterion has been successfully applied to show
shellability of so-called pinched Veronese posets where the direct application of
the other previously known criteria seems to fail.

A-shellability. Now let us assume that A = (A, <°) is a partially ordered set
of some atoms in P. We say that P(A) is A-shellable if P(A) is shellable with
a shelling order respecting the order on A. That is, if ¢ and ¢’ are two maximal
chains on P(A) and the unique atom of ¢ appears before the unique atom of ¢
in the <° order, then ¢ appears before ¢ in the shelling.

The strength of this notion is that there are three inductive criteria allowing
to prove A-shellability inductively for a well behaved class of posets; see Theo-
rems 2.1, 2.2 and 2.3 in [8]. The choice of the partial order on A allows enough
freedom not to overlook some important candidate shelling orders. However, on
the other hand, if the order on A is non-trivial, it still preserves certain structure
that can be useful in induction.

For more details on A-shellability we refer to Sections 1 and 4 in [§]

Shellability of pinched Veronese posets. By the m-th Veronese poset with
spacing on n generators, denoted as (Vp,,, <) we mean the following poset. Its
ground set consists of non-negative integer vectors of length n such the sum of
their coordinates is divisible by m. The partial order on V,,, is given so that
a < b if and only if a is less or equal to b in each coordinate. It is not hard to
see that every interval in V), ,, is shellable and therefore Cohen-Macaulay.

If we set m = n, we just speak of the n-th Veronese poset V,, =V, ,. We
can pinch this poset in the following way. We remove the distinguished vector
Jj which contains 1 in each coordinate. We also remove order relations between
vectors that differ exactly by j (making them incomparable). In this way we thus
obtain the n-th pinched Veronese poset (Ve, <). It is very interesting that remov-
ing this single element j (and corresponding order relation) strongly influences
understanding the properties of the poset.

By using the properties of A-shellability, in [8] we prove the following.

Theorem 8 (Thm 1.1 in [8]). Let n > 4. For any z € V3 the interval [0,z] in
V* is a shellable poset, where 0 is the zero vector of length n.

Together with the aforementioned result of Peeva, Reiner and Sturmfels [PRS98],
Theorem 8 provides a combinatorial proof of the result of Conca, Herzog, Trung
and Valla [CHTV97] that the n-th pinched Veronese ring is Koszul for n > 4.

For additional background on the pinched Veronese poset and ring, we refer
to Sections 1 and 4 in [8].
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1.4 Curves and Graphs on surfaces

In this section we describe the contents of [2], [5] and [7]. The unifying topic of
these three results is that they deal with curves and/or graphs on surfaces.

Drawing graphs on surfaces can be seen as a lower-dimensional analogue of
the embeddability question into the manifolds. However, in the lower dimension
we often encounter different phenomena which often yield different answers or at
least different approaches how to reach the goal.

1.4.1 Untangling curves on surfaces

The earliest among the three results [7], obtained in a joint work with J. Ma-
tousek, E. Sedgwick and U. Wagner, considers the following problem: we are
given two collections A = (aq,...,ay,) and B = (54, ..., B) of simple curves on
a surface M with boundary. Each of the curves is either a closed curve avoiding
the boundary or an arc meeting the boundary exactly at the two endpoints of the
arc. The curves «; are pairwise disjoint except that they may possibly share end-
points. Similarly 3; are pairwise disjoint that they may possibly share endpoints.
However, there might possibly be many crossings of the curves a; with the curves
Bj. Our aim is to untangle the 3; from the a; by some boundary-preserving home-
omorphism of M; that is we look for a boundary preserving self-homeomorphism
©: M — M such that the total number of crossings between «; and p(;) is as
small as possible. We call this minimum number of crossings achievable through
any choice of ¢ the entanglement number of the two systems A and B.

In the orientable case, let f,;(m,n) denote the maximum entanglement num-
ber of any two systems A = («y,...,a,,) and B = (f,. .., B,) of almost-disjoint
curves on an orientable surface of genus ¢g with A holes. Analogously, we define
fgﬁ(m, n) as the maximum entanglement number of any two systems A and B of
m and n curves, respectively, on a nonorientable surface of genus g with A holes.

