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The finger can point to the moon’s location.
However, the finger is not the moon.

To look at the moon, it is necessary to gaze beyond the finger, right?”

— Hotei, The laughing Budhha

P R E FA C E

In recent years there has been a flurry of activity regarding bounds
on the extension complexity of combinatorial polytopes. This work
covers some of those results in which I took part. At present, this
document is part of my habilitation thesis and as such I do not make
any attempt to be comprehensive about research on extended formu-
lations. To a knowledgeable reader it may be glaringly obvious that
some important aspects of the recent research related to extended
formulations are missing from this work. In particular there is essen-
tially no discussion about approximate extended formulations and
semidefinite extended formulations. Hopefully a future version of
this document will discuss these aspects.

This document – in its current form – is best read as a companion
and commentary to ten of the research articles that I have coauthored.
These articles are listed after the table of contents. It has been my in-
tent to disassemble and reassemble the contents of these papers to
provide the reader with a coherent view of my research in recent
years. While individual tastes may differ regarding the value of these
lines of inquiry, I have attempted to sew them with a common thread.
Naturally, this document also contains results in which I played no
part and I have attempted to cite the correct source for those state-
ments. I take full responsibility for any omissions and misattributions,
and hope that if a reader notices such an issue they will kindly notify
me.

The reader may also notice that this document does not contain
any lemmata or theorems, just a sequence of propositions and a few
exercises. This choice was made to keep the size of the document
reasonable for a habilitation thesis. Listing propositions and exercises
had an obvious benefit for me: I could get away with listing only
some of the proofs. I have attempted to provide a link to the actual
proof where I could find one, but for some propositions and exercises
I am not aware of any text that lists them in the same form as stated
in this work. This does not mean that they are difficult to prove or are
novel, but often a correct proof would require technical discussions
that we do not wish to have. I can only hope that the exercises and the
propositions that have been stated without proofs are simple enough
for someone with basic knowledge of the material. I am also hopeful
that a future revision of this work will include the missing proofs.

In its present form, this work assumes a relatively high level of
familiarity with polytopes and communication complexity. This does
not mean that the reader needs to be an expert in these fields. It is
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my estimate that someone pursuing a PhD in theoretical computer
science or a related field should be able to follow the text, fill missing
proofs, and understand the presented propositions.

It is my hope that anyone interested in extended formulations finds
this document helpful. Any comments on how to better this text is
most welcome.

Hans Raj Tiwary
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"The time has come," the Walrus said,
"To talk of many things:
Of shoes–and ships–and sealing-wax–
Of cabbages–and kings–
And why the sea is boiling hot–
And whether pigs have wings."

— The Walrus and The Carpenter [17]
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0
I N T R O D U C T I O N

history

This thesis deals with recent advances in the theory of extended for-
mulations, with emphasis on linear and exact formulations. A linear
and exact extended formulation for a polytope P is another polytope
Q such that P is a projection of Q. If one wants to optimize a linear
function over P one can also obtain the same result by optimizing
instead over an extended formulation with the weights modified ac-
cording to the projection matrix that produces P from Q (cf. Chapter
3). Many polytopes that require an exponential number of facets to
describe can be obtained as a projection of a higher dimensional poly-
tope with just polynomially many facets [19, 39, 62]. The importance
of extended formulations, thus, is clear for combinatorial optimiza-
tion.

The directions that are explored in this thesis come from the re-
verse perspective. In the late eighties Swart attempted to prove that
PTIME = NP by writing a polynomial sized linear program (LP) for
the traveling salesman problem. Due to the large size of the LP and
its complicated nature, it was difficult to find an error in the con-
struction. In a groundbreaking paper Yannakakis showed that any
symmetric1 LP whose feasible region is an extended formulation for
the TSP polytope must have exponentially many facets, thus proving
that Swart’s LP was erroneous. Whether or not the requirement of
symmetry could be removed was left by Yannakakis as an open prob-
lem. Yannakakis believed that asymmetry should not help one avoid
exponential size [63].

This question remained dormant for about two decades when Kaibel,
Pashkovich, and Theis showed that asymmetry does play an impor-
tant role in reducing the size of an extended formulation [40]. They
gave explicit polytopes whose symmetric extended formulations re-
quired exponential size but for which asymmetric extensions of poly-
nomial size existed. Two years later Rothvoss showed that there are
0/1 polytopes that require exponential size extended formulations
[54]. These two results created a fresh interest in proving that symme-
try did not help for polytopes related to NP-hard problems such as
MAX-CUT or TSP. Soon afterwards in a paper coauthored by Fiorini,
Pokutta, Massar, de Wolf, and the present author, it was shown that
the TSP polytope requires exponential sized extended formulation
[27].

The final piece of the puzzle initiated by Yannakakis was supplied
by Rothvoss again who showed that even the perfect matching poly-
tope – which corresponds to the polynomial time solvable problem

1 The reader need not concern themselves with the meaning of a symmetric LP; it
suffices to think of it as a technical requirement that Swart’s LP satisfied.
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4 introduction

of identifying whether a graph has a perfect matching – also requires
exponential size extended formulations [55]. The rusults of Rothvoss
and Fiorini et al. created a flurry of activity for proving lower bounds
for extension complexity of polytopes. While Rothvoss’ result implied
that even “easy” problems may require large extended formulations,
the unconditional nature of the lower bounds – at least for “hard”
problems seemed to match the conventional conditional bounds rely-
ing on complexity assumptions such as PTIME 6= NP.

At this point the lines of equiry about bounds on the size of small-
est extensions of a polytope had branched into widely different direc-
tions. The notion of extended formulations was generalized to arbi-
trary conic lifts [33]; lower bounds were obtained for approximation
[9, 10, 18] and semidefinite extensions [12, 25, 46]; and connections
with physical theories [28] and information theory [8, 11] were dis-
covered. The previous list of citations do not do any justice to the
widely diverse results that have been obtained since then, and we
will not even attempt to have a comprehensive citation in order to
keep the focus on works where the present author has taken part.

summary and organization of the thesis

This thesis summarizes ten articles that the present author has coau-
thored and that relate to extended formulations. Out of the ten ar-
ticles six have appeared in peer-reviewed journals [1–3, 24, 26, 27].
The article [44] has been accepted for presentation in a peer-reviewed
coference, and [4, 30] and [60] are under peer-review.

This thesis is best read as a commentary to these ten accompanying
articles. The contents of these ten articles have been disassembled and
reassembled as smaller parts of a larger picture. The rest of thesis is
organized into three parts, each containing three chapters.

0.0.1 Part One: Ingredients

Part one of the thesis describes the basic objects that we deal with:
polytopes, communication complexity, and extended formulations. It
is the intent of the author to present the basic notions that are relevant
for the accompanying papers in a comprehensive way. We develop
common terminology in which later results can be presented without
repeated description of the underlying notions. This part of the thesis
refers to some results that the present author coauthored in [2, 24, 26]
and [27].

In Chapter 1 we collect the basic terminology related to polytopes.
We present basic facts related to polytopes, discuss the role of embed-
dings and describe common operations on polytopes that become rel-
evant in later chapters. This chapter contains mostly classical results
about polytopes. The discussion about embeddings becomes relevant
when discussing extended formulations because the same polytope
may be described in various ways depending on whether the descrip-
tion is minimal or not, and whether the polytope is embedded in
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the smallest possible Euclidean space. We develop the notion of slack
equivalence of a polytope that serves as an invariant under the ac-
tual embedding of a polytope and allows us to later focus on just the
combinatorial structure relevant to the extension complexity of the
polytope.

In Chapter 2 we describe basic setting of communication complex-
ity and some tools to prove lower bounds for it. In Section 2.1 we
introduce nonnegative rank of a matrix which turns out to be closely
related to the size of smallest extension of a polytope. We also discuss
some tools to lower bound this quantity, and discuss the lower bound
for a specific problem: unique disjointness. This problem serves as a
canonical ingredient in proving lower bounds for the extension com-
plexity of the CUT polytope. In Section 2.2 we introduce the notion of
communication protocol and in Section 2.3 we describe three models
of communication complexity, two of which are the classical deter-
ministic and randomized models while the third one – where it is
enough for a protocol to work in expectation – is relevant to exten-
sion complexity.

In Chapter 3 we finally introduce the notion of extended formula-
tions and extension complexity. This allows us to talk about the size of
the smallest possible extended formulation of a polytope. In Section
3.1 we present the notion of extension complexity for a set of related
polytopes since one is usually interested not just in the extension com-
plexity of a single polytope but of a family of related polytopes. We
have attempted to provide a general language that allows us to later
on talk not just about sets of polytopes but also about notions such
as the parameterized extension complexity of polytopes. We also dis-
cuss some common tricks to bound the extension complexity of a
polytope. In Section 3.2 we discuss the effects of applying some com-
mon operations of polytopes on their extension complexity. Finally, in
Chapter 3.3 we present some canonical examples of polytope families
and bounds on their extension complexity. Later on these examples
serve us as building blocks for bounds on other families.

0.0.2 Part two: Recipes

Part two of the thesis presents more lower bounds for various fami-
lies of polytopes. We also develop notions allowing us to talk about
extension complexity of binary languages and we define the class of
languages that admit polynomial size extended formulations. This
part of the thesis refers to some results that the present author coau-
thored in [2, 27] and [60].

In Chapter 4 we present lower bounds for various classes of poly-
topes. These polytopes correspond to various NP-hard problems and
the bounds on their extension complexity are derived using stan-
dard NP-hardness reductions together with some simple observa-
tions made in earlier chapters. We also discuss some issues in trying
to make a meta statement about arbitrary polynomial time reduc-
tions.
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In Chapter 5 we describe a convenient way to discuss extension
complexity of binary languages. In Section 5.1 we discuss various
kinds of problems related to an underlying language, and in Section
5.2 we present the class of languages admitting polynomial size ex-
tended formulations. We also discuss the impact of small extensions
on the computational complexities of various kind of problems re-
lated to the underlying language, and present an example of a com-
pact language. Our example is related to walks in directed graphs
and we use this example later on to establish that problems efficiently
solvable in the streaming model admit small extended formulations.
In Section 5.3 we finally discuss some closure properties of compact
languages.

In Chapter 6 we use the discussions from the previous chapter to
prove that if a language is accepted by an online Turing machine (pos-
sibly nondeterministic) using only logarithmic space then it admits
a polynomial size extended formulation. In Section 6.3 we discuss
various applications of these results. We present lower bounds in the
streaming model and upper bounds on extension complexity of some
polytopes.

0.0.3 Part three: Variations

In this part we discuss some ways in which the notion of extension
complexity can be generalized and applied in other settings. This part
of the thesis refers to some results that the present author coauthored
in [1, 3, 4, 30] and [44].

In Chapter 7 we consider the extension complexities of parame-
terized problems. In Section 7.1 we define the notion of parameter-
ized extension complexity and in Section 7.2 we apply this definition
to study the parameterized extension complexity of the independent
set polytope parameterized by the size of the independent sets. We
show that this polytope does not admit a fixed-parameter polyno-
mial extended formulation. Finally, in Section 7.3 we given examples
of two general classes of polytopes that do admit fixed-parameter
polynomial extension complexity: polytopes of assignments for first
order logic over graphs of bounded expansion, and polytopes of as-
signments for monadic second order logic over graphs of bounded
treewidth.

In Chapter 8 we consider the following: suppose we identify a sub-
set of facets of a polytope P and show that the extension complexity
of the corresponding inequalities with respect to the vertices of P is
large. What can be said about the extension complexity of the poly-
tope formed by removing these inequalities from the description of
P? This is motivated by practical considerations. Often for hard poly-
topes – such as the TSP – one can optimize efficiently over a subset of
facets and various cutting plane algorithm exploit this in search for
violated inequalities. In Section 8.1 we define this notion precisely. In
Section 8.2 we provide strong lower bounds for polytopes related to
various NP-hard matching polytopes even if we ignore the odd-set
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inequalities of Edmonds. In Section 8.3 we discuss similar results for
the TSP polytope with respect to a general class of comb inequalities.

In Chapter 9 we consider a weaker form of extended formulations
that we call Weak Extended Formulation (WEF). Instead of requiring
that the LP formulation of a problem project to the entire feasible set,
we only put milder constraints on the formulation. The most impor-
tant restriction being that the polytope may have some bad vertices,
but it must have the right vertices along the right directions. The moti-
vation for this is that under a polyhedral representation of a problem,
we are not always interested in optimizing along arbitrary directions
but only some. This hold specially true for decision problems. In Sec-
tion 9.1 we motivate the reader and present the definition of a WEF
in Section 9.2. Finally in Section 9.3 we discuss how every problem in
P/poly admits a polynomial sized WEF.

notations and conventions

We will use the following conventions throughout this document ex-
cept when specifically stated otherwise.

• Boldface small letters represent column vectors; boldface capital
letters represent matrices. The i-th row and the j-th column of
a matrix M will be denoted by Mi and Mj respectively.

• Set of vectors will be denoted by capital letters. A set V can
also be written as a matrix V. For example, let V = {v1, v2, . . .}
be a set of vectors, then V is the corresponding matrix whose
columns are vectors vi.

• Similar to previous convention, if V is an n×m matrix then V
will denote the set of column vectors of V.

• The number of rows of a matrixV will be denoted by numrows(V)
and the number of columns by numcols(V).

• For matrices A and B we will denote the matrix obtained by
concatenating the columns of the matrices by

[
A B

]
. Similarly,

the matrix obtained by concatenating the rows will be denoted

by

[
A

B

]
.

• Capital letters such as P will be used for denoting polytopes; P
will denote a family of polytopes, and P will denote a clan of
polytopes (cf. Definition 3.1.10).

some linear algebra

The following basic notion from Linear Algebra will be useful to us
later.

Definition 0.0.1. A linear inequality is of the form a>x 6 b where
a ∈ Rn is a vector and b ∈ R.
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Definition 0.0.2. A linear inequality a>x 6 b defines the halfspace
h(a,b) := {x ∈ Rn | a>x 6 b}. A hyperplane is the boundary {x ∈
Rn | a>x = b} associated with the halfspace h(a,b).

At times – if it is clear from the context – we will not make any
distinction between a linear inequality and the associated halfspace.

Definition 0.0.3. Let V = {v1, v2, . . . , vm} be a set of m vectors in Rn.
A point x ∈ Rn is said to be a convex combination of the vectors in V
if there exists a vector λ ∈ Rm such that

Vλ = x, (1)

1>λ = 1, (2)

λ > 0 (3)

where 1 and 0 are column vectors of all ones and zeroes respectively.

Dropping the requirement that the sum of λi’s be one, we get the
notion of affine combination.

Definition 0.0.4. The affine hull of a set of vectors V = {v1, v2, . . . , vm}

– denoted by aff(V) – is defined to be the set of vectors that are affine
combinations of vi’s. That is,

aff(V) :=

{
x ∈ Rn

∣∣∣∣∣Vλ = x,

λ > 0

}

Finally, dropping the nonnegativity requirement, we get the notion
of linear combination.

Definition 0.0.5. The linear hull of a set of vectors V = {v1, v2, . . . , vm}

– denoted by lin(V) – is defined to be the set of vectors that are linear
combinations of vi’s. That is,

aff(V) :=
{
x ∈ Rn

∣∣∣Vλ = x

}

For a vector v =


v1
...

vn

 we say that the dimension of v is n. For a

set of vectors V = {v1, v2, . . . , vm} with vi ∈ Rn the ambient dimension
is n, while the dimension – denoted by dim(V) – is equal to the di-
mension of their affine hull. That is, the vectors in the set V live in a
dim(aff(V)) dimensional subspace of Rn.



Part I

I N G R E D I E N T S

Whenever Gutei Oshõ was asked about Zen, he simply raised
his finger. Once a visitor asked Gutei’s boy attendant, "What
does your master teach?"

The boy too raised his finger.

Hearing of this, Gutei cut off the boy’s finger with a knife. The
boy, screaming with pain, began to run away. Gutei called to
him, and when he turned around, Gutei raised his finger.

The boy suddenly became enlightened.

— The Gateless Gate: Case 3 [38]





1
P O LY T O P E S

Polytopes are generalizations of polygons to higher dimensional Eu-
clidean spaces. Whereas polygons are relatively simple objects, their
higher dimensional analogs have a much richer structure. In this
chapter we collect some basic notions related to polytopes that will
be relevant to us. For more details we refer the reader to the excellent
textbooks by Grünbaum [35] and Ziegler [65].

1.1 basic facts about polytopes

Definition 1.1.1. Let V = {v1, . . . , vm} be a subset of Rn. The convex
hull of V – denoted by conv(V) – is defined as

conv(V) :=

x ∈ Rn

∣∣∣∣∣∣∣∣
Vλ = x,

1>λ = 1,

λ > 0


Definition 1.1.2. An H-polytope in Rn is a bounded subset of Rn

that is defined by the intersection of a finite number of halfspaces. A
V-polytope in Rn is the convex hull of a finite subset of Rn.

Note that the intersection of a finite number of halfspaces need not
always be bounded. However we are only interested in the ones that
are. Therefore, we will always assume boundedness unless explicitely
stated otherwise.

Example 1.1.3. The same octagon described as the intersection of
some halfspaces, and as the convex hull of some points.

Figure 1: An octagon as an H-polytope (left) and as a V-polytope (right)

An H-polytope P := {x ∈ Rn |Ax 6 b } will be often written as
P(A,b). Similarly, a V-polytope P := conv(V) will be written as P(V).

11



12 polytopes

Example 1.1.4. Let V be an n×m real matrix. Then,

P(V) = conv(V),

P(V, 1) = {x ∈ Rm | Vx 6 1} ,

P(V>, 1) =
{
x ∈ Rn | V>x 6 1

}
.

Note again, that P(V, 1) need not always a polytope. In fact, a pre-
cise characterization of boundedness of P(V, 1) is possible in terms of
the location of the origin with respect to P(V)) and dim(aff(V)) but
the previous example is just to illustrate the notation.

Exercise 1.1.5. Let V be an n×m matrix. Show that P(V, 1) is a poly-
tope if and only if dim(aff(V)) = m and there exists strictly positive
convex multipliers such that 0 is a convex combination of vectors in
V (columns of V).

Proposition 1.1.6. P is an H-polytope if and only if it is a V-polytope.

Proof. See [65], Theorem 1.1.

Proposition 1.1.6 ensures that every polytope can be represented
both by an intersection of a finite number of linear inequalities and
as the convex hull of a finite number of points. So we can refer to
a polytope instead of an H- or a V-polytope, and we can reserve the
words H-, V-polytope to refer to a particular representation of a poly-
tope. The shorthands such as P(V) or P(A,b) will be referred to as a
description of the associated polytope, with P(V) being a V-description
and P(A,b) being an H-description.

It should be immediately clear that neither H- nor V-descriptions
of any polytope are unique, with the empty set and the convex hull of
a single point being the only two exceptions for the V-representation.

Definition 1.1.7. A V-description, say P(V), of a polytope is said to
be irredundant if removing any column from V results in a different
polytope. Otherwise, the description is said to be redundant.

An H-description, say P(A,b), of a polytope P is said to be irredun-
dant if removing any inequality from the systemAx6b produces a set
of feasible points that is different from P. Otherwise, the description
is said to be redundant.

Figure 2: Irredundant H- and V-representation of an octagon
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Definition 1.1.8. Let P = P(V) be a polytope. We say that P is a d-
polytope in Rn if dim(aff(V)) = d and numrows(V) = n. Observe
that d 6 n. We call P full-dimensional if d = n.

1.1.1 Faces of a polytope

Definition 1.1.9. An inequality a>x 6 b is said to be valid for a
polytope P if P = P ∩ {x | a>x 6 b}.

Definition 1.1.10. F ⊆ P is called a face of polytope P if F = P ∩
{x | a>x = b} for some a,b such that a>x 6 b is valid for P.

We will often say that a>x 6 b defines the face F. Observe that
for any polytope P, both ∅ and P are its faces: pick a = 0,b = −1 or
a = 0,b = 1. These two faces are called the trivial faces, and unless
explicitly stated we will use the word “face” to refer only to non-
trivial faces. Also, any face of a polytope is itself a polytope: a fact
easily proven by observing that any polytope is an H-polytope as well
and that adding linear inequalities does not destroy boundedness.

Definition 1.1.11. Let P = P(V) be a d-polytope in Rn. We say that
F is an i-face of P if F is an i-polytope and a face of P. Observe that
0 6 i 6 d−1. The 0-faces of a polytope are called the vertices and the
(d−1)-faces are called the facets.

Exercise 1.1.12. Let P be a d-polytope in Rn. Let a>1 x 6 b1 and
a>2 x 6 b2 define the same facet. Show that there exists α ∈ Rn and
scalars β, λ1, λ2 such that

1. α>x = β for all x ∈ P, and

2.

(
a1

b1

)
= λ1

(
a2

b2

)
+ λ2

(
α

β

)
.

Exercise 1.1.13. Let P be a polytope, and let F be the set of facets of
P. Show that, for any description P(A,b) of P numrows(A) > |F|.

Exercise 1.1.14. Let P be a full-dimensional polytope, and let F be the
set of facets of P. Show that, there exists a description P(A,b) of P
such that numrows(A) = |F|.

1.1.2 Size of a polytope

Definition 1.1.15. Let P be a k-polytope in Rd. Let F be the set of
facets of P. We define the size of P – denoted by size(P) – as the
number |F|.

Exercises 1.1.13 and 1.1.14 are meant for the readers to convince
themselves that the above definition makes sense: it assigns a unique
number to every polytope and it is possible to describe a full-dimensional
polytope with size(P) inequalities. More precisely,

size(P) = min
P=P(A,b)

numrows(A).
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Proposition 1.1.16. Let P be a d-polytope in Rn. Then, for every irredun-
dant description P(A,b) of P we have that

numrows(A) = size(P) + 2(n− d).

In particular, the inequalities in any irredundant description of P
can be split in two groups: size(P) many of the inequalities have a
bijection with the facets of P and 2(n− d) inequalities correspond to
(n−d) equations describing the affine hull of P. For full-dimensional
polytopes, the irredundant H- and V-descriptions are unique up to a
scaling of inequalities.

Proposition 1.1.17. Let P be a full-dimensional polytope with P(V1), P(V2),
P(A1,b1), and P(A2,b2) its irredundant descriptions. Then, V1 = V2 up
to permutation of columns and

[
A1 b1

]
= Λ

[
A2 b2

]
up to permuta-

tion of rows, for some diagonal matrix Λ with positive diagonal entries.

1.1.3 Slack Matrix

Let V and A be matrices and let b ∈ Rn with numrows(V) =

numcols(A) = n, such that P(V) ⊆ P(A,b). That is, AiVj6bi for
all i ∈ [numrows(A)], j ∈ [numcols(V)].

