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All these articles study convergence to equilibrium of bounded solutions
to gradient or gradient-like systems based on various generalizations of the
Lojasiewicz gradient inequality. In [B1] we prove that every finite-dimen-
sional gradient-like system is in fact a gradient system with respect to an
appropriate Riemannian metric. This was an initial impulse to obtain new
sufficient conditions for convergence to equilibrium of solutions to gradient-
like systems that do not satisfy so called angle condition. In [B1] an abstract
convergence result for ODEs on manifolds is proved and it is applied to second
order equations with weak damping. Rate of convergence for abstract finite-
dimensional problems and also second order ODEs with weak damping is
estimated in [B4]. Papers [B2], [B3], [B5] are devoted mainly to infinite-
dimensional problems (but they can also be applied to ODEs). Article [B2]
contains several abstract convergence results. In [B3], resp. [B5]| we show
convergence to equilibrium resp. decay estimates for abstract wave equations
with weak damping.

The collection of articles is supplemented by an introductory commentary.
In Chapter 1 we present the studied problem with all the settings we consider
— ordinary differential equations in R", ordinary differential equations on
manifolds and partial differential equations (evolution equations in Hilbert
or Banach spaces). Chapter 2 is devoted to abstract convergence results (and



corresponding decay estimates) in finite-dimensional and infinite-dimensional
cases. In Chapter 3 we present the results on damped second order equations,
both ordinary and partial.
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Chapter 1

Introduction

Before we start with exact definitions and settings in Sections 1.1 — 1.3,
let us write a few words without being precise to introduce the topic of
this thesis. Let us consider a dynamical system governed by a differential
equation (ordinary or partial)

u+ F(u)=0.

Here wu is a function of time ¢, it has values in a state space X and @ means
time derivative of u. We assume that the system is dissipative in the sense
that energy of any nonstationary solution is decreasing, i.e., there exists a
strict Lyapunov function to the system. Such systems are called gradient-like.
The main problem studied in this thesis is, whether (under what conditions)
every bounded solution of such a system has a limit as time goes to infinity.

As a special case we consider so called gradient systems, where F is the
gradient of a potential £ and the equation is then in the form

U+ VE(u) = 0.

Since —VE(u) is a vector pointing in the direction of the steepest decay of
the function £ in point u, we can say that solutions of a gradient system are
maximizing loss of energy in every time ¢ or that the system moves in the
direction of maximal energy decay.

There are many mathematical models of real-life processes that can be
written in the form of a gradient or gradient-like system. Let us mention
several examples: second order equation describing an oscilating spring with
nonlinear damping

£+ g(t)+kxr =0, (1.1)

7
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the heat equation
uy — Au =0,

some semilinear heat equations, e.g. (see [24])
uy — Au+u —uf =0,
the wave equation with damping (see [24])
Uy + auy — Au =0,
some semilinear wave equations with nonlinear damping (see [13])
uy + g(uy) — Au A+ |ulP~tu = 0, (1.2)

all of them with appropriate boundary conditions and on appropriate do-
mains.

In many examples, energy (the Lyapunov function) &£ of the system is
coercive in the sense that the level sets

{ue X: Eu) <K}

are bounded. Then any solution to the gradient-like system is bounded. If
we are in a finite-dimensional space (and it is also true for some infinite-
dimensional problems) then every bounded solution is relatively compact,
i.e. the closure of

{u(t): t€[0,400)}

is compact. Then the omega-limit set of u is nonempty, i.e. there exists
pewu):={acX: It, 400, u(t,) — a}.

Such ¢ is typically an equilibrium of the system. We ask (and this is the
main task of this thesis), whether it neccessarily holds that

lim wu(t) = ¢.

t—+o00

In general, the answer is negative. A simple counterexample in R? is (in
polar coordinates)



Solutions of this system are spirals converging to the unit circle consisting of
equilibria. A Lyapunov function to this system is £(r, ¢) = (r —1)?. The an-
swer is negative even for gradient systems. There is a famous example called
‘mexican hat’ by Palis and de Melo [55, page 14] and another one (which
looks more difficult but is easier to handle) by Absil, Mahony and Andrews
[1]. Further, Poldcik and Rybakowski gave counterexamples in R? with any
Riemannian metric and also for solutions of semilinear heat equations (see
[56]). Jendoubi and Polacik presented in [49] an example of a bounded so-
lution u to a semilinear wave equation with w(u) containing a continuum of
functions.

So, an additional condition must be considered to obtain convergence to ¢
(i.e. w(u) = {¢}). It was observed by Lojasiewicz in 1962 (see [53]) that
for gradient systems in R™ a gradient inequality can be such a condition. In
particular, if the potential £ of a gradient system satisfies

[E(u) = E(@)['" < CVE()| (1.3)

for some 6 € (0, %] and for all u from a neighborhood of ¢ € w(u), then
hmt_>+oo U(t) = Q.

In this thesis we present some known generalizations to the Lojasiewicz in-
equality (conditions that imply lim,,, . u(t) = ¢ for ¢ € w(u)) for gradient-
like systems in R"™, in Banach spaces, and on finitedimesional manifolds and
we introduce some new generalizations. We also show how these conditions
influence the speed of convergence to ¢. Further we show that the new con-
ditions/inequalities apply to second order equations with weak damping, i.e.
partial differential equations of the type (1.2) or ordinary differential equa-
tions (1.1) with ¢’(0) = 0 (so the damping is weaker than linear near zero).
We show convergence and decay estimates for such equations.

For these results we do not need global (nor local) existence for every
initial data, we neither need uniqueness. We only assume that we have
one precompact solution u : [0,400) — X to a gradient-like system and
¢ € w(u), then we show that lim;_, ., u(t) = ¢. In some abstract results we
even do not need that there is a differential equation behind.
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1.1 Euclidean space setting

Let M C R™ be open and connected and let F : M — R™ be a continuous
vector field and consider the following ordinary differential equation

w+ F(u) =0. (1.4)
Let
Cr(F)={ueQ: Flu) =0} (1.5)

be the set of stationary points of (1.4). A function £ : M — R is called a
strict Lyapunov function for (1.4) if

(" (u), F(u)) >0  for allu e M\ Cr(F) (1.6)

where £ denotes the derivative of £ and the brackets denote the duality
between (R™)" and R™. System (1.4) is called a gradient-like system if there
exists a strict Lyapunov function € for (1.4). If w: I — M is a solution to
(1.4), then

%5@(2?)) = &'(ut))u(t) = =€ (u(t)) F(u(t)) <0, (1.7)

whenever u(t) is not a stationary point of (1.4). So, £ is decreasing along
any nonstationary solution.

We say that £ : M — R is a Lyapunov function for (1.4) if £ is nonin-
creasing along solutions, i.e. t — &(u(t)) is nonincreasing for every solution u
o (1.4). System (1.4) is called weakly gradient-like if there exists a Lyapunov
function & for (1.4) satisfying

if £(u(-)) is constant on [ty, +00), then u(-) is constant on [tg, +00). (1.8)

Important examples of gradient-like systems are gradient systems. Let
€ : M — R be a continuously differentiable function. The following ordinary
differential equation is called a gradient system

u+ VE(u) = 0. (1.9)
Of course, every gradient system is gradient-like. In fact, if 7 = V&, then

(€' (), Fu)) = (€'(w), VE()) = [[VE@)|* = |F(u)]* > 0
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on M \ Cr(F).
An important notion for studying asymptotic behavior is the omega-limit
set of a function u : R, — R”

w(u) :={p e R": It, S +oost. lim |lu(t,) — ¢| =0}
n—oo

Obviously, if v : Ry — R™ is a bounded solution to (1.4), then w(u) is
nonempty, so there exists ¢ € w(u). Further, if F is locally Lipschitz contin-
uous on M \ Cr(F), then w(u) C Cr(F). In fact, if ¢ € w(u) \ Cr(F), then
for the solution starting at ¢ we have (1.7) with u(t) replaced by ¢, so & is
decreasing along this solution and this is a contradiction with the fact that £
is constant on w(u) and w(u) is invariant. So, for gradient systems we have
w(u) C{pe M: &(p)=0}.

Let ¢ € w(u). We are going to show that under additional conditions
(gradient inequality) lim;_, o u(t) = . In particular, for (weakly) gradient-
like systems with a coercive Lyapunov function this means that every so-
lution converges to an equilibrium. However, we often only assume that «
is a solution to (1.4) and ¢ € w(u) to obtain minimal assumptions for the
implication

pewu) = lim u(t)=e.

t—+00

The results on (weakly) gradient-like systems can also be applied to sec-
ond order equations. As an example let us mention the following ordinary
differential equation describing damped oscilations of a spring (assume «,
k> 0)

T+ ar+kr =0,

which can be rewritten as

(g) ! (ay;ykx) -

We can see that £(z,y) = kx*+y? is a Lyapunov function satisfying condition
(1.8) (so we have a weakly gradient-like system) since

d
Eg(x(t), y(t)) = 2kxd + 2yy = —2ay® < 0.
On the other hand, £(x,y) = ka? + y? + exy, € > 0 small enough is a strict

Lyapunov function (by easy computations), so the system is even gradient-
like.
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1.2 Manifold setting

Let (M, g) be a differentiable finite-dimensional Riemannian manifold with
a Riemannian metric g. We denote by (-,-) the duality between tangent
and cotangent vectors, (-, )4 the scalar product on the tangent space T,,M
in point u € M, and || - ||4) is the norm on 7,,M generated by the scalar
product. Sometimes, we write shortly (-,-), and || - ||,. Also, if X, Y are
tangent vector fields on M, we write (X,Y), meaning (X (u),Y (u))gq) for
every u € M and similarly we write || X||,.

Let F : M — TM be a continuous tangent vector field on M (where T'M
is the tangent bundle) and assume that the differential equation

i+ F(u) =0 (1.10)

is a gradient-like system, i.e., that there exists a differentiable function &£ :
M — R such that

(EF)>0 on M\Cr(F)={ue M: F(u)+#0}. (1.11)

As above, such function & is called a strict Lyapunov function. Definition of
a Lyapunov function and a weakly gradient-like system is the same as in the
Euklidean space.

For a scalar valued differentiable function £ : M — R we define its
gradient in u € M as a vector v representing the operator £'(u), i.e.,

(0, 2) gy = (€' (u), ) for all x € T, M. (1.12)

Since v depends on the scalar product g(u), we write V()€ (u) and V& for
the corresponding gradient field.
As in Euclidean space, gradient systems

i+ Vo E(u) = 0 (1.13)

are important examples of gradient-like systems (with F = V€ (u) and £
being a strict Lyapunov function).