The main results of [7] are the following; they provide bounds on f,;(m,n)

and f,,(m,n) independent of g and h.

Theorem 9 (Thm. 1.1 of [7]). For planar M, we have fon(m,n) = O(mn),
independent of h.

Theorem 10 (Thm. 1.2 of [7]). (i) For the orientable case, f,n(m,n) = O((m+
n)*).

(ii) For the nonorientable case, fyn(m,n) = O((m +n)*).

A small modification of a proof of Theorem 10 provides a bound on f, ;(m,n)
and f,,(m,n) which depends on g but is linear in m and n (see Corollary 1.6
in [7]). Such a bound is important for verification of the correctness of the algo-
rithm in [6] and the relation with [6] was our main motivation why we considered
this problem.

Independently of us, a similar problem was studied by Geelen, Huynh, and
Richter [GHR13], with a rather different and very strong motivation stemming
from the theory of graph minors, namely the question of obtaining explicit upper
bounds for the graph minor algorithms of Robertson and Seymour. Geelen et
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al. [GHR13, Theorem 2.1] show that f,(m,n) and fg,h(m,n) are both bounded
by n3™, but only under the assumption that M\ (6, U---U 3,) is connected
(which is sufficient for their needs).

The proof of Theorem 9 relies on a result of Erten and Kobourov [EK05] on
simultaneous drawings of graphs with bends in the plane.

The proof of Theorem 10 relies on the bound from Theorem 9 via a suitable
cut and glue technique. Two other main ingredients are ideas based on the
change of the coordinates principle; see [FM11] and a result on searching for a
canonical system of loops in an orientable surface by Lazarus, Pocchiola, Vegter
and Verroust [LPVVO01]. For a more detailed overview of the proof we refer
to Table 1 of [7]. As usual, more additional background can be found in the
introduction of [7].

1.4.2 Shortest paths on surfaces

A famous theorem of Fary [Fard8| states that any simple planar graph can be
embedded so that edges are represented by straight line segments.

It is natural to ask whether the following generalization of Fary’s theorem
is possible: Given a surface .S, is there a metric on S such that every graph
embeddable into S can be embedded so that edges are represented by shortest
paths? We call such an embedding a shortest path embedding. If such a metric
exists, we call it a universal shortest paths metric.

Motivation to study this question comes from various directions. Apart from
the relation to Fary’s theorem, it is also related to a conjecture of Negami [Neg01]
which states that there exists a universal constant ¢ such that for any pair of
graphs GG; and G5 embedded in a surface S, there exists a homeomorphism
h : S — S such that h(G;) and G2 intersect transversely at their edges and
the number of edge crossings satisfies ¢r(h(G1),Ga) < ¢|E(G1)| - |E(Ge)|. The
connection is that if two graphs are embedded transversally by shortest path em-
beddings, then indeed no two edges cross more than once, since otherwise one of
them could be shortcut.

Similarly, this question is related to untangling curves in [7]. If we had a
stronger version of a result of Erten and Kobourov [EK05] on simultaneous draw-
ings of graphs with bends extended to an arbitrary surface, then we could perhaps
improve the bounds in Theorem 10. Answering the question above seems as the
first necessary step towards such a result.

We do not know a full answer to the question; however, in a joint work with
A. Hubard, V. Kaluza and A. de Mesmay [5] we have reached the following results.

Theorem 11 (Thm. 1in [5]). The sphere S?, the projective plane RP?, the torus
T2, and the Klein bottle K can be endowed with a universal shortest path metric.

For surfaces of higher genus, a natural approach would be to look for a univer-
sal shortest path metric among hyperbolic metrics. However, we show that most
of them are not universal shortest path metrics. For understanding the statement
of the theorem below: if we allow that each edge is drawn as a concatenation of
k shortest paths, we call such a metric k-universal shortest paths metric.

Theorem 12 (Thm. 3 in [5]). For any ¢ > 0, with probability tending to 1 as g
goes to infinity, a random hyperbolic metric is not a O(g"/*~%)-universal shortest
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paths metric. In particular, with probability tending to 1 as g goes to infinity, a
random hyperbolic metric is not a universal shortest path metric.

On the other hand, if we allow k-universal shortest paths metric for k linear
in g, then there is already such a metric.