Definition 1.1.18. The slack of the polytope P(V) with respect to the
the polytope P(A,b) – denoted by S(A,b,V) – is defined to be the
numrows(A)×numcols(V) matrix S with Sij = bi −AiVj.

When P(V) and P(A,b) describe the same polytope – say P – then
S(A,b,V) is called a slack matrix of P. When P(A,b) and P(V) are ir-
redundant descriptions, we will say that S(A,b,V) is an irredundant
slack matrix of P.

Exercise 1.1.19. Let P be a d-polytope in Rn with d > 1. Show that
no slack matrix of P contains a zero column.

Proposition 1.1.20. Let P be a d-polytope in Rn. Let S(A1,b1,V1) and
S(A2,b2,V2) be irredundant slack matrices of P. Then, V1 = V2 up to per-
muting rows, and S(A1,b1,V1) = S(A2,b2,V2) up to permuting rows
and columns and scaling each row by some positive factor.

Definition 1.1.21. A matrix S2 is called slack-equivalent to a matrix S1
if S2 can be obtained from S1 by any combination of the following
operations (in any order):

• Adding or removing convexly dependent rows or columns,

• Adding or removing zero rows or columns,

• Multiplying each row and column by (possibly different) posi-
tive scalar values, and

• Applying a permutation of rows and columns.

Proposition 1.1.22. Let P be a polytope. Any two slack matrices of P are
slack-equivalent to each other.



1.2 the role of embedding 15

Proof. This is easy to prove by noting that any slack matrix of a poly-
tope can be brought to an irredundant form by applying previously
described operations that preserve slack-equivalence, and by Propo-
sition 1.1.20 any two irredundant slack matrices of a polytope are
slack-equivalent.

1.2 the role of embedding

Let P be a d-polytope. Whenever we consider a particular descrip-
tion of P, we implicitly impose a specific embedding of P into the
Euclidean space Rn for some n > d. This is the ambient space where
P “lives” and in the terminology that we have so far, we say that P is
a d-polytope in Rn.

Example 1.2.1. Consider the three dimensional hypercube defined by
the inequalities 0 6 xi 6 1, i ∈ [3]. The facet x1 = 0, 0 6 xi 6 1, i ∈
{2, 3} is a 2-polytope in R3. This facet is in fact a square.

Example 1.2.2. Imagine the octagon in Example 1.1.3 as a section of
a three dimensional object. The following figure illustrates this.

Figure 3: An octagon as a slice of 3-dimensional cone (viewed from top).

To be able to say that two polytopes are the same despite seemingly
very different embedding and description – such as in the previous
example – we consider various transformations that do not alter the
slack matrices of a polytope too much.

1.2.1 Simple lift

Definition 1.2.3. Let P be a d-polytope in Rn. A simple lift of P into
Rn+1 is obtained by embedding P into the hyperplane {xn+1 = 1}.

Proposition 1.2.4. Let P ′ be obtained by a simple lift of P. Let S be an
irredundant slack matrix of P and S ′ be an irredundant slack matrix of P ′.
Then, S ′ and S are slack equivalent.

Proof. This follows from the fact that S ′ can be obtained from S by
appending two zero rows, scaling each row by some positive factor,
and applying some permutation of rows and columns.
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1.2.2 Variable elimination

Let P be a d-polytope in Rn. If d < n then any irredundant H-
description of P contains size(P) inequalities and (n− d) equations
(cf. Proposition 1.1.16). One can use any of these equations to elimi-
nate one variable resulting in a polytope P ′ that is an embedding of
P in Rn−1. This operation can be used to undo a simple lift.

Proposition 1.2.5. Let P ′ be obtained from P by reducing the dimension,
and let S ′ and S be irredundant slack matrices of P ′ and P respectrively.
Then, S ′ and S are slack equivalent.

Proof. S ′ can be obtained from S by dropping two zero rows, scaling
each row by a positive factor, and applying some permutation of rows
and columns.

1.2.3 Non-degenerate affine transforms

Definition 1.2.6. Let P be a d-polytope in Rn. A non-degenerate affine
transform of P is the set {Tx+ c | x ∈ P} for some invertible matrix
T ∈ Rn×n and some vector c ∈ Rn.

Exercise 1.2.7. Prove that the image of any non-degenerate affine
transform of a polytope is again a polytope with the same number
of vertices and facets.

Proposition 1.2.8. Let P ′ be obtained from P by a non-degenerate affine
transform, and let S ′ and S be slack matrices of P ′ and P respectively. Then,
S and S ′ are slack equivalent.

Proof. This follows from the fact that S and S ′ are the same up to
scaling each row by some positive factor, and permuting rows and
columns.

1.2.4 Projective scaling

Definition 1.2.9. Let P be a d-polytope in Rn with d < n. Further-
more, suppose that the origin is not contained in the affine hull aff(P).
A projective scaling of P defines a new polytope P ′ = conv(V ′) where
V ′ contains each vertex of P scaled by some positive factor such that
dim(aff(P ′)) = dim(aff(P)).

We call this operation a projective scaling because a simple lift of a
full-dimensional polytope P followed by a projective scaling creates a
simple lift of a polytope projectively isomorphic to P (cf. Subsection
3.2.1).

Proposition 1.2.10. Let P be a d-polytope in Rn such that aff(P) does not
contain the origin, and let P ′ be obtained by a projective scaling of P. If S
and S ′ are irredundant slack matrices of P and P ′ respectively, then S ′ is
slack-equivalent to S.

Proof. This follows from the fact that a projective scaling is obtained
by a sequence of simple lift, non-degenerate affine transform, and
variable elimination.
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1.2.5 The canonical slack matrix

When we start discussing extended formulations in Chapter 3 we
will see that we are only concerned with slack matrices of a polytope.
Propositions 1.2.4, 1.2.5, 1.2.8, and 1.2.10 make it clear that the irre-
dundant slack matrices of a polytope are all the same up to a few
zero rows, scaling of rows and columns, and permutation of rows
and columns regardless of the choice of the ambient space and the
coordinate axes. In fact, the following is true.

Proposition 1.2.11. Let P be a full-dimensional polytope with any irredun-
dant slack matrix S(P). Let P ′ be the polytope obtained by applying any com-
bination of the transformations described in subsections 1.2.1, 1.2.2, 1.2.3,
and 1.2.4 and let S ′ be any slack matrix of P ′. Then, S ′ is slack-equivalent
to S(P).

Proof. Follows from Propositions 1.2.4, 1.2.5, 1.2.8, and 1.2.10.

For our purposes, there will be no distinction between two poly-
topes that can be obtained from each other via any of the operations
described in subsections 1.2.1–1.2.4. That is, a three-dimensional hy-
percube – for us – remains the same polytope whether embedded in
dimension three or thirty; regardless of the position of the origin and
the orientation of the coordinate axes; and irrespective of any affine
deformations.

We can associate a unique (up to positive scaling and permutation
of rows) irredundant slack matrix S(P) with every polytope P by re-
ducing the dimension of P until we get a full-dimensional polytope
P ′. Then any two irredundant slack matrices of P ′ differ only up to
reordering and positive scaling (cf. Proposition 1.1.20) and so any ir-
redundant slack matrix of P ′ is then defined to be S(P) and is simply
referred to as the slack matrix of P.

1.3 some common operations

1.3.1 Polar duality

Definition 1.3.1. Let C ⊆ Rn be a convex set. The polar of C – de-
noted by C∆ – is defined as

C∆ :=
{
x ∈ Rn | y>x 6 1 for all y ∈ C

}
.

Let P be a full-dimensional polytope containing origin in its inte-
rior. Without loss of generality we can assume that the irredundant
descriptions of P are given by P(V) and P(A, 1) for some matrices V
and A. In this case, the polar is also a polytope and the irredundant
description of P∆ is closely related to that of P.

Proposition 1.3.2. P∆ = P(A>) = P(V>, 1).
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1.3.2 Intersection and Union

Definition 1.3.3. The intersection of two polytopes P1 and P2 is the set
of common points and is denoted by P1 ∩ P2. That is,

P1 ∩ P2 := {x | x ∈ P1 ∧ x ∈ P2}.

Proposition 1.3.4. P1 ∩ P2 is a polytope. Furthermore, if P1 = P(A1,b1)
and P2 = P(A2,b2) then,

P1 ∩ P2 = P

([
A1

A2

]
,

(
b1

b2

))
.

A simple consequence of this is the following.

Proposition 1.3.5. size(P1 ∩ P2) 6 size(P1) + size(P2).

Similarly one may define the union of two polytopes but then the
result is not necessarily convex and one may need to take the convex
hull of the resulting set to obtain a polytope. We denote this operation
by ]. That is,

P1 ] P2 := conv ({x | x ∈ P1 ∨ x ∈ P2}) .

For full-dimensional polytopes containing origin in the interior this
operation is the polar dual of intersection.

Proposition 1.3.6. Let P1 and P2 be full-dimensional polytopes containing
origin in the interior. Then, (P1 ∩ P2)∆ = P∆1 ] P∆2 and (P1 ] P2)∆ =

P∆1 ∩ P∆2 .

1.3.3 Join and product

Definition 1.3.7. The join of polytopes P1 and P2 – denoted by P1 ∗P2
– is obtained by embedding them in Rd for some d such that the affine
subspaces aff(P1) and aff(P2) are skew, and then taking the convex
hull of the union.

Any particular choice of the skew subspaces is not very important
in this definition since the resulting polytopes are affinely isomorphic
(cf. [65]). For polytopes P(V1) and P(V2) we will take the following
canonical embedding to be our definition of the join.

P(V1) ∗ P(V2) := P


 V1 O

O V2

−1> 1>


 .

Proposition 1.3.8. Let P1 = P(A1,b1) and P2 = P(A2,b2) be two poly-
topes. Then, dim(P1 ∗ P2) = dim(P1) + dim(P2) + 1. Furthermore,

P1 ∗ P2 = P

([
2A1 O b1

O 2A2 −b2

]
,

[
b1

b2

])
.
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Once we have the description of the facets of the join of two poly-
topes, it is a matter of simple substitution of values to relate the
canonical slack matrix of the join S(P1 ∗ P2) with the canonical slack
matrices of the component polytopes S(P1) and S(P2).

Proposition 1.3.9. S(P1 ∗ P2) =

[
2S(P1) 0

0 2S(P2)

]
.

Definition 1.3.10. Let P1 and P2 be two polytopes. The product – de-
noted by P1 × P2 – is defined as

P1 × P2 :=

{(
x

y

)∣∣∣∣∣ x ∈ P1,y ∈ P2

}
.

Proposition 1.3.11. Let P1 = P(A1,b1) and P2 = P(A2,b2) be two
polytopes. Then, dim(P1 × P2) = dim(P1) + dim(P2). Furthermore,

P1 × P2 = P

([
A1 O

O A2

]
,

[
b1

b2

])
.

1.3.4 Glued-product

Definition 1.3.12. Let P1,P2 be polytopes with P1 ⊆ Rn1+d and P2 ⊆
Rn2+d. The glued product of P1 and P2 over the last d coordinates –
denoted by P1 ⊗d P2 – is defined as

P1 ⊗d P2 := conv


xz
y

 ∈ Rn1+d+n2

∣∣∣∣∣∣∣∣∣∣

(
x

z

)
∈ vert(P1)(

y

z

)
∈ vert(P2)

 .

We also call these special coordinates the glued coordinates.

Example 1.3.13. Let V1 =

[
1 0

0 1

]
and let V2 =

[
1 0

1 1

]
. Then

P(V1)⊗1 P(V2) = P


0 0

1 1

1 0


 .

It can be shown that the glued product has a very simple descrip-
tion if the glued coordinates have some nice structure. In particular,
we have the following.

Proposition 1.3.14. Let P1 ⊆ Rn1+d,P2 ⊆ Rn2+d be polytopes with
descriptions A1x+B1z 6 c1 and A2y+B2w 6 c2 respectively. Suppose
that for every vertex (u>, z>)> of P1 or P2, z is a 0/1 vector with at most
one 1. Then,

P1 ⊗d P2 :=


xz
y

 ∈ Rn1+d+n2

∣∣∣∣∣∣∣∣
A1x+B1z 6 c1

A2y+B2z 6 c2

 .

Proof. See [20] Theorem 1.





2
C O M M U N I C AT I O N C O M P L E X I T Y

In this chapter we collect some relevant facts about communication
complexity. Our focus will be rather narrow and we refer the reader
to the excellent text by Kushilevitz and Nisan [45].

Let X, Y, and Z be arbitrary finite sets with Z ⊆ R+, and let f :

X× Y → Z be a function. Suppose that there are two players Alice
and Bob who wish to compute f(x,y) for some inputs x ∈ X and y ∈
Y. The players have unlimited computational power. However, Alice
knows only x and Bob knows only y. They must therefore exchange
information to be able to compute f(x,y).

They could tell each other the inputs that they are holding and
thus compute the value f(x,y) but this may not be needed for every
function.

Example 2.0.1. Let f(x,y) = (x+ y) mod 2. It suffices for Alice and
Bob to send one bit each to the other party indicating whether their
input is an odd number or not.

Given an ordering x1, . . . , xm of the elements of X, and y1, . . . , yn
of the elements of Y, we can visualize the function f : X × Y → Z

as a m× n nonnegative matrix F = F(f) such that Fij = f(xi,yj) for
all (i, j) ∈ [m]× [n]. The matrix F is called the communication matrix
of f. As is natural, we will not always make a distinction between
a function and its communication matrix. In fact, for the remainder
of the chapter we will use the same notation for a function as for a
matrix. For example, if F denotes a function then both F(x,y) and Fxy
represent the value of the function on input (x,y). Note that this is
the same value as the entry in the communication matrix at the row
corresponding to x and column corresponding to y.

What features of the communication matrix are relevant for Alice
and Bob if they wish to minimize the number of bits that they have
to exchange? Surely, we must make precise what is meant when we
say that Alice and Bob wish to “compute a function F”. We will first
discuss a property of matrices – called the nonnegative rank – which
will play a crucial role in our discussions and then attempt to take
a view of the communication between Alice and Bob in such a way
that various notions of computing a function can be handled without
requiring much modification.

2.1 nonnegative rank

Definition 2.1.1. A rank-r nonnegative factorization of a matrix S is an
expression of S as a product S = AB where A and B are nonnegative
matrices with numcols(A) = numrows(B) = r. The nonnegative rank
of S, denoted by rank+(S), is the minimum nonnegative integer r
such that S admits a rank-r nonnegative factorization.

21
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The nonnegative rank of a matrix S is finite if and only if S is a
nonnegative matrix. This is of little consequence for us since we are,
in fact, only interested in nonnegative matrices.

Proposition 2.1.2. The nonnegative rank of a matrix S is the minimum
nonnegative integer r such that S is the sum of r nonnegative rank-1 matri-
ces.

Proof. If S = AB, then S =
numcols(A)∑

i=1

AiBi.

The following is an easy observation which turns out to be very
useful when proving lower bounds on the nonnegative matrices.

Proposition 2.1.3. Let S ′ be a submatrix of S. Then, rank+(S) > rank+(S
′).

2.1.1 Modifying matrices: effect on nonnegative rank

Now we will see some simple properties of nonnegative rank that will
be specially useful for us. Most of the matrices whose nonnegative
rank we would like to bound from below will be slack matrices of
polytopes. As we will see next, the choice of a canonical slack matrix
as done in subsection 1.2.5 was not an ad-hoc choice.

Proposition 2.1.4. Let F,G be m×n matrices, then

1. rank+(F+G) 6 rank+(F) + rank+(G)

2. rank+(F ◦G) 6 rank+(F) · rank+(G)

One immediate consequence of this is that the nonnegative rank of
a matrix remains unchanged if each row and column of a matrix is
scaled independently by a positive factor. One can show something
stronger.

Proposition 2.1.5. Let S ′,S be matrices such that S ′ is slack-equivalent to
S. Then rank+(S

′) = rank+(S).

Proof. Suppose S ′ is obtained from S by appending a zero column.
Then rank+(S

′) = rank+(S) since [AB 0] = A[B 0]. Similarly for
appending a zero row.

Suppose S ′ is obtained from S by appending a convexly dependent
column. Then rank+(S

′) = rank+(S) since [AB
∑numcols(S)
i=1 λi(AB)

i] =

A[B
∑numcols(B)
i=1 λi(B)

i]. Similarly for appending a convexly depen-
dent row.

Finally, suppose S ′ is obtained by scaling the (i, j)-th entry by αiβj.
Let F,G be defined by Fij = αiβj and Gij = 1/(αiβj). Clearly,
rank+(F) = rank+(G) = 1. Moreover, S ′ = S ◦ F and S = S ′ ◦G.
Therefore, by Proposition 2.1.4 we have that rank+(S

′) 6 rank+(S)

and rank+(S) 6 rank+(S
′).

Due to the fact that any slack matrix of a polytope P is slack-
equivalent to its canonical slack matrix S(P) (Prop. 1.2.11), we get
that all slack matrices of a polytope have the same nonnegative rank.
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Proposition 2.1.6. Let P be a polytope and S be any slack matrix of P. Then,
rank+(S) = rank+(S(P)).

At last we can convince ourselves that we do not need to fret over a
particular choice of description of a polytope if we are only interested
in the nonnegative rank. The nonnegative rank of any slack matrix of
a polytope – to a large extent – depends only on the inner geometry
and not a particular perspective.

We now describe a combinatorial argument that can sometimes be
used to give lower bounds on the nonnegative rank of some matrices.
We illustrate the argument by applying it to the slack matrices of
joins of polytopes (cf. Subsection 1.3.3). Then in the next subsection
we present a related technique that is often used for lower bounding
the nonnegative rank of a matrix.

Proposition 2.1.7. Let P1 and P2 be polytopes with the canonical slack ma-
trices S(P1) and S(P2). Let S(P1 ∗ P2) be the canonical slack matrix of the
join P1 ∗ P2. Then, rank+(S(P1 ∗ P2)) = rank+(S(P1)) + rank+(S(P2)).

Proof. Due to Proposition 1.3.9 we known that

S(P1 ∗ P2) =

[
2S(P1) 0

0 2S(P2)

]
.

Let numrows(S1) = m1 , numrows(S2) = m2, numcols(S1) = n1,
and numcols(S2) = n2. Also, let S(P1 ∗P2) = AB be a rank-r nonneg-
ative factorization with smallest possible r.

We observe that any column of A cannot contain nonzero entries
among the first m1 rows as well as the last m2 rows. To see this, let
1 6 k1 6 m1 and m1 + 1 6 k2 6 m2 be any two rows. For any
column l of A if AAk1l 6= 0 then Bls = 0 for all n1 + 1 6 s 6 n2
and if AAk2l 6= 0 then Bls = 0 for all 1 6 s 6 n1. Therefore, having
nonzero entries within the first n1 rows and the last m2 rows of any
column of A would make B to contain a zero row.

Therefore every column of A contains zeroes either for all first m1
rows or for all last m2 rows. Rearrange columns of A so that AA =[
A1 0

0 A2

]
. Arrange the rows of B accordingly to B =

[
B1 B2

B3 B4

]
such that their product remains unchanged. Then, S1 = 2A1B1 and
S2 = 2A2B4. Since numcols(A1) > rank+(S1) and numcols(A2) >
rank+(S2) we have that

r = numcols(A) > rank+(S(P1)) + rank+(S(P2)).

Also, rank+(S(P1 ∗P2)) 6 rank+(S(P1))+ rank+(S(P2)). Therefore,
equality follows.

2.1.2 Rectangle covering bound

Let S be an m × n matrix all whose entries are either zero or one.
Such a matrix is often called a 0/1-matrix.
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Definition 2.1.8. A combinatorial rectangle (or simply a rectangle) R
is a subset of [m]× [n] such that R = A× B for some A ⊆ [m] and
B ⊆ [n].

Definition 2.1.9. A rectangle R is called a 1-rectangle if for all (x,y) ∈
R we have that Sxy = 1. A 0-rectangle is defined similarly. Finally, R
is called monochromatic if it is either a 1-rectangle or a 0-rectangle.

Definition 2.1.10. A set of monochromatic rectangles R is said to
cover S if for every (x,y) ∈ [m]× [n] there exists a rectangle R ∈ R

such that (x,y) ∈ R. The rectangle covering number of S, denoted by
rc(S), is the size of smallest R that covers S.

Let suppmat(S) be the binary support matrix of S. That is,

suppmat(S)ab =

{
1 if Sab 6= 0,
0 otherwise.

Proposition 2.1.11. rank+(S) > rc(suppmat(S)).

Proof. See Theorem 4 in [27] (Appendix A).

This provides a useful way of proving lower bounds on the non-
negative rank of matrices by means of combinatorial arguments. We
illustrate this by an example that will play an important role later on.

2.1.3 Unique Disjointness

Consider the following 2n × 2n matrix U = U(n) with rows and
columns indexed by n-bit strings a and b, and real nonnegative en-
tries:

Uab := (a>b− 1)2.

An entry Uab of this matrix is zero if and only if the strings a and
b are different except at some unique index. A simple combinatorial
argument shows the following.

Proposition 2.1.12. rc (suppmat(U)) >
(
3
2

)n.

Proof. See [41], Theorem 1.

Combining Proposition 2.1.12 with Proposition 2.1.11 we get the
following theorem.

Proposition 2.1.13. rank+(U) >
(
3
2

)n.

2.2 communication protocols

However Alice and Bob may choose to define what it means to com-
pute a function together, their communication is carried out as a pro-
tocol that is agreed upon beforehand by them, on the sole basis of the
function f. At the beginning of an execution of the protocol Alice and
Bob receive their inputs x and y respectively. At each step of the pro-
tocol, one of the players has the token. Whoever has the token sends
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a bit to the other player. At any point, one of the players outputs a
value and the execution stops. The correctness of the protocol is de-
termined by a previously specified relation between the output value
and the value of f(x,y).

A protocol can be viewed as a rooted binary tree where each node
is marked either Alice or Bob. The leaves have vectors associated with
them. An execution of the protocol on a particular input is a path in
the tree starting at the root. At a node owned by Alice, following the
path to the left subtree corresponds to Alice sending a zero to Bob
and taking the right subtree corresponds to Alice sending a one to
Bob; and similarly for nodes owned by Bob.

Let X and Y be finite sets and let f : X× Y → R+ be a function that
Alice and Bob wish to compute 1.

Definition 2.2.1. A communication protocol (with private random bits and
nonnegative outputs) is a rooted binary tree with some extra informa-
tion attached to its nodes. Each node of the tree has a type, which
is either X or Y. To each node v of type X are attached two function
p0v,p1v : X → [0, 1]; to each node v of type Y are attached two func-
tions q0v,q1v : Y → [0, 1]; and to each leaf v is attached a nonnegative
vector Λv that is a column vector of size |X| for leaves of type X and a
row vector of size |Y| for leaves of type Y. The functions piv and qjv
define transition probabilities, and we assume that p0v(x) +p1v(x) 6 1
and q0v(y) +q1v(y) 6 1.