1.3 Infinite-dimensional setting

We would like to generalize the concept of gradient-like systems and gradient
systems to infinite-dimensional spaces to study convergence to equilibria for
some partial differential equations.
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Before we introduce the settings let us start with some general notations.
If X is a Banach space, we denote by || - || x the norm in X, X’ the dual of
X and (-, -)x/ x the duality between X’ and X. By Bx(p,r) we denote the
closed ball in X with radius r centered in . For a function v : R, — X we
denote its omega-limit set in X by wyx(u), i.e.,

wx(u) :={p eR": It, /N +oosit. 1i_>m |u(t,) — ¢||x = 0}.

We say that u has X-precompact range if {u(t) : ¢ > 0} is precompact in X.
Obviously, X-precompact range implies that wy(u) # 0. If X is a Hilbert
space, then we denote by (-,-)x the scalar product in X.

Our settings will be as follows. Let V C H be two Banach spaces, V
continuously and densely embedded in ‘H. Let M C V be nonempty, open
and connected and let F : M — H be a continuous map. We consider the
following evolution equation

i+ F(u) = 0. (1.14)

We say that a function u is a solution to (1.14) if u € C(R4,V)NCHR,, H)
and (1.14) is satisfied (in H) for every t > 0.

To define a strict Lyapunov function and gradient-like system we need to
give a good sense to the computation

d / . /
¢ ) = Eu(t))ult) = —€(u(t))F (u(t)) <0.
A continuously differentiable function £ : M — R is called a strict Lyapunov

function for (1.14) if
(&' (u), F(u)) >0 forallue M, st. F(u)eV\{0}. (1.15)

If there exists a strict Lyapunov function for (1.14) then (1.14) is called
a gradient-like system. Definition of a Lyapunov function and a weakly
gradient-like system is the same as in the Euklidean space.

Let us mention that if u is a solution to a weakly gradient-like system
then &£ is constant on wy(u). Moreover, if we have continuous dependence
on initial values, then wy(u) is positively invariant and as a consequence we
have wy(u) C Cr(F).

We now define gradient systems. In the literature (see e.g. [24]), by a
gradient system is often understood the equation (1.14) with H = )V’ and
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F =& for some £ € C'(M). However, we follow [23] and define gradient to
be a vector representing the linear functional £’(u) via scalar product. Let H
be a Hilbert spaces and € € C'(M,R). For a fixed u € M let us assume that
E'(u) extends to a bounded linear functional on H. Then v € H is called
gradient of € in u if (v, x)y = (€'(u), x)3 3 for every x € H. We denote the
gradient by VE(u) = v.

If £ € CY(M,R) is such that £'(u) extends to a bounded linear functional
on H for every u € M, then the following equation is called a gradient system

i+ VE(u) = 0. (1.16)

A simple example of an infinite-dimensional gradient system is the heat equa-
tion
u — Au =10

on a bounded domain Q C RY™ with Dirichlet boundary conditions. Tak-
ing V = H}(Q) N H*(Q), H = L*(Q) and E(u) = 5 [, [|Vul|* we have
E'(uw = [, Vu-Vw and for v € V this functional can be extended to
H and represented via scalar product as &' (u)w = (—Aw, w). It means that

VE(u) = —Au= F(u) for all u € V.



Chapter 2

Abstract convergence results

This chapter is devoted to abstract convergence results. The task is to find
conditions (typically formulated in terms of a Lyapunov function &) that
imply convergence of u to some ¢ € w(u). We are not so much interested
here, which differential equations satisfy these conditions. More about this
question (applications of these abstract results) can be found in Chapter 3.

As we mentioned in the Introduction, the first convergence result based on
a gradient inequality was formulated by Lojasiewicz [53] for gradient systems
in R™. The convergence result reads as follows and the inequality (LI) is called
the Lojasiewicz gradient inequality.

Theorem 2.0.1 (Lojasiewicz 1962). Let M C R"™ be a nonempty open set
and & € C*(M). Let u : [0,4+00) — M be a solution to the gradient system
(1.9) and ¢ € w(u). Assume that there exist 0 € (0,3] and n > 0 such that

[E(u) = E(@)'™" < CIVE)| for allu € B(p,n). (L)
Then ||u(t) — ¢l — 0.

Although Lojasiewicz’s main result was that inequality (LI) holds for any
analytic function € in R™ and any ¢, if we refer to Lojasiewicz’s result in this
work we always mean the convergence result, i.e. Theorem 2.0.1.

Since 1962, there are many works generalizing this result in many ways
in finite-dimensional and also infinite-dimensional spaces. It was applied not
only to semilinear heat or wave equations but also to Cahn—Hilliard equation
[25], degenerate parabolic equations [28], or integrodifferential equations [63].

15
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2.1 Finite-dimensional case

First generalization of the Lojasiewicz result we would like to mention is the
result by Kurdyka [50], who observed that the function s +— s=? in (LI) can
be replaced by a more general function s +— ©(s) and the convergence result
remains valid. The inequality in [50] reads

V(T o &)(u)|| >C forallue Bp,n) (2.1)

for a class of positive increasing functions ¥ : R, — R. If U is differentiable,
then (2.1) can be rewritten as

O(€(u) = E(p)]) < CIIVE()|| for all u e B(p,n), (KLI)

where & = ¥ and £(-) is replaced by £(-) — £(). Here, we need to assume
that 1/0 is integrable on (0, ¢) if we want to get convergence to equilibrium.
If we take ©(s) = s'7% then (KLI) becomes (LI). In fact, Kurdyka’s main
result was that (2.1) holds in R™ for a much larger class of functions than
analytic functions (see [50] or Section 3.3.3 for more details).

Other generalizations go from gradient systems to gradient-like systems.
If we consider a gradient-like system with a strict Lyapunov function £ sat-
isfying (KLI) or (LI), then an additional condition is needed to obtain con-
vergence to equilibrium. This additional condition can be so called angle
condition

(€'(u), Fu)) = o€ W)]| - | F(u)] (AC)

for some a > 0 and all w € M. This was observed by Absil, Mahony and
Andrews [1] and then generalized by Lageman [51] to gradient-like systems on
Riemannian manifolds. In the following theorem, inequality (KLI) is hidden
in the notion analytic-geometric category.

Theorem 2.1.1 ([51], Theorem 1.2). Let X be a Lipschitz continuous vector
field on an analytic Riemannian manifold (M, g) with an associated Lyapunov
function £ satisfying: for every compact K C M there exists o > 0 such that

(Vo€ (w), F(u)) g = all€' (W] - [F(u)]. (2.2)

Assume that € belongs to an analytic-geometric category. Then the w-limit
set of any integral curve of X contains at most one point.
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Neccessity of an additional condition (e.g. (AC)) is one reason why gra-
dient systems are easier to handle than gradient-like systems. In [B1] we
have shown that every gradient-like system is a gradient system if we change
the Riemannian metric appropriately. Especially, every gradient-like system
in Euklidean space becomes a gradient system if we deform the geometry of
the space.

Theorem 2.1.2 ([B1], Theorem 1). Let M be a differentiable finite-dimen-
sional Riemannian manifold, F a continuous tangent vector field on M, and
let £: M — R be a continuously differentiable, strict Lyapunov function for
(1.10). Then there exists a Riemannian metric § on the open set

M:={ueM:Fu)#0} CM

such that Vg€ = F. In particular, the differential equation (1.10) is a gra-
dient system on the Riemannian manifold (M, g).

Let us call the Riemannian metric g from Theorem 2.1.2 a gradient Rie-
mannian metric. Let us mention that g is not uniquely determined.

It seems to be possible to obtain convergence to equilibrium without the
angle condition (AC) if we change the Riemannian metric and transform the
gradient-like system to a gradient system. But then we need the Kurdyka-
Lojasiewicz inequality (KLI) to be satisfied with respect to the new norm
(g-norm) and we would obtain convergence in g-norm, which is not always
equivalent to the original norm (g-norm on the tangent bundle T'M or the
Euclidean norm in R") on a neigborhood of stationary points. In fact, the
following theorem shows that equivalence of the new and the old norm is
connected to the angle condition.

Theorem 2.1.3 ([B1], Theorem 2). The metrics g and g are equivalent on
M if and only if £’ and F satisfy the conditions (AC) and

clEly < I Fllg < ClIE (2.3)
holds with some ¢, C' > 0.
As a consequence, if (AC) is not valid on a neighborhood of an equilib-

rium, then the new norm is not equivalent to the original norm. However, we
can still obtain convergence to equilibrium even in the case when the angle
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condition is not satisfied. Since F = V& and by definition of a gradient
(V3€,X); = (£, X) for any continuous vector field X, we obtain

B 2 1 / ~ _ 1 /

1

Hvég”g = Hj_-H~
g

This computation leads us to a new condition (GenLI) under which we obtain
convergence in the original norm || - ||,.

Theorem 2.1.4 ([B1], Theorem 3). Let (1.10) be a gradient-like system
on a Riemannian manifold (M,g) with a strict Lyapunov function £. Let
u: Ry — M be a global solution of (1.10) and ¢ € w(u). Assume that there
exist a neighborhood U of ¢ and © : R, — R, such that 1/0 € L, ([0, +00)),
©(s) >0 for s >0, and

O(lE(v) — E(p)]) < <8’(U), %> for everyv € UNM. (GenLI)

Then u has finite length in (M, g) and, in particular, tlir+n u(t) =@ in(M,qg).
—+o0

Remark 2.1.5. The theorem remains valid with the same proof if we assume
only that (1.10) is a weakly gradient-like system and £ a Lyapunov function.

A simple example in R?, where this result applies and the angle condition
does not hold, is ([B1], Example 2)

1
Flu) = F(uy,ug) = (Jul|“ur — ug,uy + [Jul|us), E(u) = 5(“? + u3).

For more details see Example 2.3.7 below where we also derive decay estimate
for this equation. A more interesting application is a second order equation
with weak nonlinear damping, which can be found in Chapter 3.

The gradient Riemannian metric § from Theorem 2.1.2 is defined on M =
M\ Cr(F). An interesting open question is, whether (under what conditions)
it can be defined on the whole of M. It follows from Theorem 2.1.3 that ¢
can be continuously extended to a stationary point ¢ only if (AC) and (2.3)
hold on a neighborhood of ¢. So, not every g can be extended continuously
to a stationary point. In Example 3 in [B1] we have found two gradient
Riemannian metrics for a gradient-like system in R? such that one of them
can be continuously extended to a stationary point ¢ and the other cannot.
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2.2 Infinite-dimensional case

The first generalization of the Lojasiewicz result to infinite-dimensional set-
ting is due to L. Simon [60], who proved that the gradient inequality

[E(u) = E(@)'" < CIVEW)||r2 for all u € Bezu(p,n) — (24)

holds for £(u fﬂ x,u, Vu), where E is analytic in the second and third
variable, and used this mequahty to show convergence (in C%-norm) to equi-
librium for solutions to the corresponding gradient system

W+ VEu)=f
and also for solutions to the second order equation
i—u—VE(u)=f,

which, in fact, becomes a gradient-like system. This fact was observed by
Jendoubi who unified the approach to the first and second order problem
in [46] and simplified significantly Simon’s proof. Jendoubi and Haraux [37]
finally came to the gradient inequality in most satisfactory setting

1E(u) — E()|*? < C||E (u)||y for all u € By(p,n), (LSI)

in their case V = Hj(Q).
In [24], Chill, Haraux and Jendoubi proved the following abstract conver-
gence result.