Theorem 13 (Thm. 4 in [5]). For every g > 1, there ezists an O(g)-universal
shortest path hyperbolic metric m on the orientable surface S of genus g.

1.4.3 Hanani-Tutte theorem on the projective plane

Finally, regarding graphs on surfaces, let us briefly explain the contents of [2],
obtained in a joint work with E. Colin de Verdiere, V. Kaluza, P. Patak and
7. Patakova.

The strong Hanani-Tutte theorem [CH34, Tut70, PSS07] states that when-
ever a graph can be drawn in the plane in such a way that every pair of disjoint
edges crosses evenly, then the graph is actually planar. Apart from the intrin-
sic combinatorial beauty of this theorem, it can be also seen as an analogue® of
completeness of van Kampen obstruction for embedding k-complexes into R?*
for k£ > 3. It can be also seen as a basis for results on various notions of pla-
narity [Sch13b].

It is an open question whether the strong Hanani-Tutte theorem is valid on
other surfaces; that is, if a graph can be drawn on a surface .S in such a way that
every pair of disjoint edges crosses evenly, then the graph actually embeds into
S. Pelsmajer, Schaefer and Stasi [PSS09] proved that the strong Hanani-Tutte
theorem is valid on the projective plane via the inspection of the forbidden minors
for the projective plane. Unfortunately, this approach cannot be used on other
surfaces.

The main aim of [2] is to provide an alternative constructive proof of the
strong Hanani-Tutte on the projective plane not relying on forbidden minors.
The cost that we pay is that the proof is more complicated. On the other hand,
there is a hope that this approach could be extended to other surfaces. (Or it
could yield a desired structure for a counterexample if some essential step fails.)

1.5 Homology growth of flag complexes

Last but not least, in a joint work with K. Adiprasito and E. Nevo [1] we study
the maximal possible growth of homology of clique complexes over graphs with
a fixed forbidden induced minor.

More precisely, let K be any field, H be any simple finite graph, and

bi(n) = by(n,K) = mgx{ > dimg H;(cl(G); K)}

i>—1

where G runs over all simple graphs on at most n vertices without an induced
copy of H, cl(G) denotes the clique complex of G and H;(+;K) denotes the ith
reduced homology with coefficients over K. We are interested in the growth of
by (n) as n tends to infinity.

Sactually slightly stronger
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A similar question was previously considered by Adamaszek [Adal4]. He
showed that b(n) < 4™/5, for

b(n) = max{ > dimg H;(cl(G); K)}

i>—1

where G runs over all graphs on at most n vertices. Adamaszek further showed
that for H = I3 (independent set with 3 vertices), the growth is exponential but
with a smaller base, at most ~ 1.2499 < 4'/° ~ 1.3195. It is also obvious that,
if H = K, is a complete graph on d vertices, then cl(G) is at most (d — 2)-
dimensional, and thus bg,(n) = O(n41).

Our aim is to provide a systematic approach to this question for a general
forbidden graph H. A strong part of our motivation also comes from the case
H = Cj which can be seen as a discrete analogue of non-positive curvature (for a
suitable metric on simplices). It is perhaps a bit surprising that a clique complexes
with forbidden induced Cy exist with arbitrary high homology [JS03].

We show that the limit lim,, ., ¥/by(n) always exists and that it may attain
exactly b possible values (four of which we can determine precisely).

Theorem 14 (Thm. 1.2in [1]). Let H be any graph. The limit cy = lim,, o {/by(n)
exists. In addition:

(1) If HZ K55, then cg = 415 5 1.3195.

(i1) For every i € {1,...,5} there is a value ¢ with the following property. If
H =K, ., withb>1i > - >4, > 1, then cy = ¢,. Moreover,

71"
ci = 314 ~ 1.3161, ¢, = 213 =~ 1.2599, ¢, € [8/1 T'y] ~ [1.1601,1.2434],
and ¢y = ¢}, = 1.

Here I'y &~ 1.2434 is a certain fixed constant.
For the interesting case when H = (), we get the following improved bounds.

Theorem 15 (Thm. 1.4 in [1)). If H = Ky5 = Cy is the 4-cycle, then there are
constants ¢,C > 0 such that for any n

en®? < be,(n) < nEVieen,
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