Figure 4 shows an example of a protocol.

Alice

Alice

Bob Bob

( 0 , 1, 2, 4)T ( 1 , 2, 3, 5)T ( 1 , 1, 2, 5)T

( 0 , 1, 0, 5) ( 1 , 1, 4, 3)

( 0 .5, 0.6, 0, 1)T (0.4, 0.2, 1, 0)T

(1, 1, 1, 0) (0, 0, 0, 1) (0, 1, 1, 1) (0.7, 0, 0, 0)

(0, 0, 0, 1)T (1, 0.4, 0.8, 0)T

Figure 4: Example of a protocol viewed as a tree

Definition 2.2.2. An execution of the protocol on input (x,y) ∈ X× Y
is a random path that starts at the root and descends to the left child
of an internal node v with probability p0v(x) if v is of type X and
q0v(y) if v is of type Y, and to the right child of v with probability
p1v(x) if v is of type X and q1v(y) if v is of type Y. With probability
1− p0v(x) − p1v(x) and 1− q0v(y) − q1v(y) respectively, the execu-
tion stops at v.

1 For now, let us not worry about the precise meaning of computing a function.
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Definition 2.2.3. The value of an execution on the input pair x,y –
denoted by val(x,y) – is defined as follows. For an execution stopping
at leaf v with vector Λv, val(x,y) is defined as the entry of Λv that
corresponds to input x ∈ X if v is of type X, and y ∈ Y if v is of type
Y. For an execution stopping at an internal node, val(x,y) is defined
to be 0.

Definition 2.2.4. The complexity of a protocol Π is measured by one of
the two parameters. The depth of the protocol – denoted by depth(Π)
– is the depth of the corresponding protocol tree, and the size of
the protocol – denoted by size(Π) – is the number of leaves of the
corresponding protocol tree.

When presenting a protocol, we shall often say that one of the two
players sends an integer k rather than a binary value. This should be
interpreted as the player sending the binary encoding of k or, as a
(sub)tree of depth dlgke, or of size k. Finally, our definitions are such
that the depth of a protocol equals the number of bits exchanged by
Alice and Bob in the worst case.

Exercise 2.2.5. What is the relation between the depth and the size of
a protocol, if the protocol tree is balanced?

With every node v of a communication protocol we can associate
a nonnegative matrix Pv that specifies the probability of visiting that
node in an execution. Let v1, . . . , vk denote the nodes of type X on
the unique path from the root to the parent of v, and let w1, . . . , w`
denote the nodes of type Y on this path. Then we have

Pv(x,y) =
k∏
i=1

pαivi(x) ·
∏̀
j=1

qβjwj(y),

where αi is either 0 or 1 depending on if the path goes the left or
right subtree at vi, and similarly for βj. Observe that Pv is a matrix of
nonnegative rank one for each node v of the protocol tree as required.

2.2.1 The expected value of a protocol

For each input pair (x,y) given to Alice and Bob, val(x,y) is a random
variable whose distribution depends on the transition probabilities
at the nodes of the protocol tree. One may therefore talk about the
expected value E[val(x,y)].

Let LX and LY be the set of all leaves of the protocol that are of type
X and Y respectively and let Λv denote the (column or row) vector of
values at a leaf v ∈ LX ∪ LY . We have

E[val(x,y)] =
∑
v∈LX

Λv(x)Pv(x,y) +
∑
w∈LY

Pw(x,y)Λw(y).

Regardless of what Alice and Bob may think that they are comput-
ing using a protocol Π, we may associate a function EΠ : X× Y → R+

with Π defined by EΠ(x,y) = E[[val(x,y)]]. Therefore,

EΠ =
∑
v∈LX

(Λv ◦av)bv +
∑
v∈LY

aw(bw ◦Λw).
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Proposition 2.2.6. Let S be a nonnegative matrix. Then,

rank+(S) = min {size(Π) | EΠ = S} .

Proof. Implicit in the proof of Theorem 2 in [24].

2.3 complexity of computing a function

To relate a communication protocol to a function f, it remains to estab-
lish the relation between val(x,y) and f(x,y). Each of the following
models specify in different way what it means to compute a function.

Definition 2.3.1. The communication complexity of a function f is de-
fined to be the minimum depth among all communication protocols
that compute f.

A natural reason to define the communication complexity in this
way is to imagine Alice and Bob communicating with each other with
the goal of selecting a particular leaf in the protocol tree, so that they
can output a value that "computes" the function fwithout any further
communication. To reach any leaf it suffices to send one bit at each
node on the unique path from the root to the particular leaf indicating
if the next node is the left or the right child.

2.3.1 Classical deterministic model

In classical deterministic models of communication complexity, the
transition probabilities at each node of the protocol tree can take val-
ues either zero or one. Thus, val(x,y) can take only one possible value
for each pair (x,y). A protocol is said to compute a function f if and
only if val(x,y) = f(x,y) for all pairs (x,y) of inputs that Alice and
Bob may receive.

2.3.2 Classical randomized model

In classical randomized models of communication complexity, the
transition probabilities at each node of the protocol tree can take val-
ues between zero and one. Thus, for each fixed input (x,y) ∈ X× Y,
val(x,y) is a random variable and can take one of multiple possi-
ble values. A protocol is said to compute a function f if and only if
val(x,y) is close to f(x,y) for all pairs x,y of inputs that Alice and
Bob may receive. One may further specify whether this happens with
high probability for an execution, or for all executions.

We will not clarify the ambiguities in the previous paragraph since
this model is not relevant to us. The interested reader may read Chap-
ter 3 of [45]. We leave the discussion with the following food for
thought.

Exercise 2.3.2. How does the variance of the random variable val(x,y)
influence the communication complexity in classical randomized mod-
els?
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2.3.3 EF model

As discussed in Section 2.2.1, for each fixed input (x,y) ∈ X× Y, the
value of an execution on input (x,y) is a random variable and one can
define the function EΠ of the expected output of the protocol on input
(x,y). In the EF model, we say that the protocol computes a function f
if f = EΠ. As a shorthand we will refer to a communication protocol
with the EF model of computation as an EF-protocol. For example
saying that f is computed by an EF-protocol Π should be understood
as: Π is a communication protocol and EΠ = f.

Computing a function only in expectation allows us to assume
many things about the "smallest" communication protocol available
for any given function.

Proposition 2.3.3. If f can be computed by an EF-protocol of size r, then f
can be computed by an EF-protocol of depth dlog re .

Proof. See [24], Theorem 2 (Appendix B).

This allows us to measure the communication complexity either in
terms of the depth or the size of the smallest protocol computing f.
For our purposes, we will measure the communication complexity in
the EF model by the smallest size of any EF-protocol for f.



3
E X T E N D E D F O R M U L AT I O N S

Let P ⊂ Rn and Q ⊂ Rn+r be polytopes.

Definition 3.0.1. Q is called an extended formulation (EF) of P if there
exists a linear map π : Rn+r → Rn such that P = π(Q).

The map π in the previous definition projectsQ to P. With a change
of basis one can always assume that this projection map just amounts
to dropping r coordinates of Q.

Exercise 3.0.2. Let Q be an EF of P. Show that there exists an EF Q ′

of P such that size(Q ′) = size(Q) and P = π(Q) where the map π is
defined by π(z) = x if z> = (x>,y>).

When the projection map is not specified, we will assume it to be
the canonical orthogonal projection: drop-r-coordinates.

Example 3.0.3. A regular octagon can be seen as a projection of a
deformed three-dimensional cube.

Figure 5: A deformed hypercube projects to a regular octagon.

An extended formulation can also be defined in terms of a certain
equivalence in optimization, as follows.

Proposition 3.0.4. Q is an EF of P if and only if there exists t ∈ Rn and
an (n+ r)×n matrix R such that

max
x∈P

c>x = max
z∈Q

(Rc)>z+ c>t

for all c ∈ Rn.

Proof. Suppose Q is an EF of P. Then, there exists a linear map π :

Rn+r → Rn such that π(Q) = P. Let π be defined as π((x>,y>)>) =
R>(x>,y>)> + t where R is an (n+ r)× n matrix and t ∈ Rn is a
vector. R and t satisfy the requirement of the lemma.

For the other direction, notice that α>x 6 β is valid for P if and
only if (x>,y>)Rα 6 β−α>t is valid for Q. Therefore, we can define
the linear map π(z) = R>(x>,y>)> + t, if z> = (x>,y>) with x ∈
Rn,y ∈ Rr. For this map we have that π(Q) = P.

29
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3.1 extension complexity

Definition 3.1.1. The extension complexity of a polytope P – denoted by
xc(P) – is defined to be the size of an extended formulation requiring
the fewest number of inequalities. That is,

xc(P) := min
Q is EF of P

size(Q)

Most often we are interested in the extension complexity of a poly-
tope in terms of the ambient dimension. The ambient dimension, in
turn, is often polynomially related to the dimension of the polytope.

Example 3.1.2. The convex hull of the characteristic vectors of all per-
fect matchings of the complete graph Kn lives in the ambient dimen-
sion

(
n
2

)
. This polytope, however, is not full-dimension and has di-

mension
(
n
2

)
− n. We may measure the extension complexity of this

polytope either in terms of the ambient dimension
(
n
2

)
or the actual

dimension
(
n
2

)
− n or n. In all these cases, the expression we will

get are essentially equivalent to each other in terms of whether the
extension complexity is polynomially bounded or not.

Sometimes we may be interested in the extension complexity of a
polytope in terms of other things as well.

Example 3.1.3. Consider the polytope STABk(G) defined as the con-
vex hull of the characteristic vectors of all independent sets of G that
are of size k. Are there constant c and function f such that for all
graphs G on n vertices, xc(STABk(G)) 6 f(k)·nc?

To talk about such questions succinctly, we may think of k as a
parameter of the polytope STABk(G) and talk about its parametrized
extension complexity.

Definition 3.1.4. Let P ⊂ Rn be a polytope and κ be a fixed number
(somehow associated with P). The parametrized extension complexity of
P is the extension complexity of P expressed as a function of κ and n.
The number κ is called a parameter.

The above definition does not make a lot of sense since for any fixed
polytope P the numbers n, κ, and xc(P) are fixed numbers. However
this definition does make sense for a set of polytopes. This is very
convenient since usually we are not interested in the extension com-
plexity of one fixed polytope but a set of related polytopes.

3.1.1 Extension complexity of multiple polytopes

Definition 3.1.5. Let P be a set of polytopes. Let n, κ : P→N be two
functions. We say that the extension complexity of P – denoted by
xc(P) – is a function f : N×N → N if for every P ∈ P we have that
xc(P) = f(n(P), κ(P)). When not specified, the parameter κ is chosen
to be κ(P) = 1 for all P ∈ P.
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The sets of polytopes that are of interest to us, will usually be im-
plicitly described using objects such as graphs, a set of numbers, etc.
In such cases, n(P) will usually be the “size“ of these objects and will
be polynomially related to the ambient dimension of P. The parame-
ter κ(P) will usually be a parameter related to the underlying object
used to define P. Let us illustrate this with an example.

Example 3.1.6. For any graph G, consider CUT�(G), the convex hull
of the characteristic vectors of the edge cuts of G. A natural choice
for n(CUT�(G)) is the number of vertices of G. A natural parameter
κ(CUT�(G) can the the treewidth of G.

Remark 3.1.7. When the choice of the functions n and κ is clear and
does not create ambiguities, we may say that the extension complexity
of the set P is f(n,k) for some function f. When κ is not mentioned,
we may say that the extension complexity of the set is g(n) for some
function g.

Example 3.1.8. Suppose MAGIC is a set of polytopes somehow re-
lated to graphs. That is, each polytope in this set is defined using a
uniquely associated graph. Saying that “xc(MAGIC) = 2τn where
τ is the treewidth and n is the number of vertices of the underlying
graph“ should be understood to mean that for every graph G with
n vertices and treewidth τ the corresponding polytope in the set has
extension complexity 2τn.

Example 3.1.9. Let P� be the set of full-dimensional hypercubes. Then
xc(P�) = 2n where n is the dimension.

Now we will describe two special kinds of sets of polytopes that
will help us deduce the parameters n and κ from the context.

Definition 3.1.10. A clan of polytopes is a set of related polytopes. The
relation between polytopes will usually be clear from the description.
For example, the convex hull of all satisfying assignments of 3CNF
formulae defines a clan.

A family of polytopes is a countable ordered set {P1,P2, . . .} with
Pn ⊆ Rn.

Example 3.1.11. A polytope EP(G) can be defined for every graph G
as the convex hull of all perfect matchings of the graph G. For each
natural number m, define Edmonds’ polytope EP(m) as the convex
hull of characteristic vectors of the perfect matchings of Kn where
m =

(
n
2

)
.

The set {EP(G) | G is a graph } defines the perfect matching clan
EP while EP = {EP(n)|n ∈N} defines a particular family of this clan.

Proposition 3.1.12. EP(m) is empty if there is no n with m =
(
n
2

)
or if

such an n exists but is odd.

Proposition 3.1.13 (Rothvoß). There exists a constant 0 < c < 1/2, such
that for every even n ∈N we have that xc(EP(

(
n
2

)
)) > 2cn.

Proof. See [55], Theorem 1.
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Proposition 3.1.14. For every ε > 0 there exists n0 ∈ N such that for all
n > n0 we have that xc(EP(

(
n
2

)
)) 6 2(1/2+ε)n.

Proof. See [24], Proposition 3 (Appendix B).

For a family of polytopes the choice of the parameter n will most
often be the ambient dimension. That is, if P is a family of polytopes
then n(Pn) = n for Pn ∈ P. Since a family contains exactly one poly-
tope Pn ⊂ Rn, the meaning of xc(P) is clear and a statement such
xc(P) = n3 is unambiguous with this convention. Note that the poly-
topes Pn in a family are not required to be full-dimensional (or even
non-empty).

Definition 3.1.15. Extension complexity of a clan P is also denoted
by xc(P) and is defined to be the extension complexity of the fam-
ily P ∈ P obtained by picking the polytopes with largest extension
complexity for each dimension.

More precisely, given a clan P, let Pmax be a family of polytopes
such that if Pn ⊂ Rn belongs to Pmax then xc(Pn) > xc(P ′n) for all
P ′n ∈ P with P ′n ⊆ Rn. Moreover, for every n exactly one Pn ⊂ Rn

belongs to Pmax. The extension complexity of clan P is defined to be
equal to xc(P).

For different values of n, the corresponding polytopes in a family
P may have extension complexities that are not well described by a
simple function. Even if exact bounds are known for each polytope
in a family of polytopes, it will simplify our lives if we use asymp-
totic notation to describe the extension complexity of the family. In
fact, for a family (or clan) of polytopes, the asymptotic behavior of
their extension complexity is what we generally care about. If it is a
polynomial function then – at least in principle – the polytopes can be
efficiently represented. If the extension complexity of the family (or
clan) grows superpolynomially then at least some of the polytopes
require large descriptions.

Let P = {P1,P2, . . .} be a family of polytopes with Pn ⊆ Rn. We
will say that xc(P) = O(f) to mean that there exists a constant c > 0
and a natural number n0 such that for every polytope Pn ∈ P with
n > n0 we have that xc(Pn) 6 cf(n).

We will say that xc(P) = Ω(f) to mean that there exists a constant
c > 0 and such that for every natural number n0 there exists an n >
n0 such that xc(Pn) > cf(n). Note the slight difference from the usual
Ω notation used in asymptotic analysis of algorithms 1. The intent
here is to be able to say that P contains infinitely many polytopes
that have high extension complexity.

Finally, we will say that xc(P) = Θ(f) to mean that xc(P) = O(f) as
well as xc(P) = Ω(f).

Example 3.1.16. Proposition 3.1.13 can be translated in our setting to
the following.

Proposition 3.1.17. xc(EP) = Ω(c
√
n) for some c > 1.

1 This usage, however, is common among number theorists
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One can extend the above notation to provide more information
by being able to use functions described in asysmptotic notation as
well. We will not go into the details of this point except to present an
example that should clarify the point.

Example 3.1.18. Combining Propositions 3.1.13 and 3.1.14 one could
say that xc(EP) = xc(EP) = 2Θ(

√
n).

3.1.2 Bounding extension complexity: some tools

Before we mention stronger results connecting extension complexity
with nonnegative rank, we would like to list few simple facts that
follow from the above definition and basic polyhedral properties.

Proposition 3.1.19. If P is the convex hull of m points then xc(P) 6 m.

Proof. If P = P(V), then by definition P is a projection of the polytope
(
x

λ

)∣∣∣∣∣∣∣∣
Vλ = x

1>λ = 1

λ > 0



Definition 3.1.20. Let Q be a polytope and h be a hyperplane. Q∩ h
defines A slice of Q.

Proposition 3.1.21. If P is a slice of Q, then xc(P) 6 xc(Q).

In particular, noting that a polytope is a trivial slice of itself and
every face of a polytope P is also a slice of P we get the following
simple but important cases.

Proposition 3.1.22. If Q is an EF of P, then xc(P) 6 xc(Q).

Proposition 3.1.23. If P is a face of Q, then xc(P) 6 xc(Q).

3.1.3 Yannakakis’ characterization of Extension Complexity

Proposition 3.1.24. Let P be a polytope and S be any slack matrix of P.
Then, xc(P) = rank+(S).

Proof. See [24], Theorem 1 (Appendix B).

Combining Propositions 2.2.6, 2.3.3 and 3.1.24 we get the following.

Proposition 3.1.25. Let P be a polytope. Then, the following are equivalent.

1. xc(P) 6 2r.

2. rank+(S(P)) 6 2r.

3. There exists an EF protocol Π with EΠ = S(P) and size(Π) 6 2r.

4. There exists an EF protocol Π with EΠ = S(P) and depth(Π) 6 r.
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Already with the discussion so far, the reader should be able to
prove bounds on extension complexities of a number of polytopes:
some by simply referring to facts already established in previous
chapters.

Example 3.1.26. Let Pij =
{
x ∈ {0, 1}n+1 | xn+1 = xi ⊕ xj

}
for 1 6 i <

j 6 n. Then,

Pij = ���n−2 × P


0 0 1 1

0 1 0 1

0 1 1 0




upto relabeling of coordinates. Therefore, xc(Pij) 6 2n (cf. Proposi-
tion 3.2.3).

3.1.4 Combinatorially isomorphic polytopes with different extension com-
plexity

Before discussing how robust extension complexity is as a measure of
intrinsic complexity of representing a polytope, we would like to re-
mark that combinatorial isomorphism of two polytopes is not enough
to ensure same extension complexity. This is seen by considering poly-
gons.

Definition 3.1.27. Two polytopes are said to be combinatorially isomor-
phic if the posets of their faces (including trivial ones) ordered by
inclusion are isomorphic.

Exercise 3.1.28. Any two n-gons are combinatorially isomorphic.

Proposition 3.1.29. Let Pn be a regular n-gon. Then xc(Pn) 6 2 logn.

Proof. See [26], Theorem 2 (Appendix C).

Proposition 3.1.30. For every n ∈N there exists an n-gon with extension
complexity Ω(

√
n).

Proof. See [26], Theorem 3 (Appendix C).

3.2 effects of common operations

The extension complexity of a polytope is a fairly robust measure of
the inherent complexity of describing a polytope. It does not depend
on the ambient space and the choice of a particular coordinate axes.
In fact, the extension complexity remains unchanged if the polytope
is distorted by a projective transform. Before describing projective
transforms formally, we provide a more geometric picture from the
excellent textbook "Lectures on Polytopes" by Ziegler.

3.2.1 Projective transforms

Let P be a full-dimensional polytope in Rn. Embed this polytope into
an affine hyperplane H ⊆ Rn+1 and construct the homogenization
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of P: cone({x | x ∈ P}). Cut this cone with any hyperplane K that
intersects all its extreme rays and identify K with Rn. This defines a
projective transform of P.

Definition 3.2.1. Let P be a d-polytope in Rn. A projective transform
of P is defined by a matrix [

B c

a> an+1

]

and a vector c ′ with the following conditions:

1. det

(
B c

a> an+1

)
6= 0

2. a>x+ an+1 > 0 for all x ∈ P.

The polytope P ′ obtained from P via this projective transformation
is defined by

P ′ =

{
Bx+ c

a>x+ an+1
+ c ′

∣∣∣∣ x ∈ P} .

Proposition 3.2.2. Let P1 and P2 be two polytopes that are isomorphic
under projective transformations. Then,

xc(P1) = xc(P2).

Proof. See [33], Proposition 2.9.

3.2.2 Join, product, and free-sum

Proposition 3.2.3. Let P1,P2 be polytopes. Then,

1. xc(P1 ∗ P2) = xc(P1) + xc(P2).

2. xc(P1 × P2) 6 xc(P1) + xc(P2).

3. xc(P1 ⊕ P2) 6 xc(P1) + xc(P2).

Proof. The first bound follows immediately from Proposition 2.1.7
and Proposition 3.1.24. The second follows from the fact that P1 × P2
is a slice of P1 ∗ P2 (cf. Proposition 3.1.21), while the third follows
from the fact that P1 ⊕ P2 is a projection of P1 ∗ P2 (cf. Proposition
3.1.22).

3.2.3 Glued Product

Proposition 3.2.4 (Margot). Let P1 ⊆ Rn1+d and P2 ⊆ Rn2+d be poly-
topes such that the last d coordinates of any vertex of either polytope is a
zero-one vector with at most one 1. Then xc(P1 ⊗d P2) 6 xc(P1) + xc(P2).

Proof. See [20], Theorem 1 (cf. [44], Lemma 1, Appendix G).
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3.2.4 Union

Proposition 3.2.5. xc(P1 ] P2) 6 xc(P1) + xc(P2).

Proof. Let P1 = P(V1) and P2 = P(V2). Consider the projective trans-
form given by the matrix  I I 0

O I 0

0> 0> 1

 ,

where I is the identity matrix of appropriate size, O is the matrix of
all zeroes, and 0 is the zero vector.

This transforms the join P1 ∗ P2 to

P


 V1 O

O V2

−1> 1>


→ P


 V1 V2

O V2

−1> 1>


 .

The later is easily seen to be an EF of P1 ] P2. Combining Propo-
sitions 3.2.3, 3.2.2 and 3.1.22 we get that xc(P1 ] P2) 6 xc(P1 ∗ P2) 6
xc(P1) + xc(P2).

3.2.5 Intersection

Proposition 3.2.6. xc(P1 ∩ P2) 6 xc(P1) + xc(P2).