Theorem 2.2.1 ([24], Theorem 1). Let u € C(Ry, V)N CY Ry, H) with V-
precompact range and ¢ € wy(u). Let p >0, ¢ >0 and & € C*(V,R) be such
that t — E(u(t)) is differentiable almost everywhere and

d

— 2 E(u(t)) = cl|' (u(t)) b [1a ()|l (2.5)

for almost every t € Ry. Assume in addition that (1.8) holds and that £ sal-
isfies the Lojasiewicz—Simon gradient inequality (LSI). Then lim; 4 ||u(t)—
elly = 0.

We can see that u is not neccessarily connected to any differential equa-
tion, but if it is a solution to the evolution equation (1.14), then (1.14) is
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a weakly gradient-like system. Condition (2.5) is a kind of angle condition:
if u e CY(R,,)') is a solution of a gradient-like system (1.14) with a strict
Lyapunov function £ satisfying the angle condition

(€' (w), Fw)hwy = al| € (W)l F ()]l (2.6)

for every w € V s.t. F(u) € V, then (2.5) is satisfied whenever u € C*(R, V)
([24], Proposition 5). For gradient systems in the sense of [24] (i.e. H =V,
F = ¢&') and also for gradient systems in the sense of our definition the angle
condition (2.6) is satisfied automatically.

In [B2] we have generalized Theorem 2.2.1 in two ways. First, as was
mentioned above, there are important cases where the angle inequality is not
satisfied, e.g. second order equations with weak damping. In fact, what is
really needed to show convergence is

—%E(U(t)) > O(E(u(t)))]|i(t) | (2.7)

for some positive function © s.t. 1/0 is integrable at zero or, equivalently,

L e (u(t)) > 0l (28

Clearly, these two conditions are equivalent. In fact, if £ satisfy (2.7), then
(2.8) is satisfied with £ replaced by € := ®¢(E) where Pg(t) = f(f %ds.
The second implication is trivial.

So, conditions (2.5) and (LSI) can be replaced by more general condition
(2.8). Inequality (2.8) follows from (2.5) and (LSI) by taking £ = £':

da 1 d 1€ () v

Obviously, in Theorem 2.2.1 the Lojasiewicz—Simon inequality can be re-
placed by Kurdyka—Lojasiewicz—Simon inequality

O(&(u) — E(p)) < 1€ (w)[lv (KLSI)
for any function © > 0 with § € L},.([0, +00)) (see [B2], Theorem 3.2).

loc
Second generalization is, that it is not neccessary to assume (2.8) on a
whole halfline t > ¢y. It is enough to assume that £ is nonincreasing along
solutions (e.g. £&(u(t)) < 0) for t > to and the stronger estimate (2.8) holds
whenever u(t) is in a small neighborhood of ¢. This assumption is easier to
verify, e.g. for second order equations (ordinary or partial). We obtain the

following result.

|2 = ]|
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Theorem 2.2.2 ([B2], Theorem 2.4). Let u € C(R.,V) N CHR,, H) with
V-precompact range and ¢ € wy(u). Let p >0 and € € C(V,R) be such that
t — E(u(t)) is nonincreasing on Ry and (2.8) holds for almost every t € R,
such that u(t) € B := By(p, p).

Then limy_, o ||u(t) — ¢|ly = 0.

It was observed in [24] that the space H can be replaced by any larger
space with a weaker norm. In other words, it is sufficient to verify the decay
condition (2.8) or (2.5) for a very weak norm || - || and the convergence
is then obtained in the stronger norm || - ||y by a compactness argument
(due to precompact range). On the other hand, estimates of the speed of
convergence are lost while using the compactness argument, so one can obtain
these estimates in the norm of H only.

In applications to second order equations we work on a product space
and we often need to control the first coordinate only. The following gen-
eralization of Theorem 2.2.2 is appropriate for such situations. If we need
convergence of one coordinate, it is enough to assume (2.9) instead of (2.8).
Unfortunately, the condition (2.9) does not imply any estimates of the speed
of convergence.

Theorem 2.2.3 ([B2], Theorem 2.6). Let u = (uy,us) be such that uy €
C(R-i—,‘/l) N CI(R_HHl), Uo € C(R.i_,‘/g) N CI(R+,H2)7 H, — Vi and let
(ur(+), u2(+)) have a precompact range in Vi X V. Let ¢ € wy, (uy), p > 0 and
E € C(Vi x Vo, R) be such that t — E(u(t)) is nonincreasing on Ry and

d .
— €)= [l @)l (2.9)
for almost every t € Ry such that ui(t) € B := By, (¢, p).

Then limy o |Jur(t) — ¢llv; = 0.

Remark 2.2.4. Theorems 2.2.2 and 2.2.3 imply convergence to equilibrium
for precompact solutions of weakly gradient-like systems with Lyapunov func-
tions satisfying (2.8), resp. (2.9).

Gradient systems.

As in finite-dimensional case, the situation is easier for gradient systems (no
angle condition is needed). Therefore, it may be of interest that similarly to
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the finite-dimensional case, any gradient-like system can be transformed to
a gradient system by taking an appropriate Riemannian metric.

It was mentioned above that gradient depends on the scalar product.
Let H be a Hilbert space and let g be any scalar product on H, we define
gradient of £ in w with respect to g as a vector v € H (if such v exists)
satisfying (v, w), = &' (v)w for all w € H. Then we write v = V,E(u).

We define a Riemannian metric on H to be a continuous mapping r :
YV — Inner H where Inner H is the space of all bounded scalar products on
H equipped with strong convergence topology, i.e., g, — ¢ in Inner X if
(u,v)g, — (u,v), for every u, v € H. Then the equation

i+ VewE(u) =0 (2.10)

is called a gradient system with respect to the Riemannian metric r.

Let us call a Riemannian metric g a gradient metric for a gradient-like
system (1.14) with a strict Lyapunov function &, if F(v) = V,)E(v) for all
veM.

Theorem 2.2.5. Let (1.14) be a gradient-like system with a strict Lyapunov
function € such that VE is continuous on M and (VE, F)yu > 0 on M =
M\ Cr(F). Then there ezists a gradient metric g for (1.14) on M.

Since this result was not published we present a proof here.

Proof. For any w € M we have (VE(w), F(w))y = (£'(w), F(w)) > 0 and

therefore 0 # F(w) ¢ ker &'(w). As a consequence, for every w € M we have

H =ker&'(w) & (F(w)). (2.11)

For every u € H and w € M let us define
(€'(w),w)

— _ (& w),w
e g, Ay ) ) Fw))
Then w,o € ker &' (w), uy € (F(w)) and the mappings w — Uy, W > Uy
are continuous from V to H (the denominators are continuous since VE :
M — H is continuous).
Now we choose an arbitrary Riemannian metric r on H. Starting from
this metric, we define a new metric g on M by setting

1 ’ ’
<u> v>g(w) = <uw0> UWO>T(w) + W<E (w>7 u> <5 (w)7 U>

Flw). (2.12)

(2.13)

= <uw0, Uw0>r(w) + < <gl<w)7 UW1> <5/(w)7 Uw1>‘

&'(w), F(w))
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Clearly, g(w) is a sesquilinear form on H and it is positive difinite due to
(&', F) > 0. Continuity of g follows from continuity of the mappings w
U0, W > Uy, continuity of r, VE and F and the fact (an easy 3e argument)
that (un, Un)r(w,) — (U, V)r@w) Whenever w, — w in V, v, — v in H and
Uy, — u in H.

By definition of the metric g and by definition of the gradient V,&, we
have for every v € H, w € M

(F(w), v)gw) = 0+ (€' (w),v) = (Vg€ (w), v)gw),
so g is a gradient metric on M. ]

For more about infinite-dimensional gradient systems see Chill and Fa-
sangova [23] and an existence result by Boussandel [17]. These works assume
the Riemannian metric r to be continuous in a stronger sense, in particular
r : W — Inner H where W satisfying V — W — H is a natural domain of
the Lyapunov function & (i.e. W is the domain of the closure of £). It is not
clear, whether one can find a gradient Riemannian metric g continuous in this
sense for any gradient-like system. The gradient metric found in Theorem
2.2.5 is typically not continuous with respect to a weaker norm on V.

2.3 Decay estimates

This section is devoted to decay estimates, i.e. estimates of the speed of
convergence to equilibrium for a given solution (or for a given function to its
limit). Such estimates usually follow from the proofs of convergence results
based on gradient inequalities. The original convergence result by Lojasiewicz
is accompanied by the following decay estimates proved by Haraux and Jen-
doubi in 2001.

Theorem 2.3.1 ([38], Theorem 2.2). Let u be a bounded solution to a gra-
dient system with & satisfying the Lojasiewicz gradient inequality (LI) with
some 0 € (0,2]. Then there exists p € M such that for t — 400 we have

’2
O(e™ ) if =1,
[u(t) — @l = { iy . :
Ot/ ifp < 1.
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This result remains valid also for gradient systems in the infinite-dimen-
sional setting. Chill and Fiorenza [22] proved decay estimates for an infinite-
dimensional gradient system with &£ satisfying the Kurdyka—Lojasiewicz—
Simon inequality (KLI). They formulated the result for a semilinear parabolic
equation but in fact they proved the following abstract result.

Theorem 2.3.2 ([22], Theorem 2.1). Let £ € C*(V) satisfiy the Kurdyka—
Lojasiewicz—Simon gradient inequality (KLI), u be a solution to the gradient
system (1.16) with {u(t) : t > 1} being relatively compact in V. Then there
ezists p € wy(u) and ty > 0 such that

[E(u(t)) — E(Q)] = Ot — 1)), (2.14)

lu(t) = ¢l = 0@~ (t — t))) (2.15)

as t — 400, where v is a primitive function to —1/0% ¢~ the inverse
function to ¥ and ® a primitive function to 1/0.

An abstract result, which can be applied to gradient-like systems satisfy-
ing an angle inequality can be found in [24].

Theorem 2.3.3 ([24], Theorem 2). If the assumptions of Theorem 2.2.1 hold
and in addition
d

—gc‘f(u(t)) > BlE ()|} for a.e. t > 0. (2.16)

Then, fort — +o00 we have

O(e if =1
Ju(t) ~ el = { oot ot
This theorem can be easily modified for £ satisfying the Kurdyka—Lo-
jasiewicz—Simon inequality to obtain the estimates (2.14), (2.15) with the
constants ¢, f from (2.5), (2.16) appearing somewhere. Estimates (2.14),
(2.15) were also proved for finite-dimensional gradient and gradient-like sys-
tems by Begout, Bolte and Jendoubi in [10] (see Theorems 3.5, 3.7 therein)
with condition (2.16) replaced by

IVEW)|| < BIIF(w)]- (2.17)
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This inequality and (2.16) are in fact comparability conditions that states the
relation between ||£’|| and ||F|| (compare to (2.3)). Of course, some kind of
comparability condition is needed, since if we change the size of F and keep
the direction, then the solutions have the same trajectories but their speed is
different. The previous theorems show that gradient-like systems satisfying
(AC), (2.3) have the same speed of convergence as the corresponding gradient
system. We can see below (Example 2.3.7) that if the angle condition is not
valid, then the decay estimates become worse.

We generalize the finite-dimensional result to Riemannian manifolds and
replace the Kurdyka—Lojasiewicz inequality (KLI) by the inequality (GenLI)
introduced in Theorem 2.1.4. We assume that the relation between ||VE]||
and ||F|| is represented by a function « (see (2.18)), which may be arbitrary
and appears also in the obtained decay estimates. Let us remark that this
result can be applied to a second order equation with weak damping with
a(s) = O(s)h(O(s)) as we can see in the next chapter.

Theorem 2.3.4 ([B4], Theorem 1). Let (1.10) be a gradient-like system on
(M, g) with a strict Lyapunov function £, u : [0,4+00) — M be a solution
to (1.10) and ¢ € w(u). Let & and F satisfy (GenLl) with a function O :
0,1) — Ry such that 5 € Li([0,1)) and ©(s) > 0 for s > 0. Then u
has finite length in (M, g) and, in particular, t£+moou(t) = . Moreover, if

a:(0,1) = (0,+00) is nondecreasing and satisfies
a(E(u(t)) — E(p)) < ||[F(u(t))|| for allt large enough, (2.18)
then there exists to > 0 such that
E(u(t)) = E(@) <91t —to)  for all t > to, (2.19)

lu(t) — ¢l < Pt —t9)) for all t > to, (2.20)

where
1

t 1/2
d(t) ::/O @ds and  (t) ::/t md&

and ||a — b|| is for a, b € M the g-distance of a and b.

Remark 2.3.5. The theorem remains valid if (1.10) is a weakly gradient-like
system and & is a Lyapunov function satisfying (1.8).
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We can see that (2.17) together with (KLI) imply that one can take o = ©
and the definition of ) becomes the same as in Theorem 2.3.2 (and the same
as in [10]).

All the decay estimates above are based on the inequality

+o0o
[u(t) = |l S/t [u(s)l|ds, (2.21)

so they estimate the length of the remaining trajectory which can be much
longer than the distance [|u(t) — ¢l|| (typically, for second order equations
with weak damping, it is much longer). Often, there are direct estimates of
|lu — ¢|| in the form

[ =@l < 7(E(w) = E(p)). (2.22)

For example, £(u) = > ||, where u = (uq, us,...,u,), is a Lyapunov
function for many ordinary differential equations and it satisfies (2.22) with
v(s) = cs¥/P. A similar estimate holds e.g. for

up — Au+ [ulPlu =0

with

1 1
ci'(u):§/Q|Vu|2+p—_l_1/Q|u|p+1

(see Example 3.2.8 or [13]). Inequality (2.22) gives in many cases better
decay estimates than (2.21).

Corollary 2.3.6 ([B4], Corollary 3). Let the assumptions of Theorem 2.3.}
hold and let v : (0,1) — (0, 4+00) be a nondecreasing function such that (2.22)
holds for all w in a neigborhood of . Then there exist ty > 0 such that

lu(t) — el < (7't —to))  for all t > to.

Application to some second order equations with weak damping can be
found in the next chapter. Now we present a simple example where Corol-
lary 2.3.6 yields optimal decay estimates and Theorem 2.3.4 does not. This
means that estimating the distance from the equilibrium by the length of
the remaining trajectory may be the only estimate which is not sharp in the
whole process.
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Example 2.3.7 ([B4], Example 4). Let M C R? be the open unit disc
equipped with the Euclidean metric. Let o > 0, and let F(u) = F(u1,u) =
(Ju]|*ur — ug, uy + ||ul|*uz) and E(u) = L(ui+u3). Then one can show that €
satisfies the Lojasiewicz inequality (LI) near the origin for 6 = % but the angle
condition (AC) does not hold (unless « = 0). On the other hand, (GenLI)
holds with ©(s) = \%sl_@, 0 = 5% and (2.18) holds with o(s) = 2\/s. Then
Theorem 2.53.4 yields

lu(t)]| < C(t — to)=".

If the angle condition (AC) were satisfied, the decay of u would be exponential
due to the Lojasiewicz exponent equal to % Since the (AC) condition is not
satisfied, the decay is only polynomial. Further, we can apply Corollary 2.3.6
with vy(s) = v/2s and obtain

_1
[u()]| < C(t —to) "=
This is a better result since —é < i — 1. Moreover, transformation to polar

coordinates show that this result is optimal. More details can be found in
[B4].
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Chapter 3

Second order problems

The main application of the abstract results from Chapter 2 are second order
equations with damping. In this chapter, we assume that V — H — V' are
Hilbert spaces with embeddings being dense and continuous (we identify
H = H’). We consider problems in the form

i+ g(u) + E'(u) = 0, (3.1)
where E: M CV — Rand g : H— V' are two given functions, E € C?*(M).
In the following, we write || - || instead of || - || &, || - ||« instead of || - ||y~ and

(,), (-, )« instead of (-,-) g, (-,-)vs respectively. In a special case V = H =
V' = RY we have an ordinary differential equation of second order.

A typical example of such equation (and probably the most studied case)
is a nonlinear wave equation with damping

uy + g(u) — Au+ f(z,u) =0, t>0, e QCR", (3.2)
where g : R - R, f: R X R — R are continuous, H = L*(Q), V = H}(Q).
This equation can be rewritten as (3.1) with
1 S
B() = / V()| 2dx + / Flo,u(z)dz,  Flz,s) = / o, r)dr.
0 Q 0
(3.3)

Equation (3.1) can be written as a first order problem
U+ FU) =0, (3.4)

where
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F-MCV-o>H H=HxV V=VxH M=MxH. Our key
assumption is

<9(U),U>V/’V >0 forallveV,v#0

which means that ¢ has a damping effect. We denote by S := {u € M :
E'(u) = 0} the set of stationary points of (3.1). Then Cr F = S x {0}. We
define

1
Fy(a,0) = 5 ol]* + B(u),

then for any solution to (3.4) such that © = v € L}, .(R,, V) we have

loc

S EU) = (E'(u), v)yr v + (v, 0) vy
= (E'(u), v)vrv — (v, 9(v))vyr — (v, E'(u)) v,y
= — (v, g(v)) v,y
<0

We can see that E; is a Lyapunov function (not neccessarily strict). More-
over, condition (1.8) holds: if Ey(u(-)) is constant, then (v, g(v))vy = 0,
hence v = 0 and u(-), v(-) are constant. So, (3.1) is a weakly gradient-like
system, but F; typically does not satisfy (GenLI), (2.9), so Theorems 2.1.4,
2.2.3 cannot be applied. The proofs of the convergence results in this chapter
rest in finding another Lyapunov function £ which satisfies these additional
conditions. This &£ is usually in the form qD(E~1)7 where E; is a small pertur-
bation of F; and ® : R, — R, is an increasing function.

In Section 3.1 we consider the finite-dimensional case, i.e., V = H =
V' = R and we obtain an ordinary differential equation with £’ identified
with VE. In Section 3.2 we consider the general infinite-dimensional case.
The results of both sections (convergence results and also results on decay
estimates) usually assume that we have a solution with a precompact range
and that E satisfies the Kurdyka-Lojasiewicz—Simon inequality. Therefore
we discuss in Section 3.3 the problem of precompact range of solutions and list
some known sufficient conditions on E to satisfy the Kurdyka-Lojasiewicz—
Simon inequality.

Finally, let us mention that we mostly focus on the damping term. Our
intuition tells us that the smaller is the damping the slower is convergence
to an equilibrium, and if the damping is too small for v small, then it may
happen that it is not strong enough to stabilize the system and the system
(e.g. an oscilating spring) may keep oscilating. The results of this chapter



3.1. FINITE-DIMENSIONAL CASE 31

confirm this intuition, they show that convergence occurs if g(v) is large
enough for v near zero. We try to find as small lower bound for g as possible,
in particular we focus on functions g with

o le@l

u=0 ]

The most typical example is g(u) = g(|ul)u (e.g. g(u) = |u|*u, o € (0,1)),
which means that the damping force acts in the opposite direction to ve-
locity and its size depends on the size of velocity only. But we also allow
more general cases, e.g. damping depending on the direction of velocity
(which corresponds to motions in an anisotropic environment) or damping
depending not only on @ but also on u (which corresponds to inhomogeneous
environment).

We do not present any nonconvergence results in the next sections. The
following nonconvergence example is due to Haraux. He proved in [34, Propo-
sition 5.1.2] that the equation

i+ (1) + f(u) =0

with f =0 on [a,b], f <0 on (—oo,a) and f > 0 on (b, +00) has bounded
solutions with [a,b] C w(u). However, sharpness of the convergence results
and optimality of decay estimates for weakly damped equations remain an
open question.

3.1 Finite-dimensional case

In this section we consider the finite-dimensional case, i.e., second order
ordinary differential equation with damping

i+ g(i) + VE(u) = 0. (3.5)

If g € CLR",R"), E € C*(Q), Q C R", then there exists a unique maximal
solution to (3.5) for any initial data (u(0),v(0)) € © x R™ and the solution
depends continuously on the initial data. As was mention above, this implies
w(U) C Cr(F), hence 1» = 0 and VE(p) = 0 for every (p, 1) € w(U). Then
a standard argument yields lim; ., @(t) = 0 whenever w(U) is nonempty
(in particular for any bounded solution U).

Probably the first convergence result based on the Lojasiewicz inequality
(so without assuming a special structure of F) in finite-dimensional setting
is due to Haraux and Jendoubi [36].
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Theorem 3.1.1 ([36], Theorem 1.1). Assume that E : R" — R is analytic
and g : R™ — R" is locally Lipschitz continuous and satisfies for all v € RN

(g(v),v) = cllv]|?,
lg()Il < Cllv]l,

with 0 < ¢ < C < +oo independent of v. Let u € WH°(R,,R™) be a solution
to (3.5). Then there exists ¢ € S such that

Jim la(t)]] + [Ju(t) — ¢|| = 0.