Proof. Let P1 = {x | A1x 6 b1} and P2 = {x | A2x 6 b1}. Let Q1 ={(
x

z

)∣∣∣∣∣E1x+ F1z 6 g1
}

and Q2 =

{(
x

w

)∣∣∣∣∣E2x+ F2w 6 g2
}

be

EFs of P1 and P2 respectively. Then,

R =




x

z

y

w


∣∣∣∣∣∣∣∣∣∣
E1x+ F1z 6 g1

E2y+ F2w 6 g2

x = y


is an EF of P1 ∩ P2.

3.3 some canonical polytope families

There are obvious clans – such as the one consisting of all polytopes –
that have extension complexity unbounded by any function. Consid-
ering the clan POLYGONS of all polygons embedded in all dimen-
sions, by Proposition 3.1.30 we already have that xc(POLYGONS)

is not bounded by any function. One feature of such easily-produced
high complexity clans is that describing the members may require
unbounded precision. In any case we will be mostly interested in 0/1-
polytopes which cannot have arbitrarily high extension complexity.
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Proposition 3.3.1. Let ZERO−ONE be the clan of all 0/1-polytopes.
Then, 2

n
2 (1−o(1)) 6 xc(ZERO−ONE)) 6 2n

Proof. The upper bound follows from Proposition 3.1.19 since any 0/1
polytope in Rn has at most 2n vertices. The lower bound follows from
the fact that there are 0/1 polytopes of such extension complexity
[54].

So we see that the clan of all 0/1 polytopes has extension complex-
ity 2Θ(n). A family with such complexity can essentially by picked by
selecting random polytopes for each dimension. It may be quite intu-
itive that this will result in a family of large extension complexity but
proving it requires some very precise argument controlling the num-
ber of bits required to encode any extended formulation. Rothvoss
was able to do exactly this and together with an elegant double count-
ing argument was able to show the lower bound.

Such examples may be unsatisfactory because we do not get an ex-
plicit family of polytopes that has high extension complexity. A clan
with high extension complexity becomes more interesting when we
can describe the clan members and a specially hard family in the clan
rather succintly. This is what was first done by Fiorini et al. [27] with
polytopes related to the maxcut problem and later extended by vari-
ous authors. We will see some of these clans in Chapter 4. Now we
describe three canonical clans of polytopes that will play an impor-
tant role later: the polytopes of cut vectors of graphs; the polytopes
of satisfying assignments of CNF formulae; and the polytopes of non-
satisfying assignments of CNF formulae.

3.3.1 The CUT clan

An important clan of polytopes that has high extension complexity
is the that of Cut polytopes. These polytopes are naturally associated
with the familiar NP-hard MAXCUT problem and have a rich history.
We direct the reader to the textbook "Geometry of Cuts" by Deza and
Laurant [21].

Definition 3.3.2. For a graph G the cut polytope of G – denoted by
CUT�(G) – is defined to be the convex hull of characteristic vectors
of all cuts in G. Any polytope P such that P = CUT�(G) for some
graph G is called a cut polytope. The clan CUT is defined to be the
set of all cut polytopes.

Proposition 3.3.3.

CUT�(Kn+1) =
{
x ∈ {0, 1}(

n
2)+n

∣∣∣ xij = xi ⊕ xj, i < j}
Proof. See [2], proof of Theorem 5 (Appendix D).

If we take CUT to be any family of cut polytopes that contains
CUT�(Kn) for each n ∈ N then this family has high extension com-
plexity. This family was the first explicit family of polytopes that
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was shown to have superpolynomial extension complexity. Here we
present a combinatior of ideas that appeared in [2, 27, 41].

The crucial fact used for showing that the CUT clan has large ex-
tension complexity is that a certain matrix U = (a>b− 1)2 has large
nonnegative rank (cf. Proposition 2.1.13). The next step is to show that
this matrix is actually a submatrix of some slack matrix of CUT�(Kn).
Then by Proposition 2.1.3 and Proposition 3.1.24 we get the desired
lower bound on the extension complexity of the CUT clan.

The first step in embeddingU(n−1) in a slack matrix of CUT�(Kn)
is to identify some valid inequalities that produce the desired slack.
The following lemma describes a set of such inequalities.

Lemma 3.3.4. For any n > 2, let b1,b2, ...,bn be any set of n integers.
The following inequality is valid for CUT�(Kn):∑

16i<j6n

bibjxij 6

⌊
(
∑n
i=1 bi)

2

4

⌋
(4)

Proof. See [2], Lemma 1 (Appendix D).

The inequality (4) is called hypermetric (respectively, of negative type)
if the integers bi can be partitioned into two subsets whose sum dif-
fers by one (respectively, zero). A simple example of hypermetric in-
equalities are the triangle inequalities, obtained by setting three of
the bi to be +/- 1 and the rest to be zero. The most basic negative
type inequality is non-negativity, obtained by setting one bi to 1, an-
other one to -1, and the others to zero. We note in passing that Deza
and Laurent (see Section 6.1 of [21]) showed that each negative type
inequality could be written as a convex combination of hypermetric
inequalities, so that none of them are facet inducing for CUT�(Kn).

Let n > 2 be an integer. Let S ⊆ [n−1]. This defines a cut δ(S) of Kn
and each cut in Kn has such a subset of vertices defining it. Define a
vector b with

bi =


1, if i ∈ S
0, n 6= i /∈ S
3− |S| i=n

Observe that |S| = 1>b. Inequality (4) for this b-vector is easily
seen to be of negative type and can be written as

∑
16i<j6n−1

bibjxij 6 1+ (1>b− 3)

n−1∑
i=1

bixin. (5)

Let C ⊆ [n−1] and accordingly δ(C) be a cut of Kn. Define the
vector a with

ai =

{
1, if i ∈ C
0, i /∈ S

Proposition 3.3.5. Let C and S be subsets of [n−1]. Then the slack of the
cut δ(C) with respect to (5) is (a>b− 1)2 with a,b as defined previously.
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Proof.

1+ (1>b− 3)

n−1∑
i=1

biδ(C)in −
∑

16i<j6n−1

bibjδ(C)ij

= 1+ (1>b− 3)a>b−a>b(1>b−a>b− 1)

= (a>b)2 − 2a>b+ 1.

This implies that the extension complexity of CUT�( Kn) is at least
as large as rank+(U(n− 1)). That is,

Proposition 3.3.6. xc(CUT�(Kn)) > 2Ω(n).

This in turn implies that the extension complexity of the CUT clan
is exponential in the ambient dimension.

Proposition 3.3.7. xc(CUT) > 2Θ(
√
n). In particular, xc(CUT) > 2Θ(

√
n).

It is not a coincidence that the high lower bound of CUT is ob-
tained by taking the family CUT of cut polytopes corresponding to
the complete graphs. The specific family of complete graphs is in
some sense the most general family of graphs for defining a hard
family of cut polytopes as evidenced by the following.

Proposition 3.3.8. Let G be any graph on n vertices. Then CUT�(G) is a
projection of CUT�(Kn).

Proof. If an edge (i, j) is not present in G, project it out.

3.3.2 The CNF-CERT family

For any given boolean formulaϕwith n variables define the polytope
SAT(ϕ) as the convex hull of all satisfying assignments. That is,

SAT(ϕ) := conv({x ∈ {0, 1}n | ϕ(x) = 1})

Since every 0/1 polytope is trivially the SAT polytope for some
CNF formula, the corresponding clan of polytopes is just the clan
ZERO−ONE which has high extension complexity as pointed out
in Proposition 3.3.1. We will now show the existence of an easy to con-
struct family of SAT polytopes that has superpolynomial extension
complexity. The polytopes in this family will correspond to CNF for-
mulae encoding the cuts of Kn as their satisfying assignments. This
family of polytopes will be called the CNF-CERT family, and will
turn out to be a canonical family of polytopes with high extension
complexity that will be used in Chapter 4 to give lower bounds for
other families.

Let n ∈ N and m = n2. For the complete graph Kn define a 3SAT
boolean formulaϕm such that CUT�(Kn) is a projection of SAT(ϕm).
Consider the relation xij = xii⊕ xjj, where ⊕ is the xor operator. The
boolean formula

(xii∨ xjj∨ xij)∧ (xii∨ xjj∨ xij)∧ (xii∨ xjj∨ xij)∧ (xii∨ xjj∨ xij)
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is true if and only if xij = xii⊕xjj for any assignment of the variables
xii, xjj and xij.

Therefore we define ϕm (with m = n2) as

ϕm :=
∧
i,j∈[n]
i 6=j

[
(xii ∨ xjj ∨ xij)∧ (xii ∨ xjj ∨ xij)∧

(xii ∨ xjj ∨ xij)∧ (xii ∨ xjj ∨ xij)

]
. (6)

This ensures that the the satisfying assignments of ϕm when re-
stricted to the variables xij with i 6= j are exactly the cut vectors of
Kn and every cut vector of Kn can be extended to a satisfying assign-
ment of ϕ. Consequently, we have that.

Proposition 3.3.9. SAT(ϕm) is an EF of CUT�(Kn+1) for each natural
number m = n2.

Proof. This follows from Proposition 3.3.3. In fact, SAT(ϕm) is actu-
ally CUT�(Kn+1).

Definition 3.3.10. The CNF-CERT family of polytopes is defined by
the polytopes Pm = SAT(ϕm) withϕm described previously by equa-
tion 6. For values of m with no corresponding ϕm we have Pm = ∅.

Note that SAT(ϕm) has m = n2 variables and 4(m−n) clauses.
Since CUT�(Kn) is a projection of SAT(ϕm), we can conclude that
xc(SAT(ϕm)) > xc(CUT�) ) > 2

Ω(n) (cf. Prop. 3.1.22), and thus,

Proposition 3.3.11. xc(CNF-CERT) = 2Ω(
√
n).

Proof. This follows from Proposition 3.3.9.

3.3.3 The DNF-CERT family

Finally, we describe an interesting family of polytopes that has poly-
nomial extension complexity. Similar to, and yet in contrast with the
CNF-CERT family, this family corresponds to the satisfying assign-
ments of DNF formulae. Notice that whereas deciding satisfiability
of a CNF formula is an NP-hard problem, deciding the same for a
DNF formulae is trivial.

Let Φ = {ϕ1, . . .} be a family of DNF formulae where ϕn has n
variables and poly(n) clauses. We will call the family {SAT(ϕ1), . . .} of
polytopes a DNF-CERT family. It is not important to pick a canonical
representative of this family because as we will see next, the certifi-
cates of a polynomial sized DNF formula have polynomial extension
complexity.

Proposition 3.3.12. Let ϕ be a DNF formula with n variables and m
clauses. Then xc(SAT(ϕ)) 6 2mn.

Proof. If ϕ consists of a single clause then it is just a conjunction
of some literals. In this case SAT(ϕ) is a face of the n-hypercube
and has xc(SAT(ϕ)) 6 2n. Furthermore, for DNF formulae ϕ1,ϕ2
we have that SAT(ϕ1∨ϕ2) = SAT(ϕ1)] SAT(ϕ2)). Therefore, using
Proposition 3.2.5 repeatedly we obtain that for a DNF formulaϕwith
n variables and m clauses SAT(ϕ) 6 2mn.
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As a consequence we obtain the following.

Proposition 3.3.13. Let DNF-CERT = {P1,P2, . . .} be a family of poly-
topes where Pn = SAT(ϕn) and ϕn a DNF formula with n varibles and
poly(n) clauses. Then, xc(DNF-CERT) = poly(n).





Part II

R E C I P E S

會則事同一家 With realization, things make one family;
不會萬別千差 Without realization, things are separated in

a thousand ways.
不會事同一家 Without realization, things make one family;
會則萬別千差 With realization, things are separated in

a thousand ways.

— The Gateless Gate: Case 16 [38]





4
T U R I N G R E D U C T I O N S

In Section 3.1 we saw some simple observations that make it possible
to translate bounds on extension complexity of a polytope P to that
of another polytope Q simply by demonstrating that Q essentially
contains P (cf. Propositions 3.1.21, 3.1.22, and 3.1.23). Now we will
see actual examples where these observations are put to use.

4.1 relatives of cut polytopes

4.1.1 Cut polytope for minors of a graph

Definition 4.1.1. Let G = (V ,E) be a graph. A graph H = (V ′,E ′) is
called a minor of G if an isomorphic copy of H can be obtained from
G by a sequence of the following operations.

•Vertex deletion : V ′ = V \ {v} and E ′ = E \ {e ∈ E | v ∈ e}
for some vertex v ∈ V .

•Edge deletetion : V ′ = V and E ′ = E \ {e}

for some edge e ∈ E.

•Edge contraction : V ′ = (V \ {u, v})∪ {w} and

E ′ = E \ {e ∈ E|u ∈ e∨ v ∈ e}
∪ {(w, z)|(x, z) ∈ E, x ∈ {u, v}, z /∈ {u, v}}

for some u, v ∈ V and w /∈ V .

It turns out that extension complexity is a monotone property un-
der taking minors.

Proposition 4.1.2. Let G be a graph and let H be a minor of G, then some
face of CUT�(G) is an EF of CUT�(H). In particular,

xc(CUT�(G)) > xc(CUT�(H)).

Proof. See [2], Theorem 12 (Appendix D).

Using this together with Proposition 3.3.6 we can conclude the fol-
lowing.

Proposition 4.1.3. The extension complexity of CUT�(G) for a graph G
with a Kn minor is at least 2Ω(n).

The cut polytope of the tripartite graph K1,n,n is called the Bell in-
equality polytope and plays an important role in Quantum Physics
for the study of quantum entanglement [5]. We can conclude that this
polytope cannot be represented by a polynomial number of inequali-
ties even if we allow extra variables.

45
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Proposition 4.1.4. xc(CUT�(K1,n,n)) = 2
Ω(n).

Proof. Pick any matching of size n between the vertices in each of
the two parts of cardinality n. Contracting the edges in this matching
yields Kn+1 and the result follows.

So we see that a large clique as a minor is sufficient for the cut
polytope of a graph to have high extension complexity. Is it also nec-
essary? Before we answer this question (in the negative) we discuss a
polytope whose relation to cut polytope will become clear in Subsec-
tion 4.1.3.

4.1.2 Stable set for cubic planar graphs

Definition 4.1.5. Let G = (V ,E) be a graph. The convex hull of char-
acteristic vectors of the independent sets in G is called the stable set
polytope of G and is denoted by STAB(G). Any polytope P such that
P = STAB(G) for some graph G is called a STAB polytope.

Since finding the largest independent set in arbitrary graphs is an
NP-hard problem, it would be very surprising if the clan STAB of
STAB polytopes had polynomial extension complexity. Indeed this is
not the case and this clan was also one of the first to be shown to have
superpolynomial extension complexity.

Proposition 4.1.6. xc(STAB) = 2Ω(
√
n).

Proof. See [27], Theorem 10 (Appendix A).

In fact a family of STAB polytopes of cubic planar graphs can al-
ready has superpolynomial extension complexity.

Proposition 4.1.7. There exists a family STAB of STAB polytopes of cubic
planar graphs such that xc(STAB) = 2Ω( 4

√
n).

Proof. See [2], Corollary 5 (Appendix D).

4.1.3 Cut Polytope for K6 minor-free graphs

In Subsection 4.1.1 we saw that a large clique as a minor is sufficient
for the cut polytope of a graph to have high extension complexity.
Now we will see that a large clique minor is not necessary for high
extension complexity of the cut polytope. In particular, there are K6-
minor free graphs whose cut polytopes have large extension complex-
ity. Note that if a n-vertex graph G has no K5-minor then CUT�(G)
has O(n3) extension complexity [21]. Contrast this with the fact that
the MAXCUT problem is solvable in polynomial time on K5 minor-
free graphs but becomes NP-hard on K6 minor-free graphs.

Definition 4.1.8. Let G = (V ,E) be any graph with V = {1, . . . ,n}.
The suspension G ′ of G is obtained by adding an extra vertex labeled
0 with edges to all vertices V .
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The operation of creating suspension of a graph is actually what
relates the CUT and the STAB polytopes with each other.

Proposition 4.1.9. Let G = (V ,E) be a graph and let G ′ be a suspension
over G. Then STAB(G) is the projection of a face of CUT�(G ′).

Proof. See [2], Theorem 13 (Appendix D).

By Proposition 4.1.6 we we have a family of cubic planar graphs
whose STAB polytopes give a family with superpolynomial exten-
sion complexity. Planar graphs do not contain K5 as a minor and so
the suspension of any planar graph is K6 minor-free. This gives us a
family of K6-minor graphs whose cut polytopes have high extension
complexity.

Proposition 4.1.10. There exists a family CUT ′ of CUT polytopes of K6
minor-free graphs such that xc(CUT ′) = 2Ω( 4

√
n).

This provides a sharp contrast for the complexity of the cut poly-
tope for graphs in terms of their minors. As noted earlier, for any K5
minor-free graph G with n vertices CUT�(G) has an extension of size
O(n3) whereas the above result shows that there are K6 minor-free
graphs whose cut polytope has superpolynomial extension complex-
ity.

4.2 embedding arguments from turing reductions

The central technique used in the previous section was to argue that a
polytope P can be obtained as a projection of some face of polytope Q
and then using the fact that xc(P) is large to argue that xc(Q) must be
large too. How difficult is it to come up with a reduction that shows
such an embedding?

Surprisingly it is quite common that for a polytope family related
to an NP-hard problem the standard NP-hardness reduction also
gives the desired embedding of one polytope family into another. In
fact, the proofs of Propositions 4.1.7 and 4.1.9 are based on standard
NP-hardness reductions for the associated problems. Now we present
some more examples where the standard reductions suffice.

4.2.1 Traveling Salesman

Definition 4.2.1. Let G be a graph. The traveling salesman polytope of
G – denoted by TSP(G) – is the convex hull of all Hamiltonian cycles
of G. Any polytope P such that P = TSP(G) for some graph G will
be referred to as a TSP polytope. The clan of all TSP polytopes is
denoted by TSP.

Similar to the CUT clan, complete graphs a canonical hard class of
graphs for the extension complexity of the TSP clan. This is because
of the following.

Proposition 4.2.2. Let G be a graph on n vertices. Then TSP(G) is a face
of TSP(Kn).
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Proof. For any edge (i, j) missing in G, restrict to the face of TSP(Kn)
defined by the valid inequality xij = 0.

The TSP problem asks whether a given graph contains a tour vis-
iting every vertex exactly once and is known to be NP-hard. In fact,
the standard NP-hardness reduction can be used to show superpoly-
nomial lower bound on the extension complexity of the TSP clan.

Proposition 4.2.3. xc(TSP) = 2Ω( 4
√
n).

Proof. See [27], Theorem 12 (Appendix A).

Rothvoß [55] has improved the above bound to show that in fact
xc(TSP) = 2Ω(

√
n). His bound again uses a standard embedding

argument from perfect matching to TSP, but his lower bound for the
perfect matching polytope uses new tools which are out of scope for
us.

4.2.2 Subset sum

Definition 4.2.4. Given n integers a> = (a1, . . . ,an) and another
integer b, the subset sum problems asks whether any subset of the
set {a1, . . . ,an} sums exactly to b. Define the subset sum polytope
SUBSETSUM(a,b) as the convex hull of all characteristic vectors of
the subsets of a whose sum is exactly b.

SUBSETSUM(a,b) := conv
({
x ∈ {0, 1}n|a>x = b

})
A polytope P which is SUBSETSUM(a,b) for some integers a,b will
be a SUBSETSUM polytope.

The subset sum problem is, then, equivalent to asking whether the
SUBSETSUM polytope for a given integer vector a and integer b is
empty.

A related knapsack polytope can be defined as

KNAPSACK(a,b) := conv
({
x ∈ {0, 1}n|a>x 6 b

})
Using the standard NP-hardness reduction for the subset sum prob-

lem one can show the following.

Proposition 4.2.5. For every 3SAT formula ϕ with n variables and m
clauses, there exists an integer vector a(ϕ)> = (a1, . . . ,a2n+2m) and
integer b(ϕ) such that SAT(ϕ) is a projection of SUBSETSUM(a,b).

Proof. See [2], Theorem 6 (Appendix D).

It immediately follows using Proposition 3.3.11 that there is a fam-
ily of SUBSETSUM polytopes with high extension complexity.

Proposition 4.2.6. Let SUBSETSUM be the clan of all SUBSETSUM
polytopes. Then, xc(SUBSETSUM) = 2Ω(

√
n).

Since the polytope SUBSETSUM(a,b) is a face of KNAPSACK(a,b),
we have the following.

Proposition 4.2.7. Let KNAPSACK be the clan of of KNAPSACK poly-
topes. Then, xc(KNAPSACK) = 2Ω(

√
n).
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4.2.3 3d-matching

Definition 4.2.8. Consider a hypergraph G = ([n],E), where E con-
tains triples (i, j,k) for some distinct i, j,k ∈ [n]. A subset E ′ ⊆ E is
said to be a 3-dimensional matching if all the triples in E ′ are disjoint.
The 3d-matching polytope 3DM(G) is defined as the convex hull of
the characteristic vectors of every 3d-matching of G. That is,

3DM(G) := conv({χ(E ′) | E ′ ⊆ E is a 3d-matching})

It is often customary to consider only hypergraphs defined over
three disjoint set of vertices X, Y,Z such that the hyperedges are sub-
sets of X× Y × Z. Observe that any hypergraph G can be converted
into a hypergraph H in such a form by making three copies of the
vertex set V ,V ′,V ′′ and using a hyperedge (i, j ′,k ′′) in H if and only
if (i, j,k) is a hyperedge in G.

Exercise 4.2.9. Show that xc(3DM(G)) = Θ(xc(3DM(H))).

Definition 4.2.10. A polytope P is said to be a 3DM polytope if P =

3DM(G) for some hypergraph G.

The 3d-matching problem asks: given a hypergraph G, does there
exist a 3d-matching that covers all vertices? This problem is known to
be NP-complete and was one of Karp’s 21 problems proved to be NP-
complete [31, 42]. This problem can be solved by linear optimization
over the polytope 3DM(G) and therefore it is to be expected that
3DM(G) would not have a polynomial size EF for every hypergraph
G.

Proposition 4.2.11. For the clan 3DM of 3DM polytopes we have that
xc(3DM) = 2Ω( 4

√
n).

This follows from the following Proposition whose proof relies on
the standard NP-hardness reduction for the 3d-matching problem.

Proposition 4.2.12. Let ϕ be a CNF formula with n variables and m
clauses. Then there exists a hypergraph H = (V ,E) with |V | = O(nm)

and |E| = O(nm) such that SAT(ϕ) is the projection of a face of 3DM(H).

Proof. See [2], Corollary 3 (Appendix D).