In this theorem, analyticity of E can be replaced by E € C?*(RY) and E
satisfies the Lojasiewicz inequality (LI). The damping function g is nonlinear,
but it is larger than a linear function (in fact, it satisfies c||v|| < g(v) < C||v||,
so it is not a weakly damped equation. A similar result can be found in
Alvarez et al. 2002 (see [3, Theorem 4.1]) for the equation

i+ (v + BV2E(u))t + VE(u) = 0

with £ : R" — R analytic (hence satisfying (LI)).

In 2015, Bégout, Bolte and Jendoubi [10] consider linear damping g(i) =
~vu and more general potential F' satisfying the Kurdyka—Lojasiewicz inequal-
ity with a function © s.t. 0 < O(s) < ¢y/s for s € (0,7) and § € L},.([0,1)).

Under these assumptions, they obtain convergence to an equilibrium and also
decay estimates
lu(t) = ¢l = O(@(L 7 (t — 1)),

i.e. the same decay estimates as Chill and Fiorenza in [22] for first order
problems. In fact, second order problems with linear damping are gradient-
like systems satisfying conditions (AC), (2.3), so they have the same decay
as corresponding gradient systems (first order problems).

Concerning weak damping, in 2008 Chergui [19] proved convergence and
decay estimates for analytic E and g(i) = ||u||*u.

Theorem 3.1.2 ([19], Theorems 1.2, 1.3). Assume that E € C*(R™) and
that there exists 6 € [0, %) such that for every ¢ € S there exists n > 0 such
that (LI) holds. Let a € [0, %) and let u € W>*(R,,R"™) be a solution to

(3.5) with g(u) = ||4||*w. Then there ezists ¢ € S such that

S {[a@)]] + [lu(t) — o] = 0.
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Moreover, there exists C' > 0 such that for all t € R
. __0-(0=-0)a
[a(E)]| + [[u(t) — ¢l < Ct 120700, (3.8)

We have generalized this convergence result in [B1, Theorem 4] (with-
out decay estimates). We assumed E € C?(RY) satisfying the Kurdyka—
Lojasiewicz inequality (KLI) instead of the Lojasiewicz inequality and the
damping function being dependent on u (not only ) and having non-power-
like growth, in particular we assumed

i+ g(u,u) + VE(u) =0, (3.9)
with g € C*(R" x R", R") satisfying for all u, v € R"

(g(u,v), ) = h([lvl) lv]*,
lg(w, 0)|| < Ch([lo]]) lv]l; (3.10)
IVg(u, v)|| < Ch(f[ol)),

where C' > 0 is a constant and h : R, — R, is a nonnegative, concave,
nondecreasing function, g(s) > 0 for s > 0. In fact, g(u,v) = ||v||“v sat-
isfies (3.10) with h(s) = s* and condition o € [0, 1%;) in Theorem 3.1.2
corresponds to the condition (3.11) below.

Theorem 3.1.3 ([B1], Theorem 4). Let u € W2>=(R,;R") be a global so-
lution of (3.9) with g satisfying (3.10). Assume that there exist ¢ € w(u),
n > 0 and a nonnegative, concave, nondecreasing function © : Ry — R,
such that (KLI) holds. Assume that ©(s) < cy/s for some ¢ > 0 and all
s > 0 small enough and that

s+ 1/0(s)h(O(s)) € L},.([0, +00)). (3.11)
Then u has finite length and, in particular,
i [a(t)]| + ult) — ¢ = 0.

The proof of this theorem follows the idea from [19] but we show that this
problem fits in the abstract framework described in the previous chapter. In
fact, we have rewritten (3.9) as a first order equation on the product space
and we have shown that the function

E(u,v) = %Ilvll2 + E(u) + e (g(u, VE(u)), v)
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is a strict Lyapunov function for the equation and that the generalized
Lojasiewicz inequality (GenLlI) is satisfied with © replaced by the function
O(s) = O(s)h(O(s)).

In Theorem 3.1.3 we still assume that ||g(u, v)]|| lies between two multiples
of a function A(||v|)||v] for all v € R™ (similarly to Haraux and Jendoubi
[36]). In [B3] we further investigated which assumpions on the damping
function g are important and which can be relaxed (primarily for a damped
wave equation) and we ended up with different estimates from above and
from below.

(e) Let E € C*(R",R) satisfy (KLI) with a function © : [0,1) — [0, +00)
Which is nondecreasing, sublinear (O(s+1t) < O(s)+©O(t)), and it holds
that § € L},.([0,1)) and 0 < ©(s) < ¢y/s for all s € (0,1) and some
c > O.

(g) The function g : R® x R" — R" is continuous and there exists 7 > 0
such that

(g1) there exists Cy > 0 such that ||g(w, 2)|| < Cs||z]| for all ||z]| < T,

w € R”,

(g2) there exists C5 > 0 such that Cs||z|| < [|g(w, z)|| for all ||z]| > T,
w € R,

(g3) there exists C5 > 0 such that (g(w, 2), z) > Cs||g(w, 2)||||2|| for all
w,z € R™

(h) For 7 from condition (g) there exists a function & : [0, +00) — [0, +00),
which is concave and nondecreasing on [0, 7] and satisfies

(h1) [lg(w, 2)[| = Al[z[)I[=] for all [|z]] <7, w € R",

(h2) the function s belongs to L((0, 7)),

W
(h3) the function ¢ : s — sh(y/s) is convex on [0, 72].

In fact, condition (g2) can be weakened to ‘g(w, z) # 0 for all z # 0’ which
together with (g3) yields (g(w, z),z) > 0 for all z # 0. This last condition
implies that © — 0 for any bounded solution, so we do not need any further
assumptions on g(w, z) for ||z]| > 7.
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Theorem 3.1.4 ([B3], Theorem 6.1). Let the functions E and g satisfy (e),
(2), and (h). Let u € W>((0, +00), RN) N W21 ([0, +00), R™) be a solution

loc

to (3.9) and let v € w(u). Then lim;_,, o (Jlu(t) — ¢|| + ||u(t)]|) = 0.

Under the same assumptions we obtained decay estimates in [B4, Theo-
rem 6]

Theorem 3.1.5 ([B4], Theorem 6). Let the functions E and g satisfy (e),
(), and (h). Let u € W((0, +00), R") N W2 ([0, +00),R™) be a solution

to (3.9) and ¢ € w(u). Then there ezists ty > 0 such that

+oo
U]+ u®) — ¢l + [ lal)ds < @@ —t), (12
t
holds for all t > ty, some Cy, Cy > 0 and

t 1 1 1
"0 =0 [ s 0= ewmeemt ¢

The proofs of these theorems are again based on the abstract results from
the previous chapter. This time, we work with the energy function

E(u,v) := ®(H(u,v)), H(u,v)= %IIUIIZ + E(u) + eh(|[v]) (VE(u),v)

and show that p

— & u(t), o) = [[a@)l,
which is the condition (2.8) from Theorem 2.2.2. In fact, this inequality can
be rewritten as

e ‘F(u7 'U)
Bt () - H(p.0) < (Hluo) 200 ()
||f1 (U, U)H
which is almost (GenLlI), in the denominator we have instead of F(u,v) its
first coordinate Fi(u,v) = —v (we denote © = Oh(0O) as above). Further,
we have shown that condition (2.18) from Theorem 2.3.4 is valid with a(s) =

©(s). To obtain decay estimates, we cannot apply Theorem 2.3.4 directly
since || F1|| in (3.14) can be much smaller than ||F||. However, it holds ([B4,

Lemma 8]) that
[ LR gy,

(u(s),v(s)))
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which is enough to do the remaining step in the decay estimates.

Let us remark that if g(u,v) = |[|v||*v (then A(s) = s*) and O(s) =
517% then Theorem 3.1.5 yields the same decay estimate as Theorem 3.1.2.
Further, we can obtain more delicate estimates in the logarithmic scale. By
[B5, Example 5.3, Lemmas 6.5, 6.6], if O(s) = s'~% and

h(s) = s*In"(1/s)(In"?In(1/s)) ... (In"* In...In(1/s)), (3.15)
on a neighborhood of zero, then for a < % we obtain

lu(t) — || < Ct =409 In~% (£) In~®(In(t)) . . .In~%(In. .. In(t)), (3.16)

_ _ m(1-0)
where g, = 172’5+a(170)

..., 'x € R we obtain

and for a = %, re=--=rj_1=1r1r; >1 rj,

u(t) — || < Cln' " (In...Int)) In~"* (In...In(¢)) ... In""*(In...In(t)).

If we have a direct estimate of ||u|| by the potential E due to special
structure of E (see (3.17) and Example 3.1.7 below), we get better decay
estimates by the following theorem.

Theorem 3.1.6 ([B4], Theorem 7). Let the assumptions of Theorem 3.1.5
hold and let

O(|E(u) — E(p)]) = c[VE| for all u € B(gp,n).
Moreover, let v be a nondecreasing function satisfying
WIEw) = B(@)]) = lu— ¢l for all ue N(p). (3.17)
Then
[a(t)] < CVo Mt —to) and |u(t) — o] < Cy(7'(t —to)),  (3.18)
holds for all t > ty and some C' > 0, ¢ defined as in (3.13).

Example 3.1.7. If we consider
i+ g(u,v) + pllul"u =0, p=2
which corresponds to E(u) = ||ul|?, then we have

O(E(u)) < c|VE(u)[| < CO(E(u))
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with ©(s) = 517%, i.e., the Lojasiewicz inequality holds with 6 = i. Moreover,

(3.17) holds with ~(s) = sv. Then, for lg(u,v)|| > h(]|Jv|D||v]| = [Jv||*T" we
have ,
Ju(t)]] < Ot~ T2rFat0, (3.19)

which is better estimate than (3.8). For the function h given by (3.15) we
obtain

lu(t) — ¢ < Ot THer ) I~ () In"(In(t)) ... In"%(In...In(¢))?777,
(3.20)

where g; are as in (3.16).

In [35], Haraux has found optimal decay estimates for the damping func-
tion g(u) = |u|’u and E(u) = ||ul|®. It follows that the estimate (3.19) is
optimal only for p = 2. Optimality of the estimates for general F is open.

3.2 Infinite-dimensional case

In this section we study convergence of solutions to the second order evo-
lution equation (3.1) in infinite-dimensional spaces. In contrast to finite-
dimensional case, well-posedness of the problem is not always easy to proof.
This is not a crucial problem for the following results since they consider
only one trajectory. On the other hand, well-posedness implies that wy,(U) C
Cr(F) = S x {0}, so it reduces the set of points where E should satisfy the
Kurdyka-Lojasiewicz—Simon inequality and also some methods of verifying
the precompact range condition need well-posedness. However, in many ex-
amples one can show wy(U) C Cr(F) or @(t) — 0 ad hoc. The following
criterion applies in a large class of problems (in fact, the *-norm in (3.21)
can be replaced by any weaker norm).

Theorem 3.2.1 ([B2], Theorem 2.8). Let g € C(V x H,V'), E € C*(V)
and assume that there exists a nondecreasing function h : (0,4+00) — (0, +00)
such that

(g(u, v), v)yry = h([|v]].) (3.21)
for allu, v € V, v # 0. Let u € CY (R, V)N C*Ry, H) be a classical

solution to
w(t) + g(u(t),u(t)) + E'(u(t)) =0, w(0)=uyeV, u(0)=u, € H (3.22)
such that (u, ) is precompact in V x H. Then lim,_,, ||a(t)]| = 0.
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In the article [60] where Simon used for the first time the Lojasiewicz
inequality in infinite-dimensional setting, he also proved a convergence result
for a class of second order evolution equations with linear damping. Jendoubi
[46] (see also [47]) proved convergence of solutions to

i+ Bu+ Au = f(x,u)

where A is a self-adjoint linear operator associated with a coercive bilinear
form on V < L*(Q) and B is a bounded linear operator. The function
f is analytic and no global growth assumptions on f. On the other hand,
precompactness of range in WP N WP was needed. In 1999 Haraux and
Jendoubi [37] extended the convergence result to weak solutions precompact
in V x L?. Then the nonlinearity f is assumed to be analytic and satisfy
f € CY(B, V") for some ball B C V, which is in fact a growth condition. If
A = A, then f satisfying

0f(z,8)| < COL+[s])  withy >0, (N —2)y <2 (3.23)

are admissible. Moreover, they allowed the damping operator B : V. — V'’
to be nonlinear (but still satisfying (B(v),v)y v > c|[v||?, so the damping
is not weak). Moreover, they have shown that every bounded solution has
precompact range in V' x L2.

An abstract wave equation with linear damping was cosidered in Chill,
Haraux and Jendoubi [24], where convergence to equilibrium was proved for
precompact solutions to (3.1) with g(u) = yu if E satisfies the Lojasiewicz—
Simon inequality and E”(u) = M’(u) satisfies condition (E2) below. Rate of
convergence is also estimated by an exponential or a polynomial (depending
on the Lojasiewicz exponent € of the energy E).

A wave equation with weak damping was studied in 2009 by Chergui [20]
and convergence to equilibrium was shown for Hj x L?(2)-bounded solutions
to (3.2) with Dirichlet boundary conditions, g(u;) = |u¢|*us and f analytic
satisfying f(z,0) € L>*(Q) and (3.23) if N > 2. The exponent « is assumed
to belong to [0, 10%0) (0 is again the Lojasiewicz exponent of the energy F)
and to satisfy a < ﬁ if N > 3. In fact, Chergui shows that under these
assumptions on f, the Lojasiewicz—Simon inequality holds with an appropri-
ate # and that bounded solutions are in fact precompact. Once he has these
facts, he proves convergence to equilibrium.

In 2011, Ben Hassen and Haraux [13] proved convergence to equilibrium
and decay estimates for an abstract wave equation (3.1) with E bounded
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from below and weak nonlocal damping g : V' — V' with power-like behavior

(g(v), Vv v > cr]jv]|*2, vev,

N (3.24)

lg()llv: < eallvl|*™,  ve H.
It is assumed that E satisfies the Lojasiewicz—Simon inequality, condition
(E2) below and a kind of inverse Lojasiewicz inequality

|E (uw)|lyv: < cE(u)” for some v € [1/2 —a(1—0),1— 0] (3.25)

in a ball B C V containing the whole solution u (then no precompactness of
the trajectory is needed).

In 2013, Aloui, Ben Hassen and Haraux [2]| generalized Chergui’s result
from [20] to abstract wave equations (3.1) with a large class of damping
operators ¢ similar to [13], in fact they replaced the second condition in
(3.24) with

a+1

lg@)llv: < (g(v), v)y7s, veV,

which is a similar condition to (G1’) below (here E is not bounded from
below and precompactness of the range is asssumed).

In [B3] we have generalized the result by Chergui [20] to abstract wave
equations and to more general damping functions. Our assumptions on £ are
the same as in [24] but we allow more general Kurdyka-Lojasiewicz—Simon
inequality instead of Lojasiewicz—Simon inequality. Our assumptions on the
damping function g are similar to those in finite-dimensional case. Basically,
on a neighborhood of zero ¢ is bigger than a concave function A which is
related to the function © from the Kurdyka-Lojasiewicz—Simon inequality
by condition (h2) below. This relation becomes o < ﬁ in Chergui’s case.
In contrast to the finite-dimensional case, a growth condition in infinity is
needed, see (g3). This condition implies g : V' — V",

In [B3, Theorem 2.1] we stated a convergence result for a ‘scalar-valued’
damping function g(u)(x) = g(|@(z)|)u(x) and in [B3, Theorem 5.1] for
a ‘vector-valued’ (but still pointwise) function g(u,u)(z) = G(u(z),u(x)),
which may depend on u (not only u). Here are the assumptions and the
result.

(E) Assume that £ € C?*(V) satisfies:
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(E1)

(E2)
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there exists a function © : [0,1) — [0,+00) which is nonde-
creasing, sublinear (O(s +t) < O(s) + ©(t)), and it holds that
s € L,.([0,1)) and 0 < O(s) < ¢y/s for all s € (0,1) and some
¢ > 0 and such that £ satisfies the Kurdyka-Lojasiewicz—Simon
gradient inequality with the function © in a neighbourhood of the
critical points of E, i.e., for each p e N :={¢p € V: E'(¢) =0}
there exist n, C' > 0 such that

IE"(w)ll« = CO(E(u) — E(@)]), u € By(e,mn);

for all u € V, the operator LE"(u) € L(V') extends to a bounded
linear operator on H and sup |[|[KE"(u)||rmy is finite whenever u
ranges over a compact subset of V.

(G) The function G : R® x R® — R™ is continuous and there exists 7 > 0
such that

(G1)
(G2)

(G3)

(G4)

there exists Cy > 0 such that |G(w,z)| < Cslz| for all z €
BRn(O,T), w e Rn,

there exists C3 > 0 such that Cs|z| < |G(w, 2)| for all z € R™ \
BRn(O,T), w € Rn)

if N = 2 then there exist Cy > 0, a > 0 such that |G(w, 2)| <
Cy|z|¥|z| for all z € R™ \ Bge(0,7), w € R™; if N > 2 then the

inequality holds with o = %5,

there exists C5 > 0 such that (G(w, z), z) > C5|G(w, 2)||z| for all
w, z € R™

(H) For 7 from condition (G) there exists a function h : [0, +00) — [0, +00),
which is concave and nondecreasing on [0, 7] and satisfies

(H1)

(H2) the function s —

|G(w, z)| > h(|z|)|z] for all z € Bgn(0,7), w € R™,

m belongs to L'((0, 7)),

(H3) the function ¢ : s — sh(y/s) is convex on [0, 72].

Theorem 3.2.2 ([B3], Theorem 5.1). Let E and G satisfy (E), (G) and
(H). Let u be a strong solution to

i+ G(u,u) + E'(u) =0
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such that (u, @) has V' x H-precompact range and let p € wy(u). Then

i (o) = el + e = 0

In [B5] we have generalized the result from [13] to more general damp-
ing functions and E satisfying the Kurdyka-Lojasiewicz—Simon inequality
instead of Lojasiewicz—Simon inequality and we combined this result with
a previous one to weaken the assumptions on E (assuming on the other
hand precompactness of the trajectory). Conditions (E1), (E2) are similar
to (E1), (E2) (but on a larger set), condition (E3) together with (G4) gen-
eralizes (3.25) (let us mention, that in applications condition (E3) is often
satisfied with G(s) = C'y/s and in this case (G4) holds). Conditions (G3),
(G5) are the same as (H2), (H3) and conditions (G1), (G2) correspond to
(), (HY).

Our hypothesis below use the notion of admissible functions, which weak-
en the assumptions on functions © and h from (E1), (H). We say that
[ Ry — Ry is admissible if it is nondecreasing and there exists ¢4 > 1
such that for all s > 0 we have f(s) > 0 and sf’(s) < caf(s). It holds that
every nonnegative differentiable concave function is admissible with ¢4 = 1.
On the other hand, if f is admissible then f is C-sublinear, i.e. f(t + s) <
C(f(t) + f(s)) for some C' > 0 and all ¢, s > 0.

(E) Let E € C*(V), M = E' € CY(V,V*) and let B be a fixed ball in V.
Assume that:

(E1) FE is nonnegative on B and there exists an admissible function ©
such that ©(s) < Cey/s for all s > 0 and some Co > 0, F is
integrable in a neighbourhood of zero and

|M(uw)|l« > ©(E(u)), forallue B, (KLS)

i.e., I satisfies the Kurdyka-Lojasiewicz—Simon gradient inequal-
ity with function © on B.

(E2) There exists Cj; > 0 such that
(M (u)v,v),] < Cyllv||* forallu e B,veV,
(EB) There exists a nondecreasing function I' : R, — R, such that

|M(u)|« < T(E(u)), forallue B. (3.26)
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(é) The function g : V' — V* is continuous and there exists an admissible
function h such that

(G1) there exists Cy > 0 such that ||g(v)||, < Cy||v|| on V N B(0, R) for
any R > 0 with C5 depending on R,
(G2) {g(v), v)v=v = h(|lol)]lv]]* on V,

(G3) the function s — m belongs to L'((0,1)),

(G4) there exists Cr > 0 such that I'(s) < Cr h(é/(i)) on (0, K| for any
K > 0 with Cg depending on K,

(G5) the function 1 : s — sh(y/s) is convex for all s > 0.

Theorem 3.2.3 ([B5], Theorem 2.1). Let E and g satisfy (E) and (G). Let
u be a strong solution to (3.1) and there exists t; > 0 such that u(t) € B for
all t > t1. Then there exist ¢ € B and tg > 0 such that

E(u(t)) <207t — to), (3.27)

lut) — ¢l < ST (t - to)), (3.28)

[a@®)]| < V¥ = to)) (3.29)

hold for all t > to, some Cy, Cy > 0 and ®, ¥ defined by (3.13)

Let us mention that if ©(s) = cs'™?, h(s) = s then we are in the
situation from [13] and the convergence rate we obtain is the same as in
[13]. However, we can consider more general damping functions or we can
get better decay estimates in the logarithmic scale as in finite-dimensional
case. See Example 3.1.7 above or Example 3.2.8 below.