4.2.4 Induced matchings

Definition 4.2.13. A matching in a graph G = (V ,E) is called induced
if there is no edge in G between any pair of matching edges.

Stockmeyer and Vazirani [58] and Cameron [15] proved that the
problem of finding a maximum cardinality induced matching is NP-
hard.

Definition 4.2.14. Let G be a graph. The convex hull of all induced
matchings G is called the induced matching polytope of G and is de-
noted by IndMatch(G). A polytope P is said to be an IndMatch poly-
tope if there exists a graph G such that P = IndMatch(G).
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Using the reduction in [15] one can show the following.

Proposition 4.2.15. For every n there exists a bipartite graph Gn with
O(n) edges and vertices such that xc(IndMatch(G)) = 2Ω( 4

√
n).

Proof. See [1], Theorem 1 (Appendix H).

This implies the existence of a family with high extension complex-
ity.

Proposition 4.2.16. There exists a family INDMATCH of IndMatch poly-
topes such that xc(INDMATCH) = 2Ω( 4

√
n).

4.2.5 Maximal matchings

Definition 4.2.17. A matching in a graph G = (V ,E) is called maximal
if its edge set is not included in a larger matching.

It is known that finding the minimum maximal matching is NP-
hard [64].

Definition 4.2.18. Let G be a graph. The convex hull of all maximal
matchings of G is called the maximal matching polytope of G and
is denote it by MaxMatch(G). Accordingly a polytope P is called a
MaxMatch polytope if P = MaxMatch(G) for some graph G.

Since the perfect matching polytope of K2n has extension complex-
ity 2Ω(n), we clearly have that the clan of MaxMatch polytopes has
high extension complexity. However one can use the standard proof
of NP-hardness of minimum maximal matching to show superpoly-
nomial bound as well.

The only hurdle in using the reduction of [64] is that the reduction
is from CNF formulae of special kind, namely formulae with at most
one nonnegated literal and at most two negated literals in each clause.
High extension complexity for the SAT polytopes of formulae of this
specific kind can be shown by a fairly simple reduction.

Proposition 4.2.19. For every n there exists a 3-CNF formula ϕn with
O(n) variables and clauses such xc(SAT(ϕn)) 6= poly(n). Furthermore, in
every clause of ϕn every variable appears at most twice non-negated and at
most once negated.

Proof. See [1], Theorem 2 (Appendix H).

The reduction of [64] then gives the following.

Proposition 4.2.20. For every n there exists a bipartite graph G = (V1 ∪
V2,E) with O(n) vertices and edges, such that xc(MaxMatch(G)) 6= poly(n).

Proof. See [1], Theorem 3 (Appendix H).

Thus we have the following.

Proposition 4.2.21. Let MAXMATCH be the clan of MaxMatch poly-
topes. Then, xc(MAXMATCH) 6= poly(n).
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4.2.6 Edge disjoint matching and perfect matching

Given a bipartite graph G(V1 ∪ V2,E) and a natural number k, it is
NP-hard to decide whether G contains a perfect matching M and a
matching M ′ of size k such that M and M ′ do not share an edge [52].

For a given graphGwith n vertices andm edges consider an encod-
ing of a perfect matching and a matching using variables x1, . . . , xm,
y1, . . . ,ym as follows. For a subset of edges encoding a perfect match-
ing M and a matching M ′ of size k we construct a vector with

xi =

1, if ei ∈M

0, if ei /∈M
, yi =

1, if ei ∈M ′

0, if ei /∈M ′

Definition 4.2.22. Let G = (V ,E) be a graph. Define the polytope
MPM(G,k) to be the convex hull of all the vectors encoding an edge
disjoint perfect matching and a matching of size at least k. As usual,
a polytope P such that P = MPM(G,k) for some graph G and natural
number k is called an MPM polytope.

We would like to remark that one can also define a “natural” poly-
tope here without using separate variables for a matching and a per-
fect matching and instead using the characteristic vectors of all sub-
sets of edges that are an edge-disjoint union of a matching and a
perfect matching. However, the formulation that we consider allows
different cost functions to be applied to the matching and the perfect
matching.

Using the reduction in [52], one can show that for every n there
exists a bipartite graph Gn with O(n) vertices and a constant 0 < c <
1
2 such that MPM(G, cn) has extension complexity super polynomial
in n. Again the reduction in [52] is from MAX-2-SAT, so we first need
to prove a super polynomial lower bound for the SAT polytopes of
2-CNF formulas.

Proposition 4.2.23. For every n there exists a 2-SAT formula ϕn with n
variables such that xc(SAT(ϕn)) = 2Ω( 4

√
n).

Proof. See [1], Theorem 4 (Appendix H).

As a side remark, the 2-SAT instances required in the above theo-
rem are always satisfiable.

Proposition 4.2.24. For every n there exists a bipartite graph Gn on n
vertices and a constant 0 < c < 1

2 such that xc(MPM(G, cn)) 6= poly(n).

Proof. See [1], Theorem 5 (Appendix H).

Thus, we have the following.

Proposition 4.2.25. There exists a family MPM of MPM polytopes such
that xc(MPM) 6= poly(n).



52 turing reductions

4.3 difficulities in handling general reductions

Seeing so many NP-hardness reductions yield superpolynomial ex-
tension complexity lower bounds for the associated polytopes, it was
suspected1 that it may be possible to prove a meta result. A result sim-
ilar to: “A problem is in PTIME if and only if the associated polytope
has polynomial extension complexity”. Notwithstanding what “asso-
ciated polytope of a problem” meant, this was shown to be impos-
sible in a remarkable paper [55] that showed that the perfect match-
ing polytope has exponential extension complexity (See Proposition
3.1.13).

It should be noted that it may still be possible to have the poly-
topes associated with NP-complete problems always have superpoly-
nomial extension complexity. However a more likely scenario may be
that the answer depends crucially on how one associates polytopes
with problems, and for various choices of such associations the exten-
sion complexity may be trivially exponential while for others trivially
polynomial, and for yet others very difficult to determine.

In any case, for all we know PTIME reductions that are allowed
for proving NP-hardness may be as powerful as NP itself and so
being able to translate superpolynomial lower bounds on extension
complexity using arbitrary polynomial reductions may be too much
to ask.

1 At least by the present author
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C O M PA C T L A N G U A G E S

Let ϕ be a boolean formula. Consider the following languages:

L = {x |x encodes a satisfiable boolean formula }

L((ϕ)) = {x |ϕ(x) = 1 }

The former language consists of all strings that encode1 all satisfi-
able boolean formulae, while the later language consists of all satis-
fying assignments of a given boolean formula. Which of these repre-
sents the boolean satisfiability problem more naturally?

Reasonable people will agree that there is no correct choice of a
natural polytope for a problem. One complication is that there vari-
ous kinds of problems: decision, optimization, enumeration, etc, and
very similar problems can have very different behaviour if the notion
of problem changes.

Example 5.0.1. Checking whether a bipartite graph has a perfect
matching can be solved by a simple polynomial time algorithm. A
related problem where one wants to count the number of bipartite
matchings is #P-hard.

Therefore one can pick any clan of polytopes, that they consider rea-
sonable, as representing a given problem but it can be asked whether
the extension complexities of that particular choice of polytopes re-
flect some underlying complexity measure of the problems. Often
the most immediate choice of polytopes does not really correspond
well to the computational complexity.

Example 5.0.2. The clan EP of perfect matching polytopes is a nat-
ural choice for the underlying decision problem: given a graph G,
does it have a perfect matching? While the computational problem
is polynomial time solvable, the extension complexity of Edmonds’
polytopes is exponential.

One reason for such complication is that wildly different kinds of
problems are defined over the same set of objects. For example, over
the set of graphs and their perfect matchings, we can ask natural de-
cision, optimization, and counting questions. The first two are poly-
nomial time solvable while the last one is #P-hard.

Our perspective of the situation will be as follows. Algorithms will
be identified with Turing machines with five tapes2.

• A two-way read-only input tape.

1 Assume that some (arbitrary but fixed) encoding of boolean formulae as binary
strings.

2 This does not make the Turing machines special.
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• An auxiliary read-only input tape than can be read only from
left to right.

• A two-way read-write work tape.

• A two-way write-only output tape.

• An auxiliary write-only output tape that can be written only
from left to right.

Computational problems are then questions about existence of Tur-
ing machines of the above kind with various restrictions on the con-
sumption of resources such as space consumed on the work tape or
the overall time, and on the relation between the contents of the input
tapes and the output tapes when the machine halts.

5.1 problems as languages

For us computational problems will just be questions about an under-
lying language. Various natural problems can be modeled in this way.
Usually a specific computational problem comes with an underlying
language L. The specific problem at hand is then some question about
the language L (or about strings of this language).

5.1.1 Membership Problem

The membership problems asks whether a given string belongs to a
particular language. We will denote such problems by mem(L).

Example 5.1.1. Let L = {x |x encodes a satisfiable boolean formula }.
The problem mem(L) then is just the familiar boolean satisfiability
problem where an encoding of the input has been agreed upon.

5.1.2 Optimization Problem

The optimization problem for a particular language L comes equipped
with a function that assigns a real number to every string in the lan-
guage and one is interested in finding the “best” string from L.

A particularly important class of such problems is one of linear
optimization. Given a cost vector c ∈ Rn one is interested in a string
x∗ ∈ L with |x∗| = n such that for every x ∈ L with |x| = n we have
that c>x∗ > c>x.

We will denote by opt(L) the problem of maximizing a linear func-
tion over all members of L that have length n.

Example 5.1.2. Given a linear cost function and a boolean formula ϕ,
find a satisfying assignment (if any) of minimum cost.

5.1.3 Enumeration Problem

The canonical enumeration problem for a particular language L – de-
noted by enum(L) – is as follows: given a number n enumerate all
members of L that have length n.
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Example 5.1.3. Enumerate all satisfying assignments of a given boolean
formula.

5.1.4 Sampling Problem

The canonical sampling problem for a particular language L – de-
noted by sample(L) – is as follows: given a number n produce a
length n member of L with a given probability distribution.

Example 5.1.4. Given a boolean formula, produce a satisfying assign-
ment (if any) uniformly at random.

5.1.5 Counting problem

The canonical counting problem for a particular language L – denoted
by count(L) – is as follows: given a number n how many members of
L have length exactly n?

Example 5.1.5. How many satisfying assignents does a given boolean
formula have?

5.2 compact languages

5.2.1 Languages to Polytopes

For every natural number n define the set L(n) := {x ∈ {0, 1}n | x ∈ L}.
Viewing each string x ∈ L(n) as a column vector, and ordering the
strings lexicographically, we can view the set L(n) as a matrix of size
n× |L(n)|. Thus we are in a position to naturally associate a family
of polytopes with a given language and the extension complexity of
these polytopes can serve as a natural measure of how hard is it to
model these languages as Linear Programs.

That is, one can associate with L, the family of polytopes P(L) =

{P(L(1)),P(L(2)), . . .} and the extension complexity xc(P(L)) is then
an intrinsic measure of complexity of the language L.

Example 5.2.1. Matching polytope of complete graphs with a canon-
ical (say lexicographic) ordering on the edges. The associated lan-
guage consists of the characteristic vectors of all perfect matchings
of Kn for n ∈N.

Definition 5.2.2. The extension complexity of a language L – denoted
by xc(L) – is defined by xc(L) := xc(P(L)).

Now we are ready to define the class of languages that we are
interested in: namely, the languages that have small extension com-
plexities.

Definition 5.2.3. CF is the class of languages admitting Compact ex-
tended Formulations and is defined as

CF = {L ⊆ {0, 1}∗ | ∃c > 0 s.t. xc(L) 6 nc}



56 compact languages

5.2.2 Easy problems for Compact languages

Let L be a compact language. That is for each n ∈ N the polytope
P(L(n)) has small extension complexity. What does that give us in
terms of solving computational problems related to L? Naturally, one
would need such an extended formulation itself to be efficiently com-
putable. It may very well happen that a polytope has a small exten-
sion but the actual numbers needed to represent any small sized ex-
tension require very large precision. In fact it is unknown whether
small extension complexity using real numbers implies small exten-
sion complexity using rational numbers.

Notwithstanding the previous discussion, let us assume that lan-
guage L has a small extension that is also efficiently constructible. By
efficiently constructible, we mean that given nwe can construct an ex-
tension of P(L(n)) requiring poly(n) bits to describe in time poly(n).
What do we gain in this case?

Proposition 5.2.4. Let L have an efficiently constructible extended for-
mulation of size s(n). Then, mem(L) and opt(L) can be solved in time
poly(s(n) +n).

Proof. Let Q = {(x,y | Ax+ By 6 c} be an EF of P(L(n). Checking
whether a given x∗ belongs to L or not can be done by checking the
feasibility of Q ∩ {x = x∗}. The problem opt(()L) is also easily solved
by standard Linear Programming.

Proposition 5.2.5. Let L have an efficiently constructible extended formu-
lation of size s(n). Then, enum(L) and sample(()L) can be solved in time
poly(s(n) +n+ h(n)) where h(n) is the number of strings of length n.

Proof. This follows from the fact that vertices of a zero-one polytope
can be enumerated in strongly polynomial time [14]. For the method
of Bussiek and Lübbecke to work, we only need to check whether a
given face of the zero-one polytope is empty or not.

For the sampling problem one can just start the enumeration and
select any of the output string uniformly at random on the fly. Note
that one does not have to store the entire output to select an element
with uniform distribution.

Proposition 5.2.6. The problem count(L) may be #P-hard even if P(L(n))
has small size.

Proof. This follows from the fact that the polytope of perfect match-
ings of bipartite graphs has small description, but counting the num-
ber of perfect matchings in bipartite graphs is #P-hard.

5.3 closure properties

Now we discuss the closure properties of the class CF with respect to
some common operations on formal languages. The operations that
we consider are as follows.



5.3 closure properties 57

• Complement : L = {x | x /∈ L}
• Union : L1 ∪ L2 = {x | x ∈ L1 ∨ x ∈ L2}
• Intersection : L1 ∩ L2 = {x | x ∈ L1 ∧ x ∈ L2}
• Set difference : L1 \ L2 = {x | x ∈ L1 ∧ x /∈ L2}
• Concatenation : L1L2 = {xy | x ∈ L1 ∧y ∈ L2}
• Kleene star : L∗ = L∪ LL∪ LLL∪ LLLL∪ . . .

Proposition 5.3.1. CF is not closed under taking complement.

Proof. Consider the family CNF-CERT of polytopes discussed in Sub-
section 3.3.2. Let Φ be the family of boolean formulae correspond-
ing to this polytope family, and let L be the language consisting of
all binary strings that correspond to a vertex of some polytope in
CNF-CERT. That is, L is the language of all cut vectors of Kn for
n ∈N, viewed as binary strings.

Now consider the family of DNF formulaeΦ = {ϕ |ϕ ∈Φ}. Notice
that the language of all certifying assignments of formulae in Φ is
precisely L.

We see that P(L) = DNF-CERT while P(L) = CNF-CERT. Propo-
sitions 3.3.11 and 3.3.13 state that xc(DNF-CERT) = poly(n) while
xc(CNF-CERT) 6= poly(n). Therefore L ∈ CF and L /∈ CF.

Proposition 5.3.2. CF is closed under taking union.

Proof. Let L1 and L2 be two languages. Then, xc(L1 ∪ L2) 6 xc(L1) +
xc(L2) (cf. Proposition 3.2.5).

Proposition 5.3.3. CF is not closed under taking intersection.

Proof. Let L1 be a language such that a string x ∈ L1 if and only if it
satisfies the following properties.

• |x| = (n+ 1)
(
n
2

)
for some natural number n, and

• xij(n+1) = xiji ⊕ xijj if the characters are indexed as xijk with
1 6 i < j 6 n, 1 6 k 6 n+1.

We claim that xc(L1) = O(n3). Indeed P
(
L1
(
(n+ 1) ·

(
n
2

)))
is the

product of polytopes

Pij =
{
x ∈ {0, 1}n+1 | xn+1 = xi ⊕ xj

}
for 1 6 i < j 6 n and xc(Pij) = O(n) (cf. Example 3.1.26).

Now let L2 be a language such that a string x ∈ L2 if and only if it
satisfies the following properties.

• |x| = (n+ 1)
(
n
2

)
for some natural number n, and

• xi1j1k = xi2j2k for all k ∈ [n], i 6= j ∈ [n]

Each polytope P
(
L1
(
(n+ 1) ·

(
n
2

)))
is just an embedding of���n+(n2)

in R(n+1)(n2) and therefore, xc(L2) = O(n2).
Finally, observe that form = (n+1)

(
n
2

)
the polytope P((L1∩L2)(m))

when projected to the coordinates labelled xij(n+1) is just the poly-
tope CUT�n (cf. Proposition 3.3.3). Therefore, xc(L1 ∩L2) = 2Ω(n) and
even though L1,L2 ∈ CF, the intersection L1 ∩ L2 /∈ CF.
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Proposition 5.3.4. CF is not closed under taking set difference.

Proof. The complete language {0, 1}∗ clearly belongs to CF. For any
language L we have L = {0, 1}∗ \ L. If CF were closed under taking
set-difference, it would also be closed under taking complements. But
as pointed out in Proposition 5.3.1, it is not.

Proposition 5.3.5. CF is closed under concatenation.

Proof. P(L1L2(n)) is the union of the polytopes P(L1(i))× P(L2(n−

i)) for i ∈ [n]. Therefore, using Propositions 3.2.3 and 3.2.5 we have
that xc(L1L2) 6 n(xc(L1) + xc(L2)).

Proposition 5.3.6. CF is closed under taking Kleene star.

Proof. Let L ∈ CF. For 0 6 k 6 n, consider the polytope Pk defined
as

Pk := conv







en+1i+1

0i

x

0n−i−k

en+1
i+|x|+1


∈ {0, 1}3n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x ∈ L

∧ |x| = k

∧ 0 6 i 6 n− k





Define P := ∪nj=0Pj. Then, xc(P) 6
n∑
k=0

xc(Pk) 6
n∑
k=0

(n xc(P(L(k)))) 6

O(n2 xc(L)).
Let S0 be the face of P defined by the first n coordinates being 0

and the (n+1)-th coordinate being 1. Construct Si+1 by taking the
glued product of Si with P over the last n+1 coordinates of Si and
the first n+1 coordinates of Q.

Take the face R of Sn defined by the last n coordinates being 0 and
the (n+1)-th penultimate coordinate being 1. Then, R is an EF for
P(L∗(n)). Moreover, xc(R) 6 xc(Sn) 6 (n+ 1) xc(P) 6 O(n3 xc(L)).

Therefore, xc(L∗) = O(n3 xc(L)) and L∗ ∈ CF.
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O N E - PA S S L A N G U A G E S

6.1 online turing machines

An online Turing machine is a two tape Turing machine where one
of the tapes stores the input and can be read only from left to right.
The second tape is the work tape and the machine can read and write
freely on it and the head is free to move in any direction. The space
consumed on the worktape in the worst case is the measure of space
complexity.

6.1.1 History

Online Turing machines that require only logarithmic space on the
work tape were considered by Hartmanis, Immerman, and Mahaney
[36] to restrict the power of reductions between two problems. Tra-
ditionally, for establishing equivalence of problems arbitrary polyno-
mial time reduction between them is allowed. In the light of the fact
that we do not know whether PTIME is different from NP, such re-
ductions may be misleading. In fact, even the possibly smaller class
of LOGSPACE problems are not known to be different from the class
NP and so even logspace reductions between problems may be mis-
leading about their true complexity.

It is known that one-pass logspace Turing machines can only accept
regular languages [57, 59] and therefore if two problems are reducible
to each other using only one-pass logspace reduction, they are equiv-
alent in a stronger sense.

6.1.2 Determinism vs. Non-determinism

For online Turing machines requiring at least logarithmic space, non-
determinism allows provably stronger machines. Non-regular lan-
guages can be accepted by non-deterministic machines using logarith-
mic space while any one-pass deterministic logspace Turing machine
can only accept regular languages [59].

6.2 extension complexity of one-pass languages

Definition 6.2.1. The complexity class k-NSPACE(s(n)) is the class
of languages accepted by a k-pass non-deterministic Turing machines
using space s(n). Similarly, the complexity class k-DSPACE(s(n)) is
the class of languages accepted by a k-pass deterministic Turing ma-
chine using space s(n).

What is the extension complexity of any language in this class?
Before we answer this we note the following.
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Proposition 6.2.2. L ∈ k-NSPACE(s(n)) =⇒ L ∈ 1-NSPACE(ks(n)).

Proof. Let Mn be the Turing machine that accepts strings of length n.
We will simulate Mn using a multi-tape single pass nondeterministic
Turing machine called the simulator S. S is supplied with p(n) work
tapes. S starts by guessing the initial work state of Mn at the start of
i-th pass and writing them on the i-th work tape. S then simulates (us-
ing extra space on each work tape) each of the passes independently
starting from their respective initial configuration. Once the entire in-
put has been scanned, the simulator verifies that the work space of
Mn on the i-th tape at the end of the pass matches the guess for the
initial content for the (i+ 1)-th tape. S will accept only if the last tape
is in an accepting state.

To store the content of work tape and the current state, S needs
s(n) + o(s(n)) space for each pass. Thus S uses a single pass and
total space of p(n)s(n)(1+ o(1)). By Proposition 6.2.8 the extension
complexity of the strings accepted by Mn is then 2O(p(n)s(n))n.

Thus for our purposes it suffices to restrict our attention to single
pass TMs. In the next subsection we describe the polytope associated
with walks in a directed graph, that will help us bound the extension
complexity of such languages.

6.2.1 Walks in directed graphs

Definition 6.2.3. Let D = (V ,A) be a directed graph with every edge
labeled either zero or one. Consider two nodes u, v ∈ V and a walk ω
of length n from u to v. The signature of ω – denoted by σω – is the
sequence of edge labels along the walk ω. The node u is called the
source of the walk and the node v the destination.

Definition 6.2.4. Consider the convex hull of all zero-one vectors of
the form (u,σ, v) where u and v are indices of two nodes in D and σ
is the signature of some walk of length n from u to v. This polytope
– denoted by Pmarkov(D,n) – is called the Markovian polytope of D.

Proposition 6.2.5. Let D = (V ,A) be directed graph (possibly with self-
loops and multiple edges) with every edge labeled either zero or one. Then,
Pmarkov(D,n) has extension complexity at most 2|V |+ |A| ·n.

Proof. Let us encode every vertex of D with a zero-one vector of
length V such that the unit vector ei represents vertex i.

Define polytope Ptrans ⊂ {0, 1}|V |+1+|V | with (a, z,b) ∈ {0, 1}|V |+1+|V |

a vertex of Ptrans if and only if it encodes a possible transition in D.
That is, a and b encode vertices of V , and the coordinate z represents
the label of the edge following which one can move from a to b. Since
Ptrans has at most |E| vertices xc(Ptrans) 6 |E| (cf: Proposition 3.1.19).

Let P0 be the convex hull of (i,ei) for i ∈ V and Pf be the convex
hull of (ei, i) for i ∈ V . Observe that the two polytopes are the same
except for relabeling of coordinates. Also, xc(P0) = xc(Pf) 6 |V |.

Let P1 = Ptrans. For 2 6 i 6 n, construct the polytope Pi by glueing
the last |V | coordinates of Pi−1 with the first |V | coordinates of Ptrans.
By Proposition 3.2.4 we have that xc(Pn) 6 |E| ·n.
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Finally, let P be the polytope obtained by glueing last |V | coordi-
nates of P0 with the first |V | coordinates of Pn, and then glueing the
last |V | vertices of the result with the first |V | coordinates of Pf. Note
that xc(P) 6 2|V |+ |E| ·n.

To complete the proof, notice that P is an extended formulation for
Pmarkov(D,n). In particular, projecting out every coordinate except the
ones corresponding to the source node in P0, the ones correspond-
ing to the destination node in Pf, and ones that correspond to the
z coordinates in all the copies of Ptrans produces exactly the vertices
of Pmarkov(D,n). The z-coordinate corresponding to the i-th copy of
Ptrans corresponds to the i-th index of signatures in the vectors in
Pmarkov(D,n).

6.2.2 Extension complexity of single-pass machines

Definition 6.2.6. The configuration graph for input of length n for a
given one-pass Turing machine (deterministic or non-determinisitic)
is constructed as follows. For each fixed n, consider the directed
graph whose nodes are marked with a label consisting of s(n) +
dlog (s(n))e characters. The labels encode the complete configuration
of the Turing machine: the content of the worktape and head posi-
tion on the worktape. We make directed edges between two nodes u
and v if the machine can reach from configuration u to configuration
v by a sequence of transitions with exactly one input bit read in be-
tween. The directed edge is labeled by the input bit read during this
sequence of transition.

Finally, we add two special nodes: a start node with a directed edge
to each possible starting configuration of the machine, and a finish
node with a directed edge from each possible accepting configuration.
Each of these directed edges are labeled by zero.

Proposition 6.2.7. The configuration graph for input of length n for a one-
pass Turing machine has O(2s(n)s(n)) nodes. If the Turing machine is non-
deterministic, this graph has O(4s(n)(s(n))2) edges. If the Turing machine
is deterministic then this graph has O(2s(n)s(n)) edges.

Proof. The bound for number of nodes is clear from the construction
of the configuration graph. We can have at most two transition edges
between any two (possibly non-distinct) nodes: one corresponding to
reading a zero on the input tape, and one corresponding to reading
a one. Therefore, asymptotically the configuration graph can have at
most square of the number of nodes.

For deterministic Turing machine, each node in the configuration
graph has exactly two outgoing edges (possibly to the same node).
Therefore the number of edges is asymptotically the same as the num-
ber of vertices.

Now Proposition 6.2.5 can be used to bound the extension complex-
ity of language accepted by one-pass machines.

Proposition 6.2.8. Let L ∈ 1-NSPACE(s(n)). Then,

xc(L) = O(4s(n)(s(n))2 ·n).
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Proof. Let L ∈ 1-NSPACE(s(n)) be a language. That is, there exists
a Turing machine that when supplied with a string on the one-way
input tape uses at most s(n) cells on the worktape, makes a single
pass over the input and then accepts or rejects the input. If the input
string is in L, some sequence of non-deterministic choices lead the
machine to an accepting state, otherwise the machine always rejects.

The length-n strings that are accepted by such a Turing machine
correspond exactly to the signatures of length n+ 2 walks on the cor-
responding configuration graph D. The first and the last character
of these strings is always zero. Therefore, an extended formulation
for P(L(n)) is obtained by taking the face of Pmarkov(D,n+ 2) corre-
sponding to walks that start and the start node and finish at the finish
node. By Proposition 6.2.5 Pmarkov(D,n+ 2) has extension complex-
ity O(4s(n)(s(n))2 · n, and by Proposition 3.1.23 so does the desired
face.

If L is accepted by a one-pass deterministic TM then one can do
better because the configuration graph has fewer edges.

Proposition 6.2.9. Let L ∈ 1-DSPACE(s(n)). Then,

xc(L) = O(2s(n)s(n) ·n).

6.2.3 Extensions for multiple-pass machines

Proposition 6.2.10. Let L ∈ p-NSPACE(s(n)). Then,

xc(L) = 2O(p(n)s(n))n.

Proof. This follows immediately from Propositions 6.2.2 and 6.2.8.

Proposition 6.2.11. Let M be a (not necessarily uniform) family of deter-
ministic online Turing machines. Let the number of passes and the space used
by the family be bounded by functions, p(n), s(n) respectively. Let L(M) be
the language accepted by M. Then, xc(L(M)) 6 2O(p(n)s(n))n.

Proposition 6.2.12. If L is accepted by a fixed-pass non-deterministic logspace
Turing machine then L ∈ CF.

We end this section with the following remark. For a language to be
compact (that is, to have polynomial extension complexity), it is suf-
ficient to be accepted by an online Turing machine (deterministic or
not) that requires only logarithmic space. However, this requirement
is clearly not necessary. This can be proved by contradiction: Suppose
that the condition is necessary. Then the class of compact languages
must be closed under taking intersection. (Simply chain the two ac-
cepting machines and accept only if both do). Since we have already
established (cf. Proposition 5.3.3) that the class of compact languages
is not closed under taking intersection, we have a contradiction.
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6.3 applications

6.3.1 Streaming lower bounds

Reading Proposition 6.2.10 in reverse readily yields lower bounds in
the streaming model of computation. We illustrate this by an exam-
ple.

Example 6.3.1. We know that the perfect matching polytope of the
complete graph Kn has extension complexity 2Ω(n). Any p(n)-pass
algorithm requiring space s(n), that correctly determines whether a
given stream of

(
n
2

)
is the characteristic vector of a perfect matching

in Kn, must have p(n)s(n) = Ω(n). This bound applies even to non-
deterministic algorithms.

In fact Proposition 6.2.5 provides an even stronger lower bound.

Definition 6.3.2. Let L ⊆ {0, 1}n be a language. L is said to be online µ-
magic if there exists a Turing machine T that accepts Lwith the follow-
ing oracle access. On an input of length n on the one-way input tape,
the machine T scans the input only once. T may prepare its working
tape to describe any well-formed function f : {0, 1}µ(n) → {0, 1}mu(n)

and a particular input x and invoke the oracle that changes the con-
tents of the work-tape to f(x). The machine must always reject strings
not in L. For strings in L there must be some possible execution re-
sulting in accept.

Notice that even the working of such a machine can be encoded in
terms of the configuration graph where the transitions may depend
arbitrarily but in a well-formed way on the contents of the work-tape.

Proposition 6.3.3. If the set of characteristic vectors of perfect matchings in
Kn are accepted by an online µ-magic Turing machine, then µ(n) = Ω(n).

Thus we see that extension complexity lower bounds highlight
deep limitations of the streaming model: even powerful oracles do
not help solve in sublinear space problems that are LOGSPACE solv-
able if the one-way restriction on the input is removed.

6.3.2 Upper bounds from online algorithms

Parity Polytope

As an example, consider the language containing strings where the
last bit indicates the parity of the previous bits. This language can
be accepted by a deterministic logspace turing machine requiring a
single pass over the input and a single bit of space. Therefore, the
parity polytope has extension complexity O(n).

The parity polytope is known to have extension complexity at most
4n− 4 [16].



64 one-pass languages

Integer Partition Polytope

For non-negative integer n the Integer Partition Polytope, Pn, is de-
fined as

Pn := conv{x ∈ Zn+|

n∑
k=1

kxk = n}.

It is known that xc(Pn) = O(n3) [50].
Consider the polytope in Rdlogne×n that encodes each xi as a bi-

nary string. For example, for n = 4 the vector (2, 1, 0, 0) is encoded as
(1, 0, 0, 1, 0, 0, 0, 0). This polytope is clearly an extended formulation of
the Integer Partition Polytope. Call this polytope BIPPn. The follow-
ing single pass determinisitic algorithm accepts a string (x1, x2, . . . , xn) ∈
{0, 1}dlogne×n if and only if the string represents a vertex of BIPPn.

Data : Binary string of length ndlogne
Result : Accept if the input encodes a vertex of the BIPPn
s = 0; i = 0; l = 0;
while i < n do

b =read_next_bit;
if (s+ (i+ 1)2lb) > n then

reject;
else

s = (s+ (i+ 1)2lb);
l = (l+ 1)%dlogne;
if l == 0 then

i++;
end

end
end
if s == n then

accept;
else

reject;
end

Algorithmus 1 : One pass algorithm for accepting vertices of BIPPn.
The above algorithm together with Proposition 6.2.9 shows that

xc(IPPn) 6 xc(BIPPn) 6 O(n3 log2 n).

Knapsack Polytopes

Let (a,b) = (a1,a2, . . . ,an,b) be a given sequence of (non-negative)
integers. The Knapsack polytope KS(a,b) is defined as

KS(a,b) := {x ∈ {0, 1}n|
n∑
i=1

aixi 6 b}.

The Knapsack polytope is known to have extension complexity
super-polynomial in n. However, optimizing over KS(a,b) can be
done via dynamic programming in time O(nW) where W is the
largest number among a1, . . . ,an,b.

Suppose the integers ai,b are arriving in a stream with a bit in
between indicating whether xi = 0 or xi = 1. With a space of W
bits, an online Turing machine can store and update

∑n
i=1 aixi. At

the end, it can subtract b and accept or reject depending on whether
the result is 0 or not. Any overflow during intermediate steps can be
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used to safely reject the input. Therefore, the extension complexity of
the Knapsack polytope is O(nW logW). Note however the extension
obtained this way is actually an extended formulation of a polytope
encoding all the instances together with their solutions.

Languages in co-DLIN

Let L be a language generated by a determinisitic linear grammar
[37]. The following result was proved by Babu, Limaye, and Varma
[6].

Proposition 6.3.4 (BLV). Let L ∈ DLIN. Then there exists a probabilistic
one-pass streaming algorithm using O(logn) space that accepts every string
in L and rejects every other string with probability at least 1/nc.

Using the above algorithm together with Proposition 6.2.10 we get
the following.

Proposition 6.3.5. If L ∈ DLIN, then L ∈ CF.





Part III

VA R I AT I O N S

A novice was trying to fix a broken Lisp machine by turning
the power off and on.

Knight, seeing what the student was doing, spoke sternly: "You
cannot fix a machine by just power-cycling it with no
understanding of what is going wrong."

Knight turned the machine off and on. The machine worked.

— Tom Knight and the Lisp Machine [53]





7
F P T E X T E N D E D F O R M U L AT I O N S

7.1 parameterized extension complexity

Most of the bounds seen so far (specially in Chapter 4) were only in
terms of the ambient dimension n. For example the perfect matching
polytope EP(Kn) for the complete graph Kn was seen to have exten-
sion complexity 2Θ(n). What about other graphs on n vertices? It was
shown by Barahona [7] that for planar graphs the perfect matching
polytope has polynomial extension complexity. Gerard [32] showed
that if G is a n-vertex graph of genus g, then xc(EP(G)) 6 nO(g).

In this chapter we shall see results of similar type. We have already
seen some results on parametrized extension complexity although it
was not made explicit so far.

Example 7.1.1. Let each 0/1 polytope P ∈ Rn be parameterized by
the minimum number of clauses in any DNF formula ϕ such that
P = SAT(ϕ). Denoting this parameter by µ, one can use Proposition
3.3.13 to conclude that xc(ZERO−ONE) = O(µn).

In other words, the clan of 0/1 polytopes has polynomial exten-
sion complexity when parameterized by the size of the smalled DNF
formula describing the vertex set of the polytopes.

Definition 3.1.5 can be used to formally speak about parametrized
extension complexity of a family (and therefore a clan) of polytopes.
Recall that for a family of polytopes there is exactly1 one polytope
Pn ⊂ Rn in the family for each n ∈N.

Definition 7.1.2. Let P be a clan of polytopes and κ : P → N be a
parameter. Let g : N×N → N be a function. We will say that the
parameterized extension complexity of P is g(κ,n) if for every polytope
P ∈ P such that P ⊆ Rn we have that xc(P) = g(κ(P),n).

We will say that extension complexity of P or xc(P) is FPT if there
exists f : N → N and a constant c such that xc(P) 6 f(κ)nc, and if
no such function or constant exist then we will say that the extension
complexity of P is not FPT.

As described in Subsection 3.1.1, we will mostly use asymptotic
descriptions of functions whenever we use the above definition.

Example 7.1.3. The extension complexity of the clan ZERO−ONE

parameterized by the size of the smallest DNF formula describing the
vertices is FPT.

1 In case there is no such polytope explicitely present, the empty polytope can play
the desired role.

69
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7.2 the independent set polytope

The k-independent set problem asks one to decide whether a graph
has independent set of size at most k. When parameterized by k this
problem is W[1]−hard but is fixed-parameter tractable for graphs of
bounded expansion. The corresponding polytope has analogous be-
havior with respect to the extension complexity [30].

7.2.1 The k-independent set polytope

Definition 7.2.1. Let G = (V ,E) be a graph on n vertices. The k6-
independent set polytope of G – denoted by STABk6(G) – is defined to
be the convex hull of the independent sets of G that have size at most
k.

Alternatively, one could define the k=-independent set polytope of G
– denoted by STABk=(G) – to be the convex hull of all independent
sets of size exactly equal to k.

As far as extension complexity is concerned, either definition can
be used to define the clan of stable set polytopes parameterized by the
size of the independent set. This is because the extension complexities
of the two polytopes defined above are within a polynomial factor of
each other.

Proposition 7.2.2.

xc(STABk=(G)) 6 xc(STABk6(G)) 6
k∑
i=0

xc(STABi=(G)).

Proof. Clearly, STABk=(G) is a face of STABk6(G). Therefore, we have
that xc(STABk=(G)) 6 xc(STABk6(G)) (cf. Proposition 3.1.23).

On the other hand, STABk6(G) = conv(
⋃k
i=1 STABi=(G)), and there-

fore xc(STABk6(G)) 6
∑k
i=0 xc(STABi=(G)) by Proposition 3.2.5.

Therefore any bounds (whether lower or upper) that are valid for
xc(STABk=(G)) are also asymptotically valid for xc(STABk6(G)). To
simplify our notations, instead of either STABk6(G) or STABk=(G),
we will use STABk(G). In the rest of the chapter STABk(G) represents
STABk=(G) but with minor adjustments the same arguments can be
made using STABk6(G).

Buchanan [13] showed that the extension complexity of the sta-
ble set polytopes parametrized by the treewidth τ of the underlying
graph is 2O(τ)n.

Proposition 7.2.3. Let STAB be the clan of stable set polytopes parametrized
by the treewidth of the underlying graph. That is, let τ : STAB → N be
defined as τ(P) = min{τ(G) | P = STAB(G)}, where τ(G) is the treewidth
of graph G. Then, xc(STAB) 6 2O(τ)·n.

Proof. See [13], Theorem 3.
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Buchanan also asked if the extension complexity of the stable set
polytope parametrized by the size of the independent set is FPT. We
next present the answer to this question (in the negative). The proof
relies on encoding cuts of the complete graph on roughly k logn ver-
tices as independent sets of size k2 in another graph whose size is not
too big. The result then follows from the fact that the cut polytope of
the initial graph has size Ω(nk).

7.2.2 Paired Local-Cut Graphs

Given positive integers k and n, we define a graph called a Paired
Local-Cut Graph and denoted by PLC(k,n).

First we create k2blognc vertices labeled with tuples (i,S) for i ∈ [k]

and S ⊆ [blognc]. These vertices will be called cut vertices. Then we
create 2

(
k
2

)
22blognc vertices labeled with tuples (i, j,S1,S2) where 1 6

i 6= j 6 k and S1,S1 ⊆ [blognc]. These vertices will be called pairing
vertices.

We add edges to these vertices of PLC(k,n) as follows. For each
fixed i ∈ [k] we add the edges between all cut nodes that have labels
(i,S). Furthermore, for each fixed pair i, j ∈ [k] we add the edges
between all pairing nodes that have labels (i, j,S1,S2). Finally, let u
be a cut vertex labeled (i,S) and let v be a pairing vertex labeled
(j1, j2,S1,S2). If i = j1 but S 6= S1 we add edge uv. Symmetrically, if
i = j2 but S 6= S2 we add edge uv.

For ease of exposition we will identify vertices of PLC(k,n) with
their labels whenever convenient.

Proposition 7.2.4. The number of vertices of the graph PLC(k,n) equals
2
(
k
2

)
22blognc + k2blognc 6 (kn)2.

Proposition 7.2.5. Let (i,S) and (j1, j2,S1,S2) be two vertices of PLC(k,n)
that are not joined by an edge. If i = j1 then S = S1, and if i = j2 then
S = S2.

This together with the next proposition will ensure that in any in-
dependent set I of PLC(k,n) that has size k2, every index i ∈ [k] can
be uniquely associated with a subset Si ⊆ blognc.

Proposition 7.2.6. Let I be an independent set in PLC(k,n). Then, |I| 6 k2.
Moreover, an equality holds if and only if I contains exactly one cut vertex
for each 1 6 i 6 k and exactly one pairing vertex for each 1 6 i 6= j 6 k.

Proof. Clearly, the set I can contain at most k cut vertices – at most
one vertex (i,Si) for each 1 6 i 6 k. Also, set I can contain at most
2
(
k
2

)
= k2−k pairing vertices – at most one vertex (i, j,Si,Sj) for each

ordered pair 1 6 i, j 6 k.

The vertices of STABk2(PLC(k,n)) are related to the vertices of the
polytope CUT�(Kr) where r = k blognc, in the following way. Denote
the vertices and edges of Kr by Vr and Er respectively, and group the
vertices of Kr into k groups, each of size blognc. Label the vertices
vij where 1 6 i 6 k and 1 6 j 6 blognc . Finally, order the vertices
lexicographically according to their labels.
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A cut vector of Kr – corresponding to a cut C – is a 0/1 vector of
length

(
r
2

)
whose coordinates correspond to whether an edge of Kr is

in the cut C or not. The edges of Kr are labeled with pairs (i1, j1, i2, j2)
where 1 6 i1, i2 6 k ; 1 6 j1, j2 6 blognc , and (i1, j1) 6 (i2, j2)
lexicographically. So, if z is a cut vector corresponding to a given cut
C ⊂ Er , then zi1,j1,i2,j2 = 1 if and only if the edge (i1, j1, i2, j2) is in
C. CUT�(Kr) is the convex hull of all such cut vectors.

Similarly, an independent-set vector of PLC(k,n) – corresponding
to an independent set I – is a 0/1 vector of length 2

(
k
2

)
22blognc +

k2blognc (cf. Prop. 7.2.4) whose coordinates correspond to whether
the corresponding vertex is in I or not. Recall that the cut vertices
of PLC(k,n) are labeled with a pair consisting of an index from [k],
and a subset of [blognc] . Also, the pairing vertices of PLC(k,n) are
labeled with a tuple consisting of two indices from [k] and two subsets
of [blognc] .

Let C be the set of all cuts in Kr, and let I be the set of all indepen-
dent sets of size k2 in PLC(k,n). Any cut C ∈ C creates a bipartition
(S,S) of the vertices of Kr. Recall that the vertices of Kr have been
split in k groups. The partition (S,S) thus induces a partition (Si,Si)
within each of these groups.

Proposition 7.2.7. For every pair of natural numbers (k,n) and r =

k blognc it holds that CUT�(Kr) is a projection of STABk2 (PLC (k,n)) .

Proof. See [30], Lemma 3.4 (Appendix F).

A lower bound on the extension complexity of STABk2(PLC(k,n))
immediately follows.

Proposition 7.2.8. There exists a constant c ′ > 0 such that for k,n ∈N,

xc (STABk2(PLC(k,n))) > nc
′k.

Proof. By Proposition 7.2.7, STABk2(PLC(k,n)) is an extended formu-
lation of CUT�(Kr) with r = kblognc. So any extended formulation
of STABk2(PLC(k,n)) is also an extended formulation of CUT�(Kr).
By proposition 3.3.6, xc

(
CUT�(Kr)

)
> 2Ω(r). Therefore,

xc
(
STABk2(PLC(k,n))

)
> xc

(
CUT�(Kr)

)
> 2Ω(r) > nc

′k

for some constant c ′ > 0.

We can now easily conclude that the parameterized extension com-
plexity of STAB parameterized by the size of the independent sets is
not FPT.

Proposition 7.2.9. There does not exist any function f : N→ R such that
xc(STABk(G)) 6 f(k) · nO(1) for all natural numbers k and all graphs G
on n vertices.

Proof. Suppose, on the contrary, that such a function f exists. That is,
there is a constant c such that for every pair of natural numbers (`,m)

and for all m-vertex graphs G it holds that xc(STAB`(G)) 6 f(`) ·mc.
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Given a pair (k,n) of natural numbers consider the graph PLC(k,n).
By Proposition 7.2.8, we have that xc (STABk2(PLC(k,n))) > nc

′k

for some constant c ′ > 0. On the other hand, from our assumption
for ` = k2 and m 6 (kn)2 we have that xc (STABk2(G)) 6 f(k2) ·
(kn)2c. Therefore, nc

′k 6 f(k2) · (kn)2c and so c ′k logn 6 log f(k2)+

2c(logk + logn). This in turn implies that logn 6 log f(k2)+2c logk
c ′k−2c

which clearly cannot be true for any fixed k and arbitrary n, and
hence no such function f exists.

7.3 fpt upper bounds

Now we will see that FPT upper bounds exist for a large number of
interesting polytopes.

7.3.1 MSO Polytopes parametrized by Treewidth

In most cases, we stick to standard notation as given by Libkin [47]
and by Downey and Fellows [22]. We use the standard approach and
view every graphG = (V ,E) as a labeled graph I(G) = (VI,EI,LV ,LE),
called the incidence graph of G, where VI = V ∪ E, EI = {{v, e} | v ∈
e, e ∈ E}, LV = V and LE = E; this way, every MSO2 formula about
the original graph G can be turned into an MSO formula about I(G).
Since the treewidth of the incidence graph I(G) is at most tw(G) +
1 [43], this does not pose any limitation.