The next result combines the method from [20] (resp. [B3]) and [13] to
obtain decay estimates for relatively compact solutions with (KLS) satisfied
only on a small neighborhood of some ¢ € wy (u).

Theorem 3.2.4 ([B5], Theorem 2.2). Let u be a strong solution to (3.1)
with (u, @) having V x H-precompact range and ¢ € wy(u) with E(p) = 0.

Let (E) and (G) hold with the following changes.
e (E1), (E3) hold with B replaced by By (p,d) for some § > 0,

° (EQ) holds with B replaced by ‘any compact subset of V' with Cy; de-
pending on the subset’,
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e h is admissible with cy =1,

Then limy— 1 ||u(t) — ¢llv = 0 and there exists ty > 0 such that the decay
estimates (3.27), (3.28) and (3.29) hold for all t > ty, some Cgp, Cy > 0 and
O, U defined in (3.13).

The assumption (G) on a nonlocal damping function are not met by all
local damping functions satisfying (G). However, if we replace (G1) by (G1')
(G1') for every R > 0 there exists a convex function v : R, — R, with
property (K) and such that v(0) = 0, lim,_, ;o 7(s) = +00, Y(s) > cs?
for some ¢ > 0 and all s small enough, and v(||g(v)|l.) < (g(v),v)v+v

on VN B(0, R),

then Theorems 3.2.3, 3.2.4 remain valid and the new assumptions follow from
(G) as states the following Proposition. Similar condition appears in Aloui,
Ben Hassen and Haraux [2].

Proposition 3.2.5 ([B5], Proposition 3.1). Let G : RN — RY satisfy (G),
(H1) and define (g(v))(x) := G(v(x)) for v € V. Then g(V) C V* and g
satisfies (G) with (G1) replaced by (G1').

In [B5] this Proposition is formulated and proved for G independent of u
(depending on u only), but it remains valid with the same proof if G depends
on u.

Theorem 3.2.6 ([B5], Theorem 2.3). Theorems 3.2.3 and 5.2.4 remain val-
id if we replace (G1) by (G1).

As in finite-dimensional case, if we have direct estimates for ||u — ¢|| by
E(u), then we can obtain better convergence rates.

Corollary 3.2.7 ([B5], Corollary 2.4). Suppose that the hypotheses of Theo-

rems 3.2.3, 3.2.4 or 3.2.6 are satisfied. Let a: Ry — R, be a nondecreasing

function such that a(E(u) — E(p)) > ||lu—¢|| on a neighborhood of ¢. Then
lu(t) = oll < a2T7(t — to))

holds for some tg and all t > tg.
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Example 3.2.8. [t is shown in [13] that the following two problems fit into
the framework considered in the theorems of this section: the Dirichlet prob-
lem

uy + g(ug) — Au—Mu+ |ufflu=0 inRy xQ, (3.30)
u(t,z) =0 on Ry x 09, '
and the Neumann problem
uy + g(ug) — Au+ [ulflu=0 n R, xQ, (3.31)
Zu(t,z) =0 on Ry x 09, '

where Q@ C RY is a bounded domain with smooth boundary, \; is the first
eigenvalue of —A and p > 1 with (N—2)p < N+2. The corresponding energy
functions E satisfy the Lojasiewicz inequality with 0 = zﬁ (s00(s) = Cs'7?)
on any bounded subset of V' and any strong solution to (3.30) is bounded in V.
Moreover, T'(s) = Cy/s satisfies (E3) and (G4) and we have E(u) > c||ul/%™.

In contrast to [13] we can obtain convergence for a larger class of damping
functions, e.g. for (g(v)) = G(v(z)) with G having different growth/decay in
each direction and also for |s| large and |s| small, e.g.

s|s, s> 1,
“ €10,1
G(s) |S|a vl (3.32)
‘S‘ 237 s € [_170)7
‘S|b287 s < _1,
with 0 < ay < az < L, by, by < 5 if N > 2. Denoting A = max{ay, az} we
have 1
Ju(t) — @llv < Ct™ @1, ¢ >t

by Corollary 3.2.7. We can see that the rate of decay depends on the growth
of G near zero only.
We can also consider

?sIn"(1 <1
G(s) = || X n'(1/]sl)  fs[ <1, (3.33)
cls|’s |s| > 1,
with b < ﬁ, O<a<i reRora=2% r>1. Inthis case we obtain

more delicate decay estimates in the logarithmic scale, namely

_1 r
lu(t) = ¢llv < C (U7t 1)) 7 < OF @t In @I (1), 4> b,
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Let us replace |ulP™ u in (3.31) with f(u) defined as

(dl—S)pil(S—dl), S<d1,
f(U) = O, S € [dl,dg],
(8 — dg)p_1<$ — dg), s> ds

for some dy < dy. Then all the assumptions remain valid except that we do
not have E(u) > c|lu|%. In this case, we apply Theorem 3.2.6 instead of
Corollary 3.2.7 and obtain

u(t) — || < Ct @t t > to
@

for the damping function G given by (3.32). For G given by (3.33) we get in
case a < %

lu(t) — @ll < Ct™m = w1 (), ¢ >t
and in case a = ]lo
lu(t) = ¢ll < CIn'™"(t), =t
See [B5, Examples 5.2, 5.3] for details.

Nonautonomous case.
Further generalizations of the above results consider non-autonomous
equations of the type

i+ a(t)g(u) + E'(u) = f(t) (3.34)

in finite-dimensional or infinite-dimensional settings. In order to obtain con-
vergence to an equilibrium, we need to assume that f is not too large and a
is not too small.

First results of this kind are due to Chill and Jendoubi [25] and Ben
Hassen [12] for g(s) = s, a(t) = 1 (in Hilbert spaces) and Cabot, Engler and
Gadat for the case a(t) > ag, g(s) = s, f =0 (in R" assuming that Cr(VE)
is finite).

In 2013, Haraux and Jendoubi [40] proved convergence to equilibrium
and decay estimates in R" for f = 0, g identity, E satisfying the Lojasiewicz
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inequality (LI) and a(t) > (1 +¢)7?. Also vector-valued functions a were
considered.
The case a(t) = 1, f # 0, g nonlinear was studied in 2011 by Haraux [35]

for g satisfying
lg()[l < Kffol**, (g(v),v) = clv]|** (3.35)
and E € W*T°(H) satisfying
IE()]| < K|, (VE(u),u) > clv]|**? (3.36)

on bounded sets in a Hilbert space H. Haraux’s result gives convergence
and optimal decay estimates for exponentially decaying functions f and for
arbitrarily large a (i.e. very weak damping).

Theorem 3.2.9 ([35], Theorem 6.1 and 6.2). Let By, By be two closed balls
in a Hilbert space H, g € WY*(By,H), E € W?»*(By,R), f € C(R,,H)
and u € C*(Ry, H) be a solution to (3.34) such that (u(t),u(t)) € By X By
for allt > 0. Assume that (3.35) and (3.36) hold for allu € By, v € By. Let
us define

£(t) = Sl(0)|P + B(u(r)).

]foz<% and/\zmﬂl)_# then

(a+1)(B+1)

[EW| < Ct™F=, t>1.

]faZ%and)\Zl—i-éthen

IEQ)| < Ct =, t>1.

Ben Hassen and Chergui [14, Theorem 1.6] showed convergence to equi-
librium and decay estimates in R™ without assuming a special structure of
E (assumption (3.36) replaced by the Lojasiewicz inequality (LI)) and for
polynomially decaying f. Then the damping cannot be too small (« < 10%0).
For E(u) = |Jul|®*!, the decay estimates in [35] are better than those in [14].

Theorem 3.2.10 ([14], Theorem 6.1). Let g € C(RY,RY), £ € C*(RY,R),
f e ORLRY) and u € WHH(R ., RY) be any solution to (3.34) Assume
that g satisfies (3.35) for all v in a bounded sets (with ¢, K depending on the
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set), E satisfies (LI) for any ¢ € S with 6 € (0, %], n > 0 independent of p,

and f satisfies
C

[F@O] < 1t oo t>0

for appropriate C > 0 and 6 > 0. If a < % then there exists p € S such
that limy_ oo ||4(t)]] + ||u(t) — @] =0 and

|lut) =l <CA+t)7", t>0

. . . 1—(a+1)(1-0) 0
with M= 1IN {m, Ot_Jrl}

In [39], Haraux and Jendoubi proved weak convergence of solutions to
At + aAiu+ VE(u) = f(t)

with a selfadjoint bounded linear operator A on a Hilbert space and a convex
potential F.

The case of nonconstant a and f # 0 was considered by Jendoubi and May
[48] for convex potentials F on a Hilbert space and g being identity. Weak
convergence was obtained for appropriate polynomial decays of f and a (see
[48, Theorem 1.3]). The case of nonlinear ¢ and (nonconvex) E satisfying
the Lojasiewicz inequality (LI) in R™ was solved in 2015 by Balti [4].

Theorem 3.2.11 ([4], Theorem 1.2, Remark 1.7). Let E € W2™(RY),

loc

=
L> be a positive function, u € I/V21 N L®(R,,RY) be a solution to (3.34
0,

loc

Let S = argmin E and E satisfies (LI) for all ¢ € S with a fixed 0 € (
and C > 0, n > 0 depending on ¢. Let g satisfies (3.35) on RY,

d
101 < e

)-
3]

forallt >0

for some d, 6 > 0 and let

o)l 2 e

for some ¢ > 0 and B > 0 such that a + B € (0,min{;%;,6}). Then there
exist o € S and M > 0 such that

lu(t) — || < Mt™",  forallt >0,

forallt >0

where

0= (a+B)(1-0) §—(a+B)
’u_mm{(l—H)(a—l—Q)—l’ a+1 }
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3.3 Appendix to second order problems

3.3.1 Well-posedness and existence of global solutions

Although the convergence results in Section 3.2 hold for ill-posed problems
as well, we list here some results on well-posedness and global existence for
(3.1).

A well-posedness result which includes also nonmonotone damping func-
tions can be found in Haraux ’87 [33, Theorem I1.2.2.1]. It concerns a problem

uy + Lu+ g(u) + f(u) = cuy + h(t, ) (3.37)

with V < H = L*(Q), Q C RY bounded domain, L : V — V' being a linear
operator associated with a coercive bilinear form on V', the nonlinearity f €
C1(R) is such that u(-) = f(u)(-) maps V into H (i.e. so called subcritical
case) and it is Lipschitz continuous on bounded subsets of V. Function
g : R — R is assumed to be continuous and nondecreasing with ¢g(0) = 0,
h € L'([0,T],H) and ¢ > 0 (this means that the damping function s
g(s) — sc is not neccessarily nondecreasing).