Also, for simplicity, we will work with a version of MSO that has
only set variables and a special predicate s of arity one to emulate
element variables (for every graph G = (V ,E) and every X ⊆ V ∪ E,
s(X) is true in G if and only if |X| = 1); it is easy to see that this
syntactical restriction does not mean any restriction in the expressive
power. All results can be extended to general finite structures where
the restriction on treewidth applies to the treewidth of their Gaifman
graph [22].

Formally, the set of MSO formulae is defined recursively as follows.
We assume an infinite supply of set variables X, Y,X1, . . .. For every
two variables X and Y, s(X), ver(X), edg(X), inc(X, Y), X ⊆ Y and
X = Y are formulae, namely atomic formulae. For a given graph G,
ver(X) or edg(X) is true, if X ⊆ LV or X ⊆ LE, resp.; inc(X, Y) is
true if and only if s(X), s(Y) are true and {x,y} ∈ EI where x is the
only element in X and y is the only element in Y. If ϕ,ψ1 and ψ2 are
formulae then ¬ϕ, ψ1 ∧ψ2 and ∃Xϕ(X) are formulae.

A variable X is free in ϕ if it does not appear in any quantification in
ϕ. If ~X is the tuple of all free variables in ϕ, we write ϕ(~X). A variable
X is bound in ϕ if it is not free. By qr(ϕ) we denote the quantifier rank
of ϕ which is the number of quantifiers of ϕ when transformed into
the prenex form (i.e., all quantifiers are in the front of the formula).

For a given MSO formulaϕ(~X) withm free set variables X1, . . . ,Xm,
we define a polytope of satisfying assignments on a given graph G
with n vertices in a natural way. We encode any assignment of ver-
tices of G to the sets X1, . . . ,Xm as follows. For each Xi in ϕ and each
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v in G, we introduce a binary variable yvi . We set yvi to be one if v ∈ Xi
and zero otherwise. For a given 0/1 vector y, we say that y satisfies ϕ
if interpreting the coordinates of y as described above yields a satis-
fying assignment for ϕ. The polytope of satisfying assignments, also
called the MSO polytope, is defined as

MSOϕ(G) = conv ({y ∈ {0, 1}nm | y satisfies ϕ}) .

Proposition 7.3.1. For every graph G on n vertices with τ(G) = τ and for
every ϕ ∈MSO, xc(MSOϕ(G)) = f(|ϕ|, τ) ·n where f is some computable
function.

Proof. See [44], Theorem 2 (Appendix G).

In fact the extended formulation can be efficiently constructed.

Proposition 7.3.2. Let G be a graph of treewidth τ and let ϕ be an MSO
formula. An extended formulation for MSOϕ(G) (with size bounded as men-
tioned in Proposition 7.3.1) can be constructed in time f ′(|ϕ|, τ) ·n, for some
computable function f ′.

Proof. See [44], Theorem 3 (Appendix G).

In the language that we have adopted so far it means that the ex-
tension complexity of MSO polytopes, when parameterized by the
treewidth of the underlying graph and the size of the MSO formula,
is FPT.

7.3.2 FO Polytopes parameterized by Expansion

The first-order logic of graphs (abbreviated as FO) applies the standard
language of first-order logic to a graph G viewed as a relational struc-
ture with the domain V(G) and the single binary (symmetric) relation
E(G). For example, the formula ι(x1, . . . , xk) ≡

∧
i 6=j
(
¬edge(xi, xj)∧

xi 6= xj
)

asserts that {x1, . . . , xk} is an independent set of size ex-
actly k. A slightly more involved example describes a vertex cover
tuple as γ(x1, . . . , xk) ≡ ∀y,z

(
edge(y, z)→

∨k
i=1(y = xi ∨ z = xi)

)
.

To any FO formula φ(x1, . . . , xk) and a graph, one can assign a
polytope in the following way. For an ordered k-tuple of verticesW =

(w1, . . . ,wk) ∈ V(G)k we thus define its characteristic vector χW of
length k|V(G)| by

χWv,i =

{
1 if v = wi,

0 otherwise.

Note that χW always satisfies
∑
v∈V(G) χ

W
v,i = 1 for each i = 1, . . . ,k,

by the definition.
If W = (w1, . . . ,wk) ∈ V(G)k is such that φ(w1, . . . ,wk) holds true

in G, we write G |= φ(w1, . . . ,wk). We can now give the following
definition:

Definition 7.3.3 (FO polytope). Let φ(x1, . . . , xk) be an FO formula
with k free variables. The (first-order) φ-polytope of G, denoted by
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FOPφ(G), is defined to be the convex hull of the characteristic vec-
tors of every k-tuple of vertices of G such that φ(w1, . . . ,wk) holds
true in G. That is,

FOPφ(G) = conv

({
χW ∈ {0, 1}n

∣∣∣∣∣W = (w1, . . . ,wk) ∈ V(G)k,

G |= φ(w1, . . . ,wk)

})
.

FO polytopes are quite general. For example, the polytopes STABk(G)
defined earlier is easily seen to be an instance of an FO polytope.

Proposition 7.3.4. Let ι(x1, . . . , xk) ≡
∧
i 6=j
(
¬edge(xi, xj)∧ xi 6= xj

)
(the k-independent set formula). For every graph G, the ι-polytope FOPι(G)
is an extension of STABk(G).

Proof. If G has n vertices then

STABk(G) =

{
y ∈ Rn

∣∣∣∣∣ yv =
k∑
i=1

χWv,i, χ
W ∈ FOPι(G)

}
.

Therefore, STABk(G) is a projection of FOPι(G) given by the projec-
tion map described by yv =

∑k
i=1 χ

W
v,i for all vertices v of G.

We say that an FO formula φ(x1, . . . , xk) is existential FO if it can be
written as φ(x1, . . . , xk) ≡ ∃y1 . . . y`ψ(x1, . . . , xk,y1, . . . ,y`), where
ψ is quantifier-free. The number ` of quantified variables in φ is called
the quantifier rank of φ.

Proposition 7.3.5. Let φ(x1, . . . , xk) be an existential FO formula with k
free variables and quantifier rank `. Also, let G be any graph class of bounded
expansion. Then there exists a computable function f : N → N, depending
on the expansion function of G, such that

xc
(
FOPφ(G)

)
6 f(k+ `) ·n

holds for every integer n and every n-vertex graph G ∈ G. Furthermore, an
explicit extension of FOPφ(G) of size at most f(k+ `) · n can be found in
linear time for fixed k, ` and G.

Proof. See [30], Theorem 20 (Appendix F).
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H - F R E E E X T E N D E D F O R M U L AT I O N S

Since linear programming is in P we will not be able to solve an N P-
hard problem X in polynomial time by linear programming unless
P = N P. On the other hand, since linear programming is P-complete,
we will not be able to prove a super-polynomial lower bound on solv-
ing X by a linear program (LP) without showing that P 6= N P. One
way to make progress on this problem is to consider restricted ver-
sions of linear programming which have two properties:

property (1): Problems in P will still be solvable in polynomial
time even in the restricted version of linear programming.

property (2): Known N P-hard problems with natural LP formula-
tions will have provable super-polynomial lower bounds under
the restricted version of linear programming.

Note that results of type (1) and (2) will still be true, independently
of whether or not P = N P.

Here we propose a stronger version of extension complexity which
satisfies property (1). We also exhibit some N P-hard problems that
satisfy property (2). In the proposed model we concentrate on the
separation problem rather than the polynomial time equivalent opti-
mization problem.

8.1 H-free extensions

Definition 8.1.1. Let P = P(A , b) be a polytope and let H be a set
of valid inequalities for P. We delete from Ax 6 b all inequalities
that are redundant with respect to H and call the resulting (possibly
empty) polyhedron PH. The H-free extension complexity of P with re-
spect to the inequalities H is defined to be the extension complexity of
PH.

Let X be some computational problem that can be solved by an LP
over a polytope Q. For the applications considered in this chapter, it
is convenient to consider the case where Q is given by an implicit de-
scription of its vertices. So for the matching problem, Q is the convex
hull of all 0/1 matching vectors, and for the TSP problem it is the
convex hull of all 0/1 incidence vectors of Hamiltonian circuits.

Let H = H(Q) be a possibly super-polynomial size set of valid in-
equalities for Q equipped with an H-separation oracle. We can solve
the separation problem for Q for a point x by first solving it for H
and then, if necessary, for QH. Suppose x is not in Q. If x is not in H
we get a violated inequality by the oracle. Otherwise x must violate a
facet of QH. We will allow separation for QH to be performed using
any extension Q ′H of QH by explicitly checking the facets of Q ′H for

77
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the lifting of x. We call Q ′H an H-free EF for Q. Using this separation
algorithm and the ellipsoid method we have a way to solve LPs over
Q. We call such a restricted method of solving LPs an H-free LP for Q.

Definition 8.1.2. Let Q be a polytope and H be a set of inequalities
valid for Q. We say that an H-free EF for Q has polynomial size if:

(a) The H-separation oracle runs in polynomial time and

(b) xc(QH) is polynomial in the input size of X.

In this case we also have an H-free LP forQ that runs in polynomial
time. On the other hand, if for given H, xc(QH) is super-polynomial
in the size of X then we say that all H-free LPs for X run in super-
polynomial time. Note that this statement is independent of whether
or not P = NP. When H is empty all of the above definitions reduce
to standard definitions for EFs and extension complexity.

Example 8.1.3. For the matching problem if H is the set of odd-set
inequalities then QH is empty. In this case we have an H-free EF for
matching of poly-size even though matching has exponential exten-
sion complexity.

This example generalizes to show that every problem X in P has
a poly-size H-free EF for some H. Indeed, since LP is P-complete, X
can be solved by optimizing over a polytope Q. Let H be the entire
facet list F(Q) so that QH is again empty. Optimization over Q can be
performed in polynomial time so, by the equivalence of optimization
and separation, separation over H can be performed in polynomial
time also. Therefore (a) and (b) are satisfied as required.

For the TSP, let H be the sub-tour constraints. In this case QH is
non-empty and in fact one can show (cf. next section) that it has
exponential extension complexity. Therefore H-free LPs for the TSP
require exponential time, extending the existing extension complexity
result for this problem.

We remark that H is an essential parameter here. Matching, for
example, has poly-size H-free extension complexity when H are the
odd set inequalities, but not whenH is empty. Nevertheless, any prob-
lem with poly-size H-free extension complexity for some H can of
course be solved in polynomial time. For a given hard problem, one
gets stronger hardness results by letting H be larger and larger sets of
poly-size separable inequalities, as long as one can still prove thatQH
has super-polynomial extension complexity. We give some examples
to illustrate this in subsequent sections.

8.2 matching problems

Recall that Edmonds’ polytope has the following halfspace represen-
tation[23]: ∑

e∈S
xe 6 (|S|− 1)/2, S ⊆ V , |S| is odd (7)

0 6 xe 6 1, e ∈ E. (8)
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Let H be this half-space representation of Q. Since optimization
over Q can be performed in polynomial time by Edmonds’ algorithm
there is a polynomial time separation algorithm for H. It follows that
the matching problem has a poly-size H-free EF.

In the next three subsections we give NP-hard generalizations of
the matching problem which have super-polynomial lower bounds
on their H-free extension complexity, where H are the odd set in-
equalities (7).

8.2.1 Induced matchings

LetQ be the convex hull of the incidence vectors of all induced match-
ings in G. Let H be the odd set inequalities (7). Clearly H are valid for
Q, and as remarked above, they admit a polynomial time separation
oracle. It can be shown that xcH(Q) is super-polynomial.

Proposition 8.2.1. xcH(Q) is super-polynomial.

Proof. Since Proposition 4.2.15 applies to bipartite graphs G, each of
the odd set inequalities (7) is redundant for the induced matching
polytope of G. Therefore the H-free extension complexity of the in-
duced matching polytope is super polynomial in the worst case.

Although this example offers an example of H-free extension com-
plexity, it suffers from one obvious weakness. For every graph, all of
the inequalities in H are redundant with respect to Q even for non-
bipartite graphs! A graph is called hypomatchable if the deletion of any
vertex yields a graph with a perfect matching. Pulleyblank proved in
1973 (see [48]) that facet-inducing inequalities in (7) correspond to
subsets S that span 2-connected hypomatchable subgraphs of G. Let
x be the incidence vector for any matching M in G that satisfies such
an inequality as an equation. Since S spans a 2-connected subgraph,
M cannot be an induced matching.

In order to avoid such trivial cases it is desirable that most, if not
all, inequalities of H define facets for at least one polytope Q that
corresponds to some instance of the given problem.

8.2.2 Maximal matchings

Again, since the graphs G in Proposition 4.2.20 are bipartite, each of
the odd set inequalities (7) is redundant for the maximal matching
polytope of G. Therefore the H-free extension complexity of the in-
duced matching polytope is super polynomial in the worst case.

This example differs from the example in the previous subsection
in that (7) are facet defining for maximum matching polytopes of non-
bipartite graphs. To see this, fix a graph G and odd-set S of its vertices.
Pulleyblanks’s characterisation [48] states that (7) is facet defining for
the matching polytope of G whenever S spans a 2-connected hypo-
matchable subgraph. The only matchings in G that lie on this facet
have precisely (|S|− 1)/2 edges from the set S and are therefore max-
imal on S. Each of these matchings can be extended to a maximal



80 H-free extended formulations

matching in G which appears as a vertex of MM(G). Therefore, pro-
vided these extensions do not lie in a lower dimensional subspace and
MM(G) is full dimensional, (7) is also facet inducing for MM(G) for
the given set S. For example, the odd cycles C2k+1, k > 3 with the
addition of a chord cutting off a triangle are a family of such graphs.

8.2.3 Edge disjoint matching and perfect matching

Note that for every pair of odd subsets S1,S2 of G two odd set in-
equalities can be written: one corresponding to the odd set inequali-
ties for perfect matching polytope on variables xi, and the other cor-
responding to the odd set inequalities for matching polytope on vari-
ables yi. For a subset of vertices S, let δ(S) denote the subset of edges
with exactly one endpoint in S. The two sets of inequalities are:∑

e∈δ(S1)

xe > 1, S1 ⊆ V , |S1| is odd (9)

∑
e∈S2

ye 6
|S2|− 1

2
, S2 ⊆ V , |S2| is odd (10)

Again the graphs G in the Proposition 4.2.24 are bipartite so each of
the odd set inequalities (9,10) is redundant for MPM(G). Therefore
taking H to be the set of these inequalities we have that the H-free
extension complexity of the these polytopes is super polynomial in
the worst case.

8.3 the tsp polytope

Recall that an undirected TSP instance X is defined by a set of integer
weights wij, 1 6 i < j 6 n, for each edge of the complete graph
Kn. A tour is a Hamiltonian cycle in Kn defined by a permutation
of its vertices. It is required to compute a tour of minimum weight.
We define the polytope Q to be the convex hull of the 0/1 incidence
vectors x = (xij : 1 6 i < j 6 n} of the tours. It is known that
xc(Q) = 2Ω(n) [55].

We define H to be the set of subtour elimination constraints:∑
i,j∈S,i 6=j

xij 6 |S|− 1, S ⊆ {1, 2, ...,n− 1}, |S| > 2. (11)

xij > 0, 1 6 i < j 6 n (12)

It is well known that the subtour elimination constraints can be
polynomial time separated by using network flows. These constraints
by themselves define the convex hull of all forests in Kn−1 and Martin
[49] has given an EF for them that has size O(n3).

Therefore, xc(QH) = 2Ω(n), otherwise together with Martin’s re-
sult and Proposition 3.2.6), it would imply an upper bound of 2o(n)

for the travelling salesman polytope. It follows that every H-free LP
for the TSP runs in exponential time, where H are the subtour in-
equalities.
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8.3.1 Comb inequalities for TSP

Definition 8.3.1. For a graph G = (V ,E), a comb is defined by a
subset of vertices H called the handle and a set of subsets of vertices
Ti, 1 6 i 6 k where k is an odd number at least three. The sets Ti
are called the teeth. The handle and the teeth satisfy the following
properties:

H∩ Ti 6= ∅, (13)

Ti ∩ Tj = ∅, ∀i 6= j (14)

H \

k⋃
i=1

Ti 6= ∅ (15)

The following inequality is valid for the TSP polytope of G and
is called the comb inequality for the comb defined by handle H and
teeth Ti as above.

x(δ(H)) +

k∑
i=1

x(δ(Ti)) > 3k+ 1

Grötschel and Padberg [34] showed that every comb inequality de-
fines a facet of TSPn for each n > 6. It is not known whether separat-
ing over comb inequalities is NP-hard, neither is a polynomial time
algorithm known.

For a given comb C and a TSP tour T of G, the slack between the
corresponding comb inequality and T is denoted by slcomb(C, T).

8.3.2 2-matching inequalities

Definition 8.3.2. A comb inequality corresponding to a handle H and
k teeth Ti is called a 2-matching inequality if each tooth Ti has size
exactly two.

In particular this means that |H ∩ Ti| = 1 and |Ti \H| = 1 for each
1 6 i 6 k. These inequalities are sometimes also referred to as blos-
som inequalities. Padberg and Rao [51] gave a polynomial time algo-
rithm to separate over the 2-matching inequalities.

8.3.2.1 Simple comb inequalities

Definition 8.3.3. A comb inequality corresponding to a handle H and
k teeth Ti is called a simple comb inequality if |H∩ Ti| = 1 or |Ti \H| =
1 for each 1 6 i 6 k.

Simple comb inequalities contain all the 2-matching inequalities. It
is not known whether one can separate over them in polynomial time.

8.3.2.2 (h, t)-uniform comb inequalities

Let us define a subclass of comb inequalities called (h, t)-uniform comb
inequalities associated with what we will call (h, t)-uniform combs for
arbitrary 1 6 h < t.
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Definition 8.3.4. A comb, with handle H and k teeth Ti, is said be
(h, t)-uniform if |Ti| = t and H∩ Ti = h, for all 1 6 i 6 k.

8.3.3 Odd set inequalities for perfect matching

Definition 8.3.5. Let V denote the vertex set of Kn. For every odd
set U ⊆ V the following inequality is valid for the perfect matching
polytope PMn and is called an odd set inequality.

x(δ(U)) > 1

For a given odd set S and a perfect matching M of Kn, the slack
between the corresponding odd set inequality and M is denoted by
slodd(S,M).

8.3.4 t-subdivided prisms of a graph

Definition 8.3.6. A prism over a graph G is obtained by taking two
copies of G and connecting corresponding vertices.

It is helpful to visualise this as stacking the two copies one over the
other and then connecting corresponding vertices in the two copies by
a vertical edge. A t-subdivided prism is then obtained by subdividing
the vertical edges by putting t− 2 extra vertices on them. See Figure
6 for an example.

Figure 6: A 5-subdivided prism over K4.

Let G be the t-subdivided prism of Kn. Let the vertices of the two
copies be labeled u11, . . . ,u1n and ut1, . . . ,utn. As a shorthand we will
denote the path u1i ,u2i , . . . ,uti as u1i u

t
i . Similarily, uti u

1
i will de-

note uti , . . . ,u
2
i ,u1i .

The graph G has path u1i u
t
i for all i ∈ [n] and (u1i ,u1j ), (u

t
i ,u

t
j)

for all i 6= j, i, j ∈ [n]. Thus G has tn vertices and 2
(
n
2

)
+ (t − 1)n

edges.

8.3.5 Motivation

The motivation for looking at t-subdivided prisms stems from a sim-
ple observation which we state in the form of a proof of the following
proposition:
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Proposition 8.3.7. Let 2MP(n) be the convex hull of the incidence vectors
of all 2-matchings of the complete graph Kn. Then, xc(2MP(n)) > 2Ω(n).

Proof. Let G be a graph with n vertices and m edges and let G ′ be
the 3-subdivided prism of G. G ′ has 3n vertices and 2m+ 2n edges.
Any 2-matching in G ′ contains all the vertical edges and thus when
restricted to a single copy – say the bottom one – of G gives a match-
ing in G. Conversely, any matching in G can be extended to a (not
necessarily unique) 2-matching in G ′.

Taking G as Kn we obtain a G ′ that is a subgraph of K3n. The 2-
matching polytope of G ′ lies on a face of the 2-matching polytope
of the complete graph on 3n vertices (corresponding to all missing
edges having value 0). Therefore, the extension complexity of the 2-
matching polytope 2MP(n) is at least as large as that of the perfect
matching polytope. That is, xc(2MP(n)) > 2Ω(n).

The above generalizes to P-matching polytopes for arbitrary P in the
obvious way, and is probably part of folklore1.

The generalization of the 3-subdivided prism to larger subdivisions
allows us to be able to argue not only about the 2-matching inequal-
ities – which are the facet-defining inequalities for the 2-matching
polytope – but also about comb inequalities by using the vertical
paths as teeth for constructing combs.

8.3.6 Uniform combs of odd sets

Let n and t be positive integers. In the following we will assume that
n is a multiple of t. Since we are interested in asymptotic statements
only, this does not result in any loss of generality. Let G be the t-
subdivided prism of Kn/t for some t > 2. Given an odd set S and a
perfect matching M in Kn/t, and arbitrary 1 6 h < t, we are inter-
ested in constructing a comb C and a TSP tour T in Kn such that the
following conditions hold:

(C1): C is a (h, t)-uniform comb.

(C2): C depends only on S and 2 edges of M.

(C3): T depends only on M.

(C4): slcomb(C, T) = slodd(S,M).

If such a pair (C, T) of a comb and a TSP tour is shown to exist
for every pair (S,M) of an odd set and a perfect matching, then we
can show that any EF-protocol for computing the slack slcomb(C, T)
can be used to construct an EF-protocol for computing slodd(S,M)

due to condition (C4). Furthermore, due to conditions (C2) and (C3)
the number of bits required for the later protocol will not be much
larger than the number of bits required for the former, as C can be
locally constructed from S after an exchange of two edges, and T can
be locally constructed from M.

1 W. Cook (private communication) attributes the same argument to T. Rothvoß
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Figure 7: Construction of a comb from
given odd set: The odd set consists of 5
vertices displayed as big filled circles in
the bottom copy. The corresponding han-
dle consists of all vertices represented by
filled circles. The teeth are represented by
the vertical ellipsoidal enclosures.
The big circles represent vertices of the
original graph and their top copies. The
small circles represent the h-th copy, while
the other copies have been omitted here.
Bold edges at the bottom are matching
edges. All other edges displayed are just
for illustration of the relationship of vari-
ous copies of vertices.
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Now we show that such a pair does exist if at least two edges of M
are contained in S and |S| > 5.

Proposition 8.3.8. Let (S,M) be a pair of an odd set and a perfect matching
in Kn/t, and let 1 6 h < t. Suppose that |S| > 5, and let w1,w2,w3,w4 ∈
S be distinct with (w1,w2) and (w3,w4) in M. Then, there exists a pair
(C, T) of a comb C and a TSP tour T in Kn satisfying the four conditions
(C1)–(C4).

Proof. Let |S| = s. For simplicity of exposition, we assume that the
vertices of S are labeled w1, . . . ,ws. By wji, we denote the copy of wi
in the j-th layer of the t-subdivided prism over Kn/t.

The comb C is constructed as follows. The handle H is obtained by
taking all vertices in S and the copies w21, . . . ,wt1 and w23, . . . ,wt3. For
every other vertex w ∈ S the vertices w2, . . . ,wh are also added to
H. The teeth Ti are formed by pairing each vertex v in S \ {w1,w3}
with its copies v2, . . . , vt producing s− 2 teeth. See Figure 7 for an
illustration. Since s > 5 is odd, the number of teeth is odd and at least
3. Thus, the constructed comb is (h, t)-uniform satisfying conditions
(C1) and (C2), and the corresponding comb inequality is

x(δ(H)) +

s−2∑
i=1

x(δ(Ti)) > 3(s− 2) + 1. (16)

To construct a tour T from the given perfect matching M such
that conditions (C3) and (C4) are satisfied, we start with a subtour
(w11 w

t
1,wt3 w

1
3,w14 w

t
4,wt2 w

1
2,w11). At each stage we maintain

a subtour that contains all matching edges on the induced vertices in
the lower copy, the edge (wt1,wt3), and at least one top edge differ-
ent from (wt1,wt3). Clearly the starting subtour satisfies these require-
ments. As long as we have some matching edges in M that are not in
our subtour, we pick an arbitrary edge (wa,wb) in M and extend our
subtour as follows. Select a top edge (wtq,wtr) different from (wt1,wt3),
remove the edge and add the path (wtq,wta w1a,w1b w

t
b,wtr). The

new subtour contains the selected perfect matching edge (w1a,w1b),
the paths w1a wta and w1b w

t
b and has one more top edge distinct

from (wt1,wt3) than in the previous subtour. See Figure 8 for an exam-
ple.
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(a) The initial tour going
through w11, wt1, wt3, w13,
w14, wt4, wt2, w12, w11
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(b) Adding a new match-
ing edge (w5,w6) by re-
moving (wt2,wt4)

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

(c) The final tour

Figure 8: Constructing a TSP tour from a perfect matching.

At the completion of the procedure, we have a TSP tour that satis-
fies the following properties:

1. Each edge of M is used in the tour.

2. Each vertical path w1i w
t
i for all i ∈ [n] is used in the tour.

3. Edge (wt1,wt3) is used in the tour.

From the construction, edges in |δ(H) ∩ T | are precisely the edges
in |δ(S) ∩M| together with s−2 other edges exiting the comb: one
through each of the s−2 teeth. Therefore, |δ(H) ∩ T | = |δ(S) ∩M| +

s− 2. Also, the tour T enters and exits each teeth precisely once so
|δ(Ti) ∩ T | = 2 for each of the s−2 teeth. Substituting these values in
the inequality 16, we obtain the slack slcomb(C, T) = |δ(S) ∩M|+ (s−

2) + 2(s − 2) − 3(s − 2) − 1 = slodd(S,M). This completes the proof
because the pair (C, T) satisfies conditions (C1)–(C4).

Using the existence of the pair (C, T) as described earlier and the
fact that any EF-protocol for the perfect matching polytope requires
an exchange of a linear number of bits, we will lower bound the
number of bit exchanged by any EF-protocol computing the slack
of (h, t)-uniform comb inequalities with respect to TSP tours. In the
next section we will use the following proposition multiple times by
fixing different values for the parameters h and t.

Proposition 8.3.9. Any EF-protocol computing the slack of (h, t)-uniform
comb inequalities with respect to the TSP tours of Kn, requires an exchange
of Ω(n/t) bits. Equivalently, the extension complexity of the polytope of
(h, t)-uniform comb inequalities is 2Ω(n/t).

Proof. Due to Proposition 3.1.13 and 3.1.25, it suffices to show if such
a protocol uses r bits, then an EF-protocol for the perfect matching
polytope for Kn/t can be constructed, that uses r+O(log (n/t)) bits.
The protocol for computing the slack of an odd set inequality with
respect to a perfect matching in Kn/t works as follows.
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Suppose Alice has an odd set S in Kn/t, with |S| = s, and Bob has a
matching M in Kn/t. The slack of the odd-set inequality correspond-
ing to S with respect to matching M in the perfect matching polytope
for Kn/t is |δ(S)∩M|− 1.

We assume that s > 5. Otherwise, Alice can send the identity of the
entire set S with at most 4 log (n/t) bits and Bob can output the slack
exactly.

Alice first sends an arbitrary vertex w1 ∈ S, to Bob. Bob replies
with the matching vertex of w1, say w2. Alice then sends another
arbitrary vertex w3 ∈ S,w3 6= w2 to Bob who again replies with the
matching vertex for w3, say w4. So far the number of bits exchanged
is 4 dlog (n/t)e.

Now there are two possibilities: either at least one of the vertices
w2,w4 is not in S, or both w2,w4 are in S. Alice sends one bit to
communicate which of the possibilities has occurred and accordingly
they switch to one of the two protocols as described next.

In the former case, Alice has identified an edge, say e, in δ(S)∩M.
Now Bob selects an edge e ′ of his matching uniformly at random (i.e.
with probability 2/n) and sends it to Alice. If e ′ is in δ(S) \ {e}, Alice
outputs n/2. Otherwise, Alice outputs zero. The expected contribu-
tion by edges in (δ(S)∩M) \ {e} is then exactly one while the expected
contribution of all other edges is zero. Therefore the expected output
is |δ(S) ∩M| − 1, and the number of bits exchanged for this step is
dlogme where m is the number of edges in Kn/t. Thus the total cost
in this case is O(log (n/t)) bits.

In the latter case, the matching edges (w1,w2) and (w3,w4) lie
inside S. Alice constructs a comb C in the t-subdivided prism of
Kn/t, and Bob a TSP tour T in the t-subdivided prism of Kn/t such
that (C, T) satisfies conditions (C1)–(C4). By Proposition 8.3.8 they
can do this without exchanging any more bits. Since sl comb(C, T) =

slodd(S,M), they proceed to compute the corresponding slack with
the new inequality and tour, exchanging r bits. The total number of
bits exchanged in this case is r+ 4 dlog (n/t)e+ 1 = r+O(log (n/t)).

8.3.7 lower bounds

In this section we consider the extension complexity of the polytope
of comb inequalities and H-free extension complexity of the TSP poly-
tope when H is the set of simple comb inequalities. As we will see,
the results in this section are obtained by instantiating Proposition
8.3.9 with different values of the parameters h and t.

8.3.8 Extension complexity of Comb inequalities

We show that the polytope defined by the Comb inequalities has high
extension complexity.

Proposition 8.3.10. Let COMB(n) be the polytope defined by the intersec-
tion of all comb inequalities for TSPn. Then xc(COMB(n)) > 2Ω(n).
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Proof. Suppose there exists an EF-protocol that computes the slack of
COMB(n) that uses r bits. Since (1, 2)-uniform comb inequalities are
valid for TSPn we can use the given protocol to compute the slack
of these inequalities with respect to the TSP tours of Kn using r bits.
Then, using Proposition 8.3.9, the slack matrix of the perfect matching
polytope for Kn/2 can be computed using r+O(logn) bits. By Propo-
sition 3.1.13 and 3.1.25, this must be Ω(n). Finally, by Proposition
3.1.25 this implies that xc(COMB(n)) > 2Ω(n).

8.3.9 H-free extension complexity

Let Ch,t be the set of (h, t)-uniform comb inequalities for fixed values
of h and t. Observe that, since at least three teeth are required to
define a comb and the handle must contain some vertex not in any
teeth, for (h, t)-uniform combs on n vertices we must have t 6

⌊
n−1
3

⌋
.

So for any values of 1 6 h < t 6
⌊
n−1
3

⌋
, the set Ch,t is a nonempty

set of facet-defining inequalities for TSPn, and for any other values
of h and t the set Ch,t is empty.

Proposition 8.3.11. If H is a set of inequalities valid for the polytope TSPn,
such that H ∩ Ch,t = ∅ for some nonempty Ch,t, then the H-free extension
complexity of TSPn is at least 2Ω(n/t).

Proof. Let 1 6 h < t be integers such that H ∩ Ch,t = ∅. That is, the
set H does not contain any (h, t)-uniform comb inequalities. Let P be
the polytope formed from TSPn by throwing away any facet-defining
inequalities that are in H. Then, any EF-protocol computing the slack
matrix of P correctly must use Ω(n/t) bits due to Proposition 8.3.9.
The claim then follows from Proposition 3.1.25.

The previous proposition shows that for every set H of valid in-
equalities of TSPn, if the extension complexity of the TSP polytope
becomes polynomial after removing the inequalities in H, then H

must contain some inequalities from every (h, t)-uniform comb in-
equality class, for all t = o(n/ logn).

Exercise 8.3.12. Show that the statement can be made stronger by
replacing the requirement H ∩ Ch,t = ∅ with |H ∩ Ch,t| 6 poly(n).
(Hint: See the discussion in Section 8.3).

We can use the previous proposition to give lower bounds for H-
free extension complexity of the TSP polytope with respect to impor-
tant classes of valid inequalities by simply demonstrating some class
of (h, t)-uniform comb inequalities that has been missed.

2-matching inequalities

Proposition 8.3.13. Let P be the polytope obtained by removing the 2-
matching inequalities from the TSP polytope. Then, xc(P) = 2Ω(n).

Proof. The 2-matching inequalities are defined by combs for which
each tooth has size exactly two. Therefore the set of (1, 3)-uniform
combs are not 2-matching inequalities, and Proposition 8.3.11 applies.
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Simple comb inequalities

Proposition 8.3.14. Let P is the polytope obtained by removing the set of
simple comb inequalities from the TSP polytope. Then, xc(P) = 2Ω(n).

Proof. Recall that a comb is called simple if |H∩ Ti| = 1 or |Ti \H| = 1
for all 1 6 i 6 k where k is the (odd) number of teeth in the comb
and H is the handle. Clearly, (2, 4)-uniform combs are not simple and
Proposition 8.3.11 applies.

As mentioned before, simple comb inequalities define a superclass
of 2-matching inequalities and a polynomial time separation algo-
rithm is known for 2-matching inequalities. Althought a similar result
was claimed for simple comb inequalities, the proof was apparently
incorrect, as pointed out by Fleischer et al. [29]. This latter paper in-
cludes a polynomial time separation algorithm for the wider class of
simple domino-parity inequalities that we do not consider here.

It remains unknown whether there exists a polynomial time sepa-
ration algorithm for the (h, t)-uniform comb inequalities.
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W E A K E X T E N D E D F O R M U L AT I O N S

9.1 p-completeness of linear programming

It is well established that Linear Programming is P-complete with re-
spect to logspace reductions. That is, any problem in P can be reduced
to a Linear Programming problem using a logspace reduction. On
the other hand it is now also known that the perfect matching poly-
tope has exponential extension complexity. That is any polytope that
projects to the perfect matching polytope of the complete graph K2n
requires at least 2Ω(n) inequalities to describe. These two facts may
appear contradictory at first sight. How come the perfect matching
problem is solvable in polynomial time and yet the polytope requires
exponential size?

The previous conundrum is easily resolved if one notices subtle dif-
ferences between decision and optimization problems, and between
“reduction to a Linear Program” and “extension complexity of the
perfect matching polytope”. Extended formulations require the fea-
sible region of the LP formulations to project exactly to the perfect
matching polytope, while a reduction to a Linear Programming prob-
lem may produce other polytopes as a feasible region. Based on the
particular objective function (that is, a particular instance) the reduc-
tion may produce different polytopes. At the heart of this issue is the
fact that logspace reductions can do fairly non-trivial computation
with the objective function. Indeed, it is not even known whether
LOGSPACE 6= NP. So for all we know, the reduction may as well
solve the perfect matching problem and produce a trivial LP instance.

One may still obtain reasonable and interesting statements if one
were to ask the following: Can we obtain a small Linear Program for
perfect matching even if the input instance is allowed to be modified
only in very restricted ways? The answer obviously depeneds on how
this question is formulated in a precise way. We will give one inter-
pretation and obtain small Linear Programs for problems in P/poly.
Before we formalize anything we start with an example.

Definition 9.1.1. Let n be an even integer and let x be a binary vec-
tor of length

(
n
2

)
. We let G(x) = (V ,E) denote the graph with edge

incidence vector given by x, let n be the number of its vertices and
m = 1>x the number of its edges. Furthermore, let wx = 1 if G(x)
has a perfect matching and zero otherwise. We define the polytope
PMn as:

PMn = conv

{(
x

wx

)∣∣∣∣∣ x ∈ {0, 1}(
n
2)

}
(17)

PMn may be visualized by starting with a hypercube in dimension(
n
2

)
and embedding it in one higher dimension with extra coordi-
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nate w. For vertices of the cube corresponding to graphs with perfect
matchings w = 1 else w = 0. It is easy to see that PMn has precisely
2(
n
2) vertices. EPn is closely related to PMn, in fact it forms a face.

Proposition 9.1.2. EPn is a face of PMn and can be defined by

EPn =

{
x

∣∣∣∣∣
(
x

w

)
∈ PMn ∩

{
1>x+ (1−w)n2 =

n

2

}}
(18)

Proof. We first show that the inequality

1Tx+ (1−w)n2 >
n

2
(19)

is valid for PMn. We need only verify it for the extreme points (x,wx)
given in (17). If wx = 0, (19) holds since 1Tx+ n2 > n

2 . Otherwise
wx = 1, x is the incidence vector of graph containing a perfect match-
ing, so 1Tx > n/2. The vectors x with wx = 1 and 1Tx = n/2 are the
incidence vectors of perfect matchings of Kn and are precisely those
used to define EPn.

For a given input graph G(x̄) = (V ,E) we define the vector c by:

cij = 1 ij ∈ E cij = −1 ij 6∈ E 1 6 i < j 6 n (20)

and let d be a constant such that 0 < d 6 1/2. We construct the LP:

z∗ = max z = c>x+ dw (21)(
x

w

)
∈ PMn

Proposition 9.1.3. For any edge incidence vector x̄ ∈ [0, 1](
n
2) let m =

1>x̄. The optimum solution to (21) is unique, z∗ = m+ d if G(x̄) has a
perfect matching, and z∗ = m otherwise.

Proof. See [4], Proposition 2 (Appendix J).

9.2 weak extended formulations

Let X denote a poly-time decision problem defined on binary input
vectors x = (x1, ..., xq), and an additional bit wx, where wx = 1 if
x results in a "yes" answer and wx = 0 otherwise. We define the
polytope P as:

P = conv

{(
x

wx

)∣∣∣∣∣ x ∈ {0, 1}q
}

(22)

For a given binary input vector x̄ we define the vector c by:

cj = 1 x̄j = 1 and cj = −1 x̄j = 0 1 6 j 6 q (23)

and let d be a constant such that 0 < d 6 1/2. As before we construct
an LP:

z∗ = max z = c>x+ dw (24)(
x

w

)
∈ P
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The following proposition can be proved in an identical way to Propo-
sition 9.1.3.

Proposition 9.2.1. For any x̄ ∈ [0, 1]q letm = 1>x̄. The optimum solution
to (24) is unique, z∗ = m+d if x̄ has a "yes" answer and z∗ = m otherwise.

Definition 9.2.2. Let Q be a polytope which is a subset of the (q+ t)-
cube with variables labeled x1, ..., xq,y1, ...,yt. We say that Q has the
x-0/1 property if each of the 2q ways of assigning 0/1 to the x variables
uniquely extends to a vertex (x>,y>)> of Q and, furthermore, y is
0/1 valued. Q may have additional fractional vertices.

In polyhedral terms, this says that the intersection of Q with the
hyperplanes xj = ej, j = 1, ...,q is a 0/1 vertex, for each assignment
of zero or one to the ej’s. We can show that we can solve a poly-
time decision problem X by replacing P in (21) by a polytope Q of
polynomial size, while maintaining the same objective functions. We
call Q a weak extended formulation as it does not necessarily project
onto P.

Definition 9.2.3. A polytope

Q =


xw
s

 ∈ [0, 1]q+1+r

∣∣∣∣∣∣∣∣Ax+bw+Cs 6 h


is a weak extended formulation (WEF) of P if

• Q has the x-0/1 property.

• For any binary vector x̄ ∈ [0, 1]q let m = 1>x̄. Let c be defined
by (23) and let 0 < d 6 1/2. The optimum solution

z∗ = max

c>x+ dw
∣∣∣∣∣∣∣∣
xw
s

 ∈ Q


is unique and takes the value z∗ = m+d if x̄ has a "yes" answer.
Otherwise z∗ < m+ d and for all sufficiently small d, z∗ = m

and is unique.

For example, let X be the perfect matching problem so that P =

PMn. Let Q = Qn be a WEF as given by this definition. It follows
from Proposition 9.1.3 that we can determine whether an input graph
G has a perfect matching by solving an LP over either PMn or Qn
using the same objective function which is derived directly from the
edge adjacency vector of G.

Example 9.2.4. Consider n = 2 giving PM2 = conv{(0, 0)>, (1, 1)>}. A
WEF, for example, is given by:

Q2 = conv{(0, 0, 0)>, (1, 1, 1)>, (1/4, 1, 1/2)>}

Initially let d = 1/2. When G(x̄) is an edge, m = 1, c12 = 1 and z =
c>x+ dw obtains the same optimum solution of z∗ = 3/2 = m+ d
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over both PM2 and Q2. When G(x̄) is a non-edge, m = 0, c12 = −1

and z = c>x+ dw obtains the optimum solution of z∗ = 0 = m over
PM2 and z∗ = 1/4 < 1/2 = m+ d over Q2, at the fractional vertex
(1/4, 1, 1/2)>. However, if 0 < d < 1/4 then z = c>x+dw obtains the
unique optimum solution of z∗ = 0 = m over both PM2 and Q2. We
see that Q2 projects onto a triangle in the (x,w)-space, whereas PM2

is a line segment.

9.3 weak extension for P/poly

In order to show that Linear Programming is P-complete, Valiant [61]
gave a construction to transform boolean circuits into a linear sized
set of linear inequalities with the x-0/1 property (where xi are the
variables corresponding to the inputs of the circuit); a similar con-
struction was used by Yannakakis [63] in the context of the Hamilto-
nian Circuit problem. One can show that Valiant’s construction im-
plies the following.

Proposition 9.3.1. Every decision problem X in P/poly admits a weak
extended formulation Q of polynomial size.

Valiant’s point of view is slightly different from ours in that he
explicitly fixes the values of the input variables before solving an LP-
feasibility problem (as opposed to using different objective functions
with a fixed set of inequalities). Showing that the result of this fixing
is a 0/1-vertex is precisely our x-0/1 property.

We begin with a standard definition1:

Definition 9.3.2. A (boolean) circuit with q inputs x = (x1 , x2 , . . . , xq)
is a directed acyclic graph in which each of its t nodes, called gates,
is either an AND(∧) gate, an OR(∨) or a NOT(¬) gate. We label each
gate by its output bit. One of these gates is designated as the output
gate and gives output bit w. The size of a circuit is the number of gates
it contains and its depth is the maximal length of a path from an input
gate to the output gate.

For example, the circuit shown in Figure 9 can be used to compute
whether or not a graph on 4 nodes has a perfect matching. The input
is the binary edge-vector of the graph and the output is w = 1 if the
graph has a matching (e.g. G1) or w = 0 if it does not (e.g. G2). If
the graph has a perfect matching, exactly one of y12 , y13 or y14 is
one, defining the matching. For each gate we have labeled the output
bit by a new variable. We will construct a polytope from the circuit
by constructing a system of inequalities on the same variables.

From an AND gate, say y12 = x12 ∧ x34 , we generate the inequal-
ities:

x12 + x34 − y12 6 1

−x12 + y12 6 0 (25)

−x34 + y12 6 0

y12 > 0

1 See, e.g., the text by Savage [56]
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Scanned by CamScanner

Figure 9: A circuit to compute whether a 4 node graph has a perfect match-
ing

The system (25) defines a polytope in three variables whose 4 ver-
tices represent the truth table for the AND gate:

x12 x34 y12

0 0 0

0 1 0

1 0 0

1 1 1

Note that the variables x12, x34 define a 2-cube and so the polytope
is an extension of the 2-cube. In the terminology of the last section, it
has the {x12, x34}-0/1 property.

From an OR gate, say s3 = y12 ∨y13, we generate the inequalities:

−y12 −y13 + s3 6 0

y12 − s3 6 0 (26)

y13 − s3 6 0

s3 6 1

The system (26) defines a polytope in three variables whose 4 ver-
tices represent the truth table for the OR gate, as can easily be checked.
Indeed, this polytope has the {y12,y13}-0/1 property.

From a NOT gate, say ȳ12 = ¬y12, we could generate the equation

ȳ12 = 1−y12 (27)

However it is equivalent to just replace all instances of ȳ12 by 1−
y12 in the inequality system, and this is what we will do in the sequel.

The circuit in Figure 9 contains 5 AND gates and 2 OR gates. By
suitably replacing variables in (25) and (26) we obtain a system of
28 inequalities in 13 variables. As just mentioned, the NOT gates are
handled by variable substitution rather than explicit equations. Let
Q4 denote the corresponding polytope. It will follow by the general
argument below that Q4 is a weak extended formulation (WEF) of
PM4.
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It can be shown that the above construction can be applied to any
boolean circuit C to obtain a polytope Q which has the 0/1 property
with respect to the inputs of C.

Proposition 9.3.3 ([61]). Let C be a boolean circuit with q input bits x =

(x1, x2, ..., xq), t gates labeled by their output bits y = (y1,y2, ...,yt)
and with circuit output bit w = yt. Construct the polytope Q with 4t
inequalities and q+ t variables using the systems (25) and (26) respectively.
Q has the the x-0/1 property and for every input x the value of w computed
by C corresponds to the value of yt in the unique extension (x>,y>)> ∈ Q
of x.

Proof. See [4], Lemma 1 (Appendix J).

This allows one to construct a WEF for any problem in P/poly.

Proposition 9.3.4. Let C be a circuit that solves a decision problem X with
q input bits x = (x1, x2, ..., xq) and has associated polytope P as defined in
(22). The polytope Q constructed in Proposition 9.3.3 is a WEF for P.

Proof. See [4], Lemma 2 (Appendix J).

Since each gate in the circuit gives rise to 4 inequalities and one
new variable, we have the following.

Proposition 9.3.5. Let X be a decision problem with corresponding polytope
P defined by (22). A set of circuits for X with size p(n) generate a WEF Q
for P with 4p(n) inequalities and variables.
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