Global existence for (3.37) is shown in [33, Theorem I1.2.2.2] under addi-
tional assumptions

C::inf{/ f(2)dz + Mu? : uER} > —00
0

for some M € R and if 2 has infinite measure, then C' > 0. This assumption
means that the corresponding energy E given by (3.3) is bounded from below.

If the energy is not bounded from below, global existence depends on
the interplay between the source term f and the damping term ¢. In 1994,
Georgiev and Todorova [29] studied (3.37) with L = —A, V = H}(Q), f(u) =
—|uPtu, g(v) = [v|™ v, h =0, ¢ = 0 for p < &5 (which corresponds to
subcritical case). They have shown global existence for all initial values in
V' x H for p < m, blow-up of solutions with negative initial energy for m < p.

Levin, Park and Serrin in 1998 [52] studied global existence in subcritical
case for source and damping terms depending on z (resp. x and t):

u + g(t, x,up) — Au= f(z,u) (3.38)

with Q = RY, g satisfying ¢g(¢,2,v)v > 0 and some estimates from below
(no monotonicity needed). They have shown that local existence implies
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global existence, whenever so called continuation proprerty holds, i.e. if
every bounded local solution can be continued. However, this continuation
property is known (according to [52]) only for g(t, z,v) = a|v|™ v.

In supercritical case, global existence for any initial data (and existence
of a global attractor) was proved by Feireisl in 1995 [27] for any bounded
regular domain 2 C R? and strictly increasing g € C*(R) depending only on
u; satisfying g(0) = 0 (no additional assumptions at zero) and for appropriate
growth conditions of g and f in infinity (f independent of z).

Serrin, Todorova and Vittilaro in 2003 (see [59]) proved local and global
existence in a more general (supercritical) case (g depending on ¢, x, f de-
pending on x, Q C RY) for compactly supported initial data, under some
growth and regularity conditions on f and g, g increasing in the third vari-
able and having the same power-like growth near zero and infinity. Further
results are due to Radu (see [57], [58]).

Benaissa and Mokeddem in 2004 (see [11]) showed global existence for
Q =R", f(z,u) = |[ulP"'u — N\?(x)u (allowing also supercritical growth), g
nondecreasing depending on u, only and satisfying c;|[v|"/™ < |g(v)| < ea|v|™
for small v and c3|v| < |g(v)| < eq|v]” for large v (for appropriate positive
constants ¢;, r, m, p) and sufficiently small initial energy. They also prove
decay estimates for the energy.

Global existence for an abstract problem i+ A(u) + B(t)u+ G(u) = f(t)
in Banach spaces was proved by Biazutti in 1995 ([15]). Here B : V — V' is
an operator associated with a (uniformly in ¢) positive definite bilinear form,
so this part of damping is stronger than linear. On the other hand, G is a
nonlinear operator of lower order which can be negative near zero, so in fact
there can be negative damping for small values of .

3.3.2 Precompactness of bounded solutions

In this subsection we discuss the assumption on precompactness of solutions.
Of course, in finite-dimensional case, all bounded solutions have precompact
range. The same implication holds in some infinite-dimensional problems.

An abstract result by Webb [61] states that if (S(t)):>0 is a dynamical
system on a metric space X which can be written as a sum of S;(t), Sa(t)
with lim;_, ;o [|S1(¢)|| = 0 and S3(t) compact for all ¢ large enough, then all
bounded orbits are precompact. Another result by Webb says that if T is a
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dynamical system which is bounded on bounded sets and satisfies
t
T(t) = S(t) +/ S(t — s)BT(s) (3.39)
0

with S that can be splitted as above and B a bounded operator on X, then
bounded orbits of T" are precompact. In fact, the second results applies to
perturbed problems — if A generates a linear semigroup S, then A + B
generates a semigroup 7' satisfying (3.39). Unfortunately, this result can be
applied only if we have well-posedness.

In 1980 Webb applied this perturbation result to a damped wave equation

uy — Auy — Au = f(u)

on a smooth bounded domain with Dirichlet boundary conditions with f €
C'(R), |f'| £ M, limsupy, . f(x)/x > 0and f(0) = 0 (see [62]). Let us
mention that conditions on f imply that the energy is bounded from below.
Webb proved that for any initial data, there exists a global solution and it
has precompact range.

In 1999, Haraux and Jendoubi [37] showed precompactness of bounded
solutions of a linearly damped equation

U + CUp — Au = f(I,U)

with 9, f only locally bouded and globally satisfying |0, f(x,u)| < C(1+ |u|®)
for some C' > 0, o < % (which means that the energy is not neccessarily
bounded from below but the growth is subcritical).

In 2009, Chergui [20] proved precompactness of bounded solutions under
the same assumptions on f but with a nonlinear (possibly weak) damping
g(us) , g : Ry — R, increasing, g~! uniformly continuous. In fact, Cher-
gui has shown that the right-hand side h(t,z) = f(x,u(t,z)) satisfies the
assumptions of a criterion by Haraux [31, Theorem 4.1].

Ben Hassen and Chergui in 2011 [14] further generalized this result to a
non-autonomous equation

Ut + |ut|aut — AU + f(u) = h(t,x)

Aloui, Ben Hassen and Haraux 2013 [2] proved precompactness of bound-
ed trajectories for a large class of abstract semilinear problems

i+ g(u) + Au+ f(u) = h(t),
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where A : V' — V' is the duality mapping, f = VF : V — V' is a gradient
field and g : V' — V' a nonlinear monotone damping operator with f being
Lipschitz continuous on bounded sets from W to H for some W,V CC W C
H.

The compactness results from [20] and [2] can be helpful for verifying the
assumptions of Theorems 3.2.2 — 3.2.6, also for damping functions that are
not covered by convergence results in [20] and [2].

3.3.3 Functions satisfying the Lojasiewicz inequality

In the results of Sections 3.1, 3.2 we assume that E satisfies the Lojasiewicz
gradient inequality (or Lojasiewicz—Simon, Kurdyka—FLojasiewicz—Simon in-
equality). Now we present some sufficient conditions on E to satisfy these
gradient inequalities.

By Lojasiewicz [53], any analytic function E : Q C R™ — R satisfies (LI).
Let us first stay in finite-dimensional spaces. In 1992, Kurdyka has shown
that (KLI) is satisfied by any function E, whose graph is a set belonging to
an o-minimal structure. An example of an o-minimal structure are semial-
gebraic sets, i.e. level sets of polynomials of several variables or their finite
intersections or unions. In particular, the graph of E(z,y) = \/z* + y* can
be written as {(z,y,2) € R*: 22 —a? —y? = 0,2 > 0}, this set is semial-
gebraic. The set of polynomials can be replaced by other sets of functions
to obtain other o-minimal structures, e.g. analytic functions. More on this
topic can be found in [26]. Bolte et al. [16] gave some characterizations of
functions satisfying (KLI) and also an example of a smooth convex function
which does not satisfy (KLI) (several additional conditions to convexity are
known that imply (KLI), see Section 4 in [16]).

In 2003, Chill [21] proved many sufficient conditions for one-dimensional
case £/ : R — R to satisfy (LI), also with estimates of the Lojasiewicz expo-
nent. These results are not interesting for the convergence of one-dimensional
ODE’s, but they are important since Chill showed that if (LI) is satisfied on
a so called critical manifold (which is often finite-dimensional), then it holds
on the whole neighborhood of a critical point (even in infinite-dimensional
case). We come back to this result below. Concerning one-dimensional case,
Chill proved that if f'(z) = g(x)+o(]x —alP) with |g(z)| = ¢|z—a|P, then (LI)
holds with 0 = =7 and if f € C*(B(a,9)), fM(a) # 0 and f9(a) = 0 for
j=1,2,...,k—1, then (LI) holds with § = % Chill also gave some estimates
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of the Lojasiewicz exponent for products and compositions of functions (e.g.
for © — f(e(x)) where ¢ is a dipheomorphism on 2 C R™ and f satisfy
(LI)).

Concerning generalizations to infinite-dimensional spaces, in 1983 Simon
[60] proved (LI) for a class of analytic functions in C*#(Q), in particular

= [, E(z,u(z), Vu(z))de with E analytic in the second and third

varlables and Satlsfylng some further properties.

In 1998, Jendoubi [47] proved the Lojasiewicz—Simon inequality (LSI)
in L?>-norm for E(u) = [, 3(Au,u) + F(z,u)dz with a linear operator A
associated with a blhnear form on a subspace V' C L? and an analytic non-
linearity F'. In 1999, Haraux and Jendoubi [37] proved (LSI) for the same F
in V’-norm, i.e.

|E(u) = E()['"" < CIIE (u)lv,

which allows to work with weak solutions of damped wave equations.

In 2001, Huang and Tak&c [45] proved (LSI) in the abstract setting. In
particular they showed that if £ : V — R is analytic and E" () : V — V' is
a Fredholm operator, then (LSI) holds on a neighborhood of ¢. Haraux,
Jendoubi and Kavian ’03 [41] proved (LSI) for some nonanalytic energy
functions. In particular for Au + f(z,u) on V. C L*(Q), (4, D(A)) linear
self-adjoint with compact resolvent, f(z,s) = 9,F(z,s) with F € C? and
v = [ F(z,v(x))de € C*(V). If ||lul|ly < C|E'(¢ + u)|, then (LSI) holds
with ¢ = 5. Under some additional growth assumptions on f (no analytic-
ity) (LSI) holds with § = —=. They also considered an abstract setting: if

E"(p):V = V'is an 1somorphlsm then (LST) holds with = 1.

In 2003, Chill ([21]) proved that it is sufficient to verify (LI) on so called
critical manifold. Here is the result.

|>—A

Theorem 3.3.1 ([21], Theorem 3.10). Let V' be a Banach space, U C'V an
open subset and E € C*(U). Let o € V satisfy the following hypotheses:

(L1) E'(p) =0 and Vo = Ker E"(p) is a complemented subspace, i.e., there
exists a bounded linear projection P on V', such that Vo = P(V). De-
note V, = Ker P.

(L2) There exists W — V' such that the adjoint P" of P leaves W invariant,
E' € CHUW) and E"(p)(V)=V/NW.
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(L3) E satisfies (LSI) on the critical manifold S, with a Lojasiewicz expo-
nent 0 € (0, %], i.e. there exist C', n > 0 such that

|B(u) = E(@)[" < CIE'(u)llw (3.40)
holds for all uw € S,, where S, = {u € By(p,n): E'(u) € Vj}.

Then E satisfies (3.40) for allu € By (p,n) and a fivred 7 > 0 (with a different
constant C' > 0 but the same 0).